

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DP-C4: ELIMINATING SOLUTION BIAS IN DIFFERENTIALLY PRIVATE OPTIMIZATION VIA COUPLED CLIPPING WITH ADAPTIVE THRESHOLDS

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Differentially private (DP) stochastic optimization algorithms are widely used in
 014 privacy-preserving deep learning, where per-sample gradient clipping and noise
 015 injection protect sensitive information. However, these operations limit existing
 016 DP methods to converge within a constant-radius neighborhood of the first-
 017 order stationary point, leading to solution bias and the well-known privacy-utility
 018 trade-off. To enhance model utility, we propose a novel framework called DP-C4,
 019 which is designed to be error-Consistently-decayed, Coupledly-clipped, solution-
 020 Calibrated, and Convergence-guaranteed; this is the first time such a method is
 021 proposed. Specifically, it incorporates a carefully designed coupled clipping strat-
 022 egy and adaptive clipping thresholds, ensuring that both clipping bias and noise
 023 variance asymptotically vanish, thereby correcting the DP-induced solution bias.
 024 Furthermore, we develop a memory-efficient variant that reduces storage com-
 025 plexity without compromising privacy guarantees. We prove that our method con-
 026 verges to the optimum in strongly convex case by properly constructing a Ly-
 027 apunov function, and to a diminishing neighborhood of the first-order stationary
 028 point in nonconvex case. Our theoretical results are supported by numerical ex-
 029 periments.

030 1 INTRODUCTION

031 **Background:** Deep learning have been extensively applied in numerous fields, such as smart
 032 homes (Li et al., 2023), transportation (Tahaei et al., 2020), and healthcare (Tang et al., 2019).
 033 However, the individual privacy whose information is included in datasets should be protected when
 034 the models are actually applied. Therefore, it is important to design privacy-preserving algorithms.

035 Differential Privacy (DP) (Dwork et al., 2006; Dwork & Roth, 2014) has emerged as the gold stan-
 036 dard for privacy-preserving deep learning. It offers provable privacy guarantees that the algorithm
 037 learns from sensitive data while limiting the information leaked about any individual sample. To
 038 protect the privacy of the training data, numerous differentially private stochastic optimization
 039 algorithms have been proposed for deep learning, such as DP stochastic gradient descent (DP-
 040 SGD) (Abadi et al., 2016). They apply per-sample gradient clipping using a fixed clipping norm
 041 and adds Gaussian noise into the aggregated gradient , which have been successfully deployed in
 042 both centralized (McMahan et al., 2018b; Bu et al., 2020) and federated (Geyer et al., 2017; Truex
 043 et al., 2020) settings.

044 However, the perturbation introduced by gradient clipping and noise often leads to reduced model ac-
 045 curacy. Therefore, these methods face a trade-off between model utility and privacy (Amin et al.,
 046 2019; Zhang et al., 2023a; Xiao et al., 2023). This challenge has attracted considerable attention,
 047 leading to the development of several improved variants of DP stochastic optimization algorithms.
 048 In particular: (1) adaptive clipping thresholds (Andrew et al., 2021; Phan et al., 2017; Pichapati
 049 et al., 2019) are adopted to reduce noise variance; (2) gradient normalization or group-based clip-
 050 ping (Yang et al., 2022; Das et al., 2021; McMahan et al., 2018a) are designed to mitigate clipping
 051 bias; and (3) iterative schemes are transferred from advanced non-DP optimizers (Zhu et al., 2024;
 052 Murata & Suzuki, 2023; Lee, 2017) to leverage their advantageous properties. Nevertheless, grad-
 053 ient clipping and added noise inevitably alter the original optimization dynamics. Prior work shows

that under settings similar to DP-SGD, regardless of how the clipping threshold or step size is chosen, DP algorithms only *converge with a constant bias term*, i.e., converge to a neighborhood of the first-order stationary point with a constant radius (Chen et al., 2020; Xiao et al., 2023; Song et al., 2013). Recently, the DiceSGD algorithm (Zhang et al., 2023b) integrates an Error Feedback mechanism to eliminate clipping bias at each iteration, enabling convergence *in expectation over the injected noise*. However, it does not account for noise variance, thereby driving the iterates to drift away from the optimum, leaving the solution bias issue. As a result, existing DP algorithms fail to handle both clipping bias and noise variance. This naturally motivates a fundamental but important question:

Is it possible to design a DP stochastic optimization algorithm that both clipping bias and noise variance asymptotically vanish during iterations, thereby eliminating the issue of solution bias?

Our Contributions: We provide an affirmative answer to the question by proposing an **error-Consistently-vanishing, Coupledly-clipped, solution-Calibrated, and Convergence-guaranteed** (DP-C4) algorithmic framework. This method incorporates a carefully designed coupled clipping strategy and adaptive clipping thresholds, thereby enforcing the clipping bias and noise variance to asymptotically vanish during iterations. To the best of our knowledge, this is the first time such a method is proposed. Furthermore, to mitigate the extra memory cost for determining clipping thresholds, we propose DP-C4⁺, which ensures a lower memory cost while preserving the calibration property. We prove that our method converges to the optimum in strongly-convex case by properly constructing a Lyapunov function and to a diminishing neighborhood of the first-order stationary point in the nonconvex case. Notably, we derive the upper bound through a case-by-case analysis leveraging the clipping strategy, thereby opening up new avenues for convergence analysis. Specifically, our contributions are as follows:

- **DP-C4 Framework:** We propose DP-C4, the first DP stochastic optimization algorithmic framework that eliminates solution bias by ensuring the joint asymptotic vanishing of noise variance and clipping bias. Furthermore, to reduce memory overhead, we introduce DP-C4⁺, which matches the memory cost of DP-SGD while preserving the solution calibration benefits of DP-C4.
- **Novel Convergence Analysis:** We establish the convergence guarantees of DP-C4⁽⁺⁾. Specifically, this method converges to the optimum by properly constructing Lyapunov functions in strongly-convex case, and to a diminishing neighborhood of the first-order stationary point in nonconvex case. To our best knowledge, this is the first DP algorithm whose convergence can be analyzed via a Lyapunov function, due to its unique solution calibration property.
- **Privacy Guarantee:** We present a privacy budget allocation strategy utilizing the structure of DP-C4⁽⁺⁾ to guarantee privacy. Compared to DP-SGD, it can achieve the same level of privacy protection while adding less noise.
- **Empirical Validation:** We conduct extensive experiments showing our method achieves superior privacy-utility trade-offs over existing baselines across various tasks and datasets.

2 PRELIMINARIES

2.1 PROBLEM SETUP AND ASSUMPTIONS

Problem Setup: We consider the empirical risk minimization (ERM) problem on a dataset D with $|D| = N$:

$$\min_{x \in \mathbb{R}^d} f(x) := \frac{1}{N} \sum_{i=1}^N f_i(x), \quad (1)$$

where $f_i(x)$ denotes the loss associated with the i -th data sample. Our goal is to propose a DP stochastic optimization algorithmic framework with Gaussian mechanism for finding its first-order stationary point x^* , i.e., $\nabla f(x^*) = \frac{1}{N} \sum_{i=1}^N \nabla f_i(x^*) = 0$.

Definition 1 $((\epsilon, \delta)$ -Differential Privacy (Dwork et al., 2006)). *A randomized mechanism $\mathcal{M} : \mathcal{D} \rightarrow \mathcal{R}$ is said to satisfy (ϵ, δ) -DP if for any two neighboring datasets $D, D' \in \mathcal{D}$ differing in at most one*

108 data record, and for any measurable subset $\mathcal{S} \subseteq \mathcal{R}$, it holds that
 109

$$110 \quad \Pr[\mathcal{M}(D) \in \mathcal{S}] \leq e^\epsilon \Pr[\mathcal{M}(D') \in \mathcal{S}] + \delta. \quad (2)$$

111 Here, $\epsilon > 0$ is the privacy budget controlling the strength of privacy protection, and $\delta \in [0, 1]$
 112 denotes a negligible probability of failure.
 113

114 **Definition 2** (Gaussian Mechanism (Dwork & Roth, 2014)). Given a function $f : \mathcal{D} \rightarrow \mathbb{R}^d$ and
 115 dataset $D \in \mathcal{D}$, the Gaussian mechanism adds noise calibrated to the ℓ_2 -sensitivity of f :

$$116 \quad \mathcal{M}(D) = f(D) + \mathcal{N}(0, \sigma^2 \mathbf{I}_d), \quad (3)$$

117 where $\mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ denotes a d -dimensional Gaussian distribution with zero mean and covariance
 118 $\sigma^2 \mathbf{I}_d$. The noise scale satisfies $\sigma \geq \Delta_f \cdot \frac{\sqrt{2 \log(1.25/\delta)}}{\epsilon}$, with $\Delta_f = \max_{D, D'} \|f(D) - f(D')\|_2$
 119 denoting the ℓ_2 -sensitivity of f between neighboring datasets D and D' .
 120

121

122 2.2 DP-SGD AND DP-SVRG:

123 In this subsection, we give a brief review of the DP-SGD and DP-SVRG methods.

124

125 **DP-SGD:** DP-SGD (Abadi et al., 2016) is a widely adopted method for solving (1). At k -th
 126 iteration, it randomly selects a subset $S_k \subseteq D$, clips the ℓ_2 norm of each gradient, and then adds
 127 noise to protect privacy. The iterative scheme with a fixed clipping threshold C is:

$$128 \quad x^{k+1} = x^k - \frac{\eta}{|S_k|} \sum_{i \in S_k} (\text{clip}(\nabla f_i(x^k), C) + \mathcal{N}(0, \sigma^2 C^2 I)), \quad (4)$$

129 where $\eta > 0$ is the step size and $\text{clip}(\nabla f_i(x^k), C) := \nabla f_i(x^k) \min\{1, \frac{C}{\|\nabla f_i(x^k)\|_2}\}$. A more flexible
 130 approach is to let the clipping threshold C_k vary. From a noise-reduction perspective, we would
 131 like $C_k \rightarrow 0$ as $x^k \rightarrow x^*$. However, because stochastic gradients typically have variance, which
 132 is nonzero at x^* ($\|\frac{1}{|S_k|} \sum_{i \in S_k} \nabla f_i(x^*)\|_2 \neq \|\frac{1}{|D|} \sum_{i \in D} \nabla f_i(x^*)\|_2 = 0$), C_k can not be set too small
 133 during iterations. Therefore, variance reduction techniques for gradient estimation seem to hold
 134 promise for enhancing utility in DP algorithms.
 135

136

137 Algorithm 1 DP-SGD	138 Algorithm 2 DP-SVRG
139 1: Initialize x^0	1: Initialize $x^0 = w^0$
140 2: for $k = 0, 1, 2, \dots$ do	2: for $k = 0, 1, 2, \dots$ do
141 3: Sample $S_k \subseteq D$	3: Sample $S_k \subseteq D$
142 4: $g_i^k = \text{clip}(\nabla f_i(x^k), C)$	4: $\tilde{g}_i^k(x) = \text{clip}(\nabla f_i(x^k), C) + \mathcal{N}(0, \sigma^2 C^2 I)$
143 5: $\tilde{g}_i^k = g_i^k + \mathcal{N}(0, \sigma^2 C^2 I)$	5: $\tilde{g}_i^k(w) = \text{clip}(\nabla f_i(w^k), C) + \mathcal{N}(0, \sigma^2 C^2 I)$
144 6: $\tilde{g}^k = \frac{1}{ S_k } \sum_{i \in S_k} \tilde{g}_i^k$	6: $\tilde{g}^k = \frac{1}{ S_k } \sum_{i \in S_k} \tilde{g}_i^k(x) - \frac{1}{ S_k } \sum_{i \in S_k} \tilde{g}_i^k(w) + \frac{1}{ D } \sum_{i \in D} \tilde{g}_i^k(w)$
145 7: $x^{k+1} = x^k - \eta \tilde{g}^k$	7: $x^{k+1} = x^k - \eta \tilde{g}^k$
146 8: end for	8: $w^{k+1} = \begin{cases} x^k, & \text{with probability } p \\ w^k, & \text{with probability } 1-p \end{cases}$
147	9: end for

148

149 **DP-SVRG:** The SVRG (Johnson & Zhang, 2013; Kovalev et al., 2020) method is a representative
 150 variance reduction technique. This method introduces an additional anchor point w^k , which
 151 is periodically updated and computed the full gradient. At k -th iteration, the gradient estimate is
 152 $g_{S_k}^k = \frac{1}{|S_k|} \sum_{i \in S_k} \nabla f_i(x^k) - \frac{1}{|S_k|} \sum_{i \in S_k} \nabla f_i(w^k) + \frac{1}{|D|} \sum_{i \in D} \nabla f_i(w^k)$, which is an unbiased estimate
 153 of the full gradient, i.e., $\mathbb{E}[g_{S_k}^k] = \nabla f(x^k)$. Moreover, it satisfies $g_{S_k}^k \xrightarrow{x^k, w^k \rightarrow x^*} \nabla f(x^*) = 0$.
 154 By integrating SVRG into the DP algorithm, DP-SVRG (Lee, 2017) has been proposed (see Alg.2).
 155 However, clipping $\nabla f_i(x^k)$ and $\nabla f_i(w^k)$ separately undermines the variance-reduction structure,
 156 where the resulting stochastic gradient becomes biased ($\mathbb{E}\tilde{g}^k \neq \nabla f(x^k)$) and no longer converges to
 157 zero as $x^k \rightarrow x^*$.

162 In summary, DP algorithms face the following trade-off issue: On the one hand, choosing a large
 163 clipping threshold leads to substantial noise injection. On the other hand, a small threshold causes
 164 excessive clipping bias of the gradient estimates. In this paper, we focus on designing DP algorithmic
 165 framework that handles both clipping bias and noise variance to eliminate solution bias.
 166

167 3 METHOD: DP-C4

169 In this section, we propose a DP stochastic optimization framework called **DP-C4**, which
 170 is **error-Consistently-vanishing**, **Coupledly-clipped**, **solution-Calibrated**, and **Convergence-
 171 guaranteed**. This framework ensures the asymptotic vanish of both the noise variance and the
 172 clipping bias, thereby eliminating solution bias.
 173

174 3.1 HIGH-LEVEL IDEA

176 We consider constructing the gradient estimator by aggregating multiple sub-estimators
 177 $\{h^{(j)}(x)\}_{j \in [n]}$ that satisfy $\sum_{j \in [n]} \mathbb{E}[h^{(j)}(x)] = \nabla f(x)$. Each sub-estimator is defined by
 178 $h^{(j)}(x) := \frac{1}{|S_j|} \sum_{i \in S_j} h_i^{(j)}(x)$, where $S_j \subseteq D$ denotes the sampled dataset and $\{h_i^{(j)}\}_{i \in S_j, j \in [n]}$
 179 denotes per-sample estimators. Furthermore, for DP algorithms, we clip the l_2 norm of each com-
 180 ponent $h_i^{(j)}(x)$, aggregate the clipped components and add noise to form the DP gradient estimator
 181 \tilde{g}^k . For simplicity, we focus on the case $n = 2$. The iterative scheme is given by:
 182

$$\begin{cases} x^{k+1} = x^k - \eta \tilde{g}^k, \\ \tilde{g}^k = \left[\frac{1}{|S_1|} \sum_{i \in S_1} \text{clip}(h_i^{(1)}(x^k), C_1) + n_1^k \right] + \left[\frac{1}{|S_2|} \sum_{i \in S_2} \text{clip}(h_i^{(2)}(x^k), C_2) + n_2^k \right], \\ n_1^k \sim \mathcal{N}(0, \sigma_1^2 C_1^2 I), \quad n_2^k \sim \mathcal{N}(0, \sigma_2^2 C_2^2 I). \end{cases}$$

188 Here, C_j is the clipping threshold and σ_j^2 is the privacy-dependent noise multiplier. Instead of
 189 using fixed C_j during iterations, we consider replacing them with an estimator-dependent function
 190 $C_j(\{h_i^{(j)}(x^k)\}_{i \in S_j})$, ensuring both clipping bias $B_k^{(j)}$ and noise variance $V_k^{(j)}$ vanish asymptotically
 191 as $x^k \rightarrow x^*$:
 192

$$\begin{cases} B_k^{(j)} := \left\| \frac{1}{|S_j|} \sum_{i \in S_j} \text{clip}(h_i^{(j)}(x^k), C_j) - \frac{1}{|S_j|} \sum_{i \in S_j} h_i^{(j)}(x^k) \right\|^2 \xrightarrow{x^k \rightarrow x^*} 0, \\ V_k^{(j)} := \sigma_j^2 C_j^2(\{h_i^{(j)}(x^k)\}) \xrightarrow{x^k \rightarrow x^*} 0, \end{cases}$$

197 where $\|\cdot\|$ denotes l_2 -norm. To guide the design, we first establish an upper bound on clipping bias
 198 in Lemma 1 (Proof in Appendix C):

199 **Lemma 1** (Upper Bound on Clipping Bias). *Let $I_1^k := \{i \in S : \|h_i(x^k)\| < C(\{h_i(x^k)\}_{i \in S})\}$ be the
 200 set of unclipped samples, and $I_2^k := \{i \in S : \|h_i(x^k)\| \geq C(\{h_i(x^k)\}_{i \in S})\}$ the clipped ones. Then,*

$$201 \quad B_k \leq \frac{|I_2^k|}{|S|^2} \sum_{i \in I_2^k} \left[\|h_i(x^k)\| - C(\{h_i(x^k)\}_{i \in S}) \right]^2.$$

205 Lemma 1 implies $B_k \rightarrow 0$ as both $\|h_i(x^k)\| \rightarrow 0$ and $C(\{h_i(x^k)\}_{i \in S}) \rightarrow 0$. Therefore, to push the
 206 clipping bias $B_k^{(1)}$ to zero as $x^k \rightarrow x^*$, as a natural choice, we set $\{h_i^{(1)}\}_{i \in S_1}$ and $C_1(\{h_i^{(1)}\}_{i \in S_1})$ as:
 207

$$209 \quad h_i^{(1)}(x^k) := \nabla f_i(x^k) - \nabla f_i(x^*), \quad C_1(\{h_i^{(1)}(x^k)\}_{i \in S_1}) := C_1 \cdot \left\| \frac{1}{|S_1|} \sum_{i \in S_1} (\nabla f_i(x^k) - \nabla f_i(x^*)) \right\|,$$

211 where C_1 is a scaling factor. However, since x^* is unknown, we replace x^* with a history iterate
 212 $w^k \in \{x^{k-i}\}_{i \in [k]}$:

$$214 \quad h_i^{(1)}(x^k, w^k) := \nabla f_i(x^k) - \nabla f_i(w^k), \quad C_1(\{h_i^{(1)}(x^k, w^k)\}_{i \in S_1}) := C_1 \cdot \left\| \frac{1}{|S_1|} \sum_{i \in S_1} (\nabla f_i(x^k) - \nabla f_i(w^k)) \right\|.$$

216 **Algorithm 3** DP-C4

```

217 1: Input: Dataset  $\mathcal{D}$ , learning rate  $\eta$ , clipping bounds  $C, C_1, C_2$ , noise scales  $\sigma_1, \sigma_2$ , total steps  $T$ ,  

218 anchor update probability  $p$   

219 2: Output: Model parameters  $x^T$  satisfying  $(\epsilon, \delta)$ -DP  

220 3: Initialize:  $x^0 = w^0 \in \mathbb{R}^d$   

221 4: for  $k = 0$  to  $T - 1$  do  

222 5:   Sample  $S \subseteq \mathcal{D}$   

223 6:    $C_{1k} \leftarrow \min(C, C_1 \|\frac{1}{|S|} \sum_{i \in S} (\nabla f_i(x^k) - \nabla f_i(w^k))\|)$  {Coupled threshold}  

224 7:    $C_{2k} \leftarrow \min(C, C_2 \|\nabla f(w^k)\|)$  {Anchor threshold}  

225 8:    $g_1^k \leftarrow \frac{1}{|S|} \sum_{i \in S} \text{clip}(\nabla f_i(x^k) - \nabla f_i(w^k), C_{1k})$  {Coupled term}  

226 9:    $g_2^k \leftarrow \frac{1}{|D|} \sum_{i \in D} \text{clip}(\nabla f_i(w^k), C_{2k})$  {Anchor term}  

227 10:   $n_1^k \sim \mathcal{N}(0, \sigma_1^2 C_{1k}^2 I), n_2^k \sim \mathcal{N}(0, \sigma_2^2 C_{2k}^2 I)$  {Sample DP noise}  

228 11:   $\tilde{g}^k \leftarrow g_1^k + g_2^k + n_1^k + n_2^k$  {Add noise}  

229 12:   $x^{k+1} \leftarrow x^k - \eta \cdot \tilde{g}^k$  {Update model}  

230 13:   $w^{k+1} \leftarrow \begin{cases} x^k, & \text{with probability } p \\ w^k, & \text{with probability } 1 - p \end{cases}$  {Update anchor (Routine 1)}  

231 14: end for

---


232
233
234
235 When  $x^k, w^k \rightarrow x^*$ , we have  $B_k^{(1)} \rightarrow 0$ . Meanwhile,  $V_k^{(1)} \rightarrow 0$  since  $C_1(\{h_i^{(1)}\}_{i \in S_1}) \rightarrow 0$ . For the  

236 sub-estimator  $h^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} h_i^{(2)}$ , we choose  $S_2 = D$ , set  $\{h_i^{(2)}\}_{i \in S_2}$  and  $C_2(\{h_i^{(2)}\}_{i \in S_2})$  as:  

237
238 
$$h_i^{(2)}(x^k, w^k) := \nabla f_i(w^k), \quad C_2(\{h_i^{(2)}(x^k, w^k)\}_{i \in S_2}) := C_2 \cdot \|\nabla f(w^k)\|,$$
  

239 where  $C_2$  is a scaling factor. This choice ensures  $\mathbb{E}[h^{(1)}(x^k, w^k) + h^{(2)}(x^k, w^k)] = \nabla f(x^k)$ , and  

240 makes:  

241 
$$B_k^{(2)} + V_k^{(2)} \leq (\sigma_2^2 + 1) \cdot C_2^2 \cdot \|\nabla f(w^k)\|^2 \rightarrow 0 \quad \text{as } w^k \rightarrow x^*.$$
  

242 As a result, our proposed gradient estimator and clipping thresholds ensure that all error components  

243 (clipping bias, noise variance) asymptotically vanish, which forms the foundation of our DP  

244 algorithmic framework.  

245
246 3.2 DP-C4 ALGORITHM  

247
248 In this subsection, we formally describe the DP-C4 method in Alg.3. Based on the idea in sub-  

249 section 3.1, Alg.3 constructs a gradient estimator by aggregating two sub-estimators: a coupled-  

250 clipped gradient difference term (Line 8) and a clipped anchor term (Line 9). Specifically, we  

251 initialize with  $x^0 = w^0 \in \mathbb{R}^d$ . At the  $k$ -th iteration, we sample a mini-batch  $S \subseteq \mathcal{D}$  (Line 5). We  

252 compute the gradient difference  $\nabla f_i(x^k) - \nabla f_i(w^k)$  for  $i \in S$ , and aggregate them to obtain the  

253 clipping threshold  $C_{1k}$  (Line 6). Here, an upper bound  $C$  is introduced to prevent injecting exces-  

254 sively large noise during the early iterations. Next, we clip each gradient difference and aggregate  

255 the clipped values to form the sub-estimator  $g_1^k$  (Line 8). Meanwhile,  $C_{2k}$  and  $g_2^k$  are computed only  

256 with probability  $p$  since the anchor  $w^k$  is updated with probability  $p$ . Finally, by aggregating  $g_1^k$   

257 and  $g_2^k$  and adding noise, we obtain the perturbed gradient estimator  $\tilde{g}^k$ . Moreover, for updating the  

258 anchor  $w^k$  (Line 13), there are also alternative routines (see the following Routine 2-4):  

259 
$$w_{R_2}^{k+1} = \begin{cases} x^k, & k = 1 \pmod{1/p} \\ w^k, & k \neq 1 \pmod{1/p} \end{cases}, \quad w_{R_3}^{k+1} = \begin{cases} x^{k+1}, & \text{with } p \\ w^k, & \text{with } 1 - p \end{cases}, \quad w_{R_4}^{k+1} = \begin{cases} x^{k+1}, & k = 1 \pmod{1/p} \\ w^k, & k \neq 1 \pmod{1/p} \end{cases},$$
  

260
261 We emphasize that the DP-C4 method differs fundamentally from the DP-SVRG method (Alg.2).  

262 Specifically, DP-C4 focuses on clipping the gradient difference  $\nabla f_i(x^k) - \nabla f_i(w^k)$  for each  $i \in S_k$ ,  

263 whereas DP-SVRG clips  $\nabla f_i(x^k)$  and  $\nabla f_i(w^k)$  separately. Moreover, DP-C4 adaptively determines  

264 the clipping threshold. These core distinctions allow DP-C4 to asymptotically vanish both the clip-  

265 ping bias and the noise variance.  

266
267 3.3 SOLUTION-CALIBRATED PROPERTY OF DP-C4  

268
269 Consider the ERM problem (1) and let  $x^*$  denote a solution that satisfies the first-order optimality  

270 condition, i.e.,  $\frac{1}{|D|} \sum_{i \in D} \nabla f_i(x^*) = \nabla f(x^*) = 0$ . To further demonstrate the desirable properties
```

of DP-C4, we consider all sources of randomness (i.e., sampling, noise, and anchor-update) and investigate the potential convergence point of Alg.3 from the perspective of fixed-point analysis. Specifically, at a fixed point (\tilde{x}, \tilde{w}) , both sequences $\{x^k\}_{k \in \mathbb{N}}$ and $\{w^k\}_{k \in \mathbb{N}}$ converge, implying $x^{k+1} = x^k = \tilde{x}, w^{k+1} = w^k = \tilde{w}$. Hence, we substitute it into Alg.3, the fixed point of DP-C4 satisfies the following system:

$$\begin{cases} \frac{1}{|S|} \sum_{i \in S} \text{clip}(\nabla f_i(\tilde{x}) - \nabla f_i(\tilde{w}), C_{1k}) + \frac{1}{|D|} \sum_{i \in D} \text{clip}(\nabla f_i(\tilde{w}), C_{2k}) + \mathbf{n}_1^k + \mathbf{n}_2^k = 0, \\ \tilde{w} = w^{k+1} = \begin{cases} x^k = \tilde{x}, & \text{with probability } p, \\ w^k, & \text{with probability } 1 - p, \end{cases} \\ \mathbf{n}_1^k \sim \mathcal{N}(0, \sigma_1^2 C_{1k}^2 I), \quad \mathbf{n}_2^k \sim \mathcal{N}(0, \sigma_2^2 C_{2k}^2 I), \\ C_{1k} = \min(C, C_1 \|\frac{1}{|S|} \sum_{i \in S} (\nabla f_i(\tilde{x}) - \nabla f_i(\tilde{w}))\|), \\ C_{2k} = \min(C, C_2 \|\frac{1}{|D|} \sum_{i=1}^{|D|} \nabla f_i(\tilde{w})\|). \end{cases} \quad (5)$$

To satisfy this fixed-point system, for the first equation in (5), it must hold that $\mathbf{n}_1^k = \mathbf{0}$ and $\mathbf{n}_2^k = \mathbf{0}$ due to the iteration-wise independence of the noise randomness. This implies:

$$\left\| \frac{1}{|S|} \sum_{i \in S} (\nabla f_i(\tilde{x}) - \nabla f_i(\tilde{w})) \right\| = 0, \quad \left\| \frac{1}{|D|} \sum_{i=1}^{|D|} \nabla f_i(\tilde{w}) \right\| = 0,$$

which forces $\tilde{x} = \tilde{w} = x^*$. Substituting this into (5), all conditions are satisfied. Therefore, it follows that a point is a fixed point of DP-C4 if and only if it is a first-order stationary point of the ERM problem (1), indicating DP-C4 eliminates solution bias.

In contrast, exiting DP algorithms with constant clipping thresholds (e.g., DP-SGD, DP-SVRG) do not admit fixed points, as the fixed-variance noise injected at each iteration continually disrupts equilibrium. For other schemes where clipping thresholds decays to 0, the persistent gradient estimation variance and gradual accumulation of clipping bias, combined with a mismatch between the decay rate of the thresholds and the convergence speed, lead to the fixed point being, with probability 1, not a solution to the original problem. The detailed comparison is provided in Appendix B.

3.4 CONVERGENCE ANALYSIS

In this subsection, we analyze the convergence properties of DP-C4 under two settings: (i) μ -strongly convex, and (ii) nonconvex. Our goal is to construct a Lyapunov function in strongly convex case with specific clipping thresholds, and to establish convergence guarantees in non-convex case without restrictions on clipping thresholds. It is worth emphasizing that these proofs are innovative in the following aspects: (1) existing DP algorithms lack solution-calibrated property and thus cannot employ Lyapunov functions for analysis; (2) by exploiting the unique structure of DP-C4, we carefully handle both noise variance and clipping bias, providing a novel perspective for the convergence analysis of DP optimization algorithms. We first present several assumptions:

Assumption 3.1 (Lower Bounded) $f(\cdot)$ is bounded from below by a finite constant f^* :

$$f(x) \geq f^* > -\infty, \forall x \in \mathbb{R}^d.$$

Assumption 3.2 (L-Smoothness) $f_i(\cdot)$ is L -smooth, i.e., it satisfies:

$$\|\nabla f_i(x) - \nabla f_i(y)\| \leq L\|x - y\|, \forall x, y \in \mathbb{R}^d.$$

Assumption 3.3 (μ -Strong Convexity) The loss function $f_i(\cdot)$ is μ -strongly convex:

$$f_i(y) \geq f_i(x) + \langle \nabla f_i(x), y - x \rangle + (\mu/2)\|x - y\|^2, \forall x, y \in \mathbb{R}^d.$$

Assumption 3.4 (Bounded Variance) There exists a constant τ , such that:

$$\|\nabla f_i(x) - \nabla f(x)\| \leq \tau, \quad \forall i \in [N], \forall x \in \mathbb{R}^d.$$

Assumption 3.5 (Bounded Gradient). The gradient of the function is bounded in the sense that there exists a positive constant $G = \sup_{x \in \mathbb{R}^d, i \in [N]} \|\nabla f_i(x)\| < \infty$.

The above assumptions serve as the foundation for analyzing DP algorithms. We now turn to the convergence of DP-C4. To avoid overly intricate discussions, we restrict our setting to $C_{1k} = C_1 \left\| \frac{1}{|S|} \sum (\nabla f_i(x^k) - \nabla f_i(w^k)) \right\|$, $C_{2k} = C_2 \left\| \nabla f(w^k) \right\|$. Let $\mathbb{E}[\cdot]$ and $\mathbb{E}_k[\cdot] := \mathbb{E}[\cdot | x^k, w^k]$ denote the full expectation and the conditional expectation based on the first k iterations of DP-C4, respectively. Then, we have:

Theorem 1 (Strongly Convex Case). *Suppose Assumptions 3.1-3.5 hold. For any given $e > 0$ and constant DP noise multipliers σ_1, σ_2 , let $\{x^k\}_{k \geq 0}$ and $\{w^k\}_{k \geq 0}$ be generated by Alg.3 with $\eta < \min \left\{ \frac{\mu}{3N_1+A}, \frac{1}{2LN_2} \right\}$, $C_1 > 0$, $C_2 \geq \frac{\tau}{e} + 1$. When $\min\{\|\nabla f(w^k)\|, \|x^k - x^*\|\} > e$, define the Lyapunov function as:*

$$\Phi^k := \mathbb{E}\|x^k - x^*\|^2 + \frac{2N_1\eta^2}{p}\mathbb{E}\|w^k - x^*\|^2 + \frac{2N_2\eta^2}{p}D^k,$$

where $D^k := \mathbb{E}\|\nabla f_i(w^k) - \nabla f_i(x^k)\|^2$, $N_1 := 8L^2C_1^2(d\sigma_1^2 + 1)$, $N_2 := 4C_2^2(d\sigma_2^2 + 1)$, $A := \frac{4G^2}{pe^2\mu^2}(L - C_1\mu)\sqrt{4L^2C_1^2(d\sigma_1^2 + 1) + \mu^2C_2^2(d\sigma_2^2 + 1)}$, and d denotes the model size. Then,

$$\Phi^{k+1} \leq \max \left\{ 1 - \mu\eta + (3N_1 + A)\eta^2, 1 - \frac{p}{2} \right\} \cdot \Phi^k < \Phi^k. \quad (6)$$

In contrast to existing optimization algorithms whose convergence results typically rely on a single indicator, Thm.1 employs two accuracy indicators, Φ_k and $\min\{\|\nabla f(w^k)\|, \|x^k - x^*\|\}$. Specifically, for any given tolerance e , the Lyapunov function Φ^k decreases linearly until $\min\{\|\nabla f(w^k)\|, \|x^k - x^*\|\} \leq e$. Moreover, we emphasize that in practical implementations, achieving $\|x^k - x^*\| \leq e$ does not require choose a large C_2 at the beginning of the algorithm. Instead, we can gradually increase C_2 during the convergence process to enforce convergence, thus avoiding the injection of excessive noise at the early stage. We now turn to the convergence analysis in the nonconvex setting:

Theorem 2 (Nonconvex Case). *Suppose Assumptions 3.1, 3.2, 3.4, 3.5 hold. For any given constant DP noise multipliers σ_1, σ_2 and $C_1 > 1, C_2 > 1$, let $\{x^k\}_{k=0}^T$ and $\{w^k\}_{k=0}^T$ be generated by Alg.3 with $\eta = \sqrt{\frac{2(f(x^0) - f(x^*))}{TLG}} = O(\frac{1}{\sqrt{T}})$. Then,*

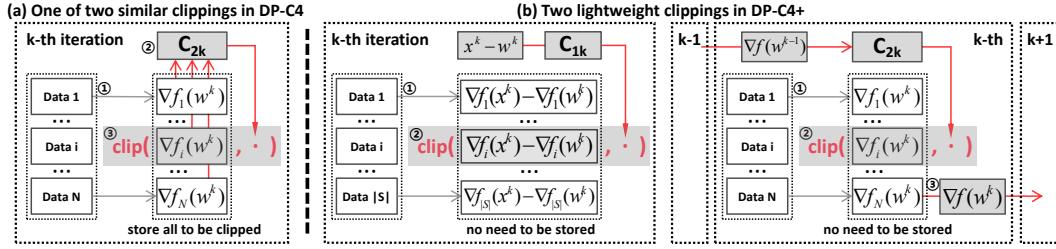
$$\begin{aligned} & \frac{1}{T} \sum_{k=1}^T \mathbb{E} \left[\lambda_1^k \|\nabla f(x^k)\|^2 + \lambda_2^k \|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\| + \lambda_3^k \|\nabla f(x^k)\| \cdot \|\nabla f(x^k) - \nabla f(w^k)\| \right] \\ & \leq 2 \sqrt{\frac{(f(x^0) - f(x^*))L\tilde{G}}{2T}} + \frac{1}{T} \sum_{k=1}^T \mathbb{E} \left[\lambda_4^k \cdot 3\tau \|\nabla f(x^k)\| \right]. \end{aligned} \quad (7)$$

Here, $\tilde{G} := 4G^2(4C_1^2(d\sigma_1^2 + 1) + C_2^2(d\sigma_2^2 + 1))$, d denotes the model size, and for each k :

$$\begin{aligned} \lambda_1^k &:= 1 - \frac{1}{3}(1 - \mathbb{P}^k)(2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}), \quad \lambda_2^k := (1 - \mathbb{P}_2^k)(C_2 - 1), \quad \lambda_3^k := (1 - \mathbb{P}_1^k)(C_1 - 1) \\ \lambda_4^k &:= \frac{1}{3}\mathbb{P}^k(2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}), \quad \mathbb{P}^k := \Pr(\|\nabla f(x^k)\| \leq 3\tau | x^{k-1}), \\ \mathbb{P}_1^k &:= \mathbb{E}_k[1_{\{\|\nabla f_i(x^k) - \nabla f_i(w^k)\| \leq C_{1k}\}}], \quad \mathbb{P}_2^k := \mathbb{E}_k[1_{\{\|\nabla f_i(w^k)\| \leq C_{2k}\}}]. \end{aligned}$$

Since $\lambda_1^k \rightarrow 0$ and $\lambda_2^k \rightarrow 0$ require $\mathbb{P}_2^k \rightarrow 0$ and $\mathbb{P}_2^k \rightarrow 1$ respectively, λ_1^k and λ_2^k can not be zero simultaneously. Thus, Thm.2 effectively characterizes convergence. It is worth noting that (7) is obtained by a piecewise discussion of $\|\nabla f(x^k)\|$ (more detail see Appendix C.3): On the one hand, when $\|\nabla f(x^k)\| \geq 3\tau$, the iteration exhibits strict descent, which guarantees that DP-C4 converges to the region $\|\nabla f(x^k)\| < 3\tau$. On the other hand, when $\|\nabla f(x^k)\| < 3\tau$, due to clipping bias, the right hand side introduces an optimization bias term $\frac{1}{T} \sum 3\tau \mathbb{E}[\lambda_4^k \|\nabla f(x^k)\|]$. However, Thm.2 differs from prior work in the following aspects: (i) compared with a fixed clipping bias at the constant scale proportional to τ (Xiao et al., 2023), the optimization bias term in (7) is proportional to $\|\nabla f(x^k)\|$, which implies a gradually vanishing clipping bias; (ii) in the k -th iteration, the last two terms on the left hand side of (7) also contribute to reducing the optimization bias. By employing the Cauchy-Schwarz inequality and setting $C_1 = (C_2 - 1) \frac{1 - \mathbb{P}_2^k}{1 - \mathbb{P}_1^k} + 1$, we obtain:

$$\begin{aligned} & 3\lambda_4^k \tau \|\nabla f(x^k)\| - \lambda_2^k \|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\| - \lambda_3^k \|\nabla f(x^k)\| \cdot \|\nabla f(x^k) - \nabla f(w^k)\| \\ & \leq 3\lambda_4^k \tau \|\nabla f(x^k)\| - \lambda_3^k \|\nabla f(x^k)\|^2 \leq \frac{9(\lambda_4^k)^2 \tau^2}{4(1 - \mathbb{P}_2^k)(C_2 - 1)} \xrightarrow{C_2 \rightarrow \infty} 0. \end{aligned}$$

Figure 1: Workflow of DP-C4 and DP-C4⁺

This indicates that by gradually and slowly increasing C_2 during the iteration, together with the decaying step size, the algorithm can converge to arbitrary accuracy.

3.5 PRIVACY ANALYSIS

In this subsection, we present the privacy guarantee of DP-C4. Since DP-C4 independently clips two components at each iteration, we carefully allocate the privacy budget between them and leverage Rényi differential privacy (RDP) (Mironov, 2017) to quantify the required noise magnitude at each step. Specifically, we have the following theorem:

Theorem 3 (Noise Level). Let $\theta = \frac{|D|^2}{|S|^2}$ and $\sigma^2 = \frac{4T(2\log(1/\delta)+\epsilon)}{|S|^2\epsilon^2}$. There exist σ_1^2, σ_2^2 defined in Alg.3 that guarantee (ϵ, δ) -DP of running DP-C4 with routine 1-4 for T iterations:

$$(\sigma_1^2, \sigma_2^2)_{R_{1\&2}} = \left((1 + \sqrt{\frac{p}{\theta}}) \sigma^2, \left(\frac{p}{\theta} + \sqrt{\frac{p}{\theta}} \right) \sigma^2 \right), \quad (\sigma_1^2, \sigma_2^2)_{R_{3\&4}} = \left((1 - p + \sqrt{\frac{p(1-p)}{\theta}}) \sigma^2, \left(\frac{p}{\theta} + \sqrt{\frac{p(1-p)}{\theta}} \right) \sigma^2 \right).$$

It follows directly that, $(\sigma_1^2 + \sigma_2^2)_{R_{1\&2}} = (1 + \sqrt{\frac{p}{\theta}})^2 \cdot \sigma^2 \approx \sigma^2$, $(\sigma_1^2 + \sigma_2^2)_{R_{3\&4}} = (\sqrt{\frac{p}{\theta}} + \sqrt{1-p})^2 \cdot \sigma^2 = (\sqrt{\frac{p}{\theta}} + 1 - \frac{p}{2} - \frac{p^2}{8} - O(p^3))^2 \cdot \sigma^2$. In practice, we choose the update probability $p = \frac{2|S|}{|D|} = \frac{2}{\sqrt{\theta}}$, guided by the probability p is typically related to $\frac{|S|}{|D|}$ in SVRG (Kovalev et al., 2020). At the k -th iteration, the upper bound of the total noise variance $C_{1k}^2 \sigma_1^2 + C_{2k}^2 \sigma_2^2$ is as follows:

$$\begin{aligned} (C_{1k}^2 \sigma_1^2 + C_{2k}^2 \sigma_2^2)_{R_{3\&4}} &\leq (\sigma_1^2 + \sigma_2^2) \max\{C_{1k}^2, C_{2k}^2\} \leq \sigma^2 (1 - O(p^3))^2 \max\{C_{1k}^2, C_{2k}^2\} \\ &< \sigma^2 \max\{C_{1k}^2, C_{2k}^2\} = \sigma^2 \min\{C^2, \max\{C_1^2 \|\nabla f_S(x^k) - \nabla f_S(w^k)\|^2, C_2^2 \|\nabla f(w^k)\|^2\}\} \end{aligned}$$

It should be noted that σ^2 is exactly the noise multiplier in DP-SGD with a mini-batch size $|S|$. That is, for the same C , the total noise multiplier in DP-C4 is approximately the same as that in DP-SGD, with noise variance further decaying through C_{1k}^2 and C_{2k}^2 .

4 DP-C4⁺: A MEMORY-EFFICIENT EXTENSION OF DP-C4

In this section, we aim to reduce the memory burden of DP-C4, which currently requires storing every sampled gradient. This is because the gradients are first aggregated to determine the clipping thresholds, and then each is clipped individually. Note that the gradient difference $\|\nabla f_i(x^k) - \nabla f_i(w^k)\|$ can be bounded by $L\|x^k - w^k\|$ under the L -smoothness assumption, which tends to 0 as $x^k, w^k \rightarrow x^*$. In addition, since the anchor term is update only with probability p , it incurs limited memory overhead. Furthermore, rather than using w^k to determine C_{2k} , we consider using the previous iterate w^{k-1} , which leads to C_{2k} can be computed in advance. Specifically, we make the following substitutions in DP-C4:

$$C_{1k} = \min \left\{ C, C_1 \cdot \|x^k - w^k\| \right\}, \quad C_{2k} = \min \left\{ C, C_2 \cdot \|\nabla f(w^{k-1})\| \right\},$$

which we referred to as DP-C4⁺. The workflow of DP-C4⁽⁺⁾ is presented in Figure 1. Notably, the clipping thresholds of DP-C4⁺ do not depend on the gradients of the current iterate and can

432 be precomputed. This design removes the need to store all gradients involved in the computation.
 433 On the one hand, DP-C4⁺ does not violate our design principles and thus retains the properties of consistently-vanishing error, solution calibration, convergence guarantee, and DP guarantee.
 434 On the other hand, in practical deployment, to further reduce computational overhead, we often select a large batch size $|D'| \gg |S|$ instead of the full dataset size $|D|$ as the anchor batch.
 435 This choice also helps to reduce the solution bias and improve utility, since it often holds that
 436 $\|\frac{1}{|D'|} \sum_{i \in D'} \nabla f_i(x^*)\| < \|\frac{1}{|S|} \sum_{i \in S} \nabla f_i(x^*)\|$. Due to the space limitation, we provide the pseudo-decode of DP-C4⁺ and a detailed description of its properties in Appendix A.
 437

5 NUMERICAL EXPERIMENTS

444 We conducted extensive experiments to demonstrate the advantages of DP-C4⁽⁺⁾. Specifically,
 445 we evaluated our method on Mushroom (mus, 1981), Mnist (Deng, 2012), Cifar-10, Cifar-
 446 100 (Krizhevsky et al., 2009), IMDb (Maas et al., 2011), and GLUE (Wang et al., 2018) datasets,
 447 comparing against both related baselines and state-of-the-art methods, namely DP-SGD (Abadi
 448 et al., 2016), DP-SVRG (Lee, 2017), and DiceSGD (Zhang et al., 2023b). In addition, we con-
 449 ducted a series of ablation studies on CIFAR-10 to systematically evaluate the effects of the clipping
 450 thresholds C_1, C_2 , the overall clipping threshold C , different update routines, varying large-batch
 451 sizes, and update probabilities. Due to space constraints, the detailed results and discussions are
 452 provided in Appendix E.

453 Table 1: Test accuracy of different methods on different datasets.
 454

Method	SVM			CV Tasks		NLP Tasks	
	Mushroom	Mnist	Cifar-10	Cifar-100	IMDb	GLUE SST-2	
DP-SGD	87.48	96.26	53.05	37.04	76.99	75.23	
DP-SVRG	77.13	95.79	51.81	31.08	74.10	72.71	
DiceSGD	90.65	97.02	60.24	40.73	78.19	78.71	
DP-C4	91.76	96.93	61.89	43.46	80.13	81.31	
DP-C4 ⁺	96.98	97.16	64.50	43.12	81.23	82.24	

463 In our main experiments, we set the clipping thresholds to 1 for all methods, including C, C_1 , and
 464 C_2 in DP-C4⁽⁺⁾. The step size η was tuned via grid search over $\{0.1, 0.05, 0.025, 0.0125\}$, and we
 465 report the best-performing results. For all mini-batches, we use a batch size of $|S| = 256$. In DP-
 466 C4⁽⁺⁾ and DP-SVRG, we further set the large batch size to $|D'| = 4096$, and the update probability
 467 to $p = \frac{2|S|}{|D'|} = 0.125$. For the SVM task, we set the privacy parameters to $(\epsilon, \delta) = (1, 10^{-5})$,
 468 train for 50 epochs, and employ a logistic regression model on the Mushroom dataset. For image
 469 classification tasks, we set $(\epsilon, \delta) = (5, 10^{-5})$, train for 100 epochs, and adopt LeNet (LeCun et al.,
 470 2002) on Mnist, and ResNet20 (He et al., 2016) on CIFAR-10 and CIFAR-100. For NLP tasks, we
 471 set $(\epsilon, \delta) = (2, 10^{-5})$, train for 50 epochs, and adopt a GRU-RNN (Cho et al., 2014) on both IMDb
 472 and GLUE. The results are summarized in Table 1, where we observe that DP-C4⁽⁺⁾ consistently
 473 outperforms the baselines across SVM, image classification, and NLP tasks.
 474

6 CONCLUSION

478 In this work, we proposed DP-C4 and its variant DP-C4⁺, which reconstruct the update rule and
 479 the clipping scheme of DP optimization to ensure that clipping bias and noise variance asymptot-
 480 ically vanish, thereby eliminating the solution bias inherent in existing methods. We established
 481 convergence guarantees by constructing a Lyapunov function under the μ -strongly convex setting
 482 and identifying a vanishing bias term in the general non-convex case, offering a novel perspective
 483 on DP optimization analysis. On the privacy side, we designed a structure-aware budget allocation
 484 tailored to the coupled clipping framework, leading to general (ϵ, δ) -DP guarantees. Experiments on
 485 SVM, image classification, and NLP tasks demonstrate that DP-C4⁽⁺⁾ consistently achieves superior
 privacy-utility trade-offs, underscoring its promise for practical deployment.

486 REFERENCES
487

- 488 Mushroom. UCI Machine Learning Repository, 1981. DOI: <https://doi.org/10.24432/C5959T>.
- 489 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
490 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
491 *conference on computer and communications security*, pp. 308–318, 2016.
- 492
- 493 Kareem Amin, Alex Kulesza, Andres Munoz, and Sergei Vassilvtiskii. Bounding user contribu-
494 tions: A bias-variance trade-off in differential privacy. In *International Conference on Machine*
495 *Learning*, pp. 263–271. PMLR, 2019.
- 496 Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially private
497 learning with adaptive clipping. *Advances in Neural Information Processing Systems*, 34:17455–
498 17466, 2021.
- 499
- 500 Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J Su. Deep learning with gaussian differential privacy.
501 *Harvard data science review*, 2020(23):10–1162, 2020.
- 502 Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private sgd: A
503 geometric perspective. *Advances in Neural Information Processing Systems*, 33:13773–13782,
504 2020.
- 505
- 506 Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
507 of neural machine translation: Encoder-decoder approaches. *arXiv preprint arXiv:1409.1259*,
508 2014.
- 509 Rudrajit Das, Abolfazl Hashemi, Sujay Sanghavi, and Inderjit S Dhillon. On the convergence of
510 differentially private federated learning on non-lipschitz objectives, and with normalized client
511 updates. *arXiv preprint arXiv:2106.07094*, 2021.
- 512
- 513 Li Deng. The mnist database of handwritten digit images for machine learning research. *IEEE*
514 *Signal Processing Magazine*, 29(6):141–142, 2012.
- 515 Cynthia Dwork and Aaron Roth. *The algorithmic foundations of differential privacy*. Foundations
516 and Trends in Theoretical Computer Science, 2014.
- 517
- 518 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
519 in private data analysis. In *Theory of cryptography conference*, pp. 265–284. Springer, 2006.
- 520
- 521 Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
522 level perspective. *arXiv preprint arXiv:1712.07557*, 2017.
- 523
- 524 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
525 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
526 770–778, 2016.
- 527
- 528 Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
529 reduction. *Advances in neural information processing systems*, 26, 2013.
- 530
- 531 Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don’t jump through hoops and remove those
532 loops: Svrsg and katyusha are better without the outer loop. In *Algorithmic learning theory*, pp.
533 451–467. PMLR, 2020.
- 534
- 535 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features from tiny
536 images. Technical report, University of Toronto, 2009. URL <http://www.cs.toronto.edu/~kriz/cifar.html>. CIFAR-10 / CIFAR-100 datasets.
- 537
- 538 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
539 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 2002.
- 540
- 541 Jaewoo Lee. Differentially private variance reduced stochastic gradient descent. In *2017 Interna-
542 tional Conference on New Trends in Computing Sciences (ICTCS)*, pp. 161–166. IEEE, 2017.

- 540 Jingjie Li, Kaiwen Sun, Brittany Skye Huff, Anna Marie Bierley, Younghyun Kim, Florian Schaub,
 541 and Kassem Fawaz. “it’s up to the consumer to be smart”: Understanding the security and privacy
 542 attitudes of smart home users on reddit. In *2023 IEEE Symposium on Security and Privacy (SP)*,
 543 pp. 2850–2866, 2023. doi: 10.1109/SP46215.2023.10179344.
- 544 Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
 545 Learning word vectors for sentiment analysis. In *Proceedings of the 49th annual meeting of the
 546 association for computational linguistics: Human language technologies*, pp. 142–150, 2011.
- 547 H Brendan McMahan, Galen Andrew, Ulfar Erlingsson, Steve Chien, Ilya Mironov, Nicolas Paper-
 548 not, and Peter Kairouz. A general approach to adding differential privacy to iterative training
 549 procedures. *arXiv preprint arXiv:1812.06210*, 2018a.
- 550 H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
 551 recurrent language models. In *International Conference on Learning Representations*, 2018b.
- 552 Ilya Mironov. Rényi differential privacy. In *2017 IEEE 30th computer security foundations sympo-
 553 sium (CSF)*, pp. 263–275. IEEE, 2017.
- 554 Tomoya Murata and Taiji Suzuki. Diff2: Differential private optimization via gradient differences
 555 for nonconvex distributed learning. In *International Conference on Machine Learning*, pp. 25523–
 556 25548. PMLR, 2023.
- 557 NhatHai Phan, Xintao Wu, Han Hu, and Dejing Dou. Adaptive laplace mechanism: Differential
 558 privacy preservation in deep learning. In *2017 IEEE international conference on data mining
 559 (ICDM)*, pp. 385–394. IEEE, 2017.
- 560 Venkatadheeraj Pichapati, Ananda Theertha Suresh, Felix X Yu, Sashank J Reddi, and Sanjiv Kumar.
 561 Adaclip: Adaptive clipping for private sgd. *arXiv preprint arXiv:1908.07643*, 2019.
- 562 Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with differ-
 563 entially private updates. In *2013 IEEE global conference on signal and information processing*,
 564 pp. 245–248. IEEE, 2013.
- 565 Hamid Tahaei, Firdaus Afifi, Adeleh Asemi, Faiz Zaki, and Nor Badrul Anuar. The rise of traffic
 566 classification in iot networks: A survey. *Journal of Network and Computer Applications*, 154:
 567 102538, 2020. ISSN 1084-8045. doi: <https://doi.org/10.1016/j.jnca.2020.102538>. URL <https://www.sciencedirect.com/science/article/pii/S1084804520300126>.
- 568 Wenjuan Tang, Ju Ren, Kun Deng, and Yaoxue Zhang. Secure data aggregation of lightweight e-
 569 healthcare iot devices with fair incentives. *IEEE Internet of Things Journal*, 6(5):8714–8726,
 570 2019.
- 571 Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei. Ldp-fed: Federated
 572 learning with local differential privacy. In *Proceedings of the third ACM international workshop
 573 on edge systems, analytics and networking*, pp. 61–66, 2020.
- 574 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
 575 Glue: A multi-task benchmark and analysis platform for natural language understanding. *arXiv
 576 preprint arXiv:1804.07461*, 2018.
- 577 Hanshen Xiao, Zihang Xiang, Di Wang, and Srinivas Devadas. A theory to instruct differentially-
 578 private learning via clipping bias reduction. In *2023 IEEE Symposium on Security and Privacy
 579 (SP)*, pp. 2170–2189. IEEE, 2023.
- 580 Xiaodong Yang, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Normalized/clipped sgd with per-
 581 turbation for differentially private non-convex optimization. *arXiv preprint arXiv:2206.13033*,
 582 2022.
- 583 Xiaojin Zhang, Yan Kang, Kai Chen, Lixin Fan, and Qiang Yang. Trading off privacy, utility, and
 584 efficiency in federated learning. *ACM Transactions on Intelligent Systems and Technology*, 14(6):
 585 1–32, 2023a.

Xinwei Zhang, Zhiqi Bu, Zhiwei Steven Wu, and Mingyi Hong. Differentially private sgd without clipping bias: An error-feedback approach. *arXiv preprint arXiv:2311.14632*, 2023b.

Zehan Zhu, Yan Huang, Xin Wang, and Jinming Xu. Privsgp-vr: differentially private variance-reduced stochastic gradient push with tight utility bounds. *arXiv preprint arXiv:2405.02638*, 2024.

A DETAILS OF DP-C4⁺

We present the pseudocode of DP-C4⁺ in Alg. 4. As can be seen, the main difference from DP-C4 lies in the computation of the thresholds (Line 6&7). Moreover, at the beginning of the algorithm, we set the clipping threshold as $C_{2k} = C$ to accommodate the initialization at $k = 0$ (Line 3). Subsequently, we examine in detail the properties of DP-C4⁺ as previously outlined.

Algorithm 4 DP-C4⁺

```

1: Input: Dataset  $\mathcal{D}$ , learning rate  $\eta$ , clipping bounds  $C, C_1, C_2$ , noise scales  $\sigma_1, \sigma_2$ , total steps  $T$ , anchor update probability  $p$ 
2: Output: Model parameters  $x^T$  satisfying  $(\varepsilon, \delta)$ -DP
3: Initialize:  $x^0 = w^0 \in \mathbb{R}^d$ , let  $C_2 \|\nabla f(w^{-1})\| := C$ 
4: for  $k = 0$  to  $T - 1$  do
5:   Sample  $S \subseteq \mathcal{D}$ 
6:    $C_{1k} \leftarrow \min(C, C_1 \|x^k - w^k\|)$  {Pointwise coupled threshold}
7:    $C_{2k} \leftarrow \min(C, C_2 \|\nabla f(w^{k-1})\|)$  {Shifted anchor threshold}
8:    $g_1^k \leftarrow \frac{1}{|S|} \sum_{i \in S} \text{clip}(\nabla f_i(x^k) - \nabla f_i(w^k), C_{1k})$  {Coupled term}
9:    $g_2^k \leftarrow \frac{1}{|D|} \sum_{i \in D} \text{clip}(\nabla f_i(w^k), C_{2k})$  {Anchor term}
10:   $n_1^k \sim \mathcal{N}(0, \sigma_1^2 C_{1k}^2 I)$ ,  $n_2^k \sim \mathcal{N}(0, \sigma_2^2 C_{2k}^2 I)$  {Sample DP noise}
11:   $\tilde{g}^k \leftarrow g_1^k + g_2^k + n_1^k + n_2^k$  {Add noise}
12:   $x^{k+1} \leftarrow x^k - \eta \cdot \tilde{g}^k$  {Update model}
13:  Four alternative anchor update routines:
14:   $w^{k+1} \leftarrow \begin{cases} x^k, & \text{with probability } p \\ w^k, & \text{with probability } 1 - p \end{cases}$  {Update anchor (Routine 1)}
15:   $w^{k+1} \leftarrow \begin{cases} x^k, & k = 1 \pmod{[1/p]} \\ w^k, & k \neq 1 \pmod{[1/p]} \end{cases}$  {Update anchor (Routine 2)}
16:   $w^{k+1} \leftarrow \begin{cases} x^{k+1}, & \text{with probability } p \\ w^k, & \text{with probability } 1 - p \end{cases}$  {Update anchor (Routine 3)}
17:   $w^{k+1} \leftarrow \begin{cases} x^{k+1}, & k = 1 \pmod{[1/p]} \\ w^k, & k \neq 1 \pmod{[1/p]} \end{cases}$  {Update anchor (Routine 4)}
18: end for

```

Consistently-vanishing Error We point out that the clipping bias and noise variance of DP-C4⁺ also vanish. Specifically, continuing with the notation from Section 3.1, we have:

$$\begin{aligned}
B_k + V_k &\leq \frac{|I_2^k|}{|S|^2} \sum_{i \in I_2^k} \left[||\nabla f_S(x^k) - \nabla f_S(w^k)|| - C_1 ||x^k - w^k|| \right]^2 + \sigma_1^2 C_1^2 ||x^k - w^k||^2 \\
&+ \left| \left| \frac{1}{|D|} \sum_{i \in D} \text{clip}(\nabla f_i(w^k), C_2 ||\nabla f(w^{k-1})||) - \nabla f(w^k) \right| \right|^2 + \sigma_2^2 C_2^2 ||\nabla f(w^{k-1})||^2 \\
&\leq \left(\frac{|I_2^k|^2 (L - C_1)^2}{|S|^2} + \sigma_1^2 C_1^2 \right) ||x^k - w^k||^2 + (\sigma_2^2 + 2) C_2^2 ||\nabla f(w^{k-1})||^2 + 2 ||\nabla f(w^k)||^2 \xrightarrow{x^k, w^k \rightarrow x^*} 0
\end{aligned} \tag{8}$$

Solution Calibration Similarly, (\tilde{x}, \tilde{w}) is a fixed point of DP-C4+ if and only if it is a solution to the original optimization problem. Analogously to (5), it must satisfy $C_1 \|\tilde{x} - \tilde{w}\|_2 =$

648 $C_2 \|\nabla f(\tilde{w})\|_2 = 0$, which implies $\tilde{x} = \tilde{w} = x^*$. Specifically, at a potential fixed point (\tilde{x}, \tilde{w}) ,
649 the iterative scheme of DP-C4⁺ yields:
650

$$\begin{cases} \tilde{x} = x^{k+1} = x^k - \eta \tilde{g}^k = \tilde{x} - \eta \tilde{g}^k, \\ \tilde{w} = w^{k+1} = \begin{cases} x^k = \tilde{x}, & \text{with probability } p \\ w^k, & \text{with probability } 1 - p \end{cases} \end{cases}.$$

651 From the iterative scheme of DP-C4⁺ (Alg. 4), we obtain:
652

$$\begin{cases} \frac{1}{|S|} \sum_{i \in S} \text{clip}(\nabla f_i(\tilde{x}) - \nabla f_i(\tilde{w}), C_{1k}) + \frac{1}{|D|} \sum_{i \in D} \text{clip}(\nabla f_i(\tilde{w}), C_{2k}) + \mathbf{n}_1^k + \mathbf{n}_2^k = 0, \\ \tilde{w} = w^{k+1} = \begin{cases} x^k = \tilde{x}, & \text{with probability } p \\ w^k, & \text{with probability } 1 - p \end{cases} \\ \mathbf{n}_1^k \sim \mathcal{N}(0, \sigma_1^2 C_{1k}^2 I), \quad \mathbf{n}_2^k \sim \mathcal{N}(0, \sigma_2^2 C_{2k}^2 I), \\ C_{1k} = \min(C, C_1 \|\tilde{x} - \tilde{w}\|_2), \\ C_{2k} = \min(C, C_2 \|\frac{1}{|D|} \sum_{i=1}^{|D|} \nabla f_i(\tilde{w})\|_2). \end{cases} \quad (9)$$

653 On the one hand, at a fixed point, (9) must be satisfied. This enforces that the variance of the injected
654 noise vanishes almost surely, i.e., $C_{1k} = C_{2k} = 0$, which in turn requires $\tilde{x} = \tilde{w} = x^*$. On the other
655 hand, substituting $(\tilde{x}, \tilde{w}) = (x^*, x^*)$ back into (9) shows that the equality indeed holds. Therefore,
656 the fixed point of DP-C4⁺ coincides with the optimal solution x^* of the original problem.
657

658 **Convergence Guarantee** The convergence of DP-C4⁺ is similar to DP-C4, we establish convergence
659 guarantees for DP-C4⁺ under both strongly convex and non-convex regimes, the proofs of
660 which are uniformly presented in Appendix C:
661

662 **Theorem 4** (Strongly Convex Case). *Suppose Assumptions 3.1-3.5 hold. For any given $\epsilon > 0$ and constant DP noise multipliers σ_1, σ_2 , let $\{x^k\}_{k \geq 0}$ and $\{w^k\}_{k \geq 0}$ be generated by Alg.4 with $\eta < \min\left\{\frac{\mu}{3N_1+A}, \frac{1}{2LN_2}\right\}$, $C_1 > 0$, $C_2 \geq \frac{\tau}{\epsilon} + 1$. When $\min\{\|\nabla f(w^k)\|, \|x^k - x^*\|, \|w^k - x^*\|\} > \epsilon$, define the Lyapunov function as:*

$$\Phi^k := \mathbb{E}\|x^k - x^*\|^2 + \frac{2N_1\eta^2}{p}\mathbb{E}\|w^k - x^*\|^2 + \frac{2N_2\eta^2}{p}D^k,$$

663 where $D^k := \mathbb{E}\|\nabla f_i(w^k) - \nabla f_i(x^*)\|^2$, $N_1 := 8C_1^2(d\sigma_1^2 + 1) + \frac{4\eta^2}{p\epsilon^2}G^2C_2^2(d\sigma_2^2 + 1)$, $N_2 := 8C_2^2(d\sigma_2^2 + 1)$,
664 $A := \frac{4G}{p\mu^2\epsilon^2}[(pC_2 + 1)L - C_1]\sqrt{2C_1^2(d\sigma_1^2 + 1) + \mu^2C_2^2(d\sigma_2^2 + 1)}$, and d denotes the model size. Then,

$$\Phi^{k+1} \leq \max\left\{1 - \mu\eta + (3N_1 + A)\eta^2, 1 - \frac{p}{2}\right\} \cdot \Phi^k < \Phi^k. \quad (10)$$

665 **Theorem 5** (Nonconvex Case). *Suppose Assumptions 3.1, 3.2, 3.4, 3.5 hold. For any given constant
666 DP noise multipliers σ_1, σ_2 and $C_1 > 1, C_2 > 1$, let $\{x^k\}_{k=0}^T$ and $\{w^k\}_{k=0}^T$ be generated by Alg.4
667 with $\eta = \sqrt{\frac{2(f(x^0) - f(x^*))}{TL\tilde{G}(1+4G)}} = O(\frac{1}{\sqrt{T}})$. Then,*

$$\begin{aligned} & \frac{1}{T} \sum_{k=1}^T \mathbb{E}\left[\lambda_1^k \|\nabla f(x^k)\|^2 + \lambda_2^k \|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\| + \lambda_3^k \|\nabla f(x^k)\| \cdot \|\nabla f(x^k) - \nabla f(w^k)\|\right] \\ & \leq 2\sqrt{\frac{(f(x^0) - f(x^*))L\tilde{G}(1+4G)}{2T}} + \frac{1}{T} \sum_{k=1}^T \mathbb{E}\left[\lambda_4^k \cdot 3\tau \|\nabla f(x^k)\|\right]. \end{aligned} \quad (11)$$

668 Here, $\tilde{G} = 4C^2(d\sigma_1^2 + 1) + 4G^2C_2^2(d\sigma_2^2 + 1)$, d denotes the model size, and for each k :

$$\begin{aligned} \lambda_1^k &:= 1 - \frac{1}{3}(1 - \mathbb{P}^k)(2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}), \quad \lambda_2^k := (1 - \mathbb{P}_2^k)(C_2 - 1), \quad \lambda_3^k := (1 - \mathbb{P}_1^k)(\frac{C_1}{L} - 1) \\ \lambda_4^k &:= \frac{1}{3}\mathbb{P}^k(2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}), \quad \mathbb{P}^k := \Pr(\|\nabla f(x^k)\| \leq 3\tau \mid x^{k-1}), \\ \mathbb{P}_1^k &:= \mathbb{E}_k[1_{\{\|\nabla f_i(x^k) - \nabla f_i(w^k)\| \leq C_{1k}\}}], \quad \mathbb{P}_2^k := \mathbb{E}_k[1_{\{\|\nabla f_i(w^k)\| \leq C_{2k}\}}]. \end{aligned}$$

702 **B ALGORITHM COMPARISON**
703

704 In this section, we provide a detailed exposition of the fundamental distinction between DP-C4⁽⁺⁾
705 and other algorithms (as an extension of Section 3.3), namely, the unique Solution-Calibrated Prop-
706 erty that is exclusive to DP-C4⁽⁺⁾ but absent in existing approaches.
707

708 In Section 3.3 and Appendix A, we have established the solution-calibrated property of DP-C4⁽⁺⁾.
709 In contrast, methods employing a constant clipping threshold (e.g., DP-SGD, DP-SVRG) do not
710 admit fixed points, as the fixed-variance noise injected at each iteration continually disrupts equilib-
711 rium. Taking DP-SGD as an example, suppose it admits a fixed point \tilde{x} , we obtain:
712

$$\tilde{x} = x^{k+1} = x^k - \eta \tilde{g}^k = \tilde{x} - \eta \tilde{g}^k,$$

713 That is, $\tilde{g}^k = \frac{1}{|S_k|} \sum_{i \in S_k} \text{clip}(\nabla f_i(\tilde{x}), C) + \mathbf{n}^k = 0$. However, due to the stochasticity introduced by the
714 noise in each iteration, this condition cannot be satisfied with probability 1. Consequently, DP-SGD
715 does not admit a fixed point.
716

717 For other schemes where the clipping threshold decays (TD) to 0, the persistent gradient estimation
718 noise at each iteration, and the gradual accumulation of clipping bias, combined with a mismatch
719 between the decay rate of the threshold and the convergence speed, ensures that the fixed point
720 is, with probability 1, not a solution to the original problem. Taking DP-SGD^{TD} as an example,
721 suppose it admits a fixed point \tilde{x} , we obtain:
722

$$\begin{cases} \tilde{g}^k = \frac{1}{|S_k|} \sum_{i \in S_k} \text{clip}(\nabla f_i(\tilde{x}), C_k) + \mathbf{n}^k = 0, \\ \mathbf{n}^k \sim \mathcal{N}(0, \sigma_1^2 C_k^2 I), \quad C_k \rightarrow 0 \end{cases}$$

723 We can observe that when the clipping threshold approaches zero (i.e., $C_k = 0$), the above equation
724 is indeed satisfied, implying that DP-SGD with a decaying threshold admits a fixed point \tilde{x} . How-
725 ever, this fixed point arises from the elimination of the update due to the vanishing threshold, and
726 therefore it does not guarantee that $\tilde{x} = x^*$.
727

728 **Algorithm 5** DiceSGD (Zhang et al., 2023b)

729

730 1: **Input:** Dataset \mathcal{D} , learning rate η , clipping bounds C_1, C_2 , noise scale σ , total steps T
731 2: **Output:** Model parameters x^T satisfying (ε, δ) -DP
732 3: **Initialize:** $e^0 = 0, x^0 \in \mathbb{R}^d$
733 4: **for** $k = 0, \dots, T - 1$ **do**
734 5: Randomly draw minibatch S from \mathcal{D}
735 6: $g^k = \frac{1}{|S|} \sum_{i \in S} \text{clip}(\nabla f_i(x^k), C_1) + \text{clip}(e^k, C_2)$
736 7: $x^{k+1} = x^k - \eta(g^k + \mathbf{n}^k)$, where $\mathbf{n}^k \sim \mathcal{N}(0, \sigma^2(C_1^2 + C_2^2) \mathbf{I})$
737 8: $e^{k+1} = e^k + \frac{1}{|S|} \sum_{i \in S} \nabla f_i(x^k) - g^k$
738 9: **end for**

739

740 741 Recently, the proposed DiceSGD (Zhang et al., 2023b) (Alg 9) eliminates the bias in each iteration
742 *in expectation*. Therefore, in the sense of ignoring the injected noise and sampling randomness (i.e.,
743 in the full-expectation sense), it possesses a similar property. Assume that (\tilde{x}, \tilde{e}) is a fixed point of
744 DiceSGD, then we have:
745

$$\begin{cases} \mathbb{E}[\tilde{x}] = \mathbb{E}[\tilde{x}] - \eta \mathbb{E}[g^k + \mathbf{n}^k] = \mathbb{E}[\tilde{x}] - \eta \mathbb{E}[g^k], \\ \mathbb{E}[\tilde{e}] = \mathbb{E}[\tilde{e}] + \mathbb{E}\left[\frac{1}{|S|} \sum_{i \in S} \nabla f_i(\mathbf{x}) - g^k\right] = \mathbb{E}[\tilde{e}] + \frac{1}{N} \sum_{i=1}^N \nabla f_i(\tilde{x}) - \mathbb{E}[g^k]. \end{cases} \quad (12)$$

746 We can verify that $(\tilde{x}, \tilde{e}) = (x^*, 0)$ is indeed a solution to (12), implying that, *in full-expectation*
747 *sense*, the fixed point of DiceSGD coincides with the solution of the original problem. However, as
748 discussed earlier, the randomness introduced by noise and sampling can disrupt this balance at any
749 iteration, causing the iterates to deviate from the true solution.
750

751 Specifically, Table 2 summarizes the solution calibration property of different methods under both
752 noise and sampling stochasticity, where the symbols $-$, \checkmark and \times respectively denote: no fixed point
753 exists, the fixed point is (not) a solution to the problem. \mathbb{E}_{full} , $\mathbb{E}_{\text{noise}}$, $\mathbb{E}_{\text{sampling}}$, $\text{no-}\mathbb{E}$ denote,
754 respectively, *in the sense of full expectation*, *in the sense of expectation over noise*, *in the sense of*
755 *expectation over sampling*, and *taking into account all sources of randomness*.
756

756
757
758 Table 2: Algorithm Comparison on Solution-Calibrated Property.
759
760
761
762
763

Type of \mathbb{E} \ Method	DP-SGD ^(TD)	DP-SVRG ^(TD)	DiceSGD	DP-C4 ⁽⁺⁾
\mathbb{E}_{full}	-(\times)	-(\times)	✓	✓
\mathbb{E}_{noise}	-(\times)	-(\times)	-	✓
$\mathbb{E}_{sampling}$	-(\times)	-(\times)	-	✓
no- \mathbb{E}	-(\times)	-(\times)	-	✓

764
765
766 C PROOFS OF CONVERGENCE ANALYSIS
767
768769 In this section, we present the detailed proofs of the convergence results of DP-C4 and DP-C4⁺, i.e.,
770 Lemma.1, Thm.1-2, and Thm.4-5. It is worth noting that the proof techniques for DP-C4⁺ closely
771 follow those of DP-C4, and we mainly highlight the differences for clarity.
772
773774 C.1 PROOF OF LEMMA 1
775
776777 According to the definition of the clipping bias B^k (Section 3.1), we can directly obtain:
778

779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
$$\begin{aligned}
B^k &= \left\| \frac{1}{|S|} \sum_{i \in S} \text{clip}(h_i(x^k), C(\{h_i(x^k)\}_{i \in S})) - \frac{1}{|S|} \sum_{i \in S} h_i(x^k) \right\|_2^2 \\
&\stackrel{(a)}{=} \left\| \frac{1}{|S|} \sum_{i \in I_1^k} h_i(x^k) + \frac{1}{|S|} \sum_{i \in I_2^k} \frac{C(\{h_i(x^k)\}_{i \in S})}{\|h_i(x^k)\|_2} \cdot h_i(x^k) \right. \\
&\quad \left. - \frac{1}{|S|} \sum_{i \in I_1^k} h_i(x^k) - \frac{1}{|S|} \sum_{i \in I_2^k} h_i(x^k) \right\|_2^2 \\
&= \left\| \frac{1}{|S|} \sum_{i \in I_2^k} \left(\frac{C(\{h_i(x^k)\}_{i \in S})}{\|h_i(x^k)\|_2} - 1 \right) \cdot h_i(x^k) \right\|_2^2 \\
&= \frac{1}{|S|^2} \left\| \sum_{i \in I_2^k} \underbrace{\left(C(\{h_i(x^k)\}_{i \in S}) - \|h_i(x^k)\|_2 \right)}_{\leq 0} \cdot \frac{h_i(x^k)}{\|h_i(x^k)\|} \right\|_2^2 \\
&\leq \frac{1}{|S|^2} \left(\sum_{i \in I_2^k} \left(\|h_i(x^k)\|_2 - C(\{h_i(x^k)\}_{i \in S}) \right) \cdot \frac{\|h_i(x^k)\|}{\|h_i(x^k)\|} \right)^2 \\
&= \frac{1}{|S|^2} \left[\sum_{i \in I_2^k} \left(\|h_i(x^k)\|_2 - C(\{h_i(x^k)\}_{i \in S}) \right) \right]^2 \\
&\stackrel{(b)}{\leq} \frac{|I_2^k|}{|S|^2} \sum_{i \in I_2^k} \left[\|h_i(x^k)\|_2 - C(\{h_i(x^k)\}_{i \in S}) \right]^2
\end{aligned} \tag{13}$$

804 C.2 PROOF OF THEOREM 1
805
806807 For the strongly convex case of DP-C4, our goal is to construct a Lyapunov function under
808 appropriately chosen clipping coefficients. We first examine a potential term in the Lyapunov
809 function of the system, namely $\mathbb{E}\|x^k - x^*\|^2$. Combining this with the update rule of DP-
C4, and denoting the clipping biases as $b_1^k := \frac{1}{|S|} \sum_{i \in S} \text{clip}(\Delta_i^k, C_1 \|\Delta_S^k\|) - \Delta_S^k$ and $b_2^k :=$

810 $\frac{1}{|D|} \sum_{i \in D} \text{clip}(\nabla f_i(w^k), C_2 \|\nabla f(w^k)\|) - \nabla f(w^k)$, we obtain:

811
$$\begin{aligned} 812 \mathbb{E}_k \|x^{k+1} - x^*\|^2 &= \mathbb{E}_k \|x^k - x^* - \eta \tilde{g}^k\|^2 \\ 813 &= \|x^k - x^*\|^2 + \mathbb{E}_k [2\eta \langle \tilde{g}^k, x^* - x^k \rangle] + \eta^2 \mathbb{E}_k \|\tilde{g}^k\|^2 \\ 814 &\leq \|x^k - x^*\|^2 + 2\eta \mathbb{E}_k [\Delta_S^k + \nabla f(w^k) + b_1^k + b_2^k + n_1^k + n_2^k, x^* - x^k] + \eta^2 \mathbb{E}_k \|\tilde{g}^k\|^2 \\ 815 &= \|x^k - x^*\|^2 + 2\eta \langle \nabla f(x^k), x^* - x^k \rangle + 2\eta \mathbb{E}_k \langle b_1^k + b_2^k + n_1^k + n_2^k, x^* - x^k \rangle + \eta^2 \mathbb{E}_k \|\tilde{g}^k\|^2 \\ 816 &\stackrel{(a)}{\leq} \|x^k - x^*\|^2 + 2\eta \underbrace{(f^* - f(x^k) - \frac{\mu}{2} \|x^k - x^*\|^2)}_{\mu-\text{strongly convex}} + 2\eta \mathbb{E}_k \langle b_1^k + b_2^k, x^* - x^k \rangle + \eta^2 \mathbb{E}_k \|\tilde{g}^k\|^2 \\ 817 &= \|x^k - x^*\|^2 (1 - \eta\mu) + 2\eta (f^* - f(x^k)) + 2\eta \mathbb{E}_k \langle b_1^k + b_2^k, x^* - x^k \rangle + \eta^2 \mathbb{E}_k \|\tilde{g}^k\|^2 \end{aligned} \quad (14)$$

818

819

820

821

822

823 Here, (a) follows from the μ -strong convexity property, together with the fact that $\mathbb{E}_k[n_1^k] = \mathbb{E}_k[n_2^k] = 0$. Next, we derive upper bounds for the last two terms in the above expression. Specifically, we begin by analyzing the upper bound of $\mathbb{E}_k \|\tilde{g}^k\|^2$, for which we have:

824

825

826
$$\begin{aligned} 827 \mathbb{E}_k \|\tilde{g}^k\|^2 &= \mathbb{E}_k \left[\left\| \frac{1}{|S|} \sum_{i \in S} \text{clip}(\nabla f_i(x^k) - \nabla f_i(w^k), C_1 \|\nabla f_S(x^k) - \nabla f_S(w^k)\|) \right\|^2 \right. \\ 828 &\quad \left. + \frac{1}{N} \sum_{i \in D} \text{clip}(\nabla f_i(w^k), C_2 \|\nabla f(w^k)\|) + n_1^k + n_2^k \right]^2 \\ 829 &\stackrel{(a)}{\leq} 4 \mathbb{E}_k \left[\left\| \frac{1}{|S|} \sum_{i \in S} \text{clip}(\nabla f_i(x^k) - \nabla f_i(w^k), C_1 \|\nabla f_S(x^k) - \nabla f_S(w^k)\|) \right\|^2 \right. \\ 830 &\quad \left. + 4 \left\| \frac{1}{|D|} \sum_{i \in D} \text{clip}(\nabla f_i(w^k), C_2 \|\nabla f(w^k)\|) \right\|^2 \right. \\ 831 &\quad \left. + 4dL^2\sigma_1^2C_1^2 \|x^k - w^k\|^2 + 4d\sigma_2^2C_2^2 \|\nabla f(w^k)\|^2 \right] \\ 832 &\stackrel{(b)}{\leq} 4L^2C_1^2(d\sigma_1^2 + 1) \|x^k - x^* + x^* - w^k\|^2 + 4C_2^2(d\sigma_2^2 + 1) \|\nabla f(w^k)\|^2 \\ 833 &\stackrel{(c)}{\leq} \underbrace{8L^2C_1^2(d\sigma_1^2 + 1)}_{:= N_1} \|x^k - x^*\|^2 + \underbrace{8L^2C_1^2(d\sigma_1^2 + 1)}_{:= N_1} \|w^k - x^*\|^2 \\ 834 &\quad + \underbrace{4C_2^2(d\sigma_2^2 + 1)}_{:= N_2} \cdot \underbrace{\frac{1}{|D|} \sum_{i \in [|D|]} \|\nabla f_i(w^k) - \nabla f_i(x^*)\|^2}_{:= D^k} \end{aligned} \quad (15)$$

835

836

837

838

839

840

841

842

843

844

845

846

847 Here, d denotes the model size. Inequality (a) follows from the Cauchy–Schwarz inequality and the L -smoothness property applied to the noise term $\|n_1^k\|^2$; (b) applies the L -smoothness property to the first clipping term; and (c) uses the Cauchy–Schwarz inequality along with the convexity of the squared ℓ_2 -norm, i.e., $\|\mathbb{E}[X]\|^2 \leq \mathbb{E}[\|X\|^2]$. For $\mathbb{E}_k \|\tilde{g}^k\|$, we have:

848

849

850

851
$$\begin{aligned} 852 \mathbb{E}_k \|\tilde{g}^k\| &\stackrel{(a)}{\leq} \sqrt{\mathbb{E}_k \|\tilde{g}^k\|^2} \\ 853 &\stackrel{(b)}{\leq} (4L^2C_1^2(d\sigma_1^2 + 1) \|x^k - w^k\|^2 + 4C_2^2(d\sigma_2^2 + 1) \|\nabla f(w^k)\|^2)^{\frac{1}{2}} \\ 854 &\stackrel{(c)}{\leq} \left(\frac{4L^2C_1^2(d\sigma_1^2 + 1)}{\mu^2} \|\nabla f(x^k) - \nabla f(w^k)\|^2 + 4C_2^2(d\sigma_2^2 + 1) \|\nabla f(w^k)\|^2 \right)^{\frac{1}{2}} \\ 855 &\stackrel{(d)}{\leq} \left(\frac{16L^2C_1^2(d\sigma_1^2 + 1)G^2}{\mu^2} + 4C_2^2(d\sigma_2^2 + 1)G^2 \right)^{\frac{1}{2}} \\ 856 &= \frac{2G}{\mu} \sqrt{4L^2C_1^2(d\sigma_1^2 + 1) + \mu^2C_2^2(d\sigma_2^2 + 1)} := \tilde{G} \end{aligned} \quad (16)$$

857

858

859

860

861

862

863 For any precision $e > 0$, when $\|\nabla f(w)\|, \|x^k - x^*\| > e$, we define the unclipped and clipped sample sets for the first clipping as $J_1^k := \{j : \|\Delta_j^k\| \leq C_{1k}\}$ and $J_2^k := \{j : \|\Delta_j^k\| > C_{1k}\}$,

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

864 and those induced by the second clipping as $I_1^k := \{i : \|\nabla f_i(w^k)\| \leq C_{2k}\}$ and $I_2^k := \{i : \|\nabla f_i(w^k)\| > C_{2k}\}$. By choosing $C_1 > 0$ and $C_2 \geq \frac{\tau}{e} + 1$, we have:

$$\begin{aligned} 867 \quad b_1^k &= \frac{1}{|S|} \sum_{i \in S} \text{clip}(\Delta_i^k, C_{1k}) - \Delta_S^k = \frac{1}{|S|} \left(\sum_{i \in J_1^k} \Delta_i^k + \sum_{i \in J_2^k} \frac{C_{1k}}{\|\Delta_i^k\|} \Delta_i^k \right) - \Delta_S^k \\ 868 \quad &= \frac{1}{|S|} \sum_{i \in J_2^k} \left(\frac{C_{1k}}{\|\Delta_i^k\|} - 1 \right) \cdot \Delta_i^k = \frac{1}{|S|} \sum_{i \in J_2^k} (C_1 \|\Delta_S^k\| - \|\Delta_i^k\|) \cdot \frac{\Delta_i^k}{\|\Delta_i^k\|} \end{aligned} \quad (17)$$

$$\begin{aligned} 872 \quad b_2^k &= \frac{1}{|D|} \sum_{i \in D} \text{clip}(\nabla f_i(w^k), C_{2k}) - \nabla f(w^k) = \frac{1}{|D|} \left(\sum_{i \in I_1^k} \nabla f_i(w^k) + \sum_{i \in I_2^k} \frac{C_{2k}}{\|\nabla f_i(w^k)\|} \nabla f_i(w^k) \right) - \nabla f(w^k) \\ 873 \quad &= \frac{1}{|D|} \sum_{i \in I_2^k} \left(\frac{C_{2k}}{\|\nabla f_i(w^k)\|} - 1 \right) \cdot \nabla f_i(w^k) = \frac{1}{|D|} \sum_{i \in I_2^k} (C_2 \|\nabla f(w^k)\| - \|\nabla f_i(w^k)\|) \cdot \frac{\nabla f_i(w^k)}{\|\nabla f_i(w^k)\|} \end{aligned} \quad (18)$$

879 For the first clipping, we define the probability of an individual sample remaining unclipped as
880 $\mathbb{P}_1^k := \mathbb{E}_k \mathbf{1}_{\{\|\Delta_i^k\| \leq C_{1k}\}}$. Then, we have:

$$\begin{aligned} 881 \quad \mathbb{E}_k [\langle b_1^k, x^* - x^k \rangle] &= \mathbb{E}_k \left[\langle \frac{1}{|S|} \sum_{i \in J_2^k} \underbrace{(C_1 \|\Delta_S^k\| - \|\Delta_i^k\|)}_{<0} \cdot \frac{\Delta_i^k}{\|\Delta_i^k\|}, x^* - x^k \rangle \right] \\ 882 \quad &\stackrel{(a)}{\leq} \mathbb{E}_k \left[\frac{1}{|S|} \sum_{i \in J_2^k} (\|\Delta_i^k\| - C_1 \|\Delta_S^k\|) \cdot \|x^k - x^*\| \right] \\ 883 \quad &\stackrel{(b)}{\leq} \mathbb{E}_k \left[\frac{1}{|S|} \sum_{i \in J_2^k} (L \|x^k - w^k\| - C_1 \mu \|x^k - w^k\|) \cdot \|x^k - x^*\| \right] \quad (19) \\ 884 \quad &\leq \mathbb{E}_k \left[\frac{1}{|S|} \sum_{i \in J_2^k} (L - C_1 \mu) \|x^k - w^k\| \cdot \|x^k - x^*\| \right] \\ 885 \quad &= (1 - \mathbb{P}_1^k) (L - C_1 \mu) \|x^k - w^k\| \cdot \|x^k - x^*\| \\ 886 \quad &\leq (L - C_1 \mu) \|x^k - w^k\| \cdot \|x^k - x^*\| \end{aligned}$$

890 Here, (a) follows from the Cauchy–Schwarz inequality, (b) follows from the L -smoothness and μ -
891 strong convexity of the objective function. For the second clipping, similarly, we define $\mathbb{P}_2^k :=$
892 $\mathbb{E}_k \mathbf{1}_{\{\|\nabla f_i(w^k)\| \leq C_{2k}\}}$, we have:

$$\begin{aligned} 893 \quad \mathbb{E}_k \langle b_2^k, x^* - x^k \rangle &= \mathbb{E}_k \left\langle \frac{1}{|D|} \sum_{i \in I_2^k} \underbrace{(C_2 \|\nabla f(w^k)\| - \|\nabla f_i(w^k)\|)}_{<0} \cdot \frac{\nabla f_i(w^k)}{\|\nabla f_i(w^k)\|}, x^* - x^k \right\rangle \\ 894 \quad &\stackrel{(a)}{\leq} \mathbb{E}_k \left[\frac{1}{|D|} \sum_{i \in I_2^k} (\|\nabla f_i(w^k)\| - C_2 \|\nabla f(w^k)\|) \cdot \|x^k - x^*\| \right] \\ 895 \quad &\leq \mathbb{E}_k \left[\frac{1}{|D|} \sum_{i \in I_2^k} (\|\nabla f_i(w^k) - \nabla f(w^k) + \nabla f(w^k)\| - C_2 \|\nabla f(w^k)\|) \cdot \|x^k - x^*\| \right] \\ 896 \quad &\stackrel{(b)}{\leq} \mathbb{E}_k \left[\frac{1}{|D|} \sum_{i \in I_2^k} (\|\nabla f_i(w^k) - \nabla f(w^k)\| + \|\nabla f(w^k)\| - C_2 \|\nabla f(w^k)\|) \cdot \|x^k - x^*\| \right] \quad (20) \\ 897 \quad &\stackrel{(c)}{\leq} \mathbb{E}_k \left[\frac{1}{|D|} \sum_{i \in I_2^k} (\tau - (C_2 - 1) \|\nabla f(w^k)\|) \cdot \|x^k - x^*\| \right] \\ 898 \quad &\stackrel{(d)}{\leq} \frac{1 - \mathbb{P}_2^k}{|D|} \underbrace{(\tau - (C_2 - 1) e)}_{\leq 0} \cdot \|x^k - x^*\| \leq 0 \end{aligned}$$

917 Here, (a) follows from the Cauchy–Schwarz inequality, (b) from the triangle inequality, (c) from
918 Assumption 3.4, and (d) from our prescribed accuracy condition together with the choice of C_2 .

To handle the above terms, we next examine the randomness in the w^k iteration that arises both from the coin-flipping mechanism and from the stochasticity of the noise sampling. Owing to the independence of different sources of randomness, and in terms of the full expectation, we have:

$$\begin{aligned}
& \mathbb{E}[||x^k - w^k|| \cdot ||x^k - x^*||] \\
& \stackrel{(a)}{\leq} \mathbb{E}[||x^k - w^k|| \cdot \frac{||\nabla f(x^k) - \nabla f(x^*)||}{\mu}] \\
& = \frac{1}{\mu} \mathbb{E}[||x^k - w^k|| \cdot ||\nabla f(x^k)||] \\
& \stackrel{(b)}{\leq} \frac{G}{\mu} \mathbb{E}[||x^k - w^k||] \\
& \stackrel{(c)}{=} \frac{G}{\mu} \mathbb{E}[p||x^k - x^{k-1}|| + (1-p)||x^k - w^{k-1}||] \\
& \stackrel{(d)}{\leq} \frac{G}{\mu} \mathbb{E}[||x^k - x^{k-1}|| + (1-p)||x^{k-1} - w^{k-1}||] \\
& \leq \frac{G}{\mu} \mathbb{E}[(||x^k - x^{k-1}|| + (1-p)||x^{k-1} - x^{k-2}|| + (1-p)^2||x^{k-2} - x^{k-3}|| + \dots \\
& \quad + (1-p)^{k-1}||x^1 - x^0|| + p||w^0 - x^0||)] \\
& \leq \frac{G}{\mu} \mathbb{E}[\eta(||\tilde{g}^{k-1}|| + (1-p)||\tilde{g}^{k-2}|| + \dots + (1-p)^k||\tilde{g}^0||)] \\
& \leq \frac{G}{\mu} \mathbb{E}[\eta\tilde{G}(1 + (1-p) + (1-p)^2 + \dots + (1-p)^k)] \\
& \leq \eta \frac{G\tilde{G}}{p\mu e^2} \cdot e^2 \leq \eta \frac{G\tilde{G}}{p\mu e^2} \mathbb{E}[||x^k - x^*||^2]
\end{aligned} \tag{21}$$

Here, (a) follows from the μ -strong convexity property; (b) is due to Assumption 3.5; (c) comes from the iterative update rule of w^k ; and (d) is obtained by applying the triangle inequality. Similarly, we also obtain the following results, which will be used in the subsequent proofs:

$$\begin{aligned}
\mathbb{E}[||x^{k-1} - w^{k-1}|| \cdot ||x^k - x^*||] & \leq \eta \frac{G\tilde{G}}{p\mu} \\
\mathbb{E}[||w^k - w^{k-1}||^2] & \leq \eta^2 \frac{\tilde{G}^2}{p} \\
\mathbb{E}[||x^{k-1} - w^{k-1}|| \cdot ||\nabla f(x^k)||] & \leq \eta \frac{G\tilde{G}}{p}
\end{aligned} \tag{22}$$

With these preparations in place, we are now ready to proceed. For notational simplicity, in (15) we define $D^k := \mathbb{E}[\|\nabla f_i(w^k) - \nabla f_i(x^*)\|^2]$, $N_1 := 8L^2C_1^2(d\sigma_1^2 + 1)$, $N_2 := 4(d\sigma_2^2 + 1)C_2^2$, and $A := \frac{2G\tilde{G}}{p\mu e^2}(L - C_1\mu)$. Substituting (15)–(21) into (14), and taking the full expectation on both sides of (14), (15), and (19), we obtain:

$$\begin{aligned}
\mathbb{E}[||x^{k+1} - x^*||^2] & \leq (1 - \eta\mu + \eta^2(N_1 + A))\mathbb{E}[||x^k - x^*||^2] + \eta^2N_1\mathbb{E}[||w^k - x^*||^2] \\
& \quad + \eta^2N_2D^k - 2\eta(\mathbb{E}f(x^k) - f^*)
\end{aligned} \tag{23}$$

We now consider the iterative update of $\{w^k\}_{k \in [T]}$ in DP-C4 (Line 13 in Alg.3). Since w^k is updated with a certain probability, we have:

$$\begin{aligned}
\mathbb{E}[||w^{k+1} - x^*||^2] & = p\mathbb{E}[||x^k - x^*||^2] + (1 - p)\mathbb{E}[||w^k - x^*||^2] \\
D^{k+1} & = (1 - p)D^k + p\mathbb{E}[\|\nabla f_i(x^k) - \nabla f_i(x^*)\|^2] \\
& \leq (1 - p)D^k + 2Lp(\mathbb{E}f(x^k) - f^*)
\end{aligned} \tag{24}$$

We define the Lyapunov function of DP-C4 as follows:

$$\begin{aligned}
\Phi^k & = \mathbb{E}[||x^k - x^*||^2] + \frac{2N_1\eta^2}{p}\mathbb{E}[||w^k - x^*||^2] + \frac{2N_2\eta^2}{p}D^k \\
& = \mathbb{E}[||x^k - x^*||^2] + \frac{16L^2C_1^2(d\sigma_1^2 + 1)\eta^2}{p}\mathbb{E}[||w^k - x^*||^2] + \frac{8C_2^2(d\sigma_2^2 + 1)\eta^2}{p}D^k
\end{aligned} \tag{25}$$

972 Let $\eta < \min \left\{ \frac{\mu}{3N_1+A}, \frac{1}{2LN_2} \right\}$. Then, we observe that:
973

$$\begin{aligned}
974 \Phi^{k+1} &= \mathbb{E} \|x^{k+1} - x^*\|^2 + \frac{2N_1\eta^2}{p} \mathbb{E} \|w^{k+1} - x^*\|^2 + \frac{2N_2\eta^2}{p} D^{k+1} \\
975 &\leq (1 - \mu\eta + (N_1 + A)\eta^2 + p \frac{2N_1\eta^2}{p}) \mathbb{E} \|x^k - x^*\|^2 + (N_1\eta^2 + (1 - p) \frac{2N_1\eta^2}{p}) \mathbb{E} \|w^k - x^*\|^2 \\
976 &\quad + (N_2\eta^2 + (1 - p) \frac{2N_2\eta^2}{p}) D^k + \underbrace{(4LN_2\eta^2 - 2\eta)(\mathbb{E} f(x^k) - f^*)}_{< 0} \\
977 &= \underbrace{(1 - \mu\eta + (3N_1 + A)\eta^2)}_{< 1} \mathbb{E} \|x^k - x^*\|^2 + (1 - \frac{p}{2}) \frac{2N_1\eta^2}{p} \mathbb{E} \|w^k - x^*\|^2 + (1 - \frac{p}{2}) \frac{2N_2\eta^2}{p} D^k
\end{aligned} \tag{26}$$

981 That is,
982

$$\Phi^{k+1} \leq \max \left\{ \underbrace{1 - \mu\eta + (3N_1 + A)\eta^2}_{< 1}, \underbrace{1 - \frac{p}{2}}_{< 1} \right\} \cdot \Phi^k < \Phi^k \tag{27}$$

C.3 PROOF OF THEOREM 2

992 Unlike Thm.1, here we study the general convergence analysis in the non-convex setting without im-
993 posing stringent restrictions on the clipping coefficients C_1 and C_2 . Therefore, we need to consider
994 the clipping bias in a more refined manner. First, since $f(x)$ is L -smooth, we have:
995

$$\begin{aligned}
996 f(x^{k+1}) - f(x^k) &\leq \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2 \\
997 &= -\eta \langle \nabla f(x^k), \tilde{g}^k \rangle + \frac{L\eta^2}{2} \|\tilde{g}^k\|^2.
\end{aligned} \tag{28}$$

1001 Taking the expectation on both sides of the inequality, and let us define $g^k := \tilde{g}^k - n_1^k - n_2^k$, we
1002 obtain:
1003

$$\mathbb{E}_k[f(x^{k+1})] - f(x^k) \leq -\eta \mathbb{E}_k \langle \nabla f(x^k), g^k \rangle + \frac{L\eta^2}{2} \mathbb{E}_k [\|g^k + n_1^k + n_2^k\|^2] \tag{29}$$

1005 Our current goal is to derive a lower bound for $\mathbb{E}_k \langle \nabla f(x^k), g^k \rangle$ and an upper bound for $\mathbb{E}_k [\|g^k +$
1006 $n_1^k + n_2^k\|^2]$. We first consider the upper bound of $\mathbb{E}_k [\|g^k + n_1^k + n_2^k\|^2]$. From (15), we have:
1007

$$\begin{aligned}
1008 \mathbb{E}_k \|\tilde{g}^k\|^2 &\leq 4C_1^2 \|\nabla f_S(x^k) - \nabla f_S(w^k)\|^2 + 4dC_1^2 \sigma_1^2 \|\nabla f(x^k) - \nabla f(w^k)\|^2 \\
1009 &\quad + 4C_2^2 (d\sigma_2^2 + 1) \|\nabla f(w^k)\|^2 \\
1010 &\leq 8C_1^2 (\|\nabla f_S(x^k)\|^2 + \|\nabla f_S(w^k)\|^2) + 8dC_1^2 \sigma_1^2 (\|\nabla f(x^k)\|^2 + \|\nabla f(w^k)\|^2) \\
1011 &\quad + 4C_2^2 (d\sigma_2^2 + 1) \|\nabla f(w^k)\|^2 \\
1012 &\leq 4G^2 (4C_1^2 (d\sigma_1^2 + 1) + C_2^2 (d\sigma_2^2 + 1)) := \tilde{G}' \\
1013
\end{aligned} \tag{30}$$

1015 We now discuss a lower bound for $\mathbb{E}_k \langle \nabla f(x^k), g^k \rangle$. Our approach is to use the gradient sampling
1016 noise as a bridge to precisely characterize each term. Let $\Delta_i^k := \nabla f_i(x^k) - \nabla f_i(w^k)$, $\Delta^k :=$
1017 $\nabla f(x^k) - \nabla f(w^k)$, and $\xi_{1i}^k := \Delta_i^k - \Delta^k$, $\xi_{2i}^k := \nabla f_i(w^k) - \nabla f(w^k)$, Then, we obtain:
1018

$$\begin{aligned}
1019 \mathbb{E}_k[g^k] &= \mathbb{E}_k \left[\frac{1}{|S|} \sum_{i \in S} \text{clip}(\nabla f_i(x^k) - \nabla f_i(w^k), C_{1k}) + \frac{1}{|D|} \sum_{i \in D} \text{clip}(\nabla f_i(w^k), C_{2k}) \right] \\
1020 &= \mathbb{E}_k [\Delta_i^k \cdot \min \{1, \frac{C_{1k}}{\|\Delta_i^k\|}\}] + \mathbb{E}_k [\nabla f_i(w^k) \cdot \min \{1, \frac{C_{2k}}{\|\nabla f_i(w^k)\|}\}] \\
1021 &= \mathbb{E}_k [(\Delta^k + \xi_{1i}^k) \cdot \min \{1, \frac{C_{1k}}{\|\Delta^k + \xi_{1i}^k\|}\}] + \mathbb{E}_k [(\nabla f(w^k) + \xi_{2i}^k) \cdot \min \{1, \frac{C_{2k}}{\|\nabla f(w^k) + \xi_{2i}^k\|}\}]
\end{aligned} \tag{31}$$

Therefore, for $\mathbb{E}_k \langle \nabla f(x^k), g^k \rangle$, we have:

$$\begin{aligned}
\mathbb{E}_k \langle \nabla f(x^k), g^k \rangle &= \langle \nabla f(x^k), \mathbb{E}_k[(\Delta^k + \xi_{1i}^k) \cdot \min\{1, \frac{C_{1k}}{\|\Delta^k + \xi_{1i}^k\|}\}] \\
&\quad + \mathbb{E}_k[(\nabla f(w^k) + \xi_{2i}^k) \cdot \min\{1, \frac{C_{2k}}{\|\nabla f(w^k) + \xi_{2i}^k\|}\}] \rangle \\
&= \underbrace{\langle \nabla f(x^k), \mathbb{E}_k[(\Delta^k + \xi_{1i}^k) \cdot \min\{1, \frac{C_{1k}}{\|\Delta^k + \xi_{1i}^k\|}\}] - \Delta^k \rangle}_{C := \text{Coupled Term}} \\
&\quad + \underbrace{\langle \nabla f(x^k), \mathbb{E}_k[(\nabla f(w^k) + \xi_{2i}^k) \cdot \min\{1, \frac{C_{2k}}{\|\nabla f(w^k) + \xi_{2i}^k\|}\}] - \nabla f(w^k) + \nabla f(x^k) \rangle}_{A := \text{Anchor Term}}
\end{aligned} \tag{32}$$

We denote $\mathbb{P}_k^1 := \mathbb{E}_k[1_{\{\|\Delta k + \xi_{1k}^k\| \leq C_{1k}\}}]$, $\mathbb{P}_k^2 := \mathbb{E}_k[1_{\{\|\nabla f(w^k) + \xi_{2k}^k\| \leq C_{2k}\}}]$, and assume that $C_1 > 1$ and $C_2 > 1$. We then examine the two terms separately. First, for the term \mathbf{A} , we have:

$$\begin{aligned} \mathbb{E}_k[(\nabla f(w^k) + \xi_{2i}^k) \cdot \min\{1, \frac{C_{2k}}{\|\nabla f(w^k) + \xi_{2i}^k\|}\}] = \\ \mathbb{E}_k[(\nabla f(w^k) + \xi_{2i}^k) \cdot 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| \leq C_{2k}\}}] + \mathbb{E}_k[\frac{C_{2k} \cdot (\nabla f(w^k) + \xi_{2i}^k)}{\|\nabla f(w^k) + \xi_{2i}^k\|} \cdot 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}}] \end{aligned} \quad (33)$$

Substituting into (32), we obtain:

$$\begin{aligned}
A &= \|\nabla f(x^k)\|^2 + \langle \nabla f(x^k), -\nabla f(w^k) + \mathbb{E}_k[(\nabla f(w^k) + \xi_{2i}^k) \cdot \min\{1, \frac{C_{2k}}{\|\nabla f(w^k) + \xi_{2i}^k\|}\}] \rangle \\
&= \|\nabla f(x^k)\|^2 + \langle \nabla f(x^k), -\nabla f(w^k) + \mathbb{E}_k[(\nabla f(w^k) + \xi_i^k) \cdot \mathbf{1}_{\{\|\nabla f(w^k) + \xi_{2i}^k\| \leq C_{2k}\}}] \rangle \\
&\quad + \mathbb{E}_k[\frac{C_{2k} \cdot (\nabla f(w^k) + \xi_{2i}^k)}{\|\nabla f(w^k) + \xi_{2i}^k\|} \cdot \mathbf{1}_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}}] \\
&= \|\nabla f(x^k)\|^2 + \mathbb{E}_k[\langle \nabla f(x^k), -\nabla f(w^k) \cdot (\mathbf{1}_{\{\|\nabla f(w^k) + \xi_{2i}^k\| \leq C_{2k}\}} + \mathbf{1}_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}}) \\
&\quad + (\nabla f(w^k) + \xi_{2i}^k) \cdot \mathbf{1}_{\{\|\nabla f(w^k) + \xi_{2i}^k\| \leq C_{2k}\}} + \frac{C_{2k} \cdot (\nabla f(w^k) + \xi_{2i}^k)}{\|\nabla f(w^k) + \xi_{2i}^k\|} \cdot \mathbf{1}_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}})] \\
&= \|\nabla f(x^k)\|^2 + \mathbb{E}_k[\langle \nabla f(x^k), \xi_{2i}^k \cdot \mathbf{1}_{\{\|\nabla f(w^k) + \xi_{2i}^k\| \leq C_{2k}\}} \rangle] \\
&\quad + \mathbb{E}_k[\langle \nabla f(x^k), [\frac{C_{2k} \cdot (\nabla f(w^k) + \xi_{2i}^k)}{\|\nabla f(w^k) + \xi_{2i}^k\|} - f(w^k)] \cdot \mathbf{1}_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \rangle]
\end{aligned} \tag{34}$$

Focusing on the final term of (34) alone, we obtain:

$$\begin{aligned}
& \mathbb{E}_k[\langle \nabla f(x^k), \left[\frac{C_{2k} \cdot (\nabla f(w^k) + \xi_{2i}^k)}{\|\nabla f(w^k) + \xi_{2i}^k\|} - f(w^k) \right] \cdot 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \rangle] \\
&= \mathbb{E}_k[\langle \nabla f(x^k), \left[\frac{C_2 \|\nabla f(w^k)\| (\nabla f(w^k) + \xi_{2i}^k)}{\|\nabla f(w^k) + \xi_{2i}^k\|} - (f(w^k) + \xi_{2i}^k) + \xi_{2i}^k \right] \cdot 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \rangle] \\
&= \mathbb{E}_k[\langle \nabla f(x^k), \left[\frac{[C_2 \|\nabla f(w^k)\| - \|\nabla f(w^k) + \xi_{2i}^k\|] (\nabla f(w^k) + \xi_{2i}^k)}{\|\nabla f(w^k) + \xi_{2i}^k\|} + \xi_{2i}^k \right] \cdot 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \rangle] \\
&= \mathbb{E}_k[\langle \nabla f(x^k), \frac{[C_2 \|\nabla f(w^k)\| - \|\nabla f(w^k) + \xi_{2i}^k\|] (\nabla f(w^k) + \xi_{2i}^k)}{\|\nabla f(w^k) + \xi_{2i}^k\|} \cdot 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \rangle] \\
&+ \mathbb{E}_k[\langle \nabla f(x^k), \xi_{2i}^k \cdot 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \rangle]
\end{aligned} \tag{35}$$

1080 Substituting into (34), we obtain:
 1081
 1082
 1083

$$1084 A = \|\nabla f(x^k)\|^2 + \mathbb{E}_k[\langle \nabla f(x^k), \xi_{2i}^k \cdot (1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| \leq C_{2k}\}} + 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}}) \rangle] \\ 1085 + \mathbb{E}_k[\langle \nabla f(x^k), \frac{[C_2 \|\nabla f(w^k)\| - \|\nabla f(w^k) + \xi_{2i}^k\|](\nabla f(w^k) + \xi_{2i}^k)}{\|\nabla f(w^k) + \xi_{2i}^k\|} \cdot 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \rangle] \\ 1086 \quad (36)$$

1088 Since $1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| \leq C_{2k}\}} + 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} = 1$, and $C_2 \|\nabla f(w^k)\| - \|\nabla f(w^k) + \xi_{2i}^k\| \geq C_2 \|\nabla f(w^k)\| - \|\nabla f(w^k)\| - \|\xi_{2i}^k\|$, together with the facts that $\mathbb{E}_k[\xi_{2i}^k] = 0$ and $(C_2 \|\nabla f(w^k)\| - \|\nabla f(w^k) + \xi_{2i}^k\|) \cdot 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \leq 0$, we can, by applying the Cauchy inequality, derive a lower bound for A :

$$1093 \\ 1094 \\ 1095 A = \|\nabla f(x^k)\|^2 \\ 1096 + \mathbb{E}_k[\underbrace{1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \cdot [C_2 \|\nabla f(w^k)\| - \|\nabla f(w^k) + \xi_{2i}^k\|] \cdot \langle \nabla f(x^k), \frac{(\nabla f(w^k) + \xi_{2i}^k)}{\|\nabla f(w^k) + \xi_{2i}^k\|} \rangle}_{<0}] \\ 1097 \quad (a) \\ 1098 \geq \|\nabla f(x^k)\|^2 + \mathbb{E}_k[1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \cdot [(C_2 - 1) \|\nabla f(w^k)\| - \|\xi_{2i}^k\|] \cdot \|\nabla f(x^k)\|] \\ 1099 \quad (b) \\ 1100 \geq \|\nabla f(x^k)\|^2 + \mathbb{E}_k[1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \cdot [C_2 \|\nabla f(w^k)\| - \|\nabla f(w^k) + \xi_{2i}^k\|] \cdot \|\nabla f(x^k)\|] \\ 1101 = \|\nabla f(x^k)\|^2 + \mathbb{E}_k[1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \cdot (C_2 - 1) \|\nabla f(w^k)\| \cdot \|\nabla f(x^k)\|] \\ 1102 - \mathbb{E}_k[1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \cdot \|\xi_{2i}^k\| \cdot \|\nabla f(x^k)\|] \\ 1103 \quad (37)$$

1104 Here, (a) follows from the Cauchy inequality, and (b) follows from the triangle inequality. We now
 1105 consider the third term in the above expression. Let S_k denote the set of ξ_{2i}^k such that $\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}$, and define $P_{k,z} := \Pr(\xi^k \in S_k, \|\xi^k\| = z)$. Then, we have:

$$1111 \\ 1112 \\ 1113 - \mathbb{E}_k[1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \cdot \|\xi_{2i}^k\| \cdot \|\nabla f(x^k)\|] \\ 1114 = - \mathbb{E}_k[1_{\{\xi^k \in S_k\}} \cdot \|\xi^k\| \cdot \|\nabla f(x^k)\|] \\ 1115 = - \|\nabla f(x^k)\| \cdot \int_0^{+\infty} P_{k,z} \cdot z \, dz \\ 1116 = - \|\nabla f(x^k)\| \cdot \int_0^{+\infty} \sqrt{P_{k,z}} \cdot \sqrt{z^2 \cdot P_{k,z}} \, dz \\ 1117 \geq - \|\nabla f(x^k)\| \cdot \sqrt{\left(\int_0^{+\infty} P_{k,z} \, dz \right) \cdot \left(\int_0^{+\infty} z^2 \cdot P_{k,z} \, dz \right)} \\ 1118 \geq - \|\nabla f(x^k)\| \cdot \sqrt{(1 - \mathbb{P}_2^k) \cdot \sqrt{\mathbb{E}_k[\|\xi_{2i}^k\|^2]}} \\ 1119 \quad (38)$$

1120 Thus, we can obtain:
 1121
 1122
 1123

$$1124 A \geq \|\nabla f(x^k)\|^2 + (1 - \mathbb{P}_2^k)(C_2 - 1) \|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\| - \|\nabla f(x^k)\| \cdot \sqrt{(1 - \mathbb{P}_2^k)} \cdot \sqrt{\mathbb{E}_k[\|\xi_{2i}^k\|^2]} \\ 1125 \quad (39)$$

The treatment of C is analogous to that of A . Due to the symmetry between $\nabla f(w^k)$ and Δ^k in the expressions for A and C , and by referring to (32)–(39), we can obtain:

$$\begin{aligned}
C &= \langle \nabla f(x^k), \mathbb{E}_k \left[\frac{\Delta^k + \xi_{1i}^k}{\|\Delta^k + \xi_{1i}^k\|} \cdot \underbrace{(C_{1k} - \|\Delta^k + \xi_{1i}^k\|) \cdot 1_{\{\|\Delta^k + \xi_{1i}^k\| > C_{1k}\}}}_{< 0} \right] \rangle \\
&\geq \mathbb{E}_k [(C_{1k} - \|\Delta^k + \xi_{1i}^k\|) \cdot 1_{\{\|\Delta^k + \xi_{1i}^k\| > C_{1k}\}}] \cdot \|\nabla f(x^k)\| \\
&\geq \mathbb{E}_k [(C_1 \|\Delta^k\| - \|\Delta^k\| - \|\xi_{1i}^k\|) \cdot 1_{\{\|\Delta^k + \xi_{1i}^k\| > C_{1k}\}}] \cdot \|\nabla f(x^k)\| \\
&\geq \mathbb{E}_k [(C_1 - 1) \|\Delta^k\| \cdot 1_{\{\|\Delta^k + \xi_{1i}^k\| > C_{1k}\}}] \cdot \|\nabla f(x^k)\| \\
&\quad - \mathbb{E}_k [\|\nabla f(x^k)\| \cdot \|\xi_{1i}^k\| \cdot 1_{\{\|\Delta^k + \xi_{1i}^k\| > C_{1k}\}}] \\
&\geq (1 - \mathbb{P}_1^k) (C_1 - 1) \|\Delta^k\| \|\nabla f(x^k)\| - \|\nabla f(x^k)\| \cdot \sqrt{(1 - \mathbb{P}_1^k)} \cdot \sqrt{\mathbb{E}_k [\|\xi_{1i}^k\|^2]} \\
&\geq (1 - \mathbb{P}_1^k) (C_1 - 1) \|\nabla f(x^k) - \nabla f(w^k)\| \cdot \|\nabla f(x^k)\| \\
&\quad - \|\nabla f(x^k)\| \cdot \sqrt{(1 - \mathbb{P}_1^k)} \cdot \sqrt{\mathbb{E}_k [\|\xi_{1i}^k\|^2]}
\end{aligned} \tag{40}$$

By Assumption 3.4, we have $\mathbb{E}_k[\|\xi_{2i}^k\|^2] = \text{Var}(\nabla f_i) \leq \tau^2$. Moreover, $\xi_{1i}^k = \Delta_i^k - \Delta^k = \nabla f_i(x^k) - \nabla f_i(w^k) - \nabla f(x^k) + \nabla f(w^k) = (\nabla f_i(x^k) - \nabla f(x^k)) - (\nabla f_i(w^k) - \nabla f(w^k)) = \xi_{2i}^k - \xi_{2i}^{k'}$, which implies $\mathbb{E}_k\|\xi_{1i}^k\|^2 \leq 4\tau^2$. Combining the results from both terms, we obtain:

$$\begin{aligned}
\mathbb{E}_k[\langle \nabla f(x^k), g^k \rangle] &\geq \|\nabla f(x^k)\|^2 + (1 - \mathbb{P}_1^k)(C_1 - 1)\|\nabla f(x^k)\| \cdot \|\nabla f(x^k) - \nabla f(w^k)\| \\
&\quad + (1 - \mathbb{P}_2^k)(C_2 - 1)\|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\| - 2\|\nabla f(x^k)\| \cdot \sqrt{(1 - \mathbb{P}_1^k)} \cdot \tau \quad (41) \\
&\quad - \|\nabla f(x^k)\| \cdot \sqrt{(1 - \mathbb{P}_2^k)} \cdot \tau
\end{aligned}$$

Below, we consider two cases, namely $\|\nabla f(x^k)\| \geq 3\tau$ and $\|\nabla f(x^k)\| < 3\tau$, and we will use probabilities to combine them. For the former case, we have:

$$\begin{aligned}
\mathbb{E}_k[\langle \nabla f(x^k), g^k \rangle] &\geq (1 - \frac{2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}}{3}) \|\nabla f(x^k)\|^2 \\
&\quad + \frac{2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}}{3} \|\nabla f(x^k)\|^2 \\
&\quad - (2\sqrt{(1 - \mathbb{P}_2^k)} + \sqrt{(1 - \mathbb{P}_1^k)}) \|\nabla f(x^k)\| \tau \\
&\quad + (1 - \mathbb{P}_2^k)(C_2 - 1) \|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\| \\
&\quad + (1 - \mathbb{P}_1^k)(C_1 - 1) \|\nabla f(x^k)\| \cdot \|\nabla f(x^k) - \nabla f(w^k)\| \\
&\geq (1 - \frac{2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}}{3}) \|\nabla f(x^k)\|^2 \\
&\quad + (1 - \mathbb{P}_2^k)(C_2 - 1) \|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\| \\
&\quad + (1 - \mathbb{P}_1^k)(C_1 - 1) \|\nabla f(x^k)\| \cdot \|\nabla f(x^k) - \nabla f(w^k)\| \geq 0
\end{aligned} \tag{42}$$

1188 In summary, by combining the two cases using probabilities, let $\mathbb{P}^k := \Pr(\|\nabla f(x^k)\| < 3\tau \mid x^{k-1})$.
1189 Then, we have:

$$\begin{aligned}
1191 \mathbb{E}_k[\langle \nabla f(x^k), g^k \rangle] &\geq (1 - \mathbb{P}^k)(1 - \frac{2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}}{3})\|\nabla f(x^k)\|^2 \\
1192 &\quad + (1 - \mathbb{P}^k)(1 - \mathbb{P}_2^k)(C_2 - 1)\|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\| \\
1193 &\quad + (1 - \mathbb{P}^k)(1 - \mathbb{P}_1^k)(C_1 - 1)\|\nabla f(x^k)\| \cdot \|\nabla f(x^k) - \nabla f(w^k)\| \\
1194 &\quad + \mathbb{P}^k\|\nabla f(x^k)\|^2 + \mathbb{P}^k(1 - \mathbb{P}_1^k)(C_1 - 1)\|\nabla f(x^k)\| \cdot \|\nabla f(x^k) - \nabla f(w^k)\| \\
1195 &\quad + \mathbb{P}^k(1 - \mathbb{P}_2^k)(C_2 - 1)\|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\| - 2\mathbb{P}^k\|\nabla f(x^k)\| \cdot \sqrt{(1 - \mathbb{P}_1^k)} \cdot \tau \\
1196 &\quad - \mathbb{P}^k\|\nabla f(x^k)\| \cdot \sqrt{(1 - \mathbb{P}_2^k)} \cdot \tau \\
1197 &= \underbrace{(1 - (1 - \mathbb{P}^k)\frac{2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}}{3})\|\nabla f(x^k)\|^2}_{0 \leq \lambda_1^k \leq 1} \\
1198 &\quad + \underbrace{(1 - \mathbb{P}_2^k)(C_2 - 1)\|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\|}_{\lambda_2^k \geq 0} \\
1199 &\quad + \underbrace{(1 - \mathbb{P}_1^k)(C_1 - 1)\|\nabla f(x^k)\|_2 \cdot \|\nabla f(x^k) - \nabla f(w^k)\|}_{\lambda_3^k \geq 0} \\
1200 &\quad - \underbrace{\mathbb{P}^k \cdot \frac{2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}}{3} \cdot \|\nabla f(x^k)\| \cdot 3\tau}_{0 \leq \lambda_4^k \leq 1}
\end{aligned} \tag{43}$$

1214 For notational convenience, we further define and restate:

$$\begin{aligned}
1216 \lambda_1^k &:= 1 - \frac{1}{3}(1 - \mathbb{P}^k)(2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}), \quad \lambda_2^k := (1 - \mathbb{P}_2^k)(C_2 - 1), \quad \lambda_3^k := (1 - \mathbb{P}_1^k)(C_1 - 1) \\
1217 \\
1219 \lambda_4^k &:= \frac{1}{3}\mathbb{P}^k(2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}), \quad \mathbb{P}^k := \Pr(\|\nabla f(x^k)\| \leq 3\tau \mid x^{k-1}), \\
1220 \\
1222 \mathbb{P}_1^k &:= \mathbb{E}_k[1_{\{\|\nabla f_i(x^k) - \nabla f_i(w^k)\|_2 \leq C_{1k}\}}], \quad \mathbb{P}_2^k := \mathbb{E}_k[1_{\{\|\nabla f_i(w^k)\|_2 \leq C_{2k}\}}].
\end{aligned}$$

1224 By substituting (43), (30) into (29), taking the full expectation on both sides of the inequality, sum-
1225 ming over $k = 1$ to T , and setting $\eta = \sqrt{\frac{2(f(x^0) - f(x^*))}{TL\tilde{G}}}$, we obtain:

$$\begin{aligned}
1227 \frac{1}{T} \sum_{k=1}^T \mathbb{E} &\left[\lambda_1^k \|\nabla f(x^k)\|^2 + \lambda_2^k \|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\| + \lambda_3^k \|\nabla f(x^k)\| \cdot \|\nabla f(x^k) - \nabla f(w^k)\| \right] \\
1228 &\leq \frac{f(x^0) - \mathbb{E}f(x^T)}{\eta T} + \frac{\eta L}{2T} \sum_{k=1}^T \tilde{G} + \frac{1}{T} \sum_{k=1}^T \mathbb{E} \left[\lambda_4^k \cdot 3\tau \|\nabla f(x^k)\| \right] \\
1229 &\leq 2\sqrt{\frac{(f(x^0) - f(x^*))L\tilde{G}}{2T}} + \frac{1}{T} \sum_{k=1}^T \mathbb{E} \left[\lambda_4^k \cdot 3\tau \|\nabla f(x^k)\| \right]
\end{aligned} \tag{44}$$

C.4 PROOF OF THEOREM 4

1238 The proof of Thm.4 is similar to that of Thm.1. Following the previous approach, we focus mainly
1239 on presenting the differences. The treatment of expectations is similar; for simplicity, we do not
1240 distinguish them in the notation. Continuing from (14), we first consider the upper bound of $\mathbb{E}\|\tilde{g}^k\|^2$.

For any precision $e > 0$, when $\|\nabla f(w)\|, \|x^k - x^*\|, \|w^k - x^*\| > e$, we have:

1244 $\mathbb{E}||\tilde{g}^k||^2 = \mathbb{E}[||\frac{1}{|S|} \sum_{i \in S} clip(\nabla f_i(x^k) - \nabla f_i(w^k), C_1 ||x^k - w^k||)$
 1245 $+ \frac{1}{N} \sum_{i \in D} clip(\nabla f_i(w^k), C_2 ||\nabla f(w^{k-1})||) + \mathbf{n}_1^k + \mathbf{n}_2^k||^2]$
 1246 $\leq 4\mathbb{E}[||\frac{1}{|S|} \sum_{i \in S} clip(\nabla f_i(x^k) - \nabla f_i(w^k), C_1 ||x^k - w^k||)||^2$
 1247 $+ 4\mathbb{E}[||\frac{1}{|D|} \sum_{i \in D} clip(\nabla f_i(w^k), C_2 ||\nabla f(w^{k-1})||)||^2$
 1248 $+ 4d\sigma_1^2 C_1^2 \mathbb{E}||x^k - w^k||^2 + 4d\sigma_2^2 C_2^2 \mathbb{E}||\nabla f(w^{k-1})||^2$
 1249 $\leq 4C_1^2(d\sigma_1^2 + 1)\mathbb{E}||x^k - x^* + x^* - w^k||^2$
 1250 $+ 4C_2^2(d\sigma_2^2 + 1)\mathbb{E}||\nabla f(w^k) - (\nabla f(w^k) - \nabla f(w^{k-1}))||^2$
 1251 $\leq 8C_1^2(d\sigma_1^2 + 1)\mathbb{E}||x^k - x^*||^2 + 8C_1^2(d\sigma_1^2 + 1)\mathbb{E}||w^k - x^*||^2$
 1252 $+ 8C_2^2(d\sigma_2^2 + 1)\mathbb{E}||\nabla f(w^k)||^2 + 8C_2^2(d\sigma_2^2 + 1)\mathbb{E}||\nabla f(w^k) - \nabla f(w^{k-1})||^2$
 1253 $\stackrel{(a)}{\leq} 8C_1^2(d\sigma_1^2 + 1)\mathbb{E}||x^k - x^*||^2 + 8C_1^2(d\sigma_1^2 + 1)\mathbb{E}||w^k - x^*||^2$
 1254 $+ 8C_2^2(d\sigma_2^2 + 1)\mathbb{E}||\nabla f(w^k)||^2 + 8C_2^2L^2(d\sigma_2^2 + 1)\mathbb{E}||w^k - w^{k-1}||^2$
 1255 $\stackrel{(b)}{\leq} 8C_1^2(d\sigma_1^2 + 1)\mathbb{E}||x^k - x^*||^2 + 8C_1^2(d\sigma_1^2 + 1)\mathbb{E}||w^k - x^*||^2$
 1256 $+ 8C_2^2(d\sigma_2^2 + 1)\mathbb{E}||\nabla f(w^k)||^2 + 8C_2^2L^2(d\sigma_2^2 + 1)\eta^2 \frac{\tilde{G}^2}{pe^2} \cdot e^2$
 1257 $\leq 8C_1^2(d\sigma_1^2 + 1)\mathbb{E}||x^k - x^*||^2 + 8C_1^2(d\sigma_1^2 + 1)\mathbb{E}||w^k - x^*||^2$
 1258 $+ 8C_2^2(d\sigma_2^2 + 1)\mathbb{E}||\nabla f(w^k)||^2 + 4C_2^2L^2(d\sigma_2^2 + 1)\eta^2 \frac{\tilde{G}^2}{pe^2} (\mathbb{E}||x^k - x^*||^2 + \mathbb{E}||w^k - x^*||^2)$
 1259 $\leq (8C_1^2(d\sigma_1^2 + 1) + \underbrace{\frac{4\eta^2}{pe^2} G^2 C_2^2(d\sigma_2^2 + 1)}_{:= N_1}) (\mathbb{E}||x^k - x^*||^2 + \mathbb{E}||w^k - x^*||^2)$
 1260 $+ \underbrace{8C_2^2(d\sigma_2^2 + 1) \mathbb{E}||\nabla f_i(w^k) - \nabla f_i(x^*)||^2}_{:= N_2}.$
 1261 $:= D^k$ (45)

Where, (a) follows from the L -smooth property, and (b) follows from (22), \tilde{G} is given by (46). Similarly, for $\mathbb{E}\|\tilde{g}^k\|$, we have:

Similarly, for the two types of clipping bias, we have:

$$b_1^k := \frac{1}{|S|} \sum_{i \in S} \text{clip}(\Delta_i^k, C_1 \|x^k - w^k\|) - \Delta_S^k,$$

$$b_2^k := \frac{1}{|D|} \sum_{i \in D} \text{clip}(\nabla f_i(w^k), C_2 \|\nabla f(w^{k-1})\|) - \nabla f(w^k)$$

1296 Following all the previously introduced notations, we have:
 1297

$$\begin{aligned}
 b_1^k &= \frac{1}{|S|} \sum_{i \in S} \text{clip}(\Delta_i^k, C_1 \|x^k - w^k\|) - \Delta_S^k \\
 &= \frac{1}{|S|} \left(\sum_{i \in J_1^k} \Delta_i^k + \sum_{i \in J_2^k} \frac{C_{1k}}{\|\Delta_i^k\|} \Delta_i^k \right) - \Delta_S^k \\
 &= \frac{1}{|S|} \sum_{i \in J_2^k} \left(\frac{C_{1k}}{\|\Delta_i^k\|} - 1 \right) \cdot \Delta_i^k \\
 &= \frac{1}{|S|} \sum_{i \in J_2^k} \underbrace{(C_1 \|x^k - w^k\| - \|\Delta_i^k\|)}_{<0} \cdot \frac{\Delta_i^k}{\|\Delta_i^k\|} \\
 b_2^k &= \frac{1}{|D|} \sum_{i \in J_2^k} \underbrace{(C_2 \|\nabla f(w^{k-1})\| - \|\nabla f_i(w^k)\|)}_{<0} \cdot \frac{\nabla f_i(w^k)}{\|\nabla f_i(w^k)\|}
 \end{aligned} \tag{47}$$

1312 Similarly, for the first type of clipping, we define $\mathbb{P}_1^k := \mathbb{E}_k[1_{\{\|\Delta_i^k\| \leq C_{1k}\}}]$, and we have:
 1313

$$\begin{aligned}
 \mathbb{E}[\langle b_1^k, x^* - x^k \rangle] &= \mathbb{E}\left[\left\langle \frac{1}{|S|} \sum_{i \in J_2^k} \underbrace{(C_1 \|x^k - w^k\| - \|\Delta_i^k\|)}_{<0} \cdot \frac{\Delta_i^k}{\|\Delta_i^k\|}, x^* - x^k \right\rangle\right] \\
 &\leq \mathbb{E}\left[\frac{1}{|S|} \sum_{i \in J_2^k} (\|\Delta_i^k\| - C_1 \|x^k - w^k\|) \cdot \|x^k - x^*\|\right] \\
 &\leq \mathbb{E}\left[\frac{1}{|S|} \sum_{i \in J_2^k} (L \|x^k - w^k\| - C_1 \|x^k - w^k\|) \cdot \|x^k - x^*\|\right] \\
 &\leq \mathbb{E}(1 - \mathbb{P}_1^k)(L - C_1) \|x^k - w^k\| \cdot \|x^k - x^*\| \\
 &\stackrel{(a)}{\leq} \eta(L - C_1) \frac{G\tilde{G}}{p\mu e^2} \mathbb{E}\|x^k - x^*\|^2
 \end{aligned} \tag{48}$$

1325 Here, (a) follows directly from (21). For the second type of clipping, we define $\mathbb{P}_2^k := \mathbb{E}_k[1_{\{\|\nabla f_i(w^k)\| \leq C_{2k}\}}]$, and we have:
 1326

$$\begin{aligned}
 \mathbb{E}\langle b_2^k, x^* - x^k \rangle &= \mathbb{E}\left\langle \frac{1}{|D|} \sum_{i \in J_2^k} \underbrace{(C_2 \|\nabla f(w^{k-1})\| - \|\nabla f_i(w^k)\|)}_{<0} \cdot \frac{\nabla f_i(w^k)}{\|\nabla f_i(w^k)\|}, x^* - x^k \right\rangle \\
 &\leq \mathbb{E}\left[\frac{1}{|D|} \sum_{i \in J_2^k} (\|\nabla f_i(w^k)\| - C_2 \|\nabla f(w^{k-1})\|) \cdot \|x^k - x^*\|\right] \\
 &\leq \mathbb{E}\left[\frac{1}{|D|} \sum_{i \in J_2^k} (\|\nabla f_i(w^k)\| - C_2 \|\nabla f(w^k)\| + C_2 \|\nabla f(w^k) - \nabla f(w^{k-1})\|) \cdot \|x^k - x^*\|\right] \\
 &\leq \mathbb{E}\left[\frac{1}{|D|} \sum_{i \in J_2^k} \left(\underbrace{(\tau - (C_2 - 1) \|\nabla f(w^k)\|)}_{\leq 0} + C_2 \|\nabla f(w^k) - \nabla f(w^{k-1})\| \right) \cdot \|x^k - x^*\|\right] \\
 &\leq \mathbb{E}\left[\frac{1}{|D|} \sum_{i \in J_2^k} C_2 \|\nabla f(w^k) - \nabla f(w^{k-1})\| \cdot \|x^k - x^*\|\right] \\
 &\leq \mathbb{E}(1 - \mathbb{P}_2^k) L C_2 \|w^k - w^{k-1}\| \cdot \|x^k - x^*\| \\
 &\stackrel{(a)}{\leq} L p C_2 \mathbb{E}\|x^{k-1} - w^{k-1}\| \cdot \|x^k - x^*\| \\
 &\stackrel{(b)}{\leq} \eta L p C_2 \frac{G\tilde{G}}{p\mu e^2} \cdot e^2 \\
 &\stackrel{(c)}{\leq} \eta L C_2 \frac{G\tilde{G}}{\mu e^2} \cdot \mathbb{E}\|x^k - x^*\|^2
 \end{aligned} \tag{49}$$

1350
1351 Here, (a) comes from the iterative update rule of w^k ; (b) follows directly from (22); and (c) is due to
1352 the precision conditions we imposed. In summary, let $A := \frac{2G\tilde{G}}{p\mu e^2}[(pC_2+1)L-C_1]$. We then consider
1353 the worst case, i.e., $A > 0$. In this case, similarly, we have:

$$\begin{aligned} 1354 \mathbb{E}\|x^{k+1}-x^*\|^2 &= \mathbb{E}\|x^k-x^*-\eta\tilde{g}^k\|^2 \\ 1355 &= \mathbb{E}\|x^k-x^*\|^2 + \mathbb{E}[2\eta\langle\tilde{g}^k, x^* - x^k\rangle] + \eta^2\mathbb{E}\|\tilde{g}^k\|^2 \\ 1356 &\leq \mathbb{E}\|x^k-x^*\|^2 + 2\eta\mathbb{E}\langle\nabla f(x^k) + b_1^k + b_2^k, x^* - x^k\rangle + \eta^2\mathbb{E}\|\tilde{g}^k\|^2 \\ 1357 &\leq \mathbb{E}\|x^k-x^*\|^2 + 2\eta\left(f^* - \mathbb{E}f(x^k) - \left(\frac{\mu}{2} - \eta\frac{A}{2}\right)\mathbb{E}\|x^k-x^*\|^2\right) + \eta^2\mathbb{E}\|\tilde{g}^k\|^2 \\ 1358 &\quad \underbrace{\mu-\text{strongly convex}}_{1360} \\ 1359 &= \mathbb{E}\|x^k-x^*\|^2(1-\eta\mu+\eta^2A) + 2\eta(f^* - \mathbb{E}f(x^k)) + \eta^2\mathbb{E}\|\tilde{g}^k\|^2 \\ 1360 &\quad 1361 \\ 1362 &\quad 1363 \end{aligned} \tag{50}$$

In (45), let $D^k := \mathbb{E}\|\nabla f_i(w^k) - \nabla f_i(x^*)\|^2$, $N_1 := 8C_1^2(d\sigma_1^2+1) + \frac{4\eta^2}{pe^2}G^2C_2^2(d\sigma_2^2+1)$, $N_2 := 8C_2^2(d\sigma_2^2+1)$. Substituting these into (50), we obtain:

$$\begin{aligned} 1366 \mathbb{E}\|x^{k+1}-x^*\|^2 &\leq (1-\eta\mu+\eta^2(N_1+A))\mathbb{E}\|x^k-x^*\|^2 + \eta^2N_1\mathbb{E}\|w^k-x^*\|^2 \\ 1367 &\quad + \eta^2N_2D^k - 2\eta(\mathbb{E}f(x^k) - f^*) \\ 1368 &\quad 1369 \end{aligned} \tag{51}$$

Similarly, from the iterative update rule, we have:

$$\begin{aligned} 1371 \mathbb{E}\|w^{k+1}-x^*\|^2 &= p\mathbb{E}\|x^k-x^*\|^2 + (1-p)\mathbb{E}\|w^k-x^*\|^2 \\ 1372 D^{k+1} &= (1-p)D^k + p\mathbb{E}\|\nabla f_i(x^k) - \nabla f_i(x^*)\|^2 \\ 1373 &\leq (1-p)D^k + 2Lp(\mathbb{E}f(x^k) - f^*) \\ 1374 &\quad 1375 \end{aligned} \tag{52}$$

We define the Lyapunov function of the system as follows:

$$\Phi^k = \mathbb{E}\|x^k-x^*\|^2 + \frac{2N_1\eta^2}{p}\mathbb{E}\|w^k-x^*\|^2 + \frac{2N_2\eta^2}{p}D^k \tag{53}$$

Similarly, let $\eta < \min\{\frac{\mu}{3N_1+A}, \frac{1}{2LN_2}\}$, then we have:

$$\begin{aligned} 1382 \Phi^{k+1} &= \mathbb{E}\|x^{k+1}-x^*\|^2 + \frac{2N_1\eta^2}{p}\mathbb{E}\|w^{k+1}-x^*\|^2 + \frac{2N_2\eta^2}{p}D^{k+1} \\ 1383 &\leq (1-\mu\eta+(N_1+A)\eta^2+p\frac{2N_1\eta^2}{p})\mathbb{E}\|x^k-x^*\|^2 + (N_1\eta^2+(1-p)\frac{2N_1\eta^2}{p})\mathbb{E}\|w^k-x^*\|^2 \\ 1384 &\quad + (N_2\eta^2+(1-p)\frac{2N_2\eta^2}{p})D^k + \underbrace{(4LN_2\eta^2-2\eta)(\mathbb{E}f(x^k)-f^*)}_{<0} \\ 1385 &\quad 1386 \\ 1387 &= \underbrace{(1-\mu\eta+(3N_1+A)\eta^2)}_{<1}\mathbb{E}\|x^k-x^*\|^2 + (1-\frac{p}{2})\frac{2N_1\eta^2}{p}\mathbb{E}\|w^k-x^*\|^2 + (1-\frac{p}{2})\frac{2N_2\eta^2}{p}D^k \\ 1388 &\quad 1389 \\ 1390 &\quad 1391 \\ 1391 &\quad 1392 \end{aligned} \tag{54}$$

From this we can obtain the following:

$$\Phi^{k+1} \leq \max\{1-\mu\eta+(3N_1+A)\eta^2, 1-\frac{p}{2}\} \cdot \Phi^k < \Phi^k \tag{55}$$

which implies an exponential decay of the Lyapunov function.

C.5 PROOF OF THEOREM 5

Similar to DP-C4, we first derive the upper bound of $\mathbb{E}\|\tilde{g}^k\|^2$. From (45), we have:

$$\begin{aligned} 1402 \mathbb{E}\|\tilde{g}^k\|^2 &\leq 4C_1^2(d\sigma_1^2+1)\|x^k-w^k\|^2 + 4C_2^2(d\sigma_2^2+1)\|\nabla f(w^{k-1})\|^2 \\ 1403 &\leq 4C^2(d\sigma_1^2+1) + 4G^2C_2^2(d\sigma_2^2+1) := \tilde{G} \end{aligned} \tag{56}$$

1404 Next, we discuss the lower bound of $\mathbb{E}\langle \nabla f(x^k), g^k \rangle$. Let $\Delta_i^k := \nabla f_i(x^k) - \nabla f_i(w^k)$, $\Delta^k := \nabla f(x^k) - \nabla f(w^k)$, $\xi_{1i}^k := \Delta_i^k - \Delta^k$, $\xi_{2i}^k := \nabla f_i(w^k) - \nabla f(w^k)$. Similarly, we can obtain:

$$\begin{aligned}
 & \mathbb{E}\langle \nabla f(x^k), g^k \rangle \\
 &= \mathbb{E}\langle \nabla f(x^k), \mathbb{E}_k[(\Delta^k + \xi_{1i}^k) \cdot \min\{1, \frac{C_{1k}}{\|\Delta^k + \xi_{1i}^k\|}\} + (\nabla f(w^k) + \xi_{2i}^k) \cdot \min\{1, \frac{C_{2k}}{\|\nabla f(w^k) + \xi_{2i}^k\|}\}] \rangle \\
 &= \mathbb{E}\langle \nabla f(x^k), \underbrace{\mathbb{E}_k[(\Delta^k + \xi_{1i}^k) \cdot \min\{1, \frac{C_{1k}}{\|\Delta^k + \xi_{1i}^k\|}\}] - \Delta^k}_{C := \text{Coupled Term}} \rangle \\
 &+ \underbrace{\mathbb{E}\langle \nabla f(x^k), \mathbb{E}_k[(\nabla f(w^k) + \xi_{2i}^k) \cdot \min\{1, \frac{C_{2k}}{\|\nabla f(w^k) + \xi_{2i}^k\|}\}] - \nabla f(w^k) + \nabla f(x^k) \rangle}_{A := \text{Anchor Term}}
 \end{aligned} \tag{57}$$

We denote $\mathbb{P}_1^k := \mathbb{E}_k[1_{\{\|\Delta^k + \xi_{1i}^k\| \leq C_{1k}\}}]$, $\mathbb{P}_2^k := \mathbb{E}_k[1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| \leq C_{2k}\}}]$, and assume that $C_1 > 1$ and $C_2 > 1$. Similarly, for the Anchor Term A , we have:

$$\begin{aligned}
 A &= \mathbb{E}\|\nabla f(x^k)\|^2 + \mathbb{E}\left[\mathbb{E}_k \underbrace{1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} (C_2 \|\nabla f(w^{k-1})\| - \|\nabla f(w^k) + \xi_{2i}^k\|) \langle \nabla f(x^k), \frac{\nabla f(w^k) + \xi_{2i}^k}{\|\nabla f(w^k) + \xi_{2i}^k\|} \rangle}_{<0}\right] \\
 &\geq \mathbb{E}\|\nabla f(x^k)\|^2 + \mathbb{E}\left[\mathbb{E}_k 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \cdot (C_2 \|\nabla f(w^{k-1})\| - \|\nabla f(w^k) + \xi_{2i}^k\|) \cdot \|\nabla f(x^k)\|\right] \\
 &\geq \mathbb{E}\|\nabla f(x^k)\|^2 + \mathbb{E}\left[\mathbb{E}_k 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \cdot (C_2 \|\nabla f(w^{k-1})\| - \|\nabla f(w^k)\| - \|\xi_{2i}^k\|) \cdot \|\nabla f(x^k)\|\right] \\
 &\geq \mathbb{E}\|\nabla f(x^k)\|^2 + \mathbb{E}\left[\mathbb{E}_k 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \cdot (C_2 \|\nabla f(w^k)\| \right. \\
 &\quad \left. - C_2 \|\nabla f(w^k) - \nabla f(w^{k-1})\| - \|\nabla f(w^k)\| - \|\xi_{2i}^k\|) \cdot \|\nabla f(x^k)\|\right] \\
 &\stackrel{(a)}{\geq} \mathbb{E}\|\nabla f(x^k)\|^2 + \mathbb{E}\left[\mathbb{E}_k 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} \cdot ((C_2 - 1) \|\nabla f(w^k)\| - \|\xi_{2i}^k\|) \cdot \|\nabla f(x^k)\|\right] \\
 &\quad \underbrace{\text{same as DP-C4}}_{\text{same as DP-C4}} \\
 &- \mathbb{E}\left[\mathbb{E}_k 1_{\{\|\nabla f(w^k) + \xi_{2i}^k\| > C_{2k}\}} L \|w^k - w^{k-1}\| \cdot \|\nabla f(x^k)\|\right] \\
 &\geq \mathbb{E}\|\nabla f(x^k)\|^2 + \mathbb{E}\left[(1 - \mathbb{P}_2^k)(C_2 - 1) \|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\|\right] - \mathbb{E}\left[\|\nabla f(x^k)\| \cdot \tau \sqrt{1 - \mathbb{P}_2^k}\right] \\
 &- Lp \mathbb{E}\left[\|x^{k-1} - w^{k-1}\| \cdot \|\nabla f(x^k)\|\right] \\
 &\stackrel{(b)}{\geq} \mathbb{E}\|\nabla f(x^k)\|^2 + \mathbb{E}\left[(1 - \mathbb{P}_2^k)(C_2 - 1) \|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\|\right] - \mathbb{E}\left[\|\nabla f(x^k)\| \cdot \tau \sqrt{1 - \mathbb{P}_2^k}\right] - \eta \cdot LG\tilde{G}
 \end{aligned} \tag{58}$$

Here, (a) follows the same treatment as in DP-C4, and (b) can be directly obtained from (22). Similarly, for the Coupled Term C , we have:

$$\begin{aligned}
 C &= \mathbb{E}\langle \nabla f(x^k), \mathbb{E}_k \left[\frac{\Delta^k + \xi_{1i}^k}{\|\Delta^k + \xi_{1i}^k\|} \cdot \underbrace{(C_{1k} - \|\Delta^k + \xi_{1i}^k\|) \cdot 1_{\{\|\Delta^k + \xi_{1i}^k\| > C_{1k}\}}}_{<0} \right] \rangle \\
 &\geq \mathbb{E}\left[\mathbb{E}_k [(C_{1k} - \|\Delta^k + \xi_{1i}^k\|) \cdot 1_{\{\|\Delta^k + \xi_{1i}^k\| > C_{1k}\}}] \cdot \|\nabla f(x^k)\|\right] \\
 &\geq \mathbb{E}\left[\mathbb{E}_k [(C_1 \|x^k - w^k\| - \|\Delta^k\| - \|\xi_{1i}^k\|) \cdot 1_{\{\|\Delta^k + \xi_{1i}^k\| > C_{1k}\}}] \cdot \|\nabla f(x^k)\|\right] \\
 &\geq \mathbb{E}\left[\left(\frac{C_1}{L} - 1\right) \|\Delta^k\| \cdot \mathbb{E}_k 1_{\{\|\Delta^k + \xi_{1i}^k\| > C_{1k}\}} \cdot \|\nabla f(x^k)\|\right] - \mathbb{E}\left[\|\nabla f(x^k)\| \cdot \mathbb{E}_k [\|\xi_{1i}^k\| \cdot 1_{\{\|\Delta^k + \xi_{1i}^k\| > C_{1k}\}}]\right] \\
 &\geq \mathbb{E}(1 - \mathbb{P}_1^k) \left(\frac{C_1}{L} - 1\right) \|\Delta^k\| \cdot \|\nabla f(x^k)\| - \mathbb{E}\|\nabla f(x^k)\| \cdot \sqrt{(1 - \mathbb{P}_1^k)} \cdot \sqrt{\mathbb{E}_k [\|\xi_{1i}^k\|^2]} \\
 &\geq \mathbb{E}(1 - \mathbb{P}_1^k) \left(\frac{C_1}{L} - 1\right) \|\nabla f(x^k) - \nabla f(w^k)\| \cdot \|\nabla f(x^k)\| - 2\tau \mathbb{E}\|\nabla f(x^k)\| \cdot \sqrt{(1 - \mathbb{P}_1^k)}
 \end{aligned} \tag{59}$$

Combining the results of the two terms, we obtain:

$$\begin{aligned}
& \mathbb{E}[\langle \nabla f(x^k), g^k \rangle] \geq \mathbb{E}\|\nabla f(x^k)\|^2 + \mathbb{E}(1 - \mathbb{P}_1^k)(\frac{C_1}{\mu} - 1)\|\nabla f(x^k)\| \cdot \|\nabla f(x^k) - \nabla f(w^k)\| \\
& \quad + \mathbb{E}(1 - \mathbb{P}_2^k)(C_2 - 1)\|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\| - 2\mathbb{E}\|\nabla f(x^k)\| \cdot \sqrt{(1 - \mathbb{P}_1^k)} \cdot \tau \\
& \quad - \mathbb{E}\|\nabla f(x^k)\| \cdot \sqrt{(1 - \mathbb{P}_2^k)} \cdot \tau - \eta \cdot LG\tilde{G}
\end{aligned} \tag{60}$$

Similar to the treatment in (42) and (43), denoting $\mathbb{P}^k := \Pr(\|\nabla f(x^k)\| < 3\tau \mid x^{k-1})$, we have:

$$\begin{aligned}
& \mathbb{E} \langle \nabla f(x^k), g^k \rangle + LG\tilde{G}\eta \geq \mathbb{E} \underbrace{\left(1 - (1 - \mathbb{P}^k) \frac{2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}}{3}\right)}_{0 \leq \lambda_1^k \leq 1} \|\nabla f(x^k)\|^2 \\
& + \mathbb{E} \underbrace{(1 - \mathbb{P}_2^k)(C_2 - 1)}_{\lambda_2^k \geq 0} \|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\| \\
& + \mathbb{E} \underbrace{(1 - \mathbb{P}_1^k) \left(\frac{C_1}{\mu} - 1 \right)}_{\lambda_3^k \geq 0} \|\nabla f(x^k)\| \cdot \|\nabla f(x^k) - \nabla f(w^k)\| \\
& - \mathbb{E} \underbrace{\frac{\mathbb{P}^k \cdot (2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k})}{3}}_{0 \leq \lambda_4^k \leq 1} \|\nabla f(x^k)\| \cdot 3\tau
\end{aligned} \tag{61}$$

For notational simplicity, we further define and restate:

$$\begin{aligned} \lambda_1^k &:= 1 - \frac{1}{3}(1 - \mathbb{P}^k)(2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}), \quad \lambda_2^k := (1 - \mathbb{P}_2^k)(C_2 - 1), \quad \lambda_3^k := (1 - \mathbb{P}_1^k)\left(\frac{C_1}{L} - 1\right) \\ \lambda_4^k &:= \frac{1}{3}\mathbb{P}^k(2\sqrt{1 - \mathbb{P}_1^k} + \sqrt{1 - \mathbb{P}_2^k}), \quad \mathbb{P}^k := \Pr\left(\|\nabla f(x^k)\| \leq 3\tau \mid x^{k-1}\right), \\ \mathbb{P}_1^k &:= \mathbb{E}_k\left[1_{\{\|\nabla f_i(x^k) - \nabla f_i(w^k)\| \leq C_{1k}\}}\right], \quad \mathbb{P}_2^k := \mathbb{E}_k\left[1_{\{\|\nabla f_i(w^k)\| \leq C_{2k}\}}\right]. \end{aligned}$$

Similarly, substituting into (29) and summing over the iterations, and setting $\eta = \sqrt{\frac{2(f(x^0) - f(x^*))}{TL\tilde{G}(1+4G)}}$, we obtain:

$$\begin{aligned}
& \frac{1}{T} \sum_{k=1}^T \mathbb{E} \left[\lambda_1^k \|\nabla f(x^k)\|^2 + \lambda_2^k \|\nabla f(x^k)\| \cdot \|\nabla f(w^k)\| + \lambda_3^k \|\nabla f(x^k)\| \cdot \|\nabla f(x^k) - \nabla f(w^k)\| \right] \\
& \leq \frac{f(x^0) - f(x^*)}{\eta T} + \frac{\eta L}{2T} \sum_{k=1}^T \tilde{G} + \frac{2\eta}{T} \sum_{k=1}^T LG\tilde{G} + \frac{1}{T} \sum_{k=1}^T \mathbb{E} \left[\lambda_4^k \cdot 3\tau \|\nabla f(x^k)\| \right] \\
& \leq 2\sqrt{\frac{(f(x^0) - f(x^*))L\tilde{G}(1 + 4G)}{2T}} + \frac{1}{T} \sum_{k=1}^T \mathbb{E} \left[\lambda_4^k \cdot 3\tau \|\nabla f(x^k)\| \right]
\end{aligned} \tag{62}$$

D PROOFS OF PRIVACY ANALYSIS

In this section, we present the detailed proofs of the privacy results, i.e., Thm.3 . It is worth noting that we only discuss the privacy guarantees of DP-C4. For DP-C4⁺, the privacy analysis is almost identical, since they share similar iterative formats. The only difference lies in the clipping coefficients C_{1k} and C_{2k} , which leads to nearly the same conclusions. Therefore, we only present the privacy analysis for DP-C4.

1512 D.1 PROOF OF THEOREM 3
1513

1514 We utilize Rényi Differential Privacy (RDP) as a bridge to analyze the privacy guarantees of DP-C4.
1515 Our insight is that each update of DP-C4 consists of two components, namely the *Coupled Term* and
1516 the *Anchor Term*, and we allocate different privacy budget weights to these components to discuss
1517 the corresponding noise levels. We first introduce several definitions and lemmas:

1518 **Definition 3** (Rényi Differential Privacy (RDP) (Mironov, 2017)). *A randomized mechanism $\mathcal{M} : \mathcal{D} \rightarrow \mathcal{R}$ satisfies (α, ε) -RDP ($\alpha \in (1, \infty)$, $\varepsilon > 0$) if for any datasets $D, D' \in \mathcal{D}$ with $d_H(D, D') = 1$, it holds that*

$$1521 \frac{1}{\alpha - 1} \log \mathbb{E}_{o \sim \mathcal{M}(D')} \left[\left(\frac{\mathcal{M}(D)(o)}{\mathcal{M}(D')(o)} \right)^\alpha \right] \leq \varepsilon,$$

1523 where $\mathcal{M}(D)(o)$ denotes the density of $\mathcal{M}(D)$ at o .

1524 **Lemma 2** (Post-processing Property of RDP (Mironov, 2017)). *Let $\mathcal{M} : \mathcal{D} \rightarrow \mathcal{R}$ be (α, ε) -RDP
1525 and $g : \mathcal{R} \rightarrow \mathcal{R}'$ be any function. Then the composed mechanism $g \circ \mathcal{M} : \mathcal{D} \rightarrow \mathcal{R}'$ is also
1526 (α, ε) -RDP.*

1527 **Lemma 3** (Composition of RDP Mechanisms (Mironov, 2017)). *Let $\mathcal{M}_r : \mathcal{R}_1 \times \dots \times \mathcal{R}_{r-1} \times \mathcal{D} \rightarrow \mathcal{R}_r$ be (α, ε_r) -RDP for $r \in [R]$. Then the mechanism*

$$1528 \mathcal{M}(D) := (\mathcal{M}_1(D), \mathcal{M}_2(\mathcal{M}_1(D), D), \dots, \mathcal{M}_R(\mathcal{M}_1(D), \dots, D))$$

1531 is $(\alpha, \sum_{r=1}^R \varepsilon_r)$ -RDP.

1532 **Lemma 4** (Conversion from RDP to DP (Mironov, 2017)). *If a mechanism \mathcal{M} is (α, ε) -RDP, then
1533 \mathcal{M} also satisfies $(\varepsilon + \frac{\log(1/\delta)}{\alpha-1}, \delta)$ -DP for any $\delta \in (0, 1)$.*

1534 **Lemma 5** (Gaussian Mechanism (Mironov, 2017)). *Given a function h , the Gaussian Mechanism*

$$1535 \mathcal{M}(D) := h(D) + \mathcal{N}(0, \sigma^2 I)$$

1536 satisfies $(\alpha, \alpha \Delta^2(h)/(2\sigma^2))$ -RDP for every $\alpha \in (1, \infty)$.

1537 With these preparations, we first analyze the sensitivity of each component in DP-C4⁽⁺⁾. We have
1538 the following lemma:

1539 **Lemma 6** (ℓ_2 -sensitivity). *In Algorithm 3, the sensitivities of the Coupled Term g_1^k and the Anchor
1540 Term g_2^k are given by*

$$1541 \Delta_{1k} = \frac{2C_{1k}}{|S|}, \quad \Delta_{2k} = \frac{2C_{2k}}{|D|}.$$

1542 *Proof.* For the Coupled Term, we have:

$$1543 g_1^k = \frac{1}{|S|} \sum_{i \in S} \text{clip}(\nabla f_i(x^k) - \nabla f_i(w^k), C_{1k}).$$

1544 The ℓ_2 -sensitivity of g_1^k is bounded by

$$\begin{aligned} 1545 \max_{S, S'} \|g_1^k - g_1'^k\| &= \max_{S, S'} \left\| \frac{1}{|S|} \sum_{i \in S} \text{clip}(\nabla f_i(x^k) - \nabla f_i(w^k)) - \frac{1}{|S'|} \sum_{i \in S'} \text{clip}(\nabla f_i(x^k) - \nabla f_i(w^k)) \right\| \\ 1546 &= \max_{S, S'} \frac{1}{|S|} \left\| \text{clip}(\nabla f_j(x^k) - \nabla f_j(w^k)) - \text{clip}(\nabla f_j'(x^k) - \nabla f_j'(w^k)) \right\| \\ 1547 &= \max_{S, S'} \frac{1}{|S|} \left\| \min \left\{ \frac{C_{1k}}{\|\nabla f_j(x^k) - \nabla f_j(w^k)\|}, 1 \right\} (\nabla f_j(x^k) - \nabla f_j(w^k)) \right. \\ 1548 &\quad \left. - \min \left\{ \frac{C_{1k}}{\|\nabla f_j'(x^k) - \nabla f_j'(w^k)\|}, 1 \right\} (\nabla f_j'(x^k) - \nabla f_j'(w^k)) \right\| \\ 1549 &\leq \max_{S, S'} \frac{1}{|S|} \left(\left\| \min \left\{ \frac{C_{1k}}{\|\nabla f_j(x^k) - \nabla f_j(w^k)\|}, 1 \right\} (\nabla f_j(x^k) - \nabla f_j(w^k)) \right\| \right. \\ 1550 &\quad \left. + \left\| \min \left\{ \frac{C_{1k}}{\|\nabla f_j'(x^k) - \nabla f_j'(w^k)\|}, 1 \right\} (\nabla f_j'(x^k) - \nabla f_j'(w^k)) \right\| \right) \\ 1551 &\leq \frac{2C_{1k}}{|S|} := \Delta_{1k}. \end{aligned}$$

1566 For the Anchor Term, we have:

$$1568 \quad g_2^k = \frac{1}{|D|} \sum_{i \in D} \text{clip}(\nabla f_i(w^k), C_{2k}).$$

1570 The ℓ_2 -sensitivity of g_2^k can be bounded as

$$\begin{aligned} 1572 \quad \max_{D, D'} \|g_2^k - g_2'^k\| &= \max_{D, D'} \left\| \frac{1}{|D|} \sum_{i \in D} \nabla f_i(w^k) - \frac{1}{|D'|} \sum_{i \in D'} \nabla f_i(w^k) \right\| \\ 1573 \quad &= \max_{D, D'} \frac{1}{|D|} \left\| \nabla f_j(w^k) - \nabla f_j'(w^k) \right\| \\ 1574 \quad &= \max_{D, D'} \frac{1}{|D|} \left\| \min \left\{ \frac{C_{2k}}{\|\nabla f_j(w^k)\|}, 1 \right\} \nabla f_j(w^k) - \min \left\{ \frac{C_{2k}}{\|\nabla f_j'(w^k)\|}, 1 \right\} \nabla f_j'(w^k) \right\| \\ 1575 \quad &\leq \max_{D, D'} \frac{1}{|D|} \left(\left\| \min \left\{ \frac{C_{2k}}{\|\nabla f_j(w^k)\|}, 1 \right\} \nabla f_j(w^k) \right\| + \left\| \min \left\{ \frac{C_{2k}}{\|\nabla f_j'(w^k)\|}, 1 \right\} \nabla f_j'(w^k) \right\| \right) \\ 1576 \quad &\leq \frac{2C_{2k}}{|D|} := \Delta_{2k}. \\ 1577 \quad &\square \end{aligned}$$

1585 With all the necessary preparations in place, we now proceed to the next step. We focus on analyzing
1586 Routines 1 and 2; the analysis for the remaining paths is similar, yielding the same conclusions. First,
1587 we derive an RDP bound for each term g_1^k and g_2^k .

1588 For g_1^k , from Lemma.5, when we add noise $\mathbf{n}_1^k \sim \mathcal{N}(0, \sigma_1^2 C_{1k}^2)$, the term g_1^k satisfies $(\alpha, 2\alpha/(\sigma_1^2 \cdot |S|^2))$ -RDP, where the sensitivity of g_1^k is given in Lemma.6.

1589 Similarly, for g_2^k , from Lemma.5, when we add noise $\mathbf{n}_2^k \sim \mathcal{N}(0, \sigma_2^2 C_{2k}^2)$, the term g_2^k satisfies
1590 $(\alpha, 2\alpha/(\sigma_2^2 \cdot |D|^2))$ -RDP, where the sensitivity of g_2^k is given in Lemma.6.

1591 From Lemma.3, Alg.3 satisfies

$$1595 \quad (\alpha, \frac{2\alpha T}{\sigma_1^2 \cdot |S|^2} + \frac{2\alpha T p}{\sigma_2^2 \cdot |D|^2})\text{-RDP}.$$

1596 Then, by Lemma.4, it follows that Algorithm 3 satisfies

$$1599 \quad \left(\frac{2\alpha T}{\sigma_1^2 |S|^2} + \frac{2\alpha T p}{\sigma_2^2 |D|^2} + \frac{\log(1/\delta)}{\alpha - 1}, \delta \right)\text{-DP}.$$

1600 For any target DP parameters $(\epsilon_{DP}, \delta_{DP})$, we discuss the variance of these noises through the allo-
1601 cation of the privacy budget. We set:

$$1604 \quad \begin{cases} \frac{1}{2}\epsilon_{DP} = \frac{\log(1/\delta)}{\frac{\alpha-1}{2\alpha T}} \\ \frac{1}{2}\epsilon_{DP} = \frac{2\alpha T}{\sigma_1^2 |S|^2} + \frac{2\alpha T p}{\sigma_2^2 |D|^2} \\ \delta_{DP} = \delta \end{cases} \quad (63)$$

1602 From the first line of the above equation, we obtain $\alpha = 1 + 2 \log(1/\delta_{DP})/\epsilon_{DP}$. In the following,
1603 under the constraint $\frac{1}{2}\epsilon_{DP} = \frac{2\alpha T}{\sigma_1^2 |S|^2} + \frac{2\alpha T p}{\sigma_2^2 |D|^2}$, we aim to minimize the total noise magnitude added
1604 to the gradient estimator per iteration, i.e., $\sigma_1^2 + \sigma_2^2$.

1605 Let $\frac{2\alpha T}{\sigma_1^2 |S|^2} = \frac{1}{2}\beta\epsilon_{DP}$, $\frac{2\alpha T p}{\sigma_2^2 |D|^2} = \frac{1}{2}(1-\beta)\epsilon_{DP}$, where $\beta \in (0, 1)$. Solving for σ_1^2 and σ_2^2 yields:

$$1606 \quad \sigma_1^2 = \frac{4\alpha T}{\beta |S|^2 \epsilon_{DP}}, \quad \sigma_2^2 = \frac{4\alpha T p}{(1-\beta) |D|^2 \epsilon_{DP}} \quad (64)$$

1607 Continuing the above objective, we aim to minimize the total noise per step by adjusting the budget
1608 allocation coefficient β , i.e., $\min_{\beta} \sigma_1^2 + \sigma_2^2$, and let $\theta = \frac{|D|^2}{|S|^2} \geq 1$. That is,

$$1609 \quad \min_{\beta \in (0, 1)} \frac{1}{\beta} + \frac{p}{(1-\beta)\theta} := y \quad (65)$$

1620 Taking the derivative with respect to β and setting it to zero, we obtain:
 1621

$$1622 \frac{dy}{d\beta} = -\frac{1}{\beta^2} + \frac{p}{\theta(1-\beta)^2} = 0 \quad (66)$$

1624 Solving this, we obtain the value of β that minimizes $\min_{\beta} \sigma_1^2 + \sigma_2^2$ as:
 1625

$$1626 \beta^* = \frac{1}{1 + \sqrt{\frac{p}{\theta}}} \quad (67)$$

1628 Substituting back into (64), we obtain:
 1629

$$\begin{aligned} 1630 \sigma_1^2 &= \frac{4T(2\log(1/\delta_{DP}) + \epsilon_{DP})}{|S|^2 \epsilon_{DP}^2} \cdot (1 + \sqrt{\frac{p}{\theta}}), \\ 1631 \sigma_2^2 &= \frac{4T(2\log(1/\delta_{DP}) + \epsilon_{DP})}{|D|^2 \epsilon_{DP}^2} \cdot \sqrt{p} \cdot (\sqrt{\theta} + \sqrt{p}) \\ 1632 &= \frac{4T(2\log(1/\delta_{DP}) + \epsilon_{DP})}{|S|^2 \epsilon_{DP}^2} \cdot \left(\frac{p}{\theta} + \sqrt{\frac{p}{\theta}}\right) \end{aligned} \quad (68)$$

1637 Let $\sigma^2 = \frac{4T(2\log(1/\delta_{DP}) + \epsilon_{DP})}{|S|^2 \epsilon_{DP}^2}$. It is straightforward to see that $\sigma^2 = \sigma_{\text{DP-SGD}}^2$ coincides exactly
 1638 with the noise magnitude used in DP-SGD. In summary, we have:
 1639

$$1640 (\sigma_1^2, \sigma_2^2)_{\text{Routine 1\&2}} = \left((1 + \sqrt{\frac{p}{\theta}}) \sigma^2, \left(\frac{p}{\theta} + \sqrt{\frac{p}{\theta}}\right) \sigma^2 \right) \quad (69)$$

1642 For $(\sigma_1^2 + \sigma_2^2)_{\text{Routine 1\&2}}$, since $\frac{p}{\theta}$ is very small, we have:
 1643

$$\begin{aligned} 1644 (\sigma_1^2 + \sigma_2^2)_{\text{Routine 1\&2}} &= \left(1 + \sqrt{\frac{p}{\theta}} + \frac{p}{\theta} + \sqrt{\frac{p}{\theta}} \right) \sigma^2 \\ 1645 &= (1 + \sqrt{\frac{p}{\theta}})^2 \cdot \sigma^2 \approx \sigma^2 \end{aligned} \quad (70)$$

1649 For Routines 3 and 4, since $g_1^k = 0$ when $w^{k+1} = x^{k+1}$, under T iterations, we only compute g_1^k
 1650 for $T(1-p)$ rounds. Similarly, we can obtain:
 1651

$$1652 (\sigma_1^2, \sigma_2^2)_{\text{Routine 3\&4}} = \left((1-p + \sqrt{\frac{p(1-p)}{\theta}}) \sigma^2, \left(\frac{p}{\theta} + \sqrt{\frac{p(1-p)}{\theta}}\right) \sigma^2 \right) \quad (71)$$

1654 For $(\sigma_1^2 + \sigma_2^2)_{\text{Routine 3\&4}}$, let $p = \frac{2|S|}{|D|}$, we have:
 1655

$$\begin{aligned} 1656 (\sigma_1^2 + \sigma_2^2)_{\text{Routine 3\&4}} &= (1-p + \sqrt{\frac{p(1-p)}{\theta}} + \frac{p}{\theta} + \sqrt{\frac{p(1-p)}{\theta}}) \sigma^2 \\ 1657 &= (\sqrt{1-p} + \sqrt{\frac{p}{\theta}})^2 \cdot \sigma^2 \\ 1658 &= (1 - \frac{p}{2} - \frac{p^2}{8} - O(p^3) + \frac{p^{\frac{3}{2}}}{2}) \cdot \sigma^2 \\ 1659 &= (1 - (\frac{p}{2} + \frac{p^2}{8}) - O(p^3) + \frac{p^{\frac{3}{2}}}{2}) \cdot \sigma^2 \\ 1660 &\leq (1 - O(p^3)) \cdot \sigma^2 < \sigma^2 \end{aligned} \quad (72)$$

1666 For comparison, in the case of DP-SVRG, The noise added to the gradient estimator consists of
 1667 three components. Similarly, we can derive that:
 1668

$$\begin{aligned} 1669 (\sigma_1^2 + \sigma_2^2 + \sigma_3^2)_{\text{Routine 1\&2}}^{DP-SVRG} &= (1 + \sqrt{\frac{2p}{\theta}})^2 \cdot \sigma^2 > \sigma^2 \\ 1670 (\sigma_1^2 + \sigma_2^2 + \sigma_3^2)_{\text{Routine 3\&4}}^{DP-SVRG} &= (\sqrt{2(1-p)} + \sqrt{\frac{p}{\theta}})^2 \cdot \sigma^2 > \sigma^2 \end{aligned} \quad (73)$$

1673 From this, the multipliers for each kind of noise are summarized in the following table:

1674
1675
1676 Table 3: Routine 1&2
1677
1678
1679
1680
1681

Methods	σ_{DP-SGD}^2	$\sigma_{DP-SVRG}^2$	$\sigma_{DP-C4(+)}^2$
Noise Multiplier	σ^2	$\sigma^2 \cdot (1 + \sqrt{\frac{2p}{\theta}})^2$	$\sigma^2 \cdot (1 + \sqrt{\frac{p}{\theta}})^2$
Comparison	$\sigma_{DP-SGD}^2 = \sigma^2$	$\sigma_{DP-SVRG}^2 > \sigma^2$	$\sigma_{DP-C4(+)}^2 \approx \sigma^2$

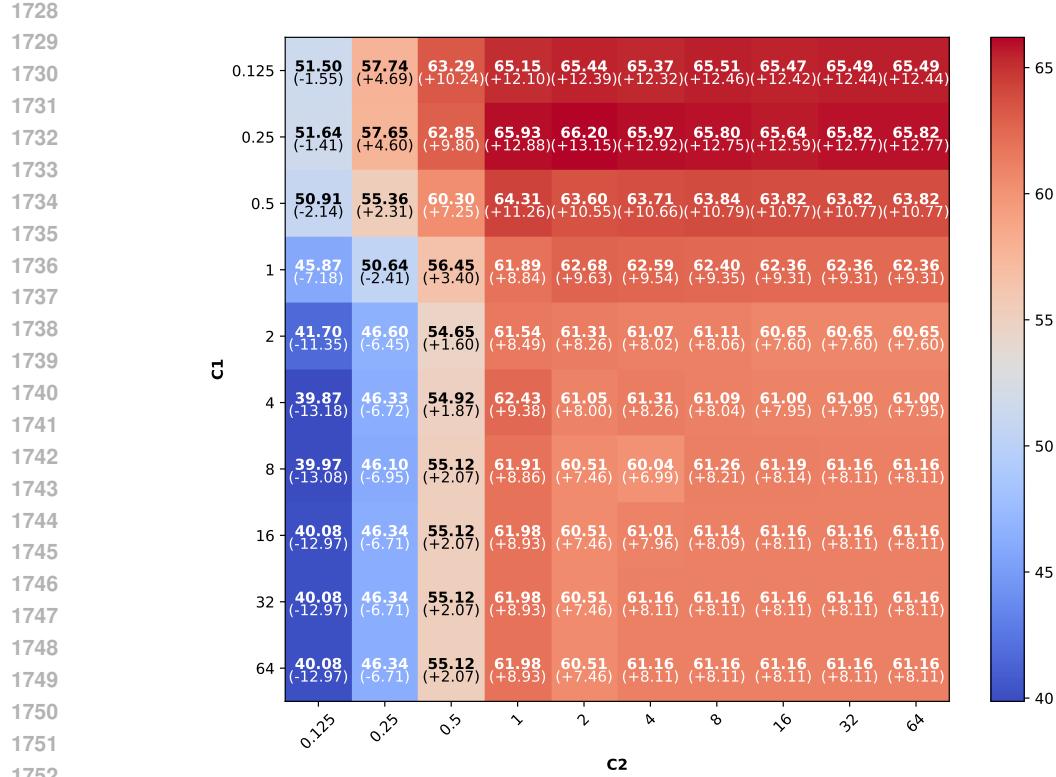
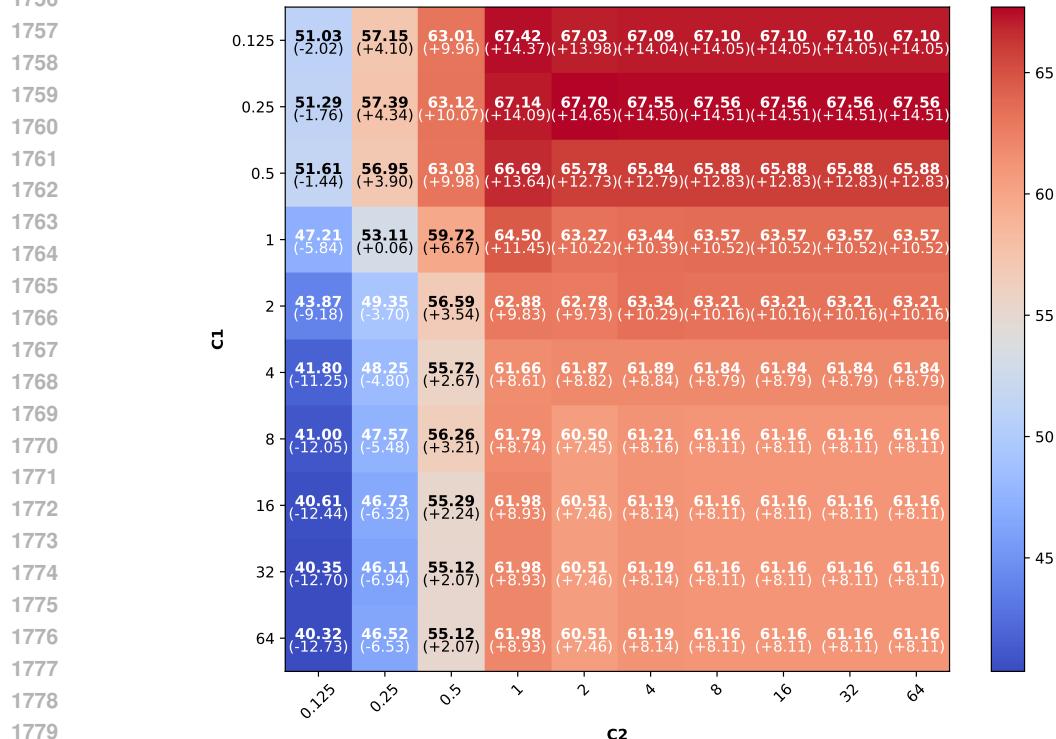
1682
1683 Table 4: Routine 3&4
1684
1685
1686
1687
1688
1689

Methods	σ_{DP-SGD}^2	$\sigma_{DP-SVRG}^2$	$\sigma_{DP-C4(+)}^2$
Noise Multiplier	σ^2	$\sigma^2 \cdot (\sqrt{2(1-p)} + \sqrt{\frac{p}{\theta}})^2$	$\sigma^2 \cdot (\sqrt{1-p} + \sqrt{\frac{p}{\theta}})^2$
Comparison	$\sigma_{DP-SGD}^2 = \sigma^2$	$\sigma_{DP-SVRG}^2 > \sigma^2$	$\sigma_{DP-C4(+)}^2 < \sigma^2$

1690 E ADDITIONAL EXPERIMENTS
16911692 In this section, we provide additional information and results on our numerical experiments that are
1693 not given in the main paper due to the space limitation.
16941695 **Datasets Information** We conduct experiments on Mushroom, MNIST, CIFAR-10, CIFAR-100,
1696 IMDb, and GLUE-SST-2. The information of all datasets used is summarized in Table 5.
16971698 Table 5: The summary of the datasets used in the experiments.
1699

Dataset	Samples	Type	Classes	Task
Mushroom	8,124	Tabular	2	SVM
MNIST	70,000	Image (28×28, Gray)	10	CV
CIFAR-10	60,000	Image (32×32, RGB)	10	CV
CIFAR-100	60,000	Image (32×32, RGB)	100	CV
IMDb	50,000	Text (Reviews)	2	NLP
GLUE-SST-2	67,349	Text (Sentences)	2	NLP

1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710 **Results on Different C_1 and C_2** First, we provide an ablation study on the selection of clipping
1711 thresholds C_1 and C_2 . We conduct experiments on the CIFAR-10 dataset with the learning rate set
1712 to $\eta = 0.025$ and the privacy parameter $(\epsilon, \delta) = (5, 10^{-5})$. Following the main experiment, we set
1713 the mini-batch size to $|S| = 256$, the large-batch size to $|D'| = 4096$ and $p = \frac{2|S|}{|D'|} = 0.125$. We
1714 fix $C = 1$ and vary C_1 and C_2 over the range $\{0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64\}$. We report the
1715 results for each configuration and compare them against DP-SGD. The experimental results of DP-
1716 C4 and DP-C4⁺ are presented in Figure.2 and Figure.3, respectively. In each cell of the heatmap,
1717 the color encodes the corresponding accuracy, with warmer shades indicating higher accuracy and
1718 cooler shades indicating lower accuracy. Each cell further reports the accuracy associated with the
1719 corresponding clipping thresholds, while the value in parentheses denotes the accuracy difference
1720 relative to DP-SGD.1721 On the one hand, for both DP-C4 and DP-C4⁺, when examining a single row or column of the
1722 grid, we observe that increasing C_1 initially improves accuracy, which subsequently decreases; a
1723 similar trend is observed when increasing C_2 . More specifically, as C_1 and C_2 gradually increase,
1724 the injected noise becomes larger, leading to a gradual degradation in accuracy until it converges to
1725 a constant value. In particular, when $C_1 = C_2 = 64$, the accuracies of both DP-C4 and DP-C4⁺
1726 converge to 61.16, since in this case a constant clipping threshold is applied at each iteration (i.e.,
1727 in DP-C4: $C_{1k} = \min\{C, C_1\|\Delta_S^k\| = C$, $C_{2k} = \min\{C, C_2\|\nabla f(w^k)\| = C$; in DP-C4⁺:
1728 $C_{1k} = \min\{C, C_1\|x^k - w^k\|\} = C$, $C_{2k} = \min\{C, C_2\|\nabla f(w^{k-1})\|\} = C$).

Figure 2: Accuracy of DP-C4 with different C_1 and C_2 Figure 3: Accuracy of DP-C4+ with different C_1 and C_2

On the other hand, when C_1 is small, the accuracy does not decrease significantly. This is because as $C_1 \rightarrow 0$, the coupled term of DP-C4⁽⁺⁾ vanishes, which essentially reduces the method to a large-batch variant of delayed DP-SGD. The iterative structure is thus not severely disrupted, while the injected noise is substantially reduced. In contrast, when C_2 is small, accuracy drops sharply. This is due to the excessive clipping bias, which prevents effective updates (i.e., $\frac{1}{|S|} \sum_{i \in S} \text{clip}(\nabla f_i(x^k) - \nabla f_i(w^k)) + \frac{1}{|D|} \sum_{i \in D} \text{clip}(\nabla f_i(w^k)) \approx \frac{1}{|S|} \sum_{i \in S} \text{clip}(\nabla f_i(x^k) - \nabla f_i(w^k))$). In summary, the vanishing of the coupled term can be tolerated since it still preserves an effective optimization structure, whereas the vanishing of the anchor term is detrimental, as it leads to severe performance degradation.

Results on Different C We also conduct an ablation study on the overall clipping threshold C . The experiments are performed on CIFAR-10 with $\eta = 0.025$, $|S| = 256$, $|D'| = 4096$, the privacy parameter $(\epsilon, \delta) = (5, 10^{-5})$, and $p = 0.125$. We fix $C_1 = C_2 = 1$ and vary C over the set $\{0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64\}$. The results comparing DP-C4⁽⁺⁾ with DP-SGD are summarized in Table 6.

Table 6: Test accuracy of different methods on different clipping threshold C .

Method	Values of Clipping Threshold C									
	0.125	0.25	0.5	1	2	4	8	16	32	64
DP-SGD	54.91	55.36	53.42	53.05	41.01	27.40	18.36	16.41	14.93	10.74
DP-C4	55.39	59.91	62.78	61.89	59.84	59.80	59.65	59.65	59.65	59.65
DP-C4 ⁽⁺⁾	55.84	59.22	61.52	64.50	61.30	52.81	42.14	34.89	28.25	24.41

It can be observed that, on the one hand, as C decreases, the accuracy of both DP-SGD and DP-C4⁽⁺⁾ first increases and then decreases. This behavior is attributed to the reduction of the injected noise and the simultaneous growth of the clipping bias. When C becomes sufficiently small, every term is clipped on a per-sample basis, and thus the iterations of all three methods resemble a normalized update scheme. On the other hand, as C increases, the accuracy of DP-SGD drops rapidly, while that of DP-C4⁽⁺⁾ decreases more slowly, and DP-C4 eventually converges to a fixed accuracy level of 59.65%. This robustness stems from the fact that the effective clipping thresholds of DP-C4 are determined by $C_{1k} = \min\{C, C_1\|\nabla f_S(x^k) - \nabla f_S(w^k)\|\} \leq 2C_1G$, $C_{2k} = \min\{C, C_2\|\nabla f(w^k)\|\} \leq C_2G$, which are governed by the gradient difference and the full gradient, and therefore do not grow unbounded. In contrast, for DP-C4⁽⁺⁾, the clipping coefficient of the coupled term is given by $C_{1k} = \min\{C, C_1\|x^k - w^k\|\}$, as the iterations proceed, $\|x^k - w^k\|$ may occasionally become relatively large with non-negligible probability, which in turn introduces a larger amount of noise and leads to performance degradation.

Results on Different Routine We further conduct experiments on CIFAR-10 using different routines. We fix $C = C_1 = C_2 = 1$, while keeping the remaining parameters unchanged. The results are reported in Table 7.

Table 7: Test accuracy of DP-C4⁽⁺⁾ on different routines.

Method	Different Routines			
	1	2	3	4
DP-C4	61.89	62.16	61.23	62.10
DP-C4 ⁽⁺⁾	64.50	64.39	63.97	64.28

We observe that the results of the four routines are similar. This is because the different routines only modify the update strategy of w^k and do not alter the intrinsic properties of the DP-C4⁽⁺⁾ iterative scheme, so that their behavior is largely similar in expectation.

Results on Different Large Batchsizes We conduct experiments on CIFAR-10 using DP-C4⁽⁺⁾ under different large-batch sizes. The learning rate is set to $\eta = 0.025$, with $C = C_1 = C_2 = 1$,

1836 $|S| = 256$, and $p = 0.125$. We vary the large-batch size as $|D'| \in \{512 = 2 \cdot |S|, 2^2 \cdot |S|, 2^3 \cdot |S|, 2^4 \cdot |S|, 2^5 \cdot |S| = 8192\}$, and record the corresponding accuracies of DP-C4⁽⁺⁾. The detailed results are
 1837 presented in Table 8.
 1838
 1839

1840 Table 8: Test accuracy of DP-C4⁽⁺⁾ on different large-batch sizes.
 1841

Method	Different Large-batch Sizes				
	512	1024	2048	4096	8192
DP-C4	44.18	52.60	58.68	61.89	59.93
DP-C4 ⁺	41.12	52.99	60.98	64.50	58.91

1842 We observe that as $|D'|$ increases, the accuracy of DP-C4⁽⁺⁾ first rises and then decreases. This
 1843 behavior occurs because a relatively small large batch leads to inaccurate estimation of the full
 1844 gradient and, compared to DP-SGD, introduces excessive clipping bias. Conversely, an excessively
 1845 large batch significantly increases the number of samples averaged in each iteration, which effec-
 1846 tively reduces the number of updates and consequently degrades performance.
 1847
 1848

1849 **Results on Different p** We conducted experiments on CIFAR-10 to evaluate DP-C4⁽⁺⁾ under
 1850 different update probabilities p . We set the learning rate to $\eta = 0.025$, with $C = C_1 = C_2 = 1$,
 1851 $|S| = 256$, and $|D'| = 4096$. We varied $p \in \{\frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, \frac{1}{2^5}\}$ and recorded the corresponding
 1852 accuracy of DP-C4⁽⁺⁾. The detailed results are presented in Table 9.
 1853
 1854

1855 Table 9: Test accuracy of DP-C4⁽⁺⁾ on different p .
 1856

Method	Different p				
	0.5	0.25	0.125	0.0625	0.03125
DP-C4	58.92	60.83	61.89	63.40	61.76
DP-C4 ⁺	60.04	63.67	64.50	63.65	62.71

1857 We can observe that as p decreases, the accuracy of DP-C4⁽⁺⁾ first increases and then decreases.
 1858 This phenomenon can be explained as follows: when p is relatively large, the anchor term is updated
 1859 frequently, which increases the average data consumption per iteration and consequently reduces the
 1860 effective number of iterations, leading to suboptimal performance. On the other hand, when p is too
 1861 small, the anchor term is updated too infrequently, which also negatively impacts the accuracy.
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889