Under review as a conference paper at ICLR 2026

DP-C4: ELIMINATING SOLUTION BIAS IN DIFFEREN-
TIALLY PRIVATE OPTIMIZATION VIA COUPLED CLIP-
PING WITH ADAPTIVE THRESHOLDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentially private (DP) stochastic optimization algorithms are widely used in
privacy-preserving deep learning, where per-sample gradient clipping and noise
injection protect sensitive information. However, these operations limit exist-
ing DP methods to converge within a constant-radius neighborhood of the first-
order stationary point, leading to solution bias and the well-known privacy-utility
trade-off. To enhance model utility, we propose a novel framework called DP-C4,
which is designed to be error-Consistently-decayed, Coupledly-clipped, solution-
Calibrated, and Convergence-guaranteed; this is the first time such a method is
proposed. Specifically, it incorporates a carefully designed coupled clipping strat-
egy and adaptive clipping thresholds, ensuring that both clipping bias and noise
variance asymptotically vanish, thereby correcting the DP-induced solution bias.
Furthermore, we develop a memory-efficient variant that reduces storage com-
plexity without compromising privacy guarantees. We prove that our method con-
verges to the optimum in strongly convex case by properly constructing a Lya-
punov function, and to a diminishing neighborhood of the first-order stationary
point in nonconvex case. Our theoretical results are supported by numerical ex-
periments.

1 INTRODUCTION

Background: Deep learning have been extensively applied in numerous fields, such as smart
homes (L1 et al., [2023)), transportation (Tahaei et al., 2020), and healthcare (Tang et al., [2019).
However, the individual privacy whose information is included in datasets should be protected when
the models are actually applied. Therefore, it is important to design privacy-preserving algorithms.

Differential Privacy (DP) (Dwork et al.,|2006; Dwork & Rothl 2014) has emerged as the gold stan-
dard for privacy-preserving deep learning. It offers provable privacy guarantees that the algorithm
learns from sensitive data while limiting the information leaked about any individual sample. To
protect the privacy of the training data, numerous differentially private stochastic optimization
algorithms have been proposed for deep learning, such as DP stochastic graident descent (DP-
SGD) (Abadi et al} 2016). They apply per-sample gradient clipping using a fixed clipping norm
and adds Gaussian noise into the aggregated gradient , which have been successfully deployed in
both centralized (McMahan et al., 2018b; Bu et al., 2020) and federated (Geyer et al., [2017} [Truex
et al.| 2020) settings.

However, the perturtion introduced by gradient clipping and noise often leads to reduced model ac-
curacy. Therefore, these methods face a trade-off between model utility and privacy (Amin et al.,
2019; [Zhang et al.| |2023a} [Xiao et al.| [2023). This challenge has attracted considerable attention,
leading to the development of several improved variants of DP stochastic optimization algorithms.
In particular: (1) adaptive clipping thresholds (Andrew et al.| 2021} [Phan et al.| 2017} [Pichapati
et al., 2019) are adopted to reduce noise variance; (2) gradient normalization or group-based clip-
ping (Yang et al., [2022; |Das et al., [2021; McMahan et al., 2018a) are designed to mitigate clipping
bias; and (3) iterative schemes are transferred from advanced non-DP optimizers (Zhu et al., [2024;
Murata & Suzukil, 2023 [Leel 2017) to leverage their advantageous properties. Nevertheless, gradi-
ent clipping and added noise inevitably alter the original optimization dynamics. Prior work shows
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that under settings similar to DP-SGD, regardless of how the clipping threshold or step size is cho-
sen, DP algorithms only converge with a constant bias term, i.e., converge to a neighborhood of
the first-order stationary point with a constant radius (Chen et al., [2020; Xiao et al., [2023} |[Song
et al.| [2013). Recently, the DiceSGD algorithm (Zhang et al., [2023b)) integrates an Error Feedback
mechanism to eliminate clipping bias at each iteration, enabling convergence in expectation over the
injected noise. However, it does not account for noise variance, thereby driving the iterates to drift
away from the optimum, leaving the solution bias issue. As a result, existing DP algorithms fail to
handle both clipping bias and noise variance. This naturally motivates a fundamental but important
question:

Is it possible to design a DP stochastic optimization algorithm that both clipping bias and noise
variance asymptotically vanish during iterations, thereby eliminating the issue of solution bias?

Our Contributions: We provide an affirmative answer to the question by proposing an error-
Consistently-vanishing, Coupledly-clipped, solution-Calibrated, and Convergence-guaranteed
(DP-C4) algorithmic framework. This method incorporates a carefully designed coupled clipping
strategy and adaptive clipping thresholds, thereby enforcing the clipping bias and noise variance to
asymptotically vanish during iterations. To the best of our knowledge, this is the first time such
a method is proposed. Furthermore, to mitigate the extra memory cost for determining clipping
thresholds, we propose DP-C4™, which ensures a lower memory cost while preserving the cali-
bration property. We prove that our method converges to the optimum in strongly-convex case by
properly constructing a Lyapunov function and to a diminishing neighborhood of the first-order sta-
tionary point in the nonconvex case. Notably, we derive the upper bound through a case-by-case
analysis leveraging the clipping strategy, thereby opening up new avenues for convergence analysis.
Specifically, our contributions are as follows:

* DP-C4 Framework: We propose DP-C4, the first DP stochastic optimization algorithmic
framework that eliminates solution bias by ensuring the joint asymptotic vanishing of noise
variance and clipping bias. Furthermore, to reduce memory overhead, we introduce DP-
C47, which matches the memory cost of DP-SGD while preserving the solution calibration
benefits of DP-C4.

+ Novel Convergence Analysis: We establish the convergence guarantees of DP-C4(+).
Specifically, this method converges to the optimum by properly constructing Lyapunov
functions in strongly-convex case, and to a diminishing neighborhood of the first-order
stationary point in nonconvex case. To our best knowledge, this is the first DP algorithm
whose convergence can be analyzed via a Lyapunov function, due to its unique solution
calibration property.

» Privacy Guarantee: We present a privacy budget allocation strategy utilizing the structure
of DP-C4(1) to guarantee privacy. Compared to DP-SGD, it can achieve the same level of
privacy protection while adding less noise.

* Empirical Validation: We conduct extensive experiments showing our method achieves
superior privacy-utility trade-offs over existing baselines across various tasks and datasets.

2 PRELIMINARIES

2.1 PROBLEM SETUP AND ASSUMPTIONS

Problem Setup: We consider the empirical risk minimization (ERM) problem on a dataset D with
|D| = N:

| X
min f(z) := N g fi(x), (1)
i=1

z€ERY
where f;(x) denotes the loss associated with the i-th data sample. Our goal is to propose a DP
stochastic optimization algorithmic framework with Gaussian mechanism for finding its first-order
stationary point z*, i.e., Vf(z*) = Zij\ilv i(*)=0.
Definition 1 ((¢, §)-Differential Privacy (Dwork et al.l2006)). A randomized mechanism M : D —
R is said to satisfy (e, §)-DP if for any two neighboring datasets D, D' € D differing in at most one
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data record, and for any measurable subset S C R, it holds that

Pr[M(D) € 8] < e Pr[M(D’) € 8] +6. )
Here, ¢ > 0 is the privacy budget controlling the strength of privacy protection, and § € [0, 1]
denotes a negligible probability of failure.

Definition 2 (Gaussian Mechanism (Dwork & Roth, [2014)). Given a function f : D — R? and
dataset D € D, the Gaussian mechanism adds noise calibrated to the {5-sensitivity of f:

M(D) = f(D) + N(0,0°1a), (3)
where N(0,02%1,) denotes a d-dimensional Gaussian distribution with zero mean and covariance

021,. The noise scale satisfies 0 > Ay - 7@1%(6125/5) with Ay = maxp, p || f(D) — f(D')]l2
denoting the {5-sensitivity of | between neighboring datasets D and D’.

2.2 DP-SGD AND DP-SVRG:

In this subsection, we give a brief review of the DP-SGD and DP-SVRG methods.

DP-SGD: DP-SGD (Abadi et all [2016) is a widely adopted method for solving (I). At k-th
iteration, it randomly selects a subset S C D, clips the [, norm of each gradient, and then adds
noise to protect privary. The iterative scheme with a fixed clipping threshold C' is:

oS n Z (c11p(Vf1(xk)7C) +N(O,U2CQI)) R “4)

|Sk‘ 1ESk

where 7> 0 is the step size and clip(V f;(z*), C) := Vf;(z*) min{1, m} A more flexible
approach is to let the clipping threshold Cj, vary. From a noise-reduction perspective, we would
like Cj, — 0 as ¥ — 2*. However, because stochastic gradients typically have variance, which
is nonzero at z* (|| 1520 c5, Vi (@*)l2 # || o2 ie pVifi(2*)]]2 = 0), Ci can not be set too small
during iterations. Therefore, variance reduction techniques for gradient estimation seem to hold
promise for enhancing utility in DP algorithms.

Algorithm 1 DP-SGD Algorithm 2 DP-SVRG
1: Initialize 2° 1: Initialize 2° = w°
2: fork=0,1,2,... do 2: fork=0,1,2,... do
3:  Sample Sy € D 3:  Sample Sy, C D
4: gk =clip(Vfi(z¥),C) 4: gf( ) = clip(V f;(2%), C) + N(0,0%C?I)
5. gF=gF+N(0,02C%T) 50 gF(w)=clip(Vfi(wF),C) + N(0,02C%I)
6 g = ﬁ > 0F 6:  grF= |slk\ZzeSkgz (33)_\ThZieSkgf(w)‘FﬁzieDgf(w)
7. gl =gk gk . R
8: end for o whtl — x¥, with probability p
wk,  with probability 1 — p
9: end for

DP-SVRG: The SVRG (Johnson & Zhang| 2013} Kovalev et al., 2020) method is a representa-
tive variance reduction technique. This method introduces an additional anchor point w", which
is periodically updated and computed the full gradient. At k-th iteration, the gradient estimate is
g% = ﬁZz‘esk Vfi(xk)—ﬁ&esk Vfi(wk)+l—é‘zieDVfi(wk), which is an unbiased estimate

’UJ‘)I

of the full gradient, i.e., E[g§ ] = Vf(z¥). Moreover, it satisfies g, x—> Vf(z*) = 0.
By integrating SVRG 1nto the DP algorlthm DP-SVRG (Lee} [2017) has been proposed (see Alg[2).
However, clipping V f;(x*) and V f;(w") separately undermines the variance-reduction structure,
where the resulting stochastic gradient becomes biased (EG"* # V f(z*)) and no longer converges to
zero as xF — x*.
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In summary, DP algorithms face the following trade-off issue: On the one hand, choosing a large
clipping threshold leads to substantial noise injection. On the other hand, a small threshold causes
excessive clipping bias of the gradient estimates. In this paper, we focus on designing DP algorith-
mic framework that handles both clipping bias and noise variance to eliminate solution bias.

3 METHOD: DP-C4

In this section, we propose a DP stochastic optimization framework called DP-C4, which
is error-Consistently-vanishing, Coupledly-clipped, solution-Calibrated, and Convergence-
guaranteed. This framework ensures the asymptotic vanish of both the noise variance and the
clipping bias, thereby eliminating solution bias.

3.1 HIGH-LEVEL IDEA

We consider constructing the gradient estimator by aggregating multiple sub-estimators
{h9)(2)}jepn that satlsfy el ]E[h(J)( x)] = Vf(z). Each sub-estimator is defined by
RO (z) = ‘S i Dies, M ( ), where S; C D denotes the sampled dataset and {h }2657,36[71]
denotes per-sample estlmators Furthermore, for DP algorithms, we clip the /5 norm of each com-
ponent hgj ) (z), aggregate the clipped components and add noise to form the DP gradient estimator
G*. For simplicity, we focus on the case n = 2. The iterative scheme is given by:

k+1

2L = ok — g,

7 = |13 Lies, clip(h{V (@*), 1) + nk] + [y Lies, clin(h® (@*), C2) + nf] |
M~ N(0,02C21), nk ~ N(0,02C21).

Here, C; is the clipping threshold and 0]2 is the privacy-dependent noise multiplier. Instead of

using fixed C; during iterations, we consider replacing them with an estimator-dependent function

C; ({hij )(mk)}ie s, )» ensuring both clipping bias B}, (7) and noise variance Vk,(J ) vanish asymptotically
k *.

as z® —z*:

2 :L’kﬁx*

BY = || dies clip(hd (0%), C) — i, b (@*) | =50,
VY = a2C2({h (2%)}) 22250
=05 O ({h(2")}) :
where ||-|| denotes l3-norm. To guide the design, we first establish an upper bound on clipping bias

in Lemma [T] (Proof in Appendix [C):

Lemma 1 (Upper Bound on Clipping Bias). Let ka =i S:||hi(2®)]| < C({hi(2¥)}ics)} be the
set of unclipped samples, and 1§ = {i € S: ||h;(2*)|| > C({hi(2*) }ics)} the clipped ones. Then,

B < 2L S [Ima)l - ot hes)]

iclk

Lemmall]implies By — 0 as both ||h;(z*)|| — 0 and C({h;(2*)};cs) — 0. Therefore, to push the
clipping bias B,(Cl) to zero as x*— x*, as a natural choice, we set {h;l) ties, and Cy ({hl(-l) }ies,) as

WD (@?) == Vfi(a?) =V i), Ci({h{) (") ies,) = C, S (Ve - Vfi(a™))

€51

)

\1|

where (] is a scaling factor. However, since x* is unknown, we replace z* with a history iterate
k k—i .
w® € {2 g

hgl) (2%, wk) .= Vf; () -Vfi (w"), ({h(l)(z w*)}ies,):

Z Vfi(a®) — Vi (w")) H :

€S,
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Algorithm 3 DP-C4

1: Input: Dataset D, learning rate ), clipping bounds C, C, Ca, noise scales o1, o2, total steps 7,
anchor update probability p

2: Output: Model parameters 7 satisfying (¢, §)-DP
3: Initialize: 2° = w° € R?
4: fork=0toT —1do
5. Sample S C D
6: Ch < min(C, C1||ﬁ ZleS(Vfi(xk) — Vi) {Coupled threshold}
7: Cgk — mm(C CQHVf( )||) {Anchor threshold}
8: 91 |S| Zzes cllp(Vfl( ) Vfi(wk), Cik) {Coupled term}
9: g2 |D| ZzeD clip(Vfi(w k), Car,) {Anchor term}
10: n’f ~ N(0, O%kal), né ~ N(0, U%C%kf) {Sample DP noise}
11: gk — g]f + g§ + n’}z + n’g {Add noise}
122 zFtl a2k —pn.g {Update model}

k . .y
) bt 1 z%,  with probability p
13: whtl { X

. .. Update anchor (Routine 1)
w”,  with probability 1 — p {Up { '

14: end for

When 2%, w* — x*, we have B,il)% 0. Meanwhile, Vk(l) — 0 since Cl({hgl)}iesl) — 0. For the
sub-estimator h(?) = @ > ics, h§2), we choose Se =D, set {hl@)}ie& and CQ({hEQ)}iQSQ) as:

WP (2 0k) = Vi), Co({h (@*, wh) }ies,) = Co - [V £ (wb)]),

where Cs is a scaling factor. This choice ensures E[A() (2%, w*)+h®) (2F, w*)] = V f(z*), and
makes:

B + VP < (02 4+1)-C3- |V (M) =0 aswh — o,
As a result, our proposed gradient estimator and clipping thresholds ensure that all error compo-
nents (clipping bias, noise variance) asymptotically vanish, which forms the foundation of our DP
algorithmic framework.

3.2 DP-C4 ALGORITHM

In this subsection, we formally describe the DP-C4 method in Alg[3] Based on the idea in sub-
section [3.1] Alg[3]constructs a gradient estimator by aggregating two sub-estimators: a coupledly-
clipped gradient difference term (Line 8) and a clipped anchor term (Line 9). Specifically, we
initialize with z° = w® € R?. At the k-th iteration, we sample a mini-batch S C D (Line 5). We
compute the gradient difference Vf;(z*) — Vf;(w¥) for i € S, and aggregate them to obtain the
clipping threshold C (Line 6). Here, an upper bound C' is introduced to prevent injecting exces-
sively large noise during the early iterations. Next, we clip each gradient difference and aggregate
the clipped values to form the sub-estimator g’f (Line 8). Meanwhile, Cy;, and g§ are computed only
with probability p since the anchor w* is updated with probability p. Finally, by aggregating g%
and g5 and adding noise, we obtain the perturbed gradient estimator §*. Moreover, for updating the
anchor w* (Line 13), there are also alternative routines (see the following Routine 2-4):

k+1_ a*, k=1(mod [1/p]) k+1_ et with p k+1_ a* 1, k=1(mod [1/p])
Rz 7wk, k#1(mod [1/p])’ Wrs = wk, with1—p’ B+ \wF, k#1(mod [1/p])’
We emphasize that the DP-C4 method differs fundamentally from the DP- SVRG method (Alg'
Specifically, DP-C4 focuses on chpplng the gradlent difference V f;(2*) —V f;(w") for each i € Sy,
whereas DP-SVRG clips V f; (2*) and V f; (w*) seperately. Moreover, DP-C4 adaptively determines
the clipping threshold. These core distinctions allow DP-C4 to asymptotically vanish both the clip-
ping bias and the noise variance.

3.3 SOLUTION-CALIBRATED PROPERTY OF DP-C4

Consider the ERM problem (1)) and let 2* denote a solution that satisfies the first-order optimality
condition, i.., | D|Zz€ pVfi(z*) = Vf(a*) = 0. To further demonstrate the desirable properties
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of DP-C4, we consider all sources of randomness (i.e., sampling, noise, and anchor-update) and
investigate the potential convergence point of Alg[3] from the perspective of fixed-point analysis.
Specifically, at a fixed point (Z,1), both sequences {2*}ren and {w*}ien converge, implying
2Pt = 2k = § wht! = wP = 15 Hence, we substitute it into Alg[3] the fixed point of DP-C4
satisfies the following system:

‘lﬁ‘ziesdip (Vfi(2) _Vfi(ﬁ’)aclk)‘FﬁZieDdip(vfz‘(@),Czk)+H’f+n§ =0,

ok zF = %, with probability p,
wk, with probability 1 — p, 5
nk ~ N(0,02C2.1), nk ~ N(0,03C2,1), )

Olk = min(C’, Cl”ﬁ Zies(vfi(‘i) - va(lD))H)’
Cop = min(C, Ca| gy 2} Vi),

To satisfy this fixed-point system, for the first equation in , it must hold that n¥ = 0 and n§ =0
due to the iteration-wise independence of the noise randomness. This implies:
D
1 |D|

; )|l = LS vr ) =

i€S

which forces £ = w = x*. Substituting this into @ all conditions are satisfied. Therefore, it
follows that a point is a fixed point of DP-C4 if and only if it is a first-order stationary point of the
ERM problem (T, indicating DP-C4 eliminates solution bias.

In contrast, exiting DP algorithms with constant clipping thresholds (e.g., DP-SGD, DP-SVRG) do
not admit fixed points, as the fixed-variance noise injected at each iteration continually disrupts equi-
librium. For other schemes where clipping thresholds decays to 0, the persistent gradient estimation
variance and gradual accumulation of clipping bias, combined with a mismatch between the decay
rate of the thresholds and the convergence speed, lead to the fixed point being, with probability 1,
not a solution to the original problem. The detailed comparison is provided in Appendix [B]

3.4 CONVERGENCE ANALYSIS

In this subsection, we analyze the convergence properties of DP-C4 under two settings: (i) p-
strongly convex, and (ii) nonconvex. Our goal is to construct a Lyapunov function in strongly convex
case with specific clipping thresholds, and to establish convergence guarantees in non-convex case
without restrictions on clipping thresholds. It is worth emphasizing that these proofs are innova-
tive in the following aspects: (1) existing DP algorithms lack solution-calibrated property and thus
cannot employ Lyapunov functions for analysis; (2) by exploiting the unique structure of DP-C4,
we carefully handle both noise variance and clipping bias, providing a novel perspective for the
convergence analysis of DP optimization algorithms. We first present several assumptions:

Assumption 3.1 (Lower Bounded) f(-) is bounded from below by a finite constant f*:
f(z) > f*> —o0, Yz € RY
Assumption 3.2 (L-Smoothness) f;(-) is L-smooth, i.e., it satisfies:
IV fi(e) = Vi)l < Lilz — yll, Yo,y € RL
Assumption 3.3 (u-Strong Convexity) The loss function f;(-) is u-strongly convex:
fiy) = file) + (Vfi(z),y — 2) + (p/2) ||z = y|I*, Y,y € R
Assumption 3.4 (Bounded Variance) There exists a constant 7, such that:
IVfi(z) = V(@) <7 Vie[N],vaeR™

Assumption 3.5 (Bounded Gradient). The gradient of the function is bounded in the sense that
there exists a positive constant G = sup,cga ;cpn) | Vfi(2)]] < 0.
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The above assumptions serve as the foundation for analyzing DP algorithms. We now turn to the
convergence of DP-C4. To avoid overly intricate discussions, we restrict our setting to Cy; =
CH| ﬁZ(sz(:ck) —Vfi(w*))|], Ca = Co||Vf (w*)||. Let E[-] and Ex[-] := E[-|z*w*] denote the
full expectation and the conditional expectation based on the first k iterations of DP-C4, respectively.
Then, we have:

Theorem 1 (Strongly Convex Case). Suppose Assumptions 3.1-3.5 hold. For any given ¢ > 0
and constant DP noise multipliers o1, 0, let {z%}r>o and {w*},>o be generated by Alg. with

7 < min {fﬂl\hﬁ’ ﬁ} ,C1 >0,C3 > T + 1. When min{||Vf(w")][, [|z*—z*||} > e, define the

Lyapunov function as:
2N1n? 2Nyn?
oF .— EHLEk _ x*”? + 17 EH’LUk _ 1,*”2 + 27 Dk,
p p
where D :=E||Vf;(w*) —Vfi(2*)||2 Ny := 8LXC?(do? + 1), No:=4C3(do3 +1), A:= 4c” (L—
C1u)\ALC? (do3+1)+u2C3(do3+1) , and d denotes the model size. Then,
PFL < maX{l—un+(3N1+A)772, 1—%} SOF < B, (6)

In contrast to existing optimization algorithms whose convergence results typically rely on a single
indicator, Thm employs two accuracy indicators, @) and min{||Vf(w")||, ||z*~a*||}. Specifically,
for any given tolerance e, the Lyapunov function ®* decreases linearly until min{||Vf (w*)||, ||z*~
2*||} < e. Moreover, we emphasize that in practical implementations, achieving ||z*—x*|| < e does
not require choose a large Cs at the beginning of the algorithm. Instead, we can gradually increase
C5 during the convergence process to enforce convergence, thus avoiding the injection of excessive
noise at the early stage. We now turn to the convergence analysis in the nonconvex setting:

Theorem 2 (Nonconvex Case). Suppose Assumptions 3.1, 3.2, 3.4, 3.5 hold. For any given constant
DP noise multipliers 01,09 and C; > 1,Co > 1, let {z* E:O and {w" Z:o be generated by Alg.

with g = /) 2L@=F=1) O(%) Then,

TLG
T
=3 B IV IV 195 )]+ IV 5 )97 ) -V )]
k=1
(7
N T T
< # R = J@DEG | LS g - seliv )]
k=1

Here, G:=4G?(4C?(do?4+1)+C3(do3+1)), d denotes the model size, and for each k:

1
A’f:l*g(lfﬂ”’“)(?\/@+@), A= (1-PE)(Cy—1), Mri=(1-PF)(C1—1)
N i= PRy T B+ /1= BE), P (9 ) <3r | 2R,

k. k.
P == E[Lvse)-viwhl<ont] B3 = Ee[L{vrwr)<omny]-

Since A\¥ — 0 and A5 — 0 require P§ — 0 and P5 — 1 respectively, A\¥ and A% can not be zero
simultaneously. Thus, Thm[2] effectively characterizes convergence. It is worth noting that is
obtained by a piecewise discussion of ||V f(z*)|| (more detail see Appendix : On the one hand,
when ||Vf(z*)|| > 37, the iteration exhibits strict descent, which guarantees that DP-C4 converges
to the region ||Vf(z*)|| < 37. On the other hand, when ||Vf(2*)|| < 37, due to clipping bias,
the right hand side introduces an optimization bias term £ 37E[\}||Vf(2*)[]. However, Thm[)
differs from prior work in the following aspects: (i) compared with a fixed clipping bias at the
constant scale proportional to 7 (Xiao et al.| |2023), the optimization bias term in (7)) is proportional
to ||V (z*)||, which implies a gradually vanishing clipping bias; (ii) in the k-th iteration, the last two
terms on the left hand side of (/) also contribute to reducing the optimization bias. By employing
1-P¥

BAIT IV (@) = MV F ()] - [V f ()] = AS[IVF @) - IV F () = Vf (b))
9(AF)?r? s 00
T AL -PE(C - 1)

the Cauchy-Schwarz inequality and setting Cy, = (Cy—1) +1, we obtain:

<NV F ()] = ASIIV £ (M) 0.
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(a) One of two similar clippings in DP-C4 (b) Two lightweight clippings in DP-C4+
k-th iteration I k-th iteration k-1 k+1
el C
Datal @ |Vfl (wk : Datal @ |Vf()cj) Vf(l/df)| Datal @ |Vf (W )|
11 1
Q. @
o |Vf(w )b ower | e |Vf(x‘) Vf(uf‘)|, ") owat | “elip( |Vf(w . )
1 e —er
1
owen | Vf\ (M/)| | [omats v m(xk)—Vf‘S o) oaan | v,fN OOV b
store all to be clipped 1 no need to be stored no need to be stored

Figure 1: Workflow of DP-C4 and DP-C4™

This indicates that by gradually and slowly increasing C» during the iteration, together with the
decaying step size, the algorithm can converge to arbitrary accuracy.

3.5 PRIVACY ANALYSIS

In this subsection, we present the privacy guarantee of DP-C4. Since DP-C4 independently clips two
components at each iteration, we carefully allocate the privacy budget between them and leverage
Rényi differential privacy (RDP) (Mironov, 2017) to quantify the required noise magnitude at each
step. Specifically, we have the following theorem:

Theorem 3 (Noise Level). Let 0 = “ S\L and o? %. There exist 03,03 defined in

Algthat guarantee (¢, 6)-DP of running DP-C4 with routine 1-4 for T iterations:

(0%, oBme= (14 5o 207, (07, oBmue= (1= X 0% B p“; p>>02).

It follows directly that, (o2 +02 Rigs= 1+f 0t~ 02 (02 +02) Rags= f+\/

2 2|8
(/E+1-5—E —O(p*))*o?. In practice, we choose the update probability p= ﬁ = f’ gulded
by the probability p is typically related to % in SVRG (Kovalev et al., 2020). At the k-th iteration,

the upper bound of the total noise variance C?,03-+C3, 03 is as follows:

(Cho7 + C3403) Ryws < (07 + 03) max{C},, C3,} < 0*(1 — O(p*))* max{C7;, C3;}

< o’max{Cf;, O3} = o®min{C? max{CF||Vfs(a") ~ Vfs(w")||*, G| Vf (w")[|}}

It should be noted that o2 is exactly the noise multiplier in DP-SGD with a mini-batch size |S|. That
is, for the same C, the total noise multiplier in DP-C4 is approximately the same as that in DP-SGD,
with noise variance further decaying through C%, and C3,.

4 DP-C4t: A MEMORY-EFFICIENT EXTENSION OF DP-C4

In this section, we aim to reduce the memory burden of DP-C4, which currently requires storing
every sampled gradient. This is because the gradients are first aggregated to determine the clipping
thresholds, and then each is clipped individually. Note that the gradient difference ||V f;(z*) —
V f;(w")]|| can be bounded by L||z* — w¥|| under the L-smoothness assumption, which tends to
0 as 2¥, w¥ — z*. In addition, since the anchor term is update only with probability p, it incurs
limited memory overhead. Furthermore, rather than using w” to determine Csj,, we consider using
the previous iterate w*~1, which leads to Cy;, can be computed in advance. Specifically, we make
the following substitutions in DP-C4:

Chp = min{C’, Cy-||a* — wk||}, Cop = min{C’, CQ-||Vf(wk*1)||},

which we refered to as DP-C4t. The workflow of DP-C4(*) is presented in Figure |1 Notably,
the clipping thresholds of DP-C4™ do not depend on the gradients of the current iterate and can
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be precomputed. This design removes the need to store all gradients involved in the computa-
tion. On the one hand, DP-C4* does not violate our design principles and thus retains the prop-
erties of consistently-vanishing error, solution calibration, convergence guarantee, and DP guaran-
tee. On the other hand, in practical deployment, to further reduce computational overhead, we of-
ten select a large batch size |D’| >> |S| instead of the full dataset size |D| as the anchor batch.
This choice also helps to reduce the solution bias and improve utility, since it often holds that
o1 Zienr Vi@l < llg; Xies Vfi(a®)]|. Due to the space limitation, we provide the pseu-
docode of DP-C4* and a detailed description of its properties in Appendix @

5 NUMERICAL EXPERIMENTS

We conducted extensive experiments to demonstrate the advantages of DP-C4(+). Specifically,
we evaluated our method on Mushroom (musl [1981), Mnist (Dengl 2012), Cifar-10, Cifar-
100 (Krizhevsky et al., 2009), IMDb (Maas et al., |2011), and GLUE (Wang et al., 2018) datasets,
comparing against both related baselines and state-of-the-art methods, namely DP-SGD (Abadi
et al.l 2016), DP-SVRG (Leel 2017), and DiceSGD (Zhang et al., [2023b)). In addition, we con-
ducted a series of ablation studies on CIFAR-10 to systematically evaluate the effects of the clipping
thresholds C, Cy, the overall clipping threshold C, different update routines, varying large-batch
sizes, and update probabilities. Due to space constraints, the detailed results and discussions are
provided in Appendix [E]

Table 1: Test accuracy of different methods on different datasets.

Method SVM CV Tasks NLP Tasks

etho Mushroom Mnist Cifar-10  Cifar-100 IMDb GLUE SST-2
DP-SGD 8748 9626  53.05 3704 76.99 75.23
DP-SVRG  77.13 9579 5181 3108 74.10 7271
DiceSGD 90.65  97.02  60.24 4073 78.19 78.71
DP-C4 9176 9693  61.89 4346  80.13 81.31
DP-C4+ 9698  97.16  64.50 4312 81.23 82.24

In our main experiments, we set the clipping thresholds to 1 for all methods, including C, C1, and
Cy in DP-C4(*), The step size 7 was tuned via grid search over {0.1,0.05,0.025,0.0125}, and we
report the best-performing results. For all mini-batches, we use a batch size of |S| = 256. In DP-
C4(H) and DP-SVRG, we further set the large batch size to | D’| = 4096, and the update probability

top = % = 0.125. For the SVM task, we set the privacy parameters to (¢,5) = (1,1079),

train for 50 epochs, and employ a logistic regression model on the Mushroom dataset. For image
classification tasks, we set (¢,8) = (5,107?), train for 100 epochs, and adopt LeNet (LeCun et al.,
2002) on Mnist, and ResNet20 (He et al.l [2016)) on CIFAR-10 and CIFAR-100. For NLP tasks, we
set (€,0) = (2,107?), train for 50 epochs, and adopt a GRU-RNN (Cho et al.,[2014) on both IMDb
and GLUE. The results are summarized in Table |1, where we observe that DP-C4(+) consistently
outperforms the baselines across SVM, image classification, and NLP tasks.

6 CONCLUSION

In this work, we proposed DP-C4 and its variant DP-C4 ™, which reconstruct the update rule and
the clipping scheme of DP optimization to ensure that clipping bias and noise variance asymptot-
ically vanish, thereby eliminating the solution bias inherent in existing methods. We established
convergence guarantees by constructing a Lyapunov function under the p-strongly convex setting
and identifying a vanishing bias term in the general non-convex case, offering a novel perspective
on DP optimization analysis. On the privacy side, we designed a structure-aware budget allocation
tailored to the coupled clipping framework, leading to general (¢, 0)-DP guarantees. Experiments on
SVM, image classification, and NLP tasks demonstrate that DP-C4(*) consistently achieves superior
privacy-utility trade-offs, underscoring its promise for practical deployment.
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A DETAILS OF DP-C4™"

We present the pseudocode of DP-C4™ in Alg.}4] As can be seen, the main difference from DP-C4
lies in the computation of the thresholds (Line [6}&]7). Moreover, at the beginning of the algorithm,
we set the clipping threshold as Cy, = C' to accommodate the initialization at & = 0 (Line [3).

Subsequently, we examine in detail the properties of DP-C4™ as previously outlined.

Algorithm 4 DP-C4+

1: Input: Dataset D, learning rate ), clipping bounds C, C, Cs, noise scales o1, o2, total steps 7,

anchor update probability p

2: Output: Model parameters z7 satlsfylng (s, 5)
3: Initialize: 7° = w® € R, let Cy||Vf (w™1)||:=
4: fork=0toT —1do
5. Sample SC D
6: Ci + min(C, 1 ||£U’c — wkH) {Pointwise coupled threshold }
7. Cop mln(C’ Co|| V£ (w 2” {Shifted anchor threshold}
8: glf |S| Z'LES clip(Vfi(z®) — Vfi(w ), Ck) {Coupled term}
9: gk« |D| > iep clip(V fi(w k), Car) {Anchor term}
10:  n¥ ~N(0,02C%41), nb~ N(0,03C2,1) {Sample DP noise}
1: gFegh+gb+ nl}z +nk {Add noise}
12: aFtl a2k —n.g {Update model}
13:  Four alternative anchor update routines:
k . .y
th probabilit,
4wt {SC kl zith Eigbeilitzll) _ {Update anchor (Routine 1)}
k=1 (mod [l
15:  whtl « {Z ’ k41 sz {1§ﬁ; {Update anchor (Routine 2)}
k+ 1
ith probabilit
16:  whtl {zk zith ggbzbilitz 21) _ {Update anchor (Routine 3)}
Rk =1 (mod [1
7. whtl o {z;k? b Enm;d hﬁﬁg {Update anchor (Routine 4)}
18: end for

Consistently-vanishing Error We point out that the clipping bias and noise variance of DP-C4 ™

also vanish. Specifically, continuing with the notation from Section[3.I] we have:

15|
Bt Vi< LS 1975 (0) - s ) [ Coll —u ] o203t

5P
i€lb
+|\|D|Zczwwz ), CallF () 1) — VF () |24+ 0221V F (k1)
1€D
Ik L-C 2 _ z* wk —az*
_<'2'|<S|2“+o—%c%>|xk—wk||2+<o§+2>c§||w<w’“ [PV (k) P2

(®)

0

Solution Calibration Similarly, (Z, %) is a fixed point of DP-C4™ if and only if it is a solu-
tion to the original optimization problem. Analogously to (5), it must satisfy Cy||Z — @[|» =

12
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Co||[Vf(w)|]2 = 0, which implies Z = @ = z*. Specifically, at a potential fixed point (&, @),
the iterative scheme of DP-C4* yields:

M =ob —ngt =& —ng*,

bl {xk =7, with probability p

T=x

I T wk, with probability 1 — p

From the iterative scheme of DP-C4* (Alg. EI), we obtain:

157 2iesclip (V/i(2) = Vfi(0),Cri) + 157 25 pelin(V fi (@), Cax) +0f +15 =0,
&= Wbt — z* = %, with probability p,
N | wh, with probability 1 — p,
n} ~ N(0,02C% 1), nk~ N(0,03C2.1),
Cix = min(C, C1||Z — w||2),

Cox = min(C, Cs || thy 12} V £i() |2)-

€))

On the one hand, at a fixed point, @]) must be satisfied. This enforces that the variance of the injected
noise vanishes almost surely, i.e., C 1 = Cor = 0, which in turn requires £ = w = x*. On the other
hand, substituting (Z,w) = (z*,z*) back into (9) shows that the equality indeed holds. Therefore,
the fixed point of DP-C4 ™ coincides with the optimal solution z* of the original problem.

Convergence Guarantee The convergence of DP-C47 is similar to DP-C4, we establish conver-
gence guarantees for DP-C4™ under both strongly convex and non-convex regimes, the proofs of
which are uniformly presented in Appendix [C}

Theorem 4 (Strongly Convex Case). Suppose Assumptions 3.1-3.5 hold. For any given e > (
and constant DP noise multipliers o1, 09, let {x¥}r>0 and {w*},>o be generated by Alg. with

n < min{ﬁ, ﬁ} ,Cy > 0,Cy > T+ 1. When min{|[Vf (wb)|], |lz5—2*||, |[w"—2*|} >e,
define the Lyapunov function as:

2N17? 2N,n?
Pk = Ellxk _ .’L'*||2 + 1M EHU)k _ x*HQ + 27 Dk7
p p

where D¥ :=E||Vf;(w*) —Vf;(z*)||2 N1 := 8C?(do?+1) + %G%’%(dag—i— 1), No:=8C3(do3 +1),
A=A [(pCay+1)L—C1|\2C3 (do3+-1) +u2C3(do3+1) , and d denotes the model size. Then,

“puZe?

Pl < max{l—un+(3N1+A)n2, 1-%} Lok < PF, (10)

Theorem 5 (Nonconvex Case). Suppose Assumptions 3.1, 3.2, 3.4, 3.5 hold. For any given constant
DP noise multipliers 01,02 and C1 > 1,Cy > 1, let {z*}]_, and {w*}T_, be generated by Alg.

: _  [2(f@0)—f(z*)) _ 1

T
S B N7 () 24 S IV () A9 )97 )~ Vi ) ]
k=1

o + = SB[ -3V @]

k=1

(11)
< 2\/(f($0) - f(ﬂf*))Lé(l +4G) 1 T

Here, G=4C%do3+1)4+4G?C3(do3+1), d denotes the model size, and for each k:
1 Cy
/\’f::1—5(1—]13”“)(2\/1—]P”f+\/1—19”5), A= (1-Ph)(Cy—1), )\k::(l—P’f)(f—l)

A= %]P”“@\/l —Ph+\/1—B}), PBF:=Pr(|Vf(ah)| <37 ]2t

k. k.
P == Ex[Lvseh)-viwhi<ont] B3 = Ee[L{vrwr)<omny]-

13



Under review as a conference paper at ICLR 2026

B ALGORITHM COMPARISON

In this section, we provide a detailed exposition of the fundamental distinction between DP-C4(+)
and other algorithms (as an extension of Section [3.3)), namely, the unique Solution-Calibrated Prop-
erty that is exclusive to DP-C4(*) but absent in existing approaches.

In Section and Appendix @ we have established the solution-calibrated property of DP-C4(*).
In contrast, methods employing a constant clipping threshold (e.g., DP-SGD, DP-SVRG) do not
admit fixed points, as the fixed-variance noise injected at each iteration continually disrupts equilib-
rium. Taking DP-SGD as an example, suppose it admits a fixed point x, we obtain:

b =o't =at gt =1 —ng",

T=x
That is, §* = ﬁZz es,clip(Vfi(%),C )+n*=0. However, due to the stochasticity introduced by the
noise in each iteration, this condition cannot be satisfied with probability 1. Consequently, DP-SGD
does not admit a fixed point.

For other schemes where the clipping threshold decays (TD) to 0, the persistent gradient estimation
noise at each iteration, and the gradual accumulation of clipping bias, combined with a mismatch
between the decay rate of the threshold and the convergence speed, ensures that the fixed point
is, with probability 1, not a solution to the original problem. Taking DP-SGD™? as an example,
suppose it admits a fixed point &, we obtain:

9" = 52 ics,clip(Vfi(), Cr) +n*=0,
n* ~ N(0,02C21), Cp —0

We can observe that when the clipping threshold approaches zero (i.e., C, = 0), the above equation
is indeed satisfied, implying that DP-SGD with a decaying threshold admits a fixed point 2. How-
ever, this fixed point arises from the elimination of the update due to the vanishing threshold, and
therefore it does not guarantee that £ = z*.

Algorithm 5 DiceSGD (Zhang et al.| |2023b)

Input: Dataset D, learning rate 1, clipping bounds C, C5, noise scale o, total steps 7'
Output: Model parameters z” satisfying (¢, §)-DP
Initialize: ¢° = 0,20 € R?
fork=0,...,7T —1do

Randomly draw minibatch .S from D

gk = ﬁ > ies clip (Vfi(@%), C1) + clip (eF, C2)

2P = 2k —n(gF + n*), where n* ~ N(0,02(C? + C2)I)

1

6k+1 _ ek + ST Zies Vfl(xk) o gk:

end for

W Uk

Recently, the proposed DiceSGD (Zhang et al.| 2023b) (Alg[9) eliminates the bias in each iteration
in expectation. Therefore, in the sense of ignoring the injected noise and sampling randomness (i.e.,
in the full-expectation sense), it possesses a similar property. Assume that (Z, €) is a fixed point of
DiceSGD, then we have:

E[z] = E[Z] — nE[¢" + n*] = E[z] — nE[g"],

E[é] = Elé] +E [t} Sies V/ilx) - *| =Bl + & £, V/i(@) - Elg*]
We can verify that (Z,é) = (*,0) is indeed a solution to (12)), implying that, in full-expectation
sense, the fixed point of DiceSGD coincides with the solution of the original problem. However, as

discussed earlier, the randomness introduced by noise and sampling can disrupt this balance at any
iteration, causing the iterates to deviate from the true solution.

12)

Specifically, Table 2] summarizes the solution calibration property of different methods under both
noise and sampling stochasticity, where the symbols —, v" and x respectively denote: no fixed point
exists, the fixed point is (not) a solution to the problem. E i1, Epoises Esampiing, no-E denote,
respectively, in the sense of full expectation, in the sense of expectation over noise, in the sense of
expectation over sampling, and taking into account all sources of randomness.

14
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Table 2: Algorithm Comparison on Solution-Calibrated Property.

Method | b 5GD(TP)  DP-SVRG(P)  DiceSGD  DP-C4(+)
Type of E
Eru ) 0 v ’
Enoise -(X) -(X) ) /
Esampling _(X) _(X) i v
no-E -(X) -(x) - 4

C PROOFS OF CONVERGENCE ANALYSIS

In this section, we present the detailed proofs of the convergence results of DP-C4 and DP-C4 T, i.e.,
Lemma Thm]1}{2| and Thm It is worth noting that the proof techniques for DP-C4™ closely
follow those of DP-C4, and we mainly highlight the differences for clarity.

C.1 ProoF oF LEMMA[I

According to the definition of the clipping bias B* (Section , we can directly obtain:

|S| ZClZp <{h ( 165 ‘S| Zh ||2
€S €S
k

ZES)
H|S| Z IS Z ||h O i)

ielk

s Z<—({hi(x ) ) a3

xk (13)
|S|2HZ ies) — llhi@®)l2) - ”hE §||2
ielk >
< oz (3 (el = CC{hita) ), )).M)Q
= 1512\ - i 2 () Vies e
ielk
- # [ (Ihata®) e - C({hi(xk)}ies))r
; 2
< ﬁfz' > i)l = C{hi(e)bies)|
ielk

C.2 PROOF OF THEOREM[I]

For the strongly convex case of DP-C4, our goal is to construct a Lyapunov function under
appropriately chosen clipping coefficients. We first examine a potential term in the Lyapunov
function of the system, namely E|z* — ac*||2 Combmmg this with the update rule of DP-
C4, and denoting the clipping biases as b¥ := |S| >ies clip(AF, Cy||Ak|) — AL and b5 =

15
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D71 Liep CHp(V fi(w"), Col [V f(w*)|]) — V f(w"), we obtain:
By |[a* —a*| =By ||lz*—a"—ng"||®
=|la*—a" P+ Ex[20(3", o — 2")] + n’Exl"]?
< | P 2B (A V) 5+ )+ P
= ||zF—z*|| 2+ 20(Vf (2¥), 2*— 2*) +- 20K, (b5 + b5 40k 0k, 2*—2F) 402 Ry || 57|

@ x AT -
< o= |P+2n (£ = f @) = Sl ||) 420 B (b1 + b3, 2" %) +7°Ex|" |

pu—strongly convex
=|[a*—a*|P(L—np) +2n(f*~ f(2*)) + 20 (b} +05, )+ Ex] | 3" ||
(14)
Here, (a) follows from the pu-strong convexity property, together with the fact that Ex[n%] =
Ex[n4] = 0. Next, we derive upper bounds for the last two terms in the above expression. Specifi-
cally, we begin by analyzing the upper bound of Ey||G*||?, for which we have:

Ex||3"|*=Ex]|| | SIZcup (Vfi(2") = Vfi(w"), C1[|Vfs (a*) = Vfs (w*)]])

i€S

chszfz ), Cal |[Vf (w*)]]) +07 +05 ]

ZED
<4Ek|\|5‘2chpwz —Vfi(w"), C1l|Vfs(a*) Vs (w*)])|?
€S
+4|||D|Zcupwz ), AV (whDI?
€D

(15)
+4dL2 o7 CF[[a* —w*|[*+4do3 O3 ||V (w*)]?

(b)
<ALC? (do?4-1)||ak— o ¥ —w” |2+ 4C2 (do2+1)| | VS (w®)| 2

(e)
< 8L*CY(dof +1) ||a*~a*|*+8L°CF (do? +1) ||w"—a*|?
—_———— —_———

=Ny =Ny
+4C2(do2+1) - Z V£ (w") = Vfi(z*)|?
N——
=N 16 [ID]]
=Dk

Here, d denotes the model size. Inequality (a) follows from the Cauchy—Schwarz inequality and the
L-smoothness property applied to the noise term ||n%||?; (b) applies the L-smoothness property to
the first clipping term; and (c) uses the Cauchy—Schwarz inequality along with the convexity of the
squared fo-norm, i.e., ||E[X]||? < E[||X||?]. For E.[||g*||], we have:

ey @ .
Ex||g"]] < \/Exllg"|I?
®

b) 1
< (4L%C (dof+1) o™~ w"|*+4CF (dod+1) ||V (w®)|*) 2

0 4L%02(do?+1 :

S(/(Laﬁ)lvf( OV @MIPHACS o3+ DIV @)D 16)
2 2

(é)(16L20 (Z;tl—&-l)G 4 AC2(do+ 1))

) ~
- IG\/ZLL?CQ do?+1) + p2C3(do3+1) == G

For any precision e > 0, when ||V f(w)|], ||2* — 2*|| > e, we define the unclipped and clipped
sample sets for the first clipping as Jf := {j : [|A¥|| < Cix} and J§ = {j : ||A¥]| > Cux},

16
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and those induced by the second clipping as I¥ := {i : ||V f;(w")|| < Cox} and I} := {i :
||V fi(w®)|| > Cax}. By choosing C1 > 0 and Co > Z + 1, we have:

Cig
by lip(AF, C Ak by — A%
1 |S|§“p ) = A5 = |s§ ZHAfH s
(17
- A7 (C A [|A
|S|Z fary YA |S|€Zﬁ e
C
bk = chlp Vfi(w"), Cox) = V f (" ZVfl 4 o Vfi(wk))—Vf(wk)
D& |D| SV
Cok . ok .Vfi(wk)
D;k T~ i |D|§¢CQ IV =17 D 17 i
(18)

For the first clipping, we define the probability of an individual sample remaining unclipped as
Py .= Exl{ar<cy,y- Then, we have:

Ak

* 1 *
Ex[(b}, = —Jfk)]:]EkaZ (Ch]|AE]| - ||Af\|)'||A,§||7$ )]
ieJk <0 v
(@ 1 k k%
< Exlig > (1AF]] = Cal|A%]]) - [|2* — ]
| |ieJ§
® 1 ko k kK ko ox
< Erlrg D (Llla* —w¥|| = Cuplla* — w])) - [Ja* —2*]]]  (19)
ol i€J¥
1 *
< Bl 3 (L - Cunllet = u - |l — o)
ieJk

= (1= P})(L — Cup)lja® — w"|| - []a* — 2*]]

< (L= Cip)lla” — w"|| - [Ja* — 27|
Here, (a) follows from the Cauchy—Schwarz inequality, (b) follows from the L-smoothness and -
strong convexity of the objective function. For the second clipping, similarly, we define P§ :=
Ekl{ [|V fi (wF)]|<Car }» we have:

k = _ .wk M :E*ka
(' =a%) = En{ 53 (Call )| = VA )t i =)

i€l; <0
Ek ‘Z IV (w*) ]| = Co| [V (wF)|]) - ||z —2*]|]
ielk
S]Ek|D|Z IV (wF) =V (W) +Vf (w*)|| = Ca | Vf () ||) - |2F— 2]
( i€ly (20)
Ek|D|Z || Vfi (W) =V (W) [+][Vf (w")|| - Ca [ Vf (wF) []) - [|2F—2*|]
i€l¥
|Z D[|Vf (w")]])-[|z*—a*]]
ielk
? lﬁg (r—(Co—1)e) e[| < 0

<0

Here, (a) follows from the Cauchy—Schwarz inequality, (b) from the triangle inequality, (c) from
Assumption 3.4, and (d) from our prescribed accuracy condition together with the choice of Cs.

17
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To handle the above terms, we next examine the randomness in the w" iteration that arises both
from the coin-flipping mechanism and from the stochasticity of the noise sampling. Owing to the
independence of different sources of randomness, and in terms of the full expectation, we have:

E[||a*—w"[|-[[a* 2]
W] |1V (%) = Vf ()]
n
1
:pE[||:ck—wk||~||Vf(Ik)||

(@
< E[f[*~

}

UNe i
< —E||z*—w"|]
o’
G _ _
:;E[pllrck—x’“ Y+ (1 =p)[|aF—w* ]
(d)g k_ k-1 _ k—1_, k-1 21
SuE[IIw "+ (1=p)||x w" ] @n
G _ _ -~ o .
SEE[(HSU’“*I’“ I+ =p)l|a* =22+ (1= p)?[Ja* 2= 3+ - -
+(1=p) |z — 2O+l jw'—2°|]
G e e ~
S;E[TI(HQk Y4+ (L=p) 17" 2+ -+ (1 =p) 1|71
<SRpaa+a- 1—p)24-- 4 (1-p)*
< MG+ (1=p)+(1=p)°+---+(1-p)7]
GG GG
<n——y - € < n——B|lzF—a*|?

pue? pue

Here, (a) follows from the p-strong convexity property; (b) is due to Assumption 3.5; (¢) comes from
the iterative update rule of w*; and (d) is obtained by applying the triangle inequality. Similarly, we
also obtain the following results, which will be used in the subsequent proofs:

GG
Ellz" = w7 | Ja* 2| < n——
pi
é2
E[jw"— w1 < 772? (22)

- _ GG

E[[a* ™" [ - || Vf ()] < ="
With these preparations in place, we are now ready to proceed. For notational simplicity, in (I3))
we define DF := E||V f;(w*) — V f,(a*)||*, Ny := 8L2C?(do? + 1), Ny := 4(do? + 1)CZ, and
A = 2G% (I, — Cyp). Substituting 1) into , and taking the full expectation on both sides
of

pe?
, (T3), and (19), we obtain:
Ellz" 2 |P< (1=nut+n* (N1 + A)E||z"~2* ||+ 0’ N1 Bl jw*~ 2* |
+1° N2 D* = 2(Ef (2*) — f*)
We now consider the iterative update of {w* }eepry in DP-C4 (Linein Alg. Since w”* is updated
with a certain probability, we have:

Eljw* ™t —a*||? = pE|lz* —2*||” + (1 - p)El[w* — 27|
DMt = (1 p)D* + pE||V fi(a") — V fi(a")||? 24)
< (1—p)D* + 2Lp(Ef(a") — f*)
We define the Lyapunov function of DP-C4 as follows:

(23)

: 2N1n? 2Nyn?
@k:Eka—x*\F—I— 1M ]E||wk—x*||2—|— 27 Dk
p p

(25)

8C3(do3+1)n? D

2
LBl =" |+

b2y ML)
p

18
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Let n < min {mﬁ’ ﬁ } Then, we observe that:
2Nn? 2Non?
q)k+1:E‘|1'k+1—LL'*H2—|— 17 E||wk+1_x*”2+ 27 Dk+1
p p

2

N- 772 2N77 *
S(1—/M7+(N1+A)772+pT1)EIIw’“—x*||2+(N1n2+(1 p) pl JE|Jw*—z*|[?
+ (V. 1—p) 220 D 4 (4L 2m) (B f () — £+
+(Na*+(1—p) —— ) ) + (4LNon*—20) (Ef (2) - f*)
[ —
<0
2N 7> 2Non?
= (L (3N + AP Bl 4 (1= 5) =Bt P4+ (1- 5) =2 DF
<1
(26)
That is,
OFH < maz{l—pn+ (3N, +A)n?, 1-%} Lok < P on

——

<1 1

C.3 PROOF OF THEOREM [2]

Unlike Thm[T] here we study the general convergence analysis in the non-convex setting without im-
posing stringent restrictions on the clipping coefficients C; and C5. Therefore, we need to consider
the clipping bias in a more refined manner. First, since f(z) is L-smooth, we have:

P = Fa¥) < (TR, 2 = ab) 4 2t o
(28)
L 2

= —n(Vf(z"), 5") + = llg" I

Taking the expectation on both sides of the inequality, and let us define g* := g¥ — n¥ — nk, we

obtain:
L 2
Exlf (@] - f(a*) < —nEu(VF(a*),g") + SEEulllg +nf +n8l] 29

Our current goal is to derive a lower bound for E; (V f(z*), g*) and an upper bound for E[||g* +
n¥ + nk||?]. We first consider the upper bound of E[[|¢* + n} + n%||?]. From (15), we have:
Ex||g*|[°< 4CF||Vfs () = Vfs (wP)|? + 4dCE ot || Vf («*) = Vf (") |?
+4C3 (doz+1)[|Vf (w*)]?
< 8CT(IIVfs (M) VFs (w®)[*) +8dC ot (|| VF ()| %+ [|VF (wF)|?) - (30)
+403 (dod+1)[|Vf (w*)|]”
< 4GP (ACT (dot+1)+C3 (do3+1)) := G
We now discuss a lower bound for E; (V f(2*), g¥). Our approach is to use the gradient sampling

noise as a bridge to precisely characterize each term. Let A¥ := Vf;(z%) — Vf;(w*), A* =
Vf(z*) — Vf(wh), and &F, := AF — Ak ¢k .= YV fi(w¥) — V f(w¥), Then, we obtain:

Exlg*] = Ex| ‘S|ch2prl( ) — Vfi(w*), Cux) + |D|ch2prl wh), Coy)]

€S €D
b Ci . C2k
= Ex[(A% +&3)) - mz‘n{l, HA&’}M}] + Ek[(Vf(w’“) + 552) min{1, o 2

19
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(31)
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Therefore, for Ex(V f(2*), g*), we have:

Cik
Ak x|
Cax
IV f(wk) + &5

_ k Y _ O
= <Vf(l’ )7Ek[(A +§1i) mm{l, ||Ak+fﬁ”

C:=Coupled Term

+ (VF ("), B [(Vf(w*) + &) - min{1,

Ex(Vf(a*), %) = (Vf(2"), Ex[(A* + &) - min{1 }

+ Ee[(Vf(w") + &5;) - min{1, 1)

3 =A%)

Cox,
[V f(wk) + 5]

A:=Anchor Term

1= Vfw*) + V(b))

(32)
We denote PY :=Ex[1arteb j<cyt)s P5 = Bi[lg v p(wr)seh | <Capyl» and assume that Cy > 1
and C; > 1. We then examine the two terms separately. First, for the term A, we have:

Cor

Ex[(Vf(w®) + &) - min{1, m

}=

Cop - (Vf(wF) +&5)
Ex[(Vf(w® k)1 E 2i)
WV &0 - Lavrwn resiisonn] T Bl = G e T HIvswn +egii>canl

(33)

Substituting into (32), we obtain:

Cox
IV f(wk) + 5|
= [[VF(@®)]]? + (Vf(a"), =V f(w*) + Ex[(VF (@) + EF) - 19 k) 4es 1< Can}]
Cay, - (Vf(w*) +€5) q o )
HVf(wk) + 551” {IVf(w*)+£5,11>Coar }
= [IVF(@)1P + Ex[(V (@), =V F(w*) (Lo ) ves, <oy + 10197 0k) 465,115 Coe})
k k
+ (V") +€55) - 1w puws) ek 1<) + C2|7V§”V(1Jul’(“;l}+)g£;jm) RO A
= [[VF(@)1? + Ee[(VF(2"), & 11w prwr)+es. | <0y )]

Cor - (V k k.
+ Bl(7 (o), (L) )11 0y 5]

A=V + (Vf(2"), =V (w*) + B[ (Vf(w") + &;) - min{1, )

+ Eg

(34)
Focusing on the final term of (34) alone, we obtain:

Cor - (VF(w) + &
R O SR ({0 TIE )

CollV () |(V F(w*) + €,
5 II%Ufgm'ui)Jr(?é%I)I 2)*(f(wk)+§§i)+ffi]'1{||Vf<wk)+§§m>c%}>]

[Col |V f ()| = [V f (w") + IV F(w*) +&5;)

=Ec[(Vf(z"),[

Col |V F(wh)|| = ||V f(w") + E51(V f(wF) + €5,
=7, IHVf((Z’f))%SiI'I]( s )'1{||Vf(w’“)+£§,;\\>cgk}>]
FEL[(Vf(2%), 5 1419 p(r )1t 150}

(35)
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Substituting into (34), we obtain:

A= |IVF) + Eel(VF(25), & (1w paus) et 1<omd T 1019 fu) ek, 150m)))]
Col [V f ()| = [V f (w*) + 5[ 1(V f (") + &)
E \V/ k , [ 21 21 1 )
+E(V () IV (@b + €| {IVF k) +85,11>Can )]

(36)

Since 1{\|Vf(w’“)+£§i|\ﬁc2k} + 1{|\Vf(w’“)+£§i|\>02k} = 1, and C2va(wk)|| - ||vf(wk) +§§z|| 2

Co||Vf (w”) || — || Vf (w*)[| — ||€5,]|, together with the facts that Ex[¢5;] = 0 and (Co||Vf (wh)|| —

|V f(wk) + €5 - L{j|wf (wh)+€k | >Cary < 0, we can, by applying the Cauchy inequality, derive a

lower bound for A:

A=||Vf@h)]?
v k k.
+ Bl sty et 1 0a [CoIV )| = 19 705) + €511 (), R Sy
<0 2
(@)
> |IVF @)+ Er[L( v wh)reb, 15 Cant - (C2= DIV (@) =11€5:]]] - [V f ()]
(®)
> IV F @) P+ Erllyw s wr)ter, |15 anp [Col [V F ()| = [[V £ (@) + &[] - [V £ (2*)][]
= [V (@)1 + Br[L{v pawr) et 1> Cany - (Co= DIV f ()| - [V F(@)]]]
— Bl v (b )rek [1>Cany €51 - IV £ (@]
37

Here, (a) follows from the Cauchy inequality, and (b) follows from the triangle inequality. We now
consider the third term in the above expression. Let Sy denote the set of £5; such that |V f(w*) +
5|l > Cog, and define Py, , := Pr(¢¥ € Sy, ||€¥|| = 2). Then, we have:

— En (19 f(wh)eh 1>y 115l - IV £ ()]
= — Ex[lieres,y [1E°]] - [[VF ()]

400
=—||Vf(w’“)||-/0 Py, zd

+oo
—— VI [ VP Psds (38)
0
o0 +00
— ||V f ()] - P..dz)- 2p, . d
> IV F )| \/</ ety ([ R

> [V /(01— BY) - /Exllieh ]I

Thus, we can obtain:

AZ[|Vf(@")|P+1A=P5)(Coa= DIV F ()| [V ()] = [V £ ()] - \/(1 —P5)- \/Ek[llfé%\m
(39)
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The treatment of C' is analogous to that of A. Due to the symmetry between V f (w") and A in the
expressions for A and C, and by referring to (32)-(39), we can obtain:

AF gk

Taryeny O AT+ D - Lyaeseri>cu)
1%

<0
> Ex[(Cux — ||A" + €511) - Tyarter | scuy] - V(M)
> Ex [(Cr||AM] = [JAM] = [1€51D) - 1jartes, scny] - V@)
(
|

C = (Vf(z"),Es]

> Ex[(Cr = DIIAF] - Tyarger sy - V()] (40)
—ExllIVF@) - 11EG - g arses 1>01e}]

> (1= PH)(Cy = D|AF|[IV £ ()] = [V f ()] - \/(1 - Py)- \/]Ek[\lfﬁllg]

> (1=P)(Cy = V||V f(2*) = V()] - [V f (")

—IVAE] (0~ BE) - JExlllE )

By Assumption 3.4, we have E[||£5,|%] = Var(Vf;) < 72. Moreover, (F, = AF — AF = Vf; (2F) —
Vi (wk)—Vf (2%)+Vf (wk) = (Vfi (2%) =V f (2)) = (Vfi (w*) = Vf (w)) = 5, — €L, which implies

Ex||£F;||? <472, Combining the results from both terms, we obtain:

Ex[(V£(2"),g")] > V()P + (1= P})(C1 = DIV @) [V F (") = Vf(wh)]]
+ (1=B5)(Co= D[V (") [VF ()] = 2]V f @) - /(1 = PF) - 7 (41)

— IV (1 =PF) -7

Below, we consider two cases, namely ||V f(z*)|| > 37 and ||V f(z¥)| < 37, and we will use
probabilities to combine them. For the former case, we have:

— ok — ok
B(VF(at). ¢ > (1 - 2B VIR gy
k
LB VIR ooty
— (21 —BY) + /(- BV bl
+ (L BE) (- DIV A @) V7)) @)
=B - DIVAEI VA6 - 9 )
> (1= VIR o 2

+ (1=P3)(Co= D[V f(=")[[-||V £ (w")]]
+(1=PH)(Cr = DIV - [V f(@*) = VF(wh)]| > 0
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In summary, by combining the two cases using probabilities, let P¥ := Pr(||V f(z*)|| < 37 | 2%71).
Then, we have:

k
Bl(V£(a).g0) > (1~ Py - APV RS gy

)
+ (1= P")(A=P5)(Co =DV f (@) [|V f ("]
+ (1 =P5)(1 = P{)(Cr = D[V f(2")[| [V f(2*) = Vf(wh)]]
+ PRIV (M) + PR1 = PY)(CL = DIV f O] - [V F(2*) = Vf(wh)]

+PP1=P5)(Co = DIV f (") IV F(w®)[| = 2P|V f(@®)]] - /(1 —PF) - 7

—PH[VFENI A -P5) T

py LR VI RS oty

:(1_(1_

0<AF<1
+ (1=P5)(Co= 1) [V F(@)|[- IV f (w")]|
N—————
AE>0
+ (1 =PY)(Cr =D [IVf(@")]l2- [V f (") = V()]
N— —
AE>0

Pk
e REVIERS gy e

0<Ak<1

(43)
For notational convenience, we further define and restate:

A=1-2 1 PF)(24/1-Pk 44 /1=PK), Ab:=(1-P5)(Cy—1), \s:=(1-P¥)(C,-1)

1 p—
bim ST PE LB, PRi=Pr (V@) <37 | 25,

k. k.
Py = Ex [Lyv s -vr@slasont]s P2 = Er[lgvswhlacon]-
By substituting #3)), (30) into (29), taking the full expectation on both sides of the inequality, sum-

ming over k = 1 to 7', and setting n = %w,we obtain:
T
Z [A’“\Ivf NP+ X3V f (= )H-HVf(w’“)H+A'§|\Vf(x’“)|\-I\Vf(x’“)—vf(w’“)\l}
k:

xr) — zT = - S
. f()nff() F IS Gt 2 S E e v

- \/ (fa) = f@)LG | 1 SOE[N - 3719 £ ]
k=1 (44)

C.4 PROOF OF THEOREM [4]
The proof of Thm[d]is similar to that of Thm[I] Following the previous approach, we focus mainly

on presenting the differences. The treatment of expectations is similar; for simplicity, we do not
distinguish them in the notation. Continuing from (14}, we first consider the upper bound of E||§* ||2.
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For any precision e > 0, when HVf(w)H, 2% — 2|, |w® — 2*|| > e, we have:

E[|g*|*=E][ |S|chzp Vfi(aF) = Vi (w"), Oy |z* —w"]|)

€S
1 . _
+ clip(Vfi(w®), Ca||Vf (w*~1)[])+nf +n5 ][]
iED

<4E|| chpwz )=Vfi(w"), Cil|z* —w*]])]”

|S|z€S

+4E|I|D|chw (Vfi(w"), Col[Vf (w*= 1))

€D
+4do? C?E||z* —w”||*4+4do2 C2E|| VF (w*~1)||?
<4C%(do?+1)E||zF— a2 4 —w®||?
+4C3 (dog+ E||Vf (w*) — (Vf (w”) = Vf (w*= )]
<8C%(do?+1)E||z"—2*||*+8CF (dof +1)E||w"—z*||?
+8C3 (do+1)E||Vf (w")|[*+8C3 (do3+ 1)E||Vf (w") — Vf (" 1)]?

o~ T~

(a) (45)
< 8CE(dof+1)E||[z*—z*|[*4+-8CF (do? +1)E||wh—z*| [

+8C3 (dos+1)E||Vf (w")|[*+8C5 L* (do3+ 1)E[|w* — w"~|?
(b)

< 8C%(do? +1)E||z*—z*||*+8C?(do? +1)E||w*—2*||?

éz

+80§(da§+1)153|\Vf(w’“)||2+8022L2(da§+1)772][P .2
<8C%(do? +1)E||z*—z*||+8C?(do? +1)E| |w"—z*||?

G? N
+8022(d<f§+1)E|\Vf(wk)l|2+4C§L2(d0§+1)n2@(15|Iwk—w |1+ Eljw*~a*||%)

< (8CF(doi+1)+ 70202 (do3+1)) (El|a*~a*| [+ Elw*~a*||?)

::Nl
+8C3 (do3+1) BV, (w*) — Vf(a*) |2
::NQ —DlC
Where, (a) follows from the L smooth property, and (b) follows from , G is given by (| .

Similarly,
E||g* HS\/]EH@’“II2

< (403 (do3+1) ||z —w | [P+4C3 (do3+1)| | Vf (wF 1) | |?) 2

401(d01 1) o k—1 i
<( 2 IV f (2*)=Vf (w)||*+4C3 (do3+1)||Vf (w"1)]?) 46)
2 2
< (BCdoi TG (dgfl) & 12 (do2e1)G)

2G ~
=2 203 (do 1) + 1203 (do3t 1) = G
I
Similarly, for the two types of clipping bias, we have:

b= 5] chzp (Ak, Cy||z*—wk])) — Ak,

€S

‘D‘chzpwz w®), Gl [V f (" ]) = VF(w")

i€D
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Following all the previously introduced notations, we have:

- 5| &1 O elip(AF, Oy w]]) - A

€S
Ci
- +Z\| AR A
ieJy icJk
Clk k
- A
ISI Z asy @7
(Cullz"—w"|| — [|AF]])-
- 73 Z] ||M||
v <0
(Col |V (0" )| =1V (W) ) s 7T
" |D|§k IVF (b
<0
Similarly, for the first type of clipping, we define P¥ := E;[1 {IIak|<Cy, 3> and we have:
* ]' Ak *
E[(bf, —wk>]:E[<@Z(Clllw’“— *1 - lIAF]]) - A S —a")]
ieJk <0 v
1 . .
SE[@ D IAF]] = Cllz*—w"|l) - Ja*~a*|]
ieJ¥
1 . (48)
< E[@ D (Llle* = wk|| = Cillz* = wh]]) - 2" —2*]
ieJk
<SE(1-PH)(L—C)llz" —w¥[| - [|2* — 27
(a) GG
< n(L — E||z*—z*|)?
< (L= C) "Bt
Here, (a) follows directly from . For the second type of clipping, we define P§ :=
Ek[l{HVfL(wk)H<C2k}] and we have:
E(b, 2"~ x") (Col|VF (w* D = 1Vfi (W) ) s 2™ —a™)
: D;ﬂ VF(wh)]
v <0
<Eﬁz (V£ (™) || = Cal [Vf (= )]) - ||l2* 2]
ieJk
<Eﬁz [IV£i (w)|| = Cal [V (") |+ Co| |V (w") =V (w" )| [) || " 27|
ieJk
Z DIIVF (w*)]])+Col[Vf (w*) =V (w*)]])- ||z ~a*]]
|eJ’c
% <0
|D| > CollVf (k) =Vf (w" )| ||| a* |
i€Jk
<E(1 - P5)LOy[[w® — w* 1| - [|2* — 27|
(@)
< LpGoE[ja* ™t — | - |2* — 2]
(t) G
< nLpCy ;€
phe
(e) §
) ToRi s [P
e
(49)
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Here, (a) comes from the iterative update rule of w"*; (b) follows directly from (22] ; and (c) is due to
the precision conditions we imposed. In summary, let A:= IQ)Gg [(pCa+41)L—C4]. We then consider
the worst case, i.e., A > 0. In this case, similarly, we have:

E||lz*H—2*||*=E||a"—2*—ng"||?
=E||zF—a*| P+ E[2n(GF, 2 — 2*)] + n*E||g"||?
<E||z*—2*| |+ 2nE(Vf (a*) + b} + b5, 2%~ 2*) +n°E||g"||?

c * * c K * ~
<E||z"~a*[[*+2n (f —Ef(wk)—(g—n JE||z*—a*(|*)+°El|g"||?

pu—strongly convex

=Elz"~a2*||*(1—nu+024) + 2n(f*~Ef (")) +°El|g"||*

In |l let DF = E||Vf;(w*) — Vfi(z*)||?, Ny := 8CZ(do?+1)+ iz2 G?C2(do3+1), Ny :=
8C%(do3+1). Substituting these into , we obtain:

El|z" =[P < (1=nput* (N1 + A)E[ "~ 2|4+’ N E|[w"— 2*|

51
PN, D — 2(ES (") — f) oY

Similarly, from the iterative update rule, we have:
E|lw**! — 2*|* = pE||z* — 2*|]* + (1 — p)E|[w" — 2*||?
D**' = (1 — p)D* + pE||V fi(z*) — V fi(z*)]? (52)
< (1= p)D* +2Lp(Ef(z*) — f*)

We define the Lyapunov function of the system as follows:

2N
OF = E|jz*—a*|*+ Ij” E [u*

2Non?

*H2+ 27 Dk (53)

p
Similarly, let 7 < min{ s, ﬁ }, then we have:

2
q)k’-l-l:]Eka—&-l *H +2N177 EH k+1_ *H2+2N277 Dk:-‘rl
p p
2N n? 2N1n
S(l—un+(N1+A)n2+me)Ellwk 2P+ (N (1=p) == Bt

- (NamP(1— p)zN;, )D¥ 4 (ALNgif—20) (B () — £*)

<0
2N1n? 2N,n?
= (L (N1 + AP Bl (1= 5) =Bt P+ (1- 5) =2 DF
<1
(54
From this we can obtain the following:
OFH < maz{l—pn+ (3N, +A)n?, 1—%’} Lok < P (55)
which implies an exponential decay of the Lyapunov function.
C.5 PROOF OF THEOREM[3]
Similar to DP-C4, we first derive the upper bound of E||3*||2. From , we have:
E||g"(]°< 4CF (do+1)||a"—w"|P+403 (do3+1) || Vf (w* )| ? (56)

< 40 (do+1)+4G%C2 (dos+1) :== G
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Next, we discuss the lower bound of E(V f(z*), g*). Let AF = Vf;(z%) — Vfi(w*), AF =
Vf(zh) — Vf(wh), & = AF — Ak ¢k .= V f;(w*) — V f(w"). Similarly, we can obtain:

E(V f(2*),g")
Ck Cax

= E(Vf(z"), Ex[(A" + &F) - min{l, ————} + (Vf(w*) + &) - min{1, —————}])
A+ e minl e ) ) il 15 k) + g5
) Cik
= RB(Vf(z*), Er[(AF + &F) - min{l, ————1] — A*
C:=Coupled Term
) Cop, k k
E(V f ("), B [(V f(w*) + &5;) - min{1, ———~———} = Vf(w") + V f(z"))
! : IV 700h) + &5
A:=Anchor Term
(57)

We denote P := Ek[l{”Ak+Ellci”§Clk}],]P§ = B[l fwh) ek, | <Cory)» and assume that C1 > 1
and Co > 1. Similarly, for the Anchor Term A, we have:

- B Vf U)k +fki
A=V @) BB Lyogunya s 150m(Cal VA L)l = 97 () + €5 1) (V7 (o), L0881

: ’ |[Vf (w*) +&5;1|

<0

>E||Vf(z")|[*+E | Er L 11w (k) 48, 11> Can ) (Col|Vf (w* D)=V (w*)+&5i|1)- ||Vf($k)\|}
>E[|Vf (z")|[*+E _Ekl{nw‘(wk)%gi||>02k}'(Cz||Vf(wk71)|| —[IVf (w*)||— ||§§i||)'||vf(17k)||}
>E||Vf(z*)||*+E B L()19f ()68, 11> Can ) (Cal|Vf (w)]|

—Ca|Vf (w") — Vf(wk_l)\l—IIVf(wk)H—Héé“il\)-llvf(xk)ll}

(a)
> B|VF (@) *+E [ExL{ugury et >0y (Co = DIVFb)] =gk lD- V7 @)1l
same as DP—C4

*E[Ek1{||Vf(wk)+f§,i||>czk}L|\wk - wk71||'|\vf(93k)|\}

> | Vf (%) |-+ E [ (1=P5)(Ca = DI [VF )] 1VF (w*) ] = B[|[9f ()] 7/ 1P
—LpE[la* =" — w1V (@)

®) .
> E|[Vf (2)] 4| (1 P5) (C2— DI [V @) ||- IV (w®) || - B[V (*)]|-7/1-P| = - LGG
(38)
Here, (a) follows the same treatment as in DP-C4, and (b) can be directly obtained from (22).
Similarly, for the Coupled Term C, we have:

C=E(VF(a), Bu| b (Cux — 185+ €511 Larsepyimens) )
||AF + &3] v
<0
>E[E4[(Cu — 1A + €511) - 1 ar et iscnn] - 19 @) ]
>E[Bxl(Calla® — w* |l = 1AM] = [1€5) - Larsetiscun] - 197 @]

Y

C
E[(Z = DIAYEaLarset, > 0,0 IV @I —E[IVF @) Ex[l1Eh] Liaret 15c00]
(

> E(1 - )(* = DAYV (@) = EIIVF ()] \/(1 —Py)- \/Ek[l\ﬁﬁ\m

01

> B(1 - P)(E = DI[VFE") = VA @bV 0] - 2BV £)]] - /(1 - PY)

(59)
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Combining the results of the two terms, we obtain:
C
E[(Vf(z"),9")] > B[V f(«")[]> + E(1 - ﬁ”'f)(?1 —D||IVfE) - IV (") = VF(wh)]|
+ E(1—B§) (Co—D)||V £ (@*)||- IV £ (w¥)]| - 2BV f ()| - /(1 - BY) - 7

~E[|VfE@)- /(1 ~P5) -7~ LGG
(60)
Similar to the treatment in (42) and , denoting P* := Pr(||Vf(z*)| < 37 | 2*~1), we have:

B(9f(a"). o)+ LGy > E (1- (129 VI ELEVIES ) gy o
0<AF<1
L E (1-B§)(Ca1) [V )]V £ )]
—_————
Ak>0
C 61
+E(0-Bh (L ) V1974 -] ©b
N—_— ————
Ak>0
(21— IP”“+\/ \Vf e
0<Ak<1

For notational simplicity, we further define and restate:

C
/\’f_lffl PF)(24/1 Pk 41 /1-P%), =(1-P5H)(Cy—1), Ag;:(kp'f)(fhl)

1
AR gpk(z\ﬁ Sy /1-BY), PFi=Pr(|Vf(@@h) <37 | <5,

k .__ k .__
P == Ey[Lvseh)-vhwhi<ont] B3 = Ee[L{vrwr)<omy]-

2(f (%)= f(z*))

Similarly, substituting into 1) and summing over the iterations, and setting n = TLO(14C)

we obtain:

T
%ZE[A‘HIW@’“W + XNV )NV @)+ A1V @O IV F(2*) ~ Vf(w’“)\l}
k=1

20 — f(z* T a A -
SO T WS G 2SN 16G+ £ S R[N 37 )|
k=1

nT 2 k=1 T k=1 T
N ~ T
. # IEESTESTETETOI S S V]

(62)

D PROOFS OF PRIVACY ANALYSIS

In this section, we present the detailed proofs of the privacy results, i.e., Thm[3]. It is worth noting
that we only discuss the privacy guarantees of DP-C4. For DP-C4™, the privacy analysis is almost
identical, since they share similar iterative formats. The only difference lies in the clipping coef-
ficients C1j, and Cy, which leads to nearly the same conclusions. Therefore, we only present the
privacy analysis for DP-C4.

28



Under review as a conference paper at ICLR 2026

D.1 PROOF OF THEOREM[3]

We utilize Rényi Differential Privacy (RDP) as a bridge to analyze the privacy guarantees of DP-C4.
Our insight is that each update of DP-C4 consists of two components, namely the Coupled Term and
the Anchor Term, and we allocate different privacy budget weights to these components to discuss
the corresponding noise levels. We first introduce several definitions and lemmas:

Definition 3 (Rényi Differential Privacy (RDP) (Mironov, 2017))). A randomized mechanism M :
D — R satisfies (o, )-RDP (a € (1,00), € > 0) if for any datasets D, D’ € D with dy(D,D’) =

1, it holds that
M(D)(0) \«
1 log Eoopm (D) [(M(D’)(o)) <g,

where M(D)(o) denotes the density of M(D) at o.

Lemma 2 (Post-processing Property of RDP (Mironov, 2017)). Let M : D — R be («,€)-RDP
and g : R — R’ be any function. Then the composed mechanism g o M : D — R’ is also
(a,)-RDP.

Lemma 3 (Composition of RDP Mechanisms (Mironov, 2017)). Let M, : Ry X---XRp_1 XD —
R, be (a,e,)-RDP for r € [R]. Then the mechanism

M(D) := (M1(D), My(My(D),D),..., Mr(M1(D),...,D))
is (0, Y | ,)-RDP.
Lemma 4 (Conversion from RDP to DP (Mironov, 2017)). If a mechanism M is (c, €)-RDP, then
M also satisfies (e + %, 8)-DP for any § € (0,1).
Lemma 5 (Gaussian Mechanism (Mironov, [2017)). Given a function h, the Gaussian Mechanism
M(D) := h(D) + N(0,0%I)
satisfies (v, «A%(h)/(202))-RDP for every o € (1, 00).

With these preparations, we first analyze the sensitivity of each component in DP-C4(*+), We have
the following lemma:

Lemma 6 ({5-sensitivity). In Algorlthml the sensitivities of the Coupled Term g¥ and the Anchor
Term gk are given by

_ 2C, 209
Alk—mv Agy = Dl
Proof. For the Coupled Term, we have:
g = |S|Zchp Vfi(a*) = Vfi(w?), Cuy).
i€S
The /»-sensitivity of gf is bounded by
1k . (kY ) (o k
Ig?;f\\gl gr || = rpax |S|chw(vfz(w) Vfi(w" |5f|§,c“p Vfi(a*) = V fi(w ))H
= |5| lelip(V f3(z*) = V f;(w")) = clip(V £;(2*) = V£ (w"))]
B : Cig N
R |S|Hmm{||wj<xk> g A - V)
. Cik ok 1k
— min 1 (V") = V("))
{nw;(xk)—w;(wk)u s dell

< s 17 (oo { ||ij<xk>c—1kvfj<wk>|| THVHEH = Va0
i {gem ey O - 950

201
5]

= A1k~
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For the Anchor Term, we have:
1 .
g5 = D] > clip(V fi(w"), Cax).
ieD

The ¢5-sensitivity of g5 can be bounded as

max | g5 — g3 || = max |le| > Viiwh) - |5,| > Vfi(w’“)H
’ ’ i€D €D’
= a5V (0) = V)]
= IDn,ab)§|T?|H min {N&%, 1}ij(wk') — min {Wf??;k)”, 1}ijl(wk)H
< sl o e o]
20y
> W = Aoy

O

With all the necessary preparations in place, we now proceed to the next step. We focus on analyzing
Routines 1 and 2; the analysis for the remaining paths is similar, yielding the same conclusions. First,
we derive an RDP bound for each term g¥ and g5.

For g, from Lemmal3| when we add noise n§ ~ N(0,03C%,), the term g satisfies (c, 2a/ (o7 -
|S|?))-RDP, where the sensitivity of g¥ is given in Lemma

Similarly, for g5, from LemmalS| when we add noise n§ ~ N(0,03C%,), the term g4 satisfies
(a,2a/ (02 - |D|?))-RDP, where the sensitivity of g5 is given in Lemma@f

From Lemma[3] Alg[3|satisfies
2aT 2aTp
ot |82 od - [DP?
Then, by Lemma[d] it follows that Algorithm 3]satisfies
( 2aT 2aTp  log(1/9)
of|S|*  o3DP a1

(a )-RDP.

, 5) -DP.

For any target DP parameters (epp, dpp), we discuss the variance of these noises through the allo-
cation of the privacy budget. We set:

1 _ log(1/9)

or a7 | 20T

1 _ a alp

lepp = 20T 4 20Tp 63
2€DP = 32isF T o3iDP ©3)
opp =20

From the first line of the above equation, we obtain &« = 1 + 2log(1/épp)/epp. In the following,
under the constraint $epp = UQ%ST‘Z + fflg’l’z , we aim to minimize the total noise magnitude added
1 2

to the gradient estimator per iteration, i.e., O'% + 0%.

Let %: 1Bepp, 02;'73’2:%(1—5)601:, where 3 € (0,1). Solving for o7 and o3 yields:

4aT 9 4aTp
= s g = —————
BISPPepp’ 2 (1 - B)[DPepp
Continuing the above objective, we aim to minimize the total noise per step by adjusting the budget

2
allocation coefficient 3, i.e., ming o% +J§ ,and let = “g“z > 1. That is,

o? (64)

1
min — + P

— 65
seon B (1-B)0 7 ()
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Taking the derivative with respect to 3 and setting it to zero, we obtain:

dy 1, _»
a5~ @ tea-pr " o

Solving this, we obtain the value of /3 that minimizes ming 0% + 03 as:

1
= — (67)
SRRV
Substituting back into (64), we obtain:
2 4T(210g(1/§pp)+epp) D
1= 2 : (1 + 7)’
1SPPebp 0
4T 210g 1/6pp) +€epp
7y = LRV LOE) (VG + ) (68)
IDI*ehp
_ 4T (2log(1/0pp) +€pP) P p
- ISP AARTL
DP
Let 02 = 4T(210g‘g‘/2igp Jtepr) i js straightforward to see that o2 = 03p.sgp coincides exactly
DP
with the noise magnitude used in DP-SGD. In summary, we have:
p p p
(0%, B nouine 102 = (1415107, (& - 2)07) ©9)
For (02 + 02) Routine 182 SiNCE % is very small, we have:
p p
(07 4 03) Routine 182 = 1 + \/7 9 \/;)02
(70)

(1+\/;) 0%~ o?

k+1 — ph+1 under T iterations, we only compute g¥

For Routines 3 and 4, since gf = 0 when w
for T'(1—p) rounds. Similarly, we can obtain:

(01, 03) Routine 3&4 = ((1—p+\/ @)02, (g—i—\/ @)02) (71)

2 2 215 )
For (07 + 03) Routine 3&4, let p= ﬁ, we have:

1—
(U1+02)Routme3&4— (1— p—l—\/i g W)UQ

_ _g_i_ 5 L P2y o2 72
2 :
=(1- (5 +5)-06") + 7)o’

<(1-0@") o <a?

For comparison, in the case of DP-SVRG, The noise added to the gradient estimator consists of
three components. Similarly, we can derive that:

[2p
DP—-SVRG
(01 + 02 + US)Routzne 1&2 — (1 + ?)2 : 02 > 02

DP—-SVRG p
(U% + J% + Ug)Routine 3&4 — ( 2(1 - p) +

(73)

From this, the multipliers for each kind of noise are summarized in the following table:
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Table 3: Routine 1&2

2 2 2
Methods | obr-sep TDP-SVRG TDp_cath
Noise Multiplier ‘ o? o2 (1+4/22)? o2 (1+,/5)?
- 2 _.2 2 2 2 ~ o2
Comparison ‘ Obp—SGD=0" ODp_SVvRG>0" Ophp_cams =0
Table 4: Routine 3&4
Methods o o o?
DP-SGD DP-SVRG DP—C4(+)
Noise Multiplier | o? o2 (2(1-p)++/5)? o (VI=p+/F)?
- 2 _2 2 2 2 2
Comparison | 0hp_gsgp=0 Ohp_svRG >0 Ohp_ o) <O

E ADDITIONAL EXPERIMENTS

In this section, we provide additional information and results on our numerical experiments that are
not given in the main paper due to the space limitation.

Datasets Information We conduct experiments on Mushroom, MNIST, CIFAR-10, CIFAR-100,
IMDb, and GLUE-SST-2. The information of all datasets used is summarized in Table 3]

Table 5: The summary of the datasets used in the experiments.

Dataset Samples Type Classes Task
Mushroom 8,124 Tabular 2 SVM
MNIST 70,000 Image (28 28, Gray) 10 Cv
CIFAR-10 60,000 Image (32x32, RGB) 10 Ccv
CIFAR-100 60,000 Image (32x32, RGB) 100 CV
IMDb 50,000 Text (Reviews) 2 NLP
GLUE-SST-2 67,349 Text (Sentences) 2 NLP

Results on Different C; and C> First, we provide an ablation study on the selection of clipping
thresholds C and C5. We conduct experiments on the CIFAR-10 dataset with the learning rate set
to 7 = 0.025 and the privacy parameter (¢, ) = (5,107°). Following the main experiment, we set

the mini-batch size to |S| = 256, the large-batch size to [D’| = 4096 and p = 5| = 0.125. We

fix C = 1 and vary C; and C5 over the range {0.125,0.25,0.5,1,2,4, 8,16, 32, 64}. We report the
results for each configuration and compare them against DP-SGD. The experimental results of DP-
C4 and DP-C4™ are presented in Figure and Figure respectively. In each cell of the heatmap,
the color encodes the corresponding accuracy, with warmer shades indicating higher accuracy and
cooler shades indicating lower accuracy. Each cell further reports the accuracy associated with the
corresponding clipping thresholds, while the value in parentheses denotes the accuracy difference
relative to DP-SGD.

On the one hand, for both DP-C4 and DP-C4", when examining a single row or column of the
grid, we observe that increasing C initially improves accuracy, which subsequently decreases; a
similar trend is observed when increasing C5. More specifically, as C; and Cy gradually increase,
the injected noise becomes larger, leading to a gradual degradation in accuracy until it converges to
a constant value. In particular, when C; = C; = 64, the accuracies of both DP-C4 and DP-C4+
converge to 61.16, since in this case a constant clipping threshold is applied at each iteration (i.e.,
in DP-C4: C1x = min{C,C4||Ak||} = C, Ca = min{C, Cs||Vf(w")||} = C; in DP-C4*:
C1x = min{C, C ||z* — wk||} = C, Oy = min{C, Co|| Vf(wk=1)||} = O).
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Figure 2: Accuracy of DP-C4 with different C; and Cy
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Figure 3: Accuracy of DP-C4 ™ with different C; and Co
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On the other hand, when C' is small, the accuracy does not decrease significantly. This is because as
C} — 0, the coupled term of DP-C4(+) vanishes, which essentially reduces the method to a large-
batch variant of delayed DP-SGD. The iterative structure is thus not severely disrupted, while the
injected noise is substantially reduced. In contrast, when Cs is small, accuracy drops sharply. This is
due to the excessive clipping bias, which prevents effective updates (i.e., ﬁ >ies clip(V fi(a*) —

V fi(w*) + 157 Ciep clin(V fi(w*)) = 15 X clin(Vfi(a*) — Vfi(w"))). In summary, the
vanishing of the coupled term can be tolerated since it still preserves an effective optimization struc-
ture, whereas the vanishing of the anchor term is detrimental, as it leads to severe performance
degradation.

Results on Different C' We also conduct an ablation study on the overall clipping threshold C'.
The experiments are performed on CIFAR-10 with n = 0.025, |S| = 256, |D’| = 4096, the
privacy parameter (¢,0) = (5,107°), and p = 0.125. We fix C; = Cy = 1 and vary C over
the set {0.125,0.25,0.5, 1,2, 4,8, 16, 32,64}. The results comparing DP-C4(*) with DP-SGD are
summarized in Table

Table 6: Test accuracy of different methods on different clipping threshold C.

Values of Clipping Threshold C
125  0.25 0.5 1 2 4 8 16 32 64

DP-SGD 5491 5536 5342 53.05 41.01 2740 1836 1641 1493 10.74
DP-C4 55.39 5991 6278 61.89 59.84 59.80 59.65 59.65 59.65 59.65
DP-C4t  55.84 5922 61.52 6450 61.30 52.81 42.14 34.89 2825 2441

Method

It can be observed that, on the one hand, as C' decreases, the accuracy of both DP-SGD and DP-
C4() first increases and then decreases. This behavior is attributed to the reduction of the injected
noise and the simultaneous growth of the clipping bias. When C' becomes sufficiently small, ev-
ery term is clipped on a per-sample basis, and thus the iterations of all three methods resemble
a normalized update scheme. On the other hand, as C increases, the accuracy of DP-SGD drops
rapidly, while that of DP-C4™ decreases more slowly, and DP-C4 eventually converges to a fixed
accuracy level of 59.65%. This robustness stems from the fact that the effective clipping thresh-
olds of DP-C4 are determined by Cy;, = min{C, Cy||Vfs(z¥) — Vfs(w")||} < 201G, Co =
min{C, C3||Vf(w*)||} < CoG, which are governed by the gradient difference and the full gra-
dient, and therefore do not grow unbounded. In contrast, for DP-C4™, the clipping coefficient of
the coupled term is given by C1j, = min{C, C1||z* — w¥||}, as the iterations proceed, ||z* — w"||
may occasionally become relatively large with non-negligible probability, which in turn introduces
a larger amount of noise and leads to performance degradation.

Results on Different Routine We further conduct experiments on CIFAR-10 using different rou-
tines. We fix C' = C1 = (3 = 1, while keeping the remaining parameters unchanged. The results

are reported in Table[7]

Table 7: Test accuracy of DP-C4(*) on different routines.

Different Routines
2 3 4

DP-C4 61.89 62.16 61.23 62.10
DP-C4T 6450 64.39 63.97 64.28

Method

We observe that the results of the four routines are similar. This is because the different routines only
modify the update strategy of w"* and do not alter the intrinsic properties of the DP-C4(*) iterative
scheme, so that their behavior is largely similar in expectation.

Results on Different Large Batchsizes We conduct experiments on CIFAR-10 using DP-C4(+)
under different large-batch sizes. The learning rate is set to n = 0.025, with C = C; = (3 = 1,
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|S| = 256, and p = 0.125. We vary the large-batch size as |D’| € {512=2-|S|,22|S|, 23.|5], 2*
|S|, 2% |S| =8192}, and record the corresponding accuracies of DP-C4(*). The detailed results are
presented in Table[S]

Table 8: Test accuracy of DP-C4(t) on different large-batch sizes.

Different Large-batch Sizes
512 1024 2048 4096 8192

DP-C4 44.18 52.60 58.68 61.89 5993
DP-C4"T  41.12 5299 6098 6450 5891

Method

We observe that as |D’| increases, the accuracy of DP-C4(*) first rises and then decreases. This
behavior occurs because a relatively small large batch leads to inaccurate estimation of the full gra-
dient and, compared to DP-SGD, introduces excessive clipping bias. Conversely, an excessively
large batch significantly increases the number of samples averaged in each iteration, which effec-
tively reduces the number of updates and consequently degrades performance.

Results on Different p We conducted experiments on CIFAR-10 to evaluate DP-C4(*) under
different update probabilities p. We set the learning rate to n = 0.025, with C' = C = Cy = 1,
|S| = 256, and |D'| = 4096. We varied p € {3, 35, 35, 57+ 35 } and recorded the corresponding
accuracy of DP-C4(*+)_ The detailed results are presented in Table

Table 9: Test accuracy of DP-C4(*) on different p.

Different p
0.5 0.25 0.125 0.0625 0.03125

DP-C4 58.92 60.83 61.89 63.40 61.76
DP-C4t  60.04 63.67 6450 63.65 62.71

Method

We can observe that as p decreases, the accuracy of DP-C4(H) first increases and then decreases.
This phenomenon can be explained as follows: when p is relatively large, the anchor term is updated
frequently, which increases the average data consumption per iteration and consequently reduces the
effective number of iterations, leading to suboptimal performance. On the other hand, when p is too
small, the anchor term is updated too infrequently, which also negatively impacts the accuracy.
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