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ABSTRACT

Differentially private (DP) stochastic optimization algorithms are widely used in
privacy-preserving deep learning, where per-sample gradient clipping and noise
injection protect sensitive information. However, these operations limit exist-
ing DP methods to converge within a constant-radius neighborhood of the first-
order stationary point, leading to solution bias and the well-known privacy-utility
trade-off. To enhance model utility, we propose a novel framework called DP-C4,
which is designed to be error-Consistently-decayed, Coupledly-clipped, solution-
Calibrated, and Convergence-guaranteed; this is the first time such a method is
proposed. Specifically, it incorporates a carefully designed coupled clipping strat-
egy and adaptive clipping thresholds, ensuring that both clipping bias and noise
variance asymptotically vanish, thereby correcting the DP-induced solution bias.
Furthermore, we develop a memory-efficient variant that reduces storage com-
plexity without compromising privacy guarantees. We prove that our method con-
verges to the optimum in strongly convex case by properly constructing a Lya-
punov function, and to a diminishing neighborhood of the first-order stationary
point in nonconvex case. Our theoretical results are supported by numerical ex-
periments.

1 INTRODUCTION

Background: Deep learning have been extensively applied in numerous fields, such as smart
homes (Li et al., 2023), transportation (Tahaei et al., 2020), and healthcare (Tang et al., 2019).
However, the individual privacy whose information is included in datasets should be protected when
the models are actually applied. Therefore, it is important to design privacy-preserving algorithms.

Differential Privacy (DP) (Dwork et al., 2006; Dwork & Roth, 2014) has emerged as the gold stan-
dard for privacy-preserving deep learning. It offers provable privacy guarantees that the algorithm
learns from sensitive data while limiting the information leaked about any individual sample. To
protect the privacy of the training data, numerous differentially private stochastic optimization
algorithms have been proposed for deep learning, such as DP stochastic graident descent (DP-
SGD) (Abadi et al., 2016). They apply per-sample gradient clipping using a fixed clipping norm
and adds Gaussian noise into the aggregated gradient , which have been successfully deployed in
both centralized (McMahan et al., 2018b; Bu et al., 2020) and federated (Geyer et al., 2017; Truex
et al., 2020) settings.

However, the perturtion introduced by gradient clipping and noise often leads to reduced model ac-
curacy. Therefore, these methods face a trade-off between model utility and privacy (Amin et al.,
2019; Zhang et al., 2023a; Xiao et al., 2023). This challenge has attracted considerable attention,
leading to the development of several improved variants of DP stochastic optimization algorithms.
In particular: (1) adaptive clipping thresholds (Andrew et al., 2021; Phan et al., 2017; Pichapati
et al., 2019) are adopted to reduce noise variance; (2) gradient normalization or group-based clip-
ping (Yang et al., 2022; Das et al., 2021; McMahan et al., 2018a) are designed to mitigate clipping
bias; and (3) iterative schemes are transferred from advanced non-DP optimizers (Zhu et al., 2024;
Murata & Suzuki, 2023; Lee, 2017) to leverage their advantageous properties. Nevertheless, gradi-
ent clipping and added noise inevitably alter the original optimization dynamics. Prior work shows
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that under settings similar to DP-SGD, regardless of how the clipping threshold or step size is cho-
sen, DP algorithms only converge with a constant bias term, i.e., converge to a neighborhood of
the first-order stationary point with a constant radius (Chen et al., 2020; Xiao et al., 2023; Song
et al., 2013). Recently, the DiceSGD algorithm (Zhang et al., 2023b) integrates an Error Feedback
mechanism to eliminate clipping bias at each iteration, enabling convergence in expectation over the
injected noise. However, it does not account for noise variance, thereby driving the iterates to drift
away from the optimum, leaving the solution bias issue. As a result, existing DP algorithms fail to
handle both clipping bias and noise variance. This naturally motivates a fundamental but important
question:

Is it possible to design a DP stochastic optimization algorithm that both clipping bias and noise
variance asymptotically vanish during iterations, thereby eliminating the issue of solution bias?

Our Contributions: We provide an affirmative answer to the question by proposing an error-
Consistently-vanishing, Coupledly-clipped, solution-Calibrated, and Convergence-guaranteed
(DP-C4) algorithmic framework. This method incorporates a carefully designed coupled clipping
strategy and adaptive clipping thresholds, thereby enforcing the clipping bias and noise variance to
asymptotically vanish during iterations. To the best of our knowledge, this is the first time such
a method is proposed. Furthermore, to mitigate the extra memory cost for determining clipping
thresholds, we propose DP-C4+, which ensures a lower memory cost while preserving the cali-
bration property. We prove that our method converges to the optimum in strongly-convex case by
properly constructing a Lyapunov function and to a diminishing neighborhood of the first-order sta-
tionary point in the nonconvex case. Notably, we derive the upper bound through a case-by-case
analysis leveraging the clipping strategy, thereby opening up new avenues for convergence analysis.
Specifically, our contributions are as follows:

• DP-C4 Framework: We propose DP-C4, the first DP stochastic optimization algorithmic
framework that eliminates solution bias by ensuring the joint asymptotic vanishing of noise
variance and clipping bias. Furthermore, to reduce memory overhead, we introduce DP-
C4+, which matches the memory cost of DP-SGD while preserving the solution calibration
benefits of DP-C4.

• Novel Convergence Analysis: We establish the convergence guarantees of DP-C4(+).
Specifically, this method converges to the optimum by properly constructing Lyapunov
functions in strongly-convex case, and to a diminishing neighborhood of the first-order
stationary point in nonconvex case. To our best knowledge, this is the first DP algorithm
whose convergence can be analyzed via a Lyapunov function, due to its unique solution
calibration property.

• Privacy Guarantee: We present a privacy budget allocation strategy utilizing the structure
of DP-C4(+) to guarantee privacy. Compared to DP-SGD, it can achieve the same level of
privacy protection while adding less noise.

• Empirical Validation: We conduct extensive experiments showing our method achieves
superior privacy-utility trade-offs over existing baselines across various tasks and datasets.

2 PRELIMINARIES

2.1 PROBLEM SETUP AND ASSUMPTIONS

Problem Setup: We consider the empirical risk minimization (ERM) problem on a dataset D with
|D| = N :

min
x∈Rd

f(x) :=
1

N

N∑
i=1

fi(x), (1)

where fi(x) denotes the loss associated with the i-th data sample. Our goal is to propose a DP
stochastic optimization algorithmic framework with Gaussian mechanism for finding its first-order
stationary point x⋆, i.e., ∇f(x⋆)= 1

N

∑N
i=1∇fi(x⋆)=0.

Definition 1 ((ϵ, δ)-Differential Privacy (Dwork et al., 2006)). A randomized mechanismM : D →
R is said to satisfy (ϵ, δ)-DP if for any two neighboring datasets D,D′ ∈ D differing in at most one
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data record, and for any measurable subset S ⊆ R, it holds that

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ. (2)

Here, ϵ > 0 is the privacy budget controlling the strength of privacy protection, and δ ∈ [0, 1]
denotes a negligible probability of failure.

Definition 2 (Gaussian Mechanism (Dwork & Roth, 2014)). Given a function f : D → Rd and
dataset D ∈ D, the Gaussian mechanism adds noise calibrated to the ℓ2-sensitivity of f :

M(D) = f(D) +N (0, σ2Id), (3)

where N (0, σ2Id) denotes a d-dimensional Gaussian distribution with zero mean and covariance

σ2Id. The noise scale satisfies σ ≥ ∆f ·
√

2 log(1.25/δ)

ϵ , with ∆f = maxD,D′ ∥f(D) − f(D′)∥2
denoting the ℓ2-sensitivity of f between neighboring datasets D and D′.

2.2 DP-SGD AND DP-SVRG:

In this subsection, we give a brief review of the DP-SGD and DP-SVRG methods.

DP-SGD: DP-SGD (Abadi et al., 2016) is a widely adopted method for solving (1). At k-th
iteration, it randomly selects a subset Sk ⊆ D, clips the l2 norm of each gradient, and then adds
noise to protect privary. The iterative scheme with a fixed clipping threshold C is:

xk+1 = xk − η

|Sk|
∑
i∈Sk

(
clip(∇fi(xk), C) +N (0, σ2C2I)

)
, (4)

where η > 0 is the step size and clip(∇fi(xk), C) :=∇fi(xk)min{1, C
∥∇fi(xk)∥2

}. A more flexible
approach is to let the clipping threshold Ck vary. From a noise-reduction perspective, we would
like Ck → 0 as xk → x⋆. However, because stochastic gradients typically have variance, which
is nonzero at x⋆ (|| 1

|Sk|
∑

i∈Sk
∇fi(x⋆)||2 ̸= || 1

|D|
∑

i∈D∇fi(x⋆)||2 = 0), Ck can not be set too small
during iterations. Therefore, variance reduction techniques for gradient estimation seem to hold
promise for enhancing utility in DP algorithms.

Algorithm 1 DP-SGD

1: Initialize x0

2: for k = 0, 1, 2, . . . do
3: Sample Sk ⊆ D
4: gki = clip(∇fi(xk), C)
5: g̃ki = gki +N (0, σ2C2I)
6: g̃k = 1

|Sk|
∑

i g̃
k
i

7: xk+1 = xk − ηg̃k

8: end for

Algorithm 2 DP-SVRG

1: Initialize x0 = w0

2: for k = 0, 1, 2, . . . do
3: Sample Sk ⊆ D
4: g̃ki (x) = clip(∇fi(xk), C) +N (0, σ2C2I)
5: g̃ki (w)= clip(∇fi(wk), C) +N (0, σ2C2I)
6: g̃k= 1

|Sk|
∑

i∈Sk
g̃ki (x)− 1

|Sk|
∑

i∈Sk
g̃ki (w)+

1
|D|

∑
i∈D g̃ki (w)

7: xk+1 = xk − ηg̃k

8: wk+1 =

{
xk, with probability p

wk, with probability 1− p
9: end for

DP-SVRG: The SVRG (Johnson & Zhang, 2013; Kovalev et al., 2020) method is a representa-
tive variance reduction technique. This method introduces an additional anchor point wk, which
is periodically updated and computed the full gradient. At k-th iteration, the gradient estimate is
gkSk

= 1
|Sk|

∑
i∈Sk
∇fi(xk)− 1

|Sk|
∑

i∈Sk
∇fi(wk)+ 1

|D|
∑

i∈D∇fi(wk), which is an unbiased estimate

of the full gradient, i.e., E[gkSk
] = ∇f(xk). Moreover, it satisfies gkSk

xk,wk→x⋆

−−−−−−→ ∇f(x⋆) = 0.
By integrating SVRG into the DP algorithm, DP-SVRG (Lee, 2017) has been proposed (see Alg.2).
However, clipping ∇fi(xk) and ∇fi(wk) separately undermines the variance-reduction structure,
where the resulting stochastic gradient becomes biased (Eg̃k ̸=∇f(xk)) and no longer converges to
zero as xk → x∗.

3
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In summary, DP algorithms face the following trade-off issue: On the one hand, choosing a large
clipping threshold leads to substantial noise injection. On the other hand, a small threshold causes
excessive clipping bias of the gradient estimates. In this paper, we focus on designing DP algorith-
mic framework that handles both clipping bias and noise variance to eliminate solution bias.

3 METHOD: DP-C4

In this section, we propose a DP stochastic optimization framework called DP-C4, which
is error-Consistently-vanishing, Coupledly-clipped, solution-Calibrated, and Convergence-
guaranteed. This framework ensures the asymptotic vanish of both the noise variance and the
clipping bias, thereby eliminating solution bias.

3.1 HIGH-LEVEL IDEA

We consider constructing the gradient estimator by aggregating multiple sub-estimators
{h(j)(x)}j∈[n] that satisfy

∑
j∈[n] E[h(j)(x)] = ∇f(x). Each sub-estimator is defined by

h(j)(x) := 1
|Sj |

∑
i∈Sj

h
(j)
i (x), where Sj ⊆ D denotes the sampled dataset and {h(j)

i }i∈Sj , j∈[n]

denotes per-sample estimators. Furthermore, for DP algorithms, we clip the l2 norm of each com-
ponent h(j)

i (x), aggregate the clipped components and add noise to form the DP gradient estimator
g̃k. For simplicity, we focus on the case n = 2. The iterative scheme is given by:

xk+1 = xk − ηg̃k,

g̃k =
[

1
|S1|

∑
i∈S1

clip(h
(1)
i (xk), C1) + nk

1

]
+
[

1
|S2|

∑
i∈S2

clip(h
(2)
i (xk), C2) + nk

2

]
,

nk
1 ∼ N (0, σ2

1C
2
1I), nk

2 ∼ N (0, σ2
2C

2
2I).

Here, Cj is the clipping threshold and σ2
j is the privacy-dependent noise multiplier. Instead of

using fixed Cj during iterations, we consider replacing them with an estimator-dependent function
Cj({h(j)

i (xk)}i∈Sj
), ensuring both clipping bias B(j)

k and noise variance V (j)
k vanish asymptotically

as xk→x⋆: B
(j)
k :=

∥∥∥ 1
|Sj |

∑
i∈Sj

clip(hj
i (x

k), Cj)− 1
|Sj |

∑
i∈Sj

hj
i (x

k)
∥∥∥2 xk→x⋆

−−−→0,

V
(j)
k := σ2

jC
2
j ({h

j
i (x

k)}) xk→x⋆

−−−→0,

where ||·|| denotes l2-norm. To guide the design, we first establish an upper bound on clipping bias
in Lemma 1 (Proof in Appendix C):
Lemma 1 (Upper Bound on Clipping Bias). Let Ik1 := {i∈S :∥hi(x

k)∥<C({hi(x
k)}i∈S)} be the

set of unclipped samples, and Ik2 := {i∈S :∥hi(x
k)∥≥C({hi(x

k)}i∈S)} the clipped ones. Then,

Bk ≤
|Ik2 |
|S|2

∑
i∈Ik

2

[
||hi(x

k)|| − C({hi(x
k)}i∈S)

]2
.

Lemma 1 implies Bk→ 0 as both ∥hi(x
k)∥ → 0 and C({hi(x

k)}i∈S)→ 0. Therefore, to push the
clipping bias B(1)

k to zero as xk→x⋆, as a natural choice, we set {h(1)
i }i∈S1

and C1({h(1)
i }i∈S1

) as:

h
(1)
i (xk) := ∇fi(xk)−∇fi(x⋆), C1({h(1)

i (xk)}i∈S1
) := C1 ·

∥∥∥∥∥ 1

|S1|
∑
i∈S1

(
∇fi(xk)−∇fi(x⋆)

)∥∥∥∥∥ ,
where C1 is a scaling factor. However, since x∗ is unknown, we replace x∗ with a history iterate
wk ∈ {xk−i}i∈[k]:

h
(1)
i (xk, wk) :=∇fi(xk)−∇fi(wk), C1({h(1)

i (xk, wk)}i∈S1
) :=C1·

∥∥∥∥∥ 1

|S1|
∑
i∈S1

(
∇fi(xk)−∇fi(wk)

)∥∥∥∥∥ .
4
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Algorithm 3 DP-C4

1: Input: Dataset D, learning rate η, clipping bounds C,C1, C2, noise scales σ1, σ2, total steps T ,
anchor update probability p

2: Output: Model parameters xT satisfying (ε, δ)-DP
3: Initialize: x0 = w0 ∈ Rd

4: for k = 0 to T − 1 do
5: Sample S ⊆ D
6: C1k ← min(C,C1∥ 1

|S|
∑

i∈S(∇fi(xk)−∇fi(wk))∥) {Coupled threshold}
7: C2k ← min(C,C2∥∇f(wk)∥) {Anchor threshold}
8: gk1 ← 1

|S|
∑

i∈S clip(∇fi(xk)−∇fi(wk), C1k) {Coupled term}
9: gk2 ← 1

|D|
∑

i∈D clip(∇fi(wk), C2k) {Anchor term}
10: nk

1 ∼ N (0, σ2
1C

2
1kI), nk

2 ∼ N (0, σ2
2C

2
2kI) {Sample DP noise}

11: g̃k ← gk1 + gk2 + nk
1 + nk

2 {Add noise}
12: xk+1 ← xk − η · g̃k {Update model}

13: wk+1 ←
{
xk, with probability p

wk, with probability 1− p
{Update anchor (Routine 1)}

14: end for

When xk, wk→ x⋆, we have B
(1)
k → 0. Meanwhile, V (1)

k → 0 since C1({h(1)
i }i∈S1

)→ 0. For the
sub-estimator h(2) = 1

|S2|
∑

i∈S2
h
(2)
i , we choose S2=D, set {h(2)

i }i∈S2
and C2({h(2)

i }i∈S2
) as:

h
(2)
i (xk, wk) := ∇fi(wk), C2({h(2)

i (xk, wk)}i∈S2
) := C2 · ∥∇f(wk)∥,

where C2 is a scaling factor. This choice ensures E
[
h(1)(xk, wk)+h(2)(xk, wk)

]
= ∇f(xk), and

makes:
B

(2)
k + V

(2)
k ≤ (σ2

2 + 1) · C2
2 · ∥∇f(wk)∥2 → 0 as wk → x∗.

As a result, our proposed gradient estimator and clipping thresholds ensure that all error compo-
nents (clipping bias, noise variance) asymptotically vanish, which forms the foundation of our DP
algorithmic framework.

3.2 DP-C4 ALGORITHM

In this subsection, we formally describe the DP-C4 method in Alg.3. Based on the idea in sub-
section 3.1, Alg.3 constructs a gradient estimator by aggregating two sub-estimators: a coupledly-
clipped gradient difference term (Line 8) and a clipped anchor term (Line 9). Specifically, we
initialize with x0 = w0 ∈ Rd. At the k-th iteration, we sample a mini-batch S ⊆ D (Line 5). We
compute the gradient difference ∇fi(xk)−∇fi(wk) for i ∈ S, and aggregate them to obtain the
clipping threshold C1k (Line 6). Here, an upper bound C is introduced to prevent injecting exces-
sively large noise during the early iterations. Next, we clip each gradient difference and aggregate
the clipped values to form the sub-estimator gk1 (Line 8). Meanwhile, C2k and gk2 are computed only
with probability p since the anchor wk is updated with probability p. Finally, by aggregating gk1
and gk2 and adding noise, we obtain the perturbed gradient estimator g̃k. Moreover, for updating the
anchor wk (Line 13), there are also alternative routines (see the following Routine 2-4):

wk+1
R2

=

{
xk, k=1(mod ⌈1/p⌉)
wk, k ̸=1(mod ⌈1/p⌉) , w

k+1
R3

=

{
xk+1, with p

wk, with 1−p , wk+1
R4

=

{
xk+1, k=1(mod ⌈1/p⌉)
wk, k ̸=1(mod ⌈1/p⌉) ,

We emphasize that the DP-C4 method differs fundamentally from the DP-SVRG method (Alg.2).
Specifically, DP-C4 focuses on clipping the gradient difference∇fi(xk)−∇fi(wk) for each i ∈ Sk,
whereas DP-SVRG clips∇fi(xk) and∇fi(wk) seperately. Moreover, DP-C4 adaptively determines
the clipping threshold. These core distinctions allow DP-C4 to asymptotically vanish both the clip-
ping bias and the noise variance.

3.3 SOLUTION-CALIBRATED PROPERTY OF DP-C4

Consider the ERM problem (1) and let x⋆ denote a solution that satisfies the first-order optimality
condition, i.e., 1

|D|
∑

i∈D∇fi(x⋆) = ∇f(x⋆) = 0. To further demonstrate the desirable properties

5
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of DP-C4, we consider all sources of randomness (i.e., sampling, noise, and anchor-update) and
investigate the potential convergence point of Alg.3 from the perspective of fixed-point analysis.
Specifically, at a fixed point (x̃, w̃), both sequences {xk}k∈N and {wk}k∈N converge, implying
xk+1 = xk = x̃, wk+1 = wk = w̃. Hence, we substitute it into Alg.3, the fixed point of DP-C4
satisfies the following system:

1
|S|

∑
i∈Sclip (∇fi(x̃)−∇fi(w̃),C1k)+

1
|D|

∑
i∈Dclip(∇fi(w̃),C2k)+nk

1+nk
2=0,

w̃ = wk+1 =

{
xk = x̃, with probability p,

wk, with probability 1− p,

nk
1 ∼ N (0, σ2

1C
2
1kI), nk

2 ∼ N (0, σ2
2C

2
2kI),

C1k = min(C,C1∥ 1
|S|

∑
i∈S(∇fi(x̃)−∇fi(w̃))∥),

C2k = min(C,C2∥ 1
|D|

∑|D|
i=1∇fi(w̃)∥).

(5)

To satisfy this fixed-point system, for the first equation in (5), it must hold that nk
1 = 0 and nk

2 = 0
due to the iteration-wise independence of the noise randomness. This implies:∥∥∥∥∥ 1

|S|
∑
i∈S

(∇fi(x̃)−∇fi(w̃))

∥∥∥∥∥= 0,

∥∥∥∥∥∥ 1

|D|

|D|∑
i=1

∇fi(w̃)

∥∥∥∥∥∥= 0,

which forces x̃ = w̃ = x⋆. Substituting this into (5), all conditions are satisfied. Therefore, it
follows that a point is a fixed point of DP-C4 if and only if it is a first-order stationary point of the
ERM problem (1), indicating DP-C4 eliminates solution bias.

In contrast, exiting DP algorithms with constant clipping thresholds (e.g., DP-SGD, DP-SVRG) do
not admit fixed points, as the fixed-variance noise injected at each iteration continually disrupts equi-
librium. For other schemes where clipping thresholds decays to 0, the persistent gradient estimation
variance and gradual accumulation of clipping bias, combined with a mismatch between the decay
rate of the thresholds and the convergence speed, lead to the fixed point being, with probability 1,
not a solution to the original problem. The detailed comparison is provided in Appendix B.

3.4 CONVERGENCE ANALYSIS

In this subsection, we analyze the convergence properties of DP-C4 under two settings: (i) µ-
strongly convex, and (ii) nonconvex. Our goal is to construct a Lyapunov function in strongly convex
case with specific clipping thresholds, and to establish convergence guarantees in non-convex case
without restrictions on clipping thresholds. It is worth emphasizing that these proofs are innova-
tive in the following aspects: (1) existing DP algorithms lack solution-calibrated property and thus
cannot employ Lyapunov functions for analysis; (2) by exploiting the unique structure of DP-C4,
we carefully handle both noise variance and clipping bias, providing a novel perspective for the
convergence analysis of DP optimization algorithms. We first present several assumptions:

Assumption 3.1 (Lower Bounded) f(·) is bounded from below by a finite constant f⋆:

f(x) ≥ f⋆ > −∞, ∀x ∈ Rd.

Assumption 3.2 (L-Smoothness) fi(·) is L-smooth, i.e., it satisfies:

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rd.

Assumption 3.3 (µ-Strong Convexity) The loss function fi(·) is µ-strongly convex:

fi(y) ≥ fi(x) + ⟨∇fi(x), y − x⟩+ (µ/2)∥x− y∥2, ∀x, y ∈ Rd.

Assumption 3.4 (Bounded Variance) There exists a constant τ , such that:

∥∇fi(x)−∇f(x)∥ ≤ τ, ∀i ∈ [N ], ∀x ∈ Rd.

Assumption 3.5 (Bounded Gradient). The gradient of the function is bounded in the sense that
there exists a positive constant G = supx∈Rd,i∈[N ] ∥∇fi(x)∥ <∞.
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The above assumptions serve as the foundation for analyzing DP algorithms. We now turn to the
convergence of DP-C4. To avoid overly intricate discussions, we restrict our setting to C1k =
C1|| 1

|S|
∑

(∇fi(xk)−∇fi(wk))||, C2k =C2||∇f(wk)||. Let E[·] and Ek[·] := E[·|xk,wk] denote the
full expectation and the conditional expectation based on the first k iterations of DP-C4, respectively.
Then, we have:
Theorem 1 (Strongly Convex Case). Suppose Assumptions 3.1-3.5 hold. For any given e > 0
and constant DP noise multipliers σ1, σ2, let {xk}k≥0 and {wk}k≥0 be generated by Alg.3 with

η < min
{

µ
3N1+A , 1

2LN2

}
, C1 > 0, C2 ≥ τ

e + 1. When min{||∇f(wk)||, ∥xk−x⋆∥}>e, define the
Lyapunov function as:

Φk := E∥xk − x⋆∥2 + 2N1η
2

p
E∥wk − x⋆∥2 + 2N2η

2

p
Dk,

where Dk :=E∥∇fi(wk)−∇fi(x⋆)∥2,N1 := 8L2C2
1 (dσ

2
1 +1), N2 :=4C2

2(dσ
2
2 +1), A := 4G2

pe2µ2(L−
C1µ)

√
4L2C2

1 (dσ
2
1+1)+µ2C2

2 (dσ
2
2+1) , and d denotes the model size. Then,

Φk+1 ≤ max
{
1−µη+(3N1+A)η2, 1− p

2

}
· Φk < Φk. (6)

In contrast to existing optimization algorithms whose convergence results typically rely on a single
indicator, Thm.1 employs two accuracy indicators, Φk and min{||∇f(wk)||, ∥xk−x⋆∥}. Specifically,
for any given tolerance e, the Lyapunov function Φk decreases linearly until min{||∇f(wk)||, ∥xk−
x⋆∥}≤e. Moreover, we emphasize that in practical implementations, achieving ∥xk−x⋆∥≤e does
not require choose a large C2 at the beginning of the algorithm. Instead, we can gradually increase
C2 during the convergence process to enforce convergence, thus avoiding the injection of excessive
noise at the early stage. We now turn to the convergence analysis in the nonconvex setting:
Theorem 2 (Nonconvex Case). Suppose Assumptions 3.1, 3.2, 3.4, 3.5 hold. For any given constant
DP noise multipliers σ1, σ2 and C1 > 1, C2 > 1, let {xk}Tk=0 and {wk}Tk=0 be generated by Alg.3

with η =
√

2(f(x0)−f(x⋆))

TLG̃
= O( 1√

T
). Then,

1

T

T∑
k=1

E
[
λk
1∥∇f(xk)∥2+λk

2∥∇f(xk)∥·∥∇f(wk)∥+λk
3∥∇f(xk)∥·∥∇f(xk)−∇f(wk)∥

]

≤ 2

√
(f(x0)− f(x∗))LG̃

2T
+

1

T

T∑
k=1

E
[
λk
4 · 3τ ||∇f(xk)||

]
.

(7)

Here, G̃ :=4G2(4C2
1 (dσ

2
1+1)+C2

2 (dσ
2
2+1)), d denotes the model size, and for each k:

λk
1 :=1− 1

3
(1−Pk)(2

√
1−Pk

1+
√
1−Pk

2), λk
2 :=(1−Pk

2)(C2−1), λk
3 :=(1−Pk

1)(C1−1)

λk
4 :=

1

3
Pk(2

√
1− Pk

1 +
√
1− Pk

2), Pk :=Pr
(
∥∇f(xk)∥≤3τ | xk−1

)
,

Pk
1 := Ek

[
1{∥∇fi(xk)−∇fi(wk)∥≤C1k}

]
, Pk

2 := Ek

[
1{∥∇fi(wk)∥≤C2k}

]
.

Since λk
1→ 0 and λk

2→ 0 require Pk
2→ 0 and Pk

2→ 1 respectively, λk
1 and λk

2 can not be zero
simultaneously. Thus, Thm.2 effectively characterizes convergence. It is worth noting that (7) is
obtained by a piecewise discussion of ∥∇f(xk)∥ (more detail see Appendix C.3): On the one hand,
when ||∇f(xk)||≥ 3τ , the iteration exhibits strict descent, which guarantees that DP-C4 converges
to the region ||∇f(xk)|| < 3τ . On the other hand, when ||∇f(xk)|| < 3τ , due to clipping bias,
the right hand side introduces an optimization bias term 1

T

∑
3τE[λk

4 ||∇f(xk)||]. However, Thm.2
differs from prior work in the following aspects: (i) compared with a fixed clipping bias at the
constant scale proportional to τ (Xiao et al., 2023), the optimization bias term in (7) is proportional
to ||∇f(xk)||, which implies a gradually vanishing clipping bias; (ii) in the k-th iteration, the last two
terms on the left hand side of (7) also contribute to reducing the optimization bias. By employing
the Cauchy-Schwarz inequality and setting C1=(C2−1)1−P

k
2

1−Pk
1
+1, we obtain:

3λk
4τ ||∇f(xk)|| − λk

2 ||∇f(xk)|| · ||∇f(wk)|| − λk
3 ||∇f(xk)|| · ||∇f(xk)−∇f(wk)||

≤ 3λk
4τ ||∇f(xk)|| − λk

3 ||∇f(xk)||2 ≤ 9(λk
4)

2τ2

4(1− Pk
2)(C2 − 1)

C2→∞−−−−→ 0.
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...
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...
Data 1

···
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···

store all to be clipped

①

②

③
 clip(                ,  ·  )

k-th iteration

...

1( )kf w

( )k
Nf w

( )k
if w

...
Data 1

···
Data i

Data N

···

no need to be stored

①

②

C2k

( )kf w

1( )kf w  k-th k+1k-1

③

 clip(                ,  ·  ) clip(                            ,  ·  )
...

C1k

...
Data 1

···
Data i

Data |S|

···

no need to be stored

①

k-th iteration

( ) ( )k k
i if x f w 

1 1( ) ( )k kf x f w 

| | | |( ) ( )k k
S Sf x f w 

②

k kx w

(a) One of two similar clippings in DP-C4 (b) Two lightweight clippings in DP-C4+ 

Figure 1: Workflow of DP-C4 and DP-C4+

This indicates that by gradually and slowly increasing C2 during the iteration, together with the
decaying step size, the algorithm can converge to arbitrary accuracy.

3.5 PRIVACY ANALYSIS

In this subsection, we present the privacy guarantee of DP-C4. Since DP-C4 independently clips two
components at each iteration, we carefully allocate the privacy budget between them and leverage
Rényi differential privacy (RDP) (Mironov, 2017) to quantify the required noise magnitude at each
step. Specifically, we have the following theorem:

Theorem 3 (Noise Level). Let θ = |D|2
|S|2 and σ2 = 4T (2 log(1/δ)+ϵ)

|S|2ϵ2 . There exist σ2
1 , σ

2
2 defined in

Alg.3 that guarantee (ϵ, δ)-DP of running DP-C4 with routine 1-4 for T iterations:

(σ2
1 , σ

2
2)R1&2

=
(
(1+

√
p

θ
)σ2, (

p

θ
+

√
p

θ
)σ2

)
, (σ2

1 , σ
2
2)R3&4

=
(
(1−p+

√
p(1−p)

θ
)σ2, (

p

θ
+

√
p(1−p)

θ
)σ2

)
.

It follows directly that, (σ2
1+σ2

2)R1&2
= (1+

√
p
θ )

2·σ2 ≈ σ2, (σ2
1+σ2

2)R3&4
= (

√
p
θ +
√
1−p)2·σ2 =

(
√

p
θ+1− p

2−
p2

8 −O(p3))2·σ2. In practice, we choose the update probability p= 2|S|
|D| =

2√
θ

, guided

by the probability p is typically related to |S|
|D| in SVRG (Kovalev et al., 2020). At the k-th iteration,

the upper bound of the total noise variance C2
1kσ

2
1+C2

2kσ
2
2 is as follows:

(C2
1kσ

2
1 + C2

2kσ
2
2)R3&4

≤ (σ2
1 + σ2

2)max{C2
1k, C

2
2k} ≤ σ2(1−O(p3))2 max{C2

1k, C
2
2k}

< σ2max{C2
1k, C

2
2k} = σ2min{C2,max{C2

1 ||∇fS(xk)−∇fS(wk)||2, C2
2 ||∇f(wk)||2}}

It should be noted that σ2 is exactly the noise multiplier in DP-SGD with a mini-batch size |S|. That
is, for the same C, the total noise multiplier in DP-C4 is approximately the same as that in DP-SGD,
with noise variance further decaying through C2

1k and C2
2k.

4 DP-C4+: A MEMORY-EFFICIENT EXTENSION OF DP-C4

In this section, we aim to reduce the memory burden of DP-C4, which currently requires storing
every sampled gradient. This is because the gradients are first aggregated to determine the clipping
thresholds, and then each is clipped individually. Note that the gradient difference ||∇fi(xk) −
∇fi(wk)|| can be bounded by L||xk − wk|| under the L-smoothness assumption, which tends to
0 as xk, wk→ x⋆. In addition, since the anchor term is update only with probability p, it incurs
limited memory overhead. Furthermore, rather than using wk to determine C2k, we consider using
the previous iterate wk−1, which leads to C2k can be computed in advance. Specifically, we make
the following substitutions in DP-C4:

C1k = min
{
C,C1 ·||xk − wk||

}
, C2k = min

{
C,C2 ·||∇f(wk−1)||

}
,

which we refered to as DP-C4+. The workflow of DP-C4(+) is presented in Figure 1. Notably,
the clipping thresholds of DP-C4+ do not depend on the gradients of the current iterate and can

8
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be precomputed. This design removes the need to store all gradients involved in the computa-
tion. On the one hand, DP-C4+ does not violate our design principles and thus retains the prop-
erties of consistently-vanishing error, solution calibration, convergence guarantee, and DP guaran-
tee. On the other hand, in practical deployment, to further reduce computational overhead, we of-
ten select a large batch size |D′| >> |S| instead of the full dataset size |D| as the anchor batch.
This choice also helps to reduce the solution bias and improve utility, since it often holds that
|| 1
|D′|

∑
i∈D′ ∇fi(x⋆)|| < || 1

|S|
∑

i∈S ∇fi(x⋆)||. Due to the space limitation, we provide the pseu-
docode of DP-C4+ and a detailed description of its properties in Appendix A.

5 NUMERICAL EXPERIMENTS

We conducted extensive experiments to demonstrate the advantages of DP-C4(+). Specifically,
we evaluated our method on Mushroom (mus, 1981), Mnist (Deng, 2012), Cifar-10, Cifar-
100 (Krizhevsky et al., 2009), IMDb (Maas et al., 2011), and GLUE (Wang et al., 2018) datasets,
comparing against both related baselines and state-of-the-art methods, namely DP-SGD (Abadi
et al., 2016), DP-SVRG (Lee, 2017), and DiceSGD (Zhang et al., 2023b). In addition, we con-
ducted a series of ablation studies on CIFAR-10 to systematically evaluate the effects of the clipping
thresholds C1, C2, the overall clipping threshold C, different update routines, varying large-batch
sizes, and update probabilities. Due to space constraints, the detailed results and discussions are
provided in Appendix E.

Table 1: Test accuracy of different methods on different datasets.

Method
SVM CV Tasks NLP Tasks

Mushroom Mnist Cifar-10 Cifar-100 IMDb GLUE SST-2
DP-SGD 87.48 96.26 53.05 37.04 76.99 75.23
DP-SVRG 77.13 95.79 51.81 31.08 74.10 72.71
DiceSGD 90.65 97.02 60.24 40.73 78.19 78.71
DP-C4 91.76 96.93 61.89 43.46 80.13 81.31
DP-C4+ 96.98 97.16 64.50 43.12 81.23 82.24

In our main experiments, we set the clipping thresholds to 1 for all methods, including C, C1, and
C2 in DP-C4(+). The step size η was tuned via grid search over {0.1, 0.05, 0.025, 0.0125}, and we
report the best-performing results. For all mini-batches, we use a batch size of |S| = 256. In DP-
C4(+) and DP-SVRG, we further set the large batch size to |D′| = 4096, and the update probability
to p = 2|S|

|D′| = 0.125. For the SVM task, we set the privacy parameters to (ϵ, δ) = (1, 10−5),
train for 50 epochs, and employ a logistic regression model on the Mushroom dataset. For image
classification tasks, we set (ϵ, δ) = (5, 10−5), train for 100 epochs, and adopt LeNet (LeCun et al.,
2002) on Mnist, and ResNet20 (He et al., 2016) on CIFAR-10 and CIFAR-100. For NLP tasks, we
set (ϵ, δ) = (2, 10−5), train for 50 epochs, and adopt a GRU-RNN (Cho et al., 2014) on both IMDb
and GLUE. The results are summarized in Table 1, where we observe that DP-C4(+) consistently
outperforms the baselines across SVM, image classification, and NLP tasks.

6 CONCLUSION

In this work, we proposed DP-C4 and its variant DP-C4+, which reconstruct the update rule and
the clipping scheme of DP optimization to ensure that clipping bias and noise variance asymptot-
ically vanish, thereby eliminating the solution bias inherent in existing methods. We established
convergence guarantees by constructing a Lyapunov function under the µ-strongly convex setting
and identifying a vanishing bias term in the general non-convex case, offering a novel perspective
on DP optimization analysis. On the privacy side, we designed a structure-aware budget allocation
tailored to the coupled clipping framework, leading to general (ϵ, δ)-DP guarantees. Experiments on
SVM, image classification, and NLP tasks demonstrate that DP-C4(+) consistently achieves superior
privacy-utility trade-offs, underscoring its promise for practical deployment.

9
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A DETAILS OF DP-C4+

We present the pseudocode of DP-C4+ in Alg. 4. As can be seen, the main difference from DP-C4
lies in the computation of the thresholds (Line 6&7). Moreover, at the beginning of the algorithm,
we set the clipping threshold as C2k = C to accommodate the initialization at k = 0 (Line 3).
Subsequently, we examine in detail the properties of DP-C4+ as previously outlined.

Algorithm 4 DP-C4+

1: Input: Dataset D, learning rate η, clipping bounds C,C1, C2, noise scales σ1, σ2, total steps T ,
anchor update probability p

2: Output: Model parameters xT satisfying (ε, δ)-DP
3: Initialize: x0 = w0 ∈ Rd, let C2||∇f(w−1)|| :=C
4: for k = 0 to T − 1 do
5: Sample S ⊆ D
6: C1k ← min(C,C1∥xk − wk∥) {Pointwise coupled threshold}
7: C2k ← min(C,C2∥∇f(wk−1)∥) {Shifted anchor threshold}
8: gk1 ← 1

|S|
∑

i∈S clip(∇fi(xk)−∇fi(wk), C1k) {Coupled term}
9: gk2 ← 1

|D|
∑

i∈D clip(∇fi(wk), C2k) {Anchor term}
10: nk

1 ∼ N (0, σ2
1C

2
1kI), nk

2 ∼ N (0, σ2
2C

2
2kI) {Sample DP noise}

11: g̃k ← gk1 + gk2 + nk
1 + nk

2 {Add noise}
12: xk+1 ← xk − η · g̃k {Update model}
13: Four alternative anchor update routines:

14: wk+1 ←
{
xk, with probability p

wk, with probability 1− p
{Update anchor (Routine 1)}

15: wk+1 ←
{
xk, k = 1 (mod [1/p])

wk, k ̸= 1 (mod [1/p])
{Update anchor (Routine 2)}

16: wk+1 ←
{
xk+1, with probability p

wk, with probability 1− p
{Update anchor (Routine 3)}

17: wk+1 ←
{
xk+1, k = 1 (mod [1/p])

wk, k ̸= 1 (mod [1/p])
{Update anchor (Routine 4)}

18: end for

Consistently-vanishing Error We point out that the clipping bias and noise variance of DP-C4+
also vanish. Specifically, continuing with the notation from Section 3.1, we have:

Bk+Vk≤
|Ik2 |
|S|2

∑
i∈Ik

2

[
||∇fS(xk)−∇fS(wk)||−C1||xk−wk||

]2
+σ2

1C
2
1 ||xk−wk||2

+|| 1
|D|

∑
i∈D

clip(∇fi(wk), C2||∇f(wk−1)||)−∇f(wk)||2+σ2
2C

2
2 ||∇f(wk−1)||2

≤(
|Ik2 |2(L−C1)

2

|S|2
+σ2

1C
2
1 )||xk−wk||2+(σ2

2+2)C2
2 ||∇f(wk−1)||2+2||∇f(wk)||2 xk,wk→x⋆

−−−−−−→0

(8)

Solution Calibration Similarly, (x̃, w̃) is a fixed point of DP-C4+ if and only if it is a solu-
tion to the original optimization problem. Analogously to (5), it must satisfy C1||x̃ − w̃||2 =

12
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C2||∇f(w̃)||2 = 0, which implies x̃ = w̃ = x⋆. Specifically, at a potential fixed point (x̃, w̃),
the iterative scheme of DP-C4+ yields:

x̃ = xk+1 = xk − ηg̃k = x̃− ηg̃k,

w̃ = wk+1 =

{
xk = x̃, with probability p

wk, with probability 1− p
.

From the iterative scheme of DP-C4+ (Alg. 4), we obtain:

1
|S|

∑
i∈Sclip (∇fi(x̃)−∇fi(w̃),C1k)+

1
|D|

∑
i∈Dclip(∇fi(w̃),C2k)+nk

1+nk
2=0,

w̃ = wk+1 =

{
xk = x̃, with probability p,

wk, with probability 1− p,

nk
1 ∼ N (0, σ2

1C
2
1kI), nk

2 ∼ N (0, σ2
2C

2
2kI),

C1k = min(C,C1∥x̃− w̃∥2),
C2k = min(C,C2∥ 1

|D|
∑|D|

i=1∇fi(w̃)∥2).

(9)

On the one hand, at a fixed point, (9) must be satisfied. This enforces that the variance of the injected
noise vanishes almost surely, i.e., C1k = C2k = 0, which in turn requires x̃ = w̃ = x⋆. On the other
hand, substituting (x̃, w̃) = (x⋆, x⋆) back into (9) shows that the equality indeed holds. Therefore,
the fixed point of DP-C4+ coincides with the optimal solution x⋆ of the original problem.

Convergence Guarantee The convergence of DP-C4+ is similar to DP-C4, we establish conver-
gence guarantees for DP-C4+ under both strongly convex and non-convex regimes, the proofs of
which are uniformly presented in Appendix C:

Theorem 4 (Strongly Convex Case). Suppose Assumptions 3.1-3.5 hold. For any given e > 0
and constant DP noise multipliers σ1, σ2, let {xk}k≥0 and {wk}k≥0 be generated by Alg.4 with

η < min
{

µ
3N1+A , 1

2LN2

}
, C1 > 0, C2 ≥ τ

e +1. When min{||∇f(wk)||, ∥xk−x⋆∥, ∥wk−x⋆∥}>e,
define the Lyapunov function as:

Φk := E∥xk − x⋆∥2 + 2N1η
2

p
E∥wk − x⋆∥2 + 2N2η

2

p
Dk,

whereDk :=E∥∇fi(wk)−∇fi(x⋆)∥2,N1 := 8C2
1 (dσ

2
1+1)+ 4η2

pe2 G
2C2

2 (dσ
2
2+1),N2 :=8C2

2(dσ
2
2+1),

A:= 4G
pµ2e2 [(pC2+1)L−C1]

√
2C2

1 (dσ
2
1+1)+µ2C2

2 (dσ
2
2+1) , and d denotes the model size. Then,

Φk+1 ≤ max
{
1−µη+(3N1+A)η2, 1− p

2

}
· Φk < Φk. (10)

Theorem 5 (Nonconvex Case). Suppose Assumptions 3.1, 3.2, 3.4, 3.5 hold. For any given constant
DP noise multipliers σ1, σ2 and C1 > 1, C2 > 1, let {xk}Tk=0 and {wk}Tk=0 be generated by Alg.4

with η =
√

2(f(x0)−f(x∗))

TLG̃(1+4G)
= O( 1√

T
). Then,

1

T

T∑
k=1

E
[
λk
1∥∇f(xk)∥2+λk

2∥∇f(xk)∥·∥∇f(wk)∥+λk
3∥∇f(xk)∥·∥∇f(xk)−∇f(wk)∥

]

≤ 2

√
(f(x0)− f(x∗))LG̃(1 + 4G)

2T
+

1

T

T∑
k=1

E
[
λk
4 · 3τ ||∇f(xk)||

]
.

(11)

Here, G̃=4C2(dσ2
1+1)+4G2C2

2 (dσ
2
2+1), d denotes the model size, and for each k:

λk
1 :=1− 1

3
(1−Pk)(2

√
1−Pk

1+
√

1−Pk
2), λk

2 :=(1−Pk
2)(C2−1), λk

3 :=(1−Pk
1)(

C1

L
−1)

λk
4 :=

1

3
Pk(2

√
1− Pk

1 +
√
1− Pk

2), Pk :=Pr
(
∥∇f(xk)∥≤3τ | xk−1

)
,

Pk
1 := Ek

[
1{∥∇fi(xk)−∇fi(wk)∥≤C1k}

]
, Pk

2 := Ek

[
1{∥∇fi(wk)∥≤C2k}

]
.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B ALGORITHM COMPARISON

In this section, we provide a detailed exposition of the fundamental distinction between DP-C4(+)

and other algorithms (as an extension of Section 3.3), namely, the unique Solution-Calibrated Prop-
erty that is exclusive to DP-C4(+) but absent in existing approaches.

In Section 3.3 and Appendix A, we have established the solution-calibrated property of DP-C4(+).
In contrast, methods employing a constant clipping threshold (e.g., DP-SGD, DP-SVRG) do not
admit fixed points, as the fixed-variance noise injected at each iteration continually disrupts equilib-
rium. Taking DP-SGD as an example, suppose it admits a fixed point x̃, we obtain:

x̃ = xk+1 = xk − ηg̃k = x̃− ηg̃k,

That is, g̃k= 1
|Sk|

∑
i∈Sk

clip(∇fi(x̃), C)+nk=0. However, due to the stochasticity introduced by the
noise in each iteration, this condition cannot be satisfied with probability 1. Consequently, DP-SGD
does not admit a fixed point.

For other schemes where the clipping threshold decays (TD) to 0, the persistent gradient estimation
noise at each iteration, and the gradual accumulation of clipping bias, combined with a mismatch
between the decay rate of the threshold and the convergence speed, ensures that the fixed point
is, with probability 1, not a solution to the original problem. Taking DP-SGDTD as an example,
suppose it admits a fixed point x̃, we obtain:{

g̃k= 1
|Sk|

∑
i∈Sk

clip(∇fi(x̃), Ck)+nk=0,

nk ∼ N (0, σ2
1C

2
kI), Ck → 0

We can observe that when the clipping threshold approaches zero (i.e., Ck = 0), the above equation
is indeed satisfied, implying that DP-SGD with a decaying threshold admits a fixed point x̃. How-
ever, this fixed point arises from the elimination of the update due to the vanishing threshold, and
therefore it does not guarantee that x̃ = x⋆.

Algorithm 5 DiceSGD (Zhang et al., 2023b)

1: Input: Dataset D, learning rate η, clipping bounds C1, C2, noise scale σ, total steps T
2: Output: Model parameters xT satisfying (ε, δ)-DP
3: Initialize: e0 = 0, x0 ∈ Rd

4: for k = 0, . . . , T − 1 do
5: Randomly draw minibatch S from D
6: gk = 1

|S|
∑

i∈S clip
(
∇fi(xk), C1

)
+ clip

(
ek, C2

)
7: xk+1 = xk − η(gk + nk), where nk ∼ N (0, σ2(C2

1 + C2
2 )I)

8: ek+1 = ek + 1
|S|

∑
i∈S ∇fi(xk)− gk

9: end for

Recently, the proposed DiceSGD (Zhang et al., 2023b) (Alg 9) eliminates the bias in each iteration
in expectation. Therefore, in the sense of ignoring the injected noise and sampling randomness (i.e.,
in the full-expectation sense), it possesses a similar property. Assume that (x̃, ẽ) is a fixed point of
DiceSGD, then we have:{

E[x̃] = E[x̃]− ηE[gk + nk] = E[x̃]− ηE[gk],
E[ẽ] = E[ẽ] + E

[
1
|S|

∑
i∈S ∇fi(x)− gk

]
= E[ẽ] + 1

N

∑N
i=1∇fi(x̃)− E[gk]. (12)

We can verify that (x̃, ẽ) = (x⋆, 0) is indeed a solution to (12), implying that, in full-expectation
sense, the fixed point of DiceSGD coincides with the solution of the original problem. However, as
discussed earlier, the randomness introduced by noise and sampling can disrupt this balance at any
iteration, causing the iterates to deviate from the true solution.

Specifically, Table 2 summarizes the solution calibration property of different methods under both
noise and sampling stochasticity, where the symbols−, ✓ and× respectively denote: no fixed point
exists, the fixed point is (not) a solution to the problem. Efull, Enoise, Esampling, no-E denote,
respectively, in the sense of full expectation, in the sense of expectation over noise, in the sense of
expectation over sampling, and taking into account all sources of randomness.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 2: Algorithm Comparison on Solution-Calibrated Property.

Type of E
Method DP-SGD(TD) DP-SVRG(TD) DiceSGD DP-C4(+)

Efull -(×) -(×) ✓ ✓
Enoise -(×) -(×) - ✓

Esampling -(×) -(×) - ✓
no-E -(×) -(×) - ✓

C PROOFS OF CONVERGENCE ANALYSIS

In this section, we present the detailed proofs of the convergence results of DP-C4 and DP-C4+, i.e.,
Lemma.1, Thm.1-2, and Thm.4-5. It is worth noting that the proof techniques for DP-C4+ closely
follow those of DP-C4, and we mainly highlight the differences for clarity.

C.1 PROOF OF LEMMA 1

According to the definition of the clipping bias Bk (Section 3.1), we can directly obtain:

Bk = || 1
|S|

∑
i∈S

clip(hi(x
k), C({hi(x

k)}i∈S))−
1

|S|
∑
i∈S

hi(x
k)||22

(a)
= || 1
|S|

∑
i∈Ik

1

hi(x
k) +

1

|S|
∑
i∈Ik

2

C({hi(x
k)}i∈S)

||hi(xk)||2
· hi(x

k)

− 1

|S|
∑
i∈Ik

1

hi(x
k)− 1

|S|
∑
i∈Ik

2

hi(x
k)||22

= || 1
|S|

∑
i∈Ik

2

(
C({hi(x

k)}i∈S)

||hi(xk)||2
− 1) · hi(x

k)||22

=
1

|S|2
||
∑
i∈Ik

2

(C({hi(x
k)}i∈S)− ||hi(x

k)||2)︸ ︷︷ ︸
≤0

· hi(x
k)

||hi(xk)||
||22

≤ 1

|S|2
( ∑

i∈Ik
2

(
||hi(x

k)||2 − C({hi(x
k)}i∈S)

)
· ||hi(x

k)||
||hi(xk)||

)2

=
1

|S|2
[ ∑
i∈Ik

2

(
||hi(x

k)||2 − C({hi(x
k)}i∈S)

)]2
(b)

≤ |I
k
2 |
|S|2

∑
i∈Ik

2

[
||hi(x

k)||2 − C({hi(x
k)}i∈S)

]2

(13)

C.2 PROOF OF THEOREM 1

For the strongly convex case of DP-C4, our goal is to construct a Lyapunov function under
appropriately chosen clipping coefficients. We first examine a potential term in the Lyapunov
function of the system, namely E∥xk − x⋆∥2. Combining this with the update rule of DP-
C4, and denoting the clipping biases as bk1 := 1

|S|
∑

i∈S clip(∆k
i , C1||∆k

S ||) − ∆k
S and bk2 :=

15
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1
|D|

∑
i∈D clip(∇fi(wk), C2||∇f(wk)||)−∇f(wk), we obtain:

Ek||xk+1−x⋆||2=Ek||xk−x⋆−ηg̃k||2

= ||xk−x⋆||2+Ek[2η⟨g̃k, x⋆ − xk⟩] + η2Ek||g̃k||2

≤||xk−x⋆||2+2ηEk⟨∆k
S+∇f(wk)+bk1+bk2+nk1+nk2 , x

⋆−xk⟩+η2Ek||g̃k||2

= ||xk−x⋆||2+2η⟨∇f(xk), x⋆−xk⟩+2ηEk⟨bk1+bk2+nk1+nk2 , x
⋆−xk⟩+η2Ek||g̃k||2

(a)

≤ ||xk−x⋆||2+2η (f⋆−f(xk)−µ

2
||xk−x⋆||2)︸ ︷︷ ︸

µ−strongly convex

+2ηEk⟨bk1+bk2 , x
⋆−xk⟩+η2Ek||g̃k||2

= ||xk−x⋆||2(1−ηµ)+2η(f⋆−f(xk))+2ηEk⟨bk1+bk2 , x
⋆−xk⟩+η2Ek||g̃k||2

(14)
Here, (a) follows from the µ-strong convexity property, together with the fact that Ek[n

k
1 ] =

Ek[n
k
2 ] = 0. Next, we derive upper bounds for the last two terms in the above expression. Specifi-

cally, we begin by analyzing the upper bound of Ek||g̃k||2, for which we have:

Ek||g̃k||2=Ek[||
1

|S|
∑
i∈S

clip(∇fi(xk)−∇fi(wk), C1||∇fS(xk)−∇fS(wk)||)

+
1

N

∑
i∈D

clip(∇fi(wk), C2||∇f(wk)||)+nk1+nk2 ||2]

(a)

≤ 4Ek||
1

|S|
∑
i∈S

clip(∇fi(xk)−∇fi(wk), C1||∇fS(xk)−∇fS(wk)||)||2

+4|| 1
|D|

∑
i∈D

clip(∇fi(wk), C2||∇f(wk)||)||2

+4dL2σ2
1C

2
1 ||xk−wk||2+4dσ2

2C
2
2 ||∇f(wk)||2

(b)

≤ 4L2C2
1 (dσ

2
1+1)||xk−x⋆+x⋆−wk||2+4C2

2 (dσ
2
2+1)||∇f(wk)||2

(c)

≤ 8L2C2
1 (dσ

2
1+1)︸ ︷︷ ︸

:=N1

||xk−x⋆||2+8L2C2
1 (dσ

2
1+1)︸ ︷︷ ︸

:=N1

||wk−x⋆||2

+4C2
2 (dσ

2
2+1)︸ ︷︷ ︸

:=N2

· 1
|D|

∑
i∈[|D|]

||∇fi(wk)−∇fi(x⋆)||2

︸ ︷︷ ︸
:=Dk

(15)

Here, d denotes the model size. Inequality (a) follows from the Cauchy–Schwarz inequality and the
L-smoothness property applied to the noise term ||nk1 ||2; (b) applies the L-smoothness property to
the first clipping term; and (c) uses the Cauchy–Schwarz inequality along with the convexity of the
squared ℓ2-norm, i.e., ||E[X]||2 ≤ E[||X||2]. For Ek[||g̃k||], we have:

Ek||g̃k||
(a)

≤
√

Ek||g̃k||2

(b)

≤ (4L2C2
1 (dσ

2
1+1)||xk−wk||2+4C2

2 (dσ
2
2+1)||∇f(wk)||2) 1

2

(c)

≤ (
4L2C2

1 (dσ
2
1+1)

µ2
||∇f(xk)−∇f(wk)||2+4C2

2 (dσ
2
2+1)||∇f(wk)||2) 1

2

(d)

≤ (
16L2C2

1 (dσ
2
1+1)G2

µ2
+ 4C2

2 (dσ
2
2+1)G2)

1
2

=
2G

µ

√
4L2C2

1 (dσ
2
1+1) + µ2C2

2 (dσ
2
2+1) := G̃

(16)

For any precision e > 0, when ||∇f(w)||, ||xk − x⋆|| > e, we define the unclipped and clipped
sample sets for the first clipping as Jk

1 := {j : ||∆k
j || ≤ C1k} and Jk

2 := {j : ||∆k
j || > C1k},

16
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and those induced by the second clipping as Ik1 := {i : ||∇fi(wk)|| ≤ C2k} and Ik2 := {i :
||∇fi(wk)|| > C2k}. By choosing C1 > 0 and C2 ≥ τ

e + 1, we have:

bk1 =
1

|S|
∑
i∈S

clip(∆k
i , C1k)−∆k

S =
1

|S|
(
∑
i∈Jk

1

∆k
i +

∑
i∈Jk

2

C1k

||∆k
i ||

∆k
i )−∆k

S

=
1

|S|
∑
i∈Jk

2

(
C1k

||∆k
i ||
− 1) ·∆k

i =
1

|S|
∑
i∈Jk

2

(C1||∆k
S || − ||∆k

i ||) ·
∆k

i

||∆k
i ||

(17)

bk2=
1

|D|
∑
i∈D

clip(∇fi(wk), C2k)−∇f(wk)=
1

|D|
(
∑
i∈Ik

1

∇fi(wk)+
∑
i∈Ik

2

C2k

||∇fi(wk)||
∇fi(wk))−∇f(wk)

=
1

|D|
∑
i∈Ik

2

(
C2k

||∇fi(wk)||
−1)·∇fi(wk)=

1

|D|
∑
i∈Ik

2

(C2||∇f(wk)||−||∇fi(wk)||)· ∇fi(w
k)

||∇fi(wk)||

(18)
For the first clipping, we define the probability of an individual sample remaining unclipped as
Pk
1 := Ek1{||∆k

i ||≤C1k}. Then, we have:

Ek[⟨bk1 , x⋆ − xk⟩] = Ek[⟨
1

|S|
∑
i∈Jk

2

(C1||∆k
S || − ||∆k

i ||)︸ ︷︷ ︸
<0

· ∆k
i

||∆k
i ||

, x⋆ − xk⟩]

(a)

≤ Ek[
1

|S|
∑
i∈Jk

2

(||∆k
i || − C1||∆k

S ||) · ||xk − x⋆||]

(b)

≤ Ek[
1

|S|
∑
i∈Jk

2

(L||xk − wk|| − C1µ||xk − wk||) · ||xk − x⋆||]

≤ Ek[
1

|S|
∑
i∈Jk

2

(L− C1µ)||xk − wk|| · ||xk − x⋆||]

= (1− Pk
1)(L− C1µ)||xk − wk|| · ||xk − x⋆||

≤ (L− C1µ)||xk − wk|| · ||xk − x⋆||

(19)

Here, (a) follows from the Cauchy–Schwarz inequality, (b) follows from the L-smoothness and µ-
strong convexity of the objective function. For the second clipping, similarly, we define Pk

2 :=
Ek1{ ||∇fi(wk)||≤C2k }, we have:

Ek⟨bk2 , x⋆−xk⟩=Ek⟨
1

|D|
∑
i∈Ik

2

(C2||∇f(wk)||−||∇fi(wk)||)︸ ︷︷ ︸
<0

· ∇fi(w
k)

||∇fi(wk)||
, x⋆−xk⟩

(a)

≤ Ek
1

|D|
∑
i∈Ik

2

(||∇fi(wk)||−C2||∇f(wk)||) · ||xk−x⋆||]

≤Ek
1

|D|
∑
i∈Ik

2

(||∇fi(wk)−∇f(wk)+∇f(wk)||−C2||∇f(wk)||)·||xk−x⋆||

(b)

≤ Ek
1

|D|
∑
i∈Ik

2

(||∇fi(wk)−∇f(wk)||+||∇f(wk)||−C2||∇f(wk)||)·||xk−x⋆||

(c)

≤ Ek
1

|D|
∑
i∈Ik

2

(τ−(C2−1)||∇f(wk)||)·||xk−x⋆||

(d)

≤ 1−Pk
2

|D|
(τ−(C2−1)e)︸ ︷︷ ︸

≤0

·||xk−x⋆|| ≤ 0

(20)

Here, (a) follows from the Cauchy–Schwarz inequality, (b) from the triangle inequality, (c) from
Assumption 3.4, and (d) from our prescribed accuracy condition together with the choice of C2.
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To handle the above terms, we next examine the randomness in the wk iteration that arises both
from the coin-flipping mechanism and from the stochasticity of the noise sampling. Owing to the
independence of different sources of randomness, and in terms of the full expectation, we have:

E[||xk−wk||·||xk−x⋆||]
(a)

≤ E[||xk−wk||· ||∇f(x
k)−∇f(x⋆)||

µ
]

=
1

µ
E[||xk−wk||·||∇f(xk)||

(b)

≤ G

µ
E||xk−wk||

(c)
=

G

µ
E[p||xk−xk−1||+(1−p)||xk−wk−1||]

(d)

≤ G

µ
E[||xk−xk−1||+(1−p)||xk−1−wk−1||]

≤G

µ
E[(||xk−xk−1||+(1−p)||xk−1−xk−2||+(1−p)2||xk−2−xk−3||+· · ·

+(1−p)k−1||x1−x0||+p||w0−x0||]

≤G

µ
E[η(||g̃k−1||+(1−p)||g̃k−2||+· · ·+(1−p)k||g̃0||]

≤G

µ
E[ηG̃(1+(1−p)+(1−p)2+· · ·+(1−p)k]

≤η
GG̃

pµe2
· e2 ≤ η

GG̃

pµe2
E||xk−x⋆||2

(21)

Here, (a) follows from the µ-strong convexity property; (b) is due to Assumption 3.5; (c) comes from
the iterative update rule of wk; and (d) is obtained by applying the triangle inequality. Similarly, we
also obtain the following results, which will be used in the subsequent proofs:

E||xk−1−wk−1||·||xk−x⋆|| ≤ η
GG̃

pµ

E||wk−wk−1||2 ≤ η2
G̃2

p

E||xk−1−wk−1|| · ||∇f(xk)|| ≤ η
GG̃

p

(22)

With these preparations in place, we are now ready to proceed. For notational simplicity, in (15)
we define Dk := E

∥∥∇fi(wk) − ∇fi(x⋆)
∥∥2, N1 := 8L2C2

1 (dσ
2
1 + 1), N2 := 4(dσ2

2 + 1)C2
2 , and

A := 2GG̃
pµe2 (L−C1µ). Substituting (15)–(21) into (14), and taking the full expectation on both sides

of (14), (15), and (19), we obtain:
E||xk+1−x⋆||2≤(1−ηµ+η2(N1+A)E||xk−x⋆||2+η2N1E||wk−x⋆||2

+ η2N2D
k− 2η(Ef(xk)− f⋆)

(23)

We now consider the iterative update of {wk}k∈[T ] in DP-C4 (Line 13 in Alg.3). Since wk is updated
with a certain probability, we have:

E||wk+1 − x⋆||2 = pE||xk − x⋆||2 + (1− p)E||wk − x⋆||2

Dk+1 = (1− p)Dk + pE||∇fi(xk)−∇fi(x⋆)||2

≤ (1− p)Dk + 2Lp(Ef(xk)− f⋆)

(24)

We define the Lyapunov function of DP-C4 as follows:

Φk= E||xk−x⋆||2+2N1η
2

p
E||wk−x⋆||2+2N2η

2

p
Dk

= E||xk−x⋆||2+16L2C2
1 (dσ

2
1+1)η2

p
E||wk−x⋆||2+8C2

2 (dσ
2
2+1)η2

p
Dk

(25)
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Let η < min
{

µ
3N1+A , 1

2LN2

}
. Then, we observe that:

Φk+1=E||xk+1−x⋆||2+2N1η
2

p
E||wk+1−x⋆||2+2N2η

2

p
Dk+1

≤(1−µη+(N1+A)η2+p
2N1η

2

p
)E||xk−x⋆||2+(N1η

2+(1−p)2N1η
2

p
)E||wk−x⋆||2

+(N2η
2+(1−p)2N2η

2

p
)Dk+(4LN2η

2−2η)︸ ︷︷ ︸
<0

(Ef(xk)−f⋆)

=(1−µη+(3N1+A)η2)︸ ︷︷ ︸
<1

E||xk−x⋆||2+(1− p

2
)
2N1η

2

p
E||wk−x⋆||2+(1− p

2
)
2N2η

2

p
Dk

(26)
That is,

Φk+1 ≤ max{1−µη+(3N1+A)η2︸ ︷︷ ︸
<1

, 1− p

2︸ ︷︷ ︸
<1

} · Φk < Φk

(27)

C.3 PROOF OF THEOREM 2

Unlike Thm.1, here we study the general convergence analysis in the non-convex setting without im-
posing stringent restrictions on the clipping coefficients C1 and C2. Therefore, we need to consider
the clipping bias in a more refined manner. First, since f(x) is L-smooth, we have:

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+ L

2
||xk+1 − xk||2

= −η⟨∇f(xk), g̃k⟩+ Lη2

2
||g̃k||2.

(28)

Taking the expectation on both sides of the inequality, and let us define gk := g̃k − nk
1 − nk

2 , we
obtain:

Ek[f(x
k+1)]− f(xk) ≤ −ηEk⟨∇f(xk), gk⟩+ Lη2

2
Ek[||gk + nk

1 + nk
2 ||2] (29)

Our current goal is to derive a lower bound for Ek⟨∇f(xk), gk⟩ and an upper bound for Ek[∥gk +
nk
1 + nk

2∥2]. We first consider the upper bound of Ek[∥gk + nk
1 + nk

2∥2]. From (15), we have:

Ek||g̃k||2≤ 4C2
1 ||∇fS(xk)−∇fS(wk)||2 + 4dC2

1σ
2
1 ||∇f(xk)−∇f(wk)||2

+ 4C2
2 (dσ

2
2+1)||∇f(wk)||2

≤ 8C2
1 (||∇fS(xk)||2+||∇fS(wk)||2)+8dC2

1σ
2
1(||∇f(xk)||2+ ||∇f(wk)||2)

+ 4C2
2 (dσ

2
2+1)||∇f(wk)||2

≤ 4G2(4C2
1 (dσ

2
1+1)+C2

2 (dσ
2
2+1)) := G̃′

(30)

We now discuss a lower bound for Ek⟨∇f(xk), gk⟩. Our approach is to use the gradient sampling
noise as a bridge to precisely characterize each term. Let ∆k

i := ∇fi(xk) − ∇fi(wk),∆k :=
∇f(xk)−∇f(wk), and ξk1i := ∆k

i −∆k, ξk2i := ∇fi(wk)−∇f(wk), Then, we obtain:

Ek[g
k] = Ek[

1

|S|
∑
i∈S

clip(∇fi(xk)−∇fi(wk), C1k) +
1

|D|
∑
i∈D

clip(∇fi(wk), C2k)]

= Ek[∆
k
i ·min{1, C1k

||∆k
i ||
}] + Ek[∇fi(wk) ·min{1, C2k

||∇fi(wk)||
}]

= Ek[(∆
k + ξk1i) ·min{1, C1k

||∆k + ξk1i||
}] + Ek[(∇f(wk) + ξk2i) ·min{1, C2k

||∇f(wk) + ξk2i||
}]

(31)
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Therefore, for Ek⟨∇f(xk), gk⟩, we have:

Ek⟨∇f(xk), gk⟩ = ⟨∇f(xk),Ek[(∆
k + ξk1i) ·min{1, C1k

||∆k + ξk1i||
}]

+ Ek[(∇f(wk) + ξk2i) ·min{1, C2k

||∇f(wk) + ξk2i||
}]⟩

= ⟨∇f(xk),Ek[(∆
k + ξk1i) ·min{1, C1k

||∆k + ξk1i||
}]−∆k⟩︸ ︷︷ ︸

C:=Coupled Term

+ ⟨∇f(xk),Ek[(∇f(wk) + ξk2i) ·min{1, C2k

||∇f(wk) + ξk2i||
}]−∇f(wk) +∇f(xk)⟩︸ ︷︷ ︸

A:=Anchor Term

(32)
We denote Pk

1 := Ek[1{∥∆k+ξk1i∥≤C1k}],P
k
2 := Ek[1{∥∇f(wk)+ξk2i∥≤C2k}], and assume that C1 > 1

and C2 > 1. We then examine the two terms separately. First, for the term A, we have:

Ek[(∇f(wk) + ξk2i) ·min{1, C2k

||∇f(wk) + ξk2i||
}] =

Ek[(∇f(wk) + ξk2i) · 1{||∇f(wk)+ξk2i||≤C2k}] + Ek[
C2k · (∇f(wk) + ξk2i)

||∇f(wk) + ξk2i||
· 1{||∇f(wk)+ξk2i||>C2k}]

(33)
Substituting into (32), we obtain:

A = ||∇f(xk)||2 + ⟨∇f(xk),−∇f(wk) + Ek[(∇f(wk) + ξk2i) ·min{1, C2k

||∇f(wk) + ξk2i||
}]⟩

= ||∇f(xk)||2 + ⟨∇f(xk),−∇f(wk) + Ek[(∇f(wk) + ξki ) · 1{||∇f(wk)+ξk2i||≤C2k}]

+ Ek[
C2k · (∇f(wk) + ξk2i)

||∇f(wk) + ξk2i||
· 1{||∇f(wk)+ξk2i||>C2k}]⟩

= ||∇f(xk)||2 + Ek[⟨∇f(xk),−∇f(wk)·(1{||∇f(wk)+ξk2i||≤C2k} + 1{||∇f(wk)+ξk2i||>C2k})

+ (∇f(wk) + ξk2i) · 1{||∇f(wk)+ξk2i||≤C2k} +
C2k · (∇f(wk) + ξk2i)

||∇f(wk) + ξk2i||
· 1{||∇f(wk)+ξk2i||>C2k}⟩]

= ||∇f(xk)||2 + Ek[⟨∇f(xk), ξk2i ·1{||∇f(wk)+ξk2i||≤C2k}⟩]

+ Ek[⟨∇f(xk), [
C2k · (∇f(wk) + ξk2i)

||∇f(wk) + ξk2i||
− f(wk)]·1{||∇f(wk)+ξk2i||>C2k}⟩]

(34)
Focusing on the final term of (34) alone, we obtain:

Ek[⟨∇f(xk), [
C2k · (∇f(wk) + ξk2i)

||∇f(wk) + ξk2i||
− f(wk)]·1{||∇f(wk)+ξk2i||>C2k}⟩]

=Ek[⟨∇f(xk), [
C2||∇f(wk)||(∇f(wk) + ξk2i)

||∇f(wk) + ξk2i||
− (f(wk) + ξk2i) + ξk2i]·1{||∇f(wk)+ξk2i||>C2k}⟩]

=Ek[⟨∇f(xk), [
[C2||∇f(wk)|| − ||∇f(wk) + ξk2i||](∇f(wk) + ξk2i)

||∇f(wk) + ξk2i||
+ ξk2i]·1{||∇f(wk)+ξk2i||>C2k}⟩]

=Ek[⟨∇f(xk),
[C2||∇f(wk)|| − ||∇f(wk) + ξk2i||](∇f(wk) + ξk2i)

||∇f(wk) + ξk2i||
·1{||∇f(wk)+ξk2i||>C2k}⟩]

+Ek[⟨∇f(xk), ξk2i ·1{||∇f(wk)+ξk2i||>C2k}⟩]
(35)
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Substituting into (34), we obtain:

A = ||∇f(xk)||2 + Ek[⟨∇f(xk), ξk2i ·(1{||∇f(wk)+ξk2i||≤C2k} + 1{||∇f(wk)+ξk2i||>C2k})⟩]

+ Ek[⟨∇f(xk),
[C2||∇f(wk)|| − ||∇f(wk) + ξk2i||](∇f(wk) + ξk2i)

||∇f(wk) + ξk2i||
·1{||∇f(wk)+ξk2i||>C2k}⟩]

(36)
Since 1{∥∇f(wk)+ξk2i∥≤C2k} +1{∥∇f(wk)+ξk2i∥>C2k} = 1, and C2∥∇f(wk)∥− ∥∇f(wk) + ξk2i∥ ≥
C2∥∇f(wk)∥−∥∇f(wk)∥−∥ξk2i∥, together with the facts that Ek[ξ

k
2i] = 0 and (C2∥∇f(wk)∥−

∥∇f(wk) + ξk2i∥) ·1{∥∇f(wk)+ξk2i∥>C2k} ≤ 0, we can, by applying the Cauchy inequality, derive a
lower bound for A:

A = ||∇f(xk)||2

+ Ek[1{||∇f(wk)+ξk2i||>C2k} ·[C2||∇f(wk)|| − ||∇f(wk) + ξk2i||]︸ ︷︷ ︸
<0

·⟨∇f(xk),
(∇f(wk) + ξk2i)

||∇f(wk) + ξk2i||
⟩]

(a)

≥ ||∇f(xk)||2 + Ek[1{||∇f(wk)+ξk2i||>C2k} ·[(C2−1)||∇f(wk)||−||ξk2i||] · ||∇f(xk)||]
(b)

≥ ||∇f(xk)||2 + Ek[1{||∇f(wk)+ξk2i||>C2k} ·[C2||∇f(wk)|| − ||∇f(wk) + ξk2i||] · ||∇f(xk)||]

= ||∇f(xk)||2 + Ek[1{||∇f(wk)+ξk2i||>C2k} ·(C2−1)||∇f(wk)|| · ||∇f(xk)||]

− Ek[1{||∇f(wk)+ξk2i||>C2k} ·||ξ
k
2i|| · ||∇f(xk)||]

(37)
Here, (a) follows from the Cauchy inequality, and (b) follows from the triangle inequality. We now
consider the third term in the above expression. Let Sk denote the set of ξk2i such that ∥∇f(wk) +
ξk2i∥ > C2k, and define Pk,z := Pr(ξk ∈ Sk, ∥ξk∥ = z). Then, we have:

− Ek[1{||∇f(wk)+ξk2i||2>C2k} ·||ξ
k
2i|| · ||∇f(xk)||]

=− Ek[1{ξk∈Sk} ·||ξ
k||] · ||∇f(xk)||

=− ||∇f(xk)|| ·
∫ +∞

0

Pk,z · z dz

=− ||∇f(xk)|| ·
∫ +∞

0

√
Pk,z ·

√
z2 · Pk,z dz

≥− ||∇f(xk)|| ·

√
(

∫ +∞

0

Pk,z dz) · (
∫ +∞

0

z2Pk,z dz)

≥− ||∇f(xk)|| ·
√
(1− Pk

2) ·
√
Ek[||ξk2i||2]

(38)

Thus, we can obtain:

A≥||∇f(xk)||2+(1−Pk
2)(C2−1)||∇f(xk)||·||∇f(wk)|| − ||∇f(xk)|| ·

√
(1− Pk

2) ·
√
Ek[||ξk2i||2]

(39)
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The treatment of C is analogous to that of A. Due to the symmetry between∇f(wk) and ∆k in the
expressions for A and C, and by referring to (32)–(39), we can obtain:

C = ⟨∇f(xk),Ek[
∆k + ξk1i
||∆k + ξk1i||

· (C1k − ||∆k + ξk1i||) · 1{||∆k+ξk1i||>C1k}︸ ︷︷ ︸
<0

]⟩

≥ Ek[(C1k − ||∆k + ξk1i||) · 1{||∆k+ξk1i||>C1k}] · ||∇f(x
k)||

≥ Ek[(C1||∆k|| − ||∆k|| − ||ξk1i||) · 1{||∆k+ξk1i||>C1k}] · ||∇f(x
k)||

≥ Ek[(C1 − 1)||∆k|| · 1{||∆k+ξk1i||>C1k}] · ||∇f(x
k)||

− Ek[||∇f(xk)|| · ||ξk1i|| · 1{||∆k+ξk1i||>C1k}]

≥ (1− Pk
1)(C1 − 1)||∆k||||∇f(xk)|| − ||∇f(xk)|| ·

√
(1− Pk

1) ·
√
Ek[||ξk1i||2]

≥ (1− Pk
1)(C1 − 1)||∇f(xk)−∇f(wk)|| · ||∇f(xk)||

− ||∇f(xk)|| ·
√
(1− Pk

1) ·
√
Ek[||ξk1i||2]

(40)

By Assumption 3.4, we have Ek[∥ξk2i∥2] = Var(∇fi) ≤ τ2. Moreover, ξk1i=∆k
i −∆k=∇fi(xk)−

∇fi(wk)−∇f(xk)+∇f(wk)=(∇fi(xk)−∇f(xk))−(∇fi(wk)−∇f(wk))=ξk2i−ξk
′

2i , which implies
Ek∥ξk1i∥2≤4τ2. Combining the results from both terms, we obtain:

Ek[⟨∇f(xk), gk⟩] ≥ ||∇f(xk)||2 + (1− Pk
1)(C1 − 1)||∇f(xk)|| · ||∇f(xk)−∇f(wk)||

+ (1−Pk
2)(C2−1)||∇f(xk)||·||∇f(wk)|| − 2||∇f(xk)|| ·

√
(1− Pk

1) · τ

− ||∇f(xk)|| ·
√
(1− Pk

2) · τ

(41)

Below, we consider two cases, namely ∥∇f(xk)∥ ≥ 3τ and ∥∇f(xk)∥ < 3τ , and we will use
probabilities to combine them. For the former case, we have:

Ek[⟨∇f(xk), gk⟩] ≥ (1− 2
√

1− Pk
1 +

√
1− Pk

2

3
)||∇f(xk)||2

+
2
√
1− Pk

1 +
√
1− Pk

2

3
||∇f(xk)||2

− (2
√
(1− Pk

2) +
√
(1− Pk

1))||∇f(xk)||τ

+ (1−Pk
2)(C2−1)||∇f(xk)||·||∇f(wk)||

+ (1− Pk
1)(C1 − 1)||∇f(xk)|| · ||∇f(xk)−∇f(wk)||

≥ (1− 2
√
1− Pk

1 +
√
1− Pk

2

3
)||∇f(xk)||2

+ (1−Pk
2)(C2−1)||∇f(xk)||·||∇f(wk)||

+ (1− Pk
1)(C1 − 1)||∇f(xk)|| · ||∇f(xk)−∇f(wk)|| ≥ 0

(42)
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In summary, by combining the two cases using probabilities, let Pk := Pr(∥∇f(xk)∥ < 3τ | xk−1).
Then, we have:

Ek[⟨∇f(xk), gk⟩] ≥ (1− Pk)(1− 2
√

1− Pk
1 +

√
1− Pk

2

3
)||∇f(xk)||2

+ (1− Pk)(1−Pk
2)(C2−1)||∇f(xk)||·||∇f(wk)||

+ (1− Pk)(1− Pk
1)(C1 − 1)||∇f(xk)|| · ||∇f(xk)−∇f(wk)||

+ Pk||∇f(xk)||2 + Pk(1− Pk
1)(C1 − 1)||∇f(xk)|| · ||∇f(xk)−∇f(wk)||

+ Pk(1−Pk
2)(C2−1)||∇f(xk)||·||∇f(wk)|| − 2Pk||∇f(xk)|| ·

√
(1− Pk

1) · τ

− Pk||∇f(xk)|| ·
√

(1− Pk
2) · τ

= (1− (1− Pk)
2
√
1− Pk

1 +
√

1− Pk
2

3
)︸ ︷︷ ︸

0≤λk
1≤1

||∇f(xk)||2

+ (1−Pk
2)(C2−1)︸ ︷︷ ︸
λk
2≥0

||∇f(xk)||·||∇f(wk)||

+ (1− Pk
1)(C1 − 1)︸ ︷︷ ︸
λk
3≥0

||∇f(xk)||2 · ||∇f(xk)−∇f(wk)||

− Pk · 2
√
1− Pk

1 +
√
1− Pk

2

3︸ ︷︷ ︸
0≤λk

4≤1

·||∇f(xk)|| · 3τ

(43)
For notational convenience, we further define and restate:

λk
1 :=1− 1

3
(1−Pk)(2

√
1−Pk

1+
√
1−Pk

2), λk
2 :=(1−Pk

2)(C2−1), λk
3 :=(1−Pk

1)(C1−1)

λk
4 :=

1

3
Pk(2

√
1− Pk

1 +
√
1− Pk

2), Pk :=Pr
(
∥∇f(xk)∥≤3τ | xk−1

)
,

Pk
1 := Ek

[
1{∥∇fi(xk)−∇fi(wk)∥2≤C1k}

]
, Pk

2 := Ek

[
1{∥∇fi(wk)∥2≤C2k}

]
.

By substituting (43), (30) into (29), taking the full expectation on both sides of the inequality, sum-

ming over k = 1 to T , and setting η =
√

2(f(x0)−f(x⋆))

TLG̃
, we obtain:

1

T

T∑
k=1

E
[
λk
1 ||∇f(xk)||2 + λk

2 ||∇f(xk)||·||∇f(wk)||+ λk
3 ||∇f(xk)|| · ||∇f(xk)−∇f(wk)||

]
≤ f(x0)− Ef(xT )

ηT
+

ηL

2T

T∑
k=1

G̃+
1

T

T∑
k=1

E
[
λk
4 · 3τ ||∇f(xk)||

]

≤ 2

√
(f(x0)− f(x⋆))LG̃

2T
+

1

T

T∑
k=1

E
[
λk
4 · 3τ ||∇f(xk)||

]
(44)

C.4 PROOF OF THEOREM 4

The proof of Thm.4 is similar to that of Thm.1. Following the previous approach, we focus mainly
on presenting the differences. The treatment of expectations is similar; for simplicity, we do not
distinguish them in the notation. Continuing from (14), we first consider the upper bound of E∥g̃k∥2.
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For any precision e > 0, when ∥∇f(w)∥, ∥xk − x⋆∥, ∥wk − x⋆∥ > e, we have:

E||g̃k||2=E[|| 1
|S|

∑
i∈S

clip(∇fi(xk)−∇fi(wk), C1||xk−wk||)

+
1

N

∑
i∈D

clip(∇fi(wk), C2||∇f(wk−1)||)+nk1+nk2 ||2]

≤4E|| 1
|S|

∑
i∈S

clip(∇fi(xk)−∇fi(wk), C1||xk−wk||)||2

+4E|| 1
|D|

∑
i∈D

clip(∇fi(wk), C2||∇f(wk−1)||)||2

+4dσ2
1C

2
1E||xk−wk||2+4dσ2

2C
2
2E||∇f(wk−1)||2

≤4C2
1 (dσ

2
1+1)E||xk−x⋆+x⋆−wk||2

+4C2
2 (dσ

2
2+1)E||∇f(wk)− (∇f(wk)−∇f(wk−1))||2

≤8C2
1 (dσ

2
1+1)E||xk−x⋆||2+8C2

1 (dσ
2
1+1)E||wk−x⋆||2

+8C2
2 (dσ

2
2+1)E||∇f(wk)||2+8C2

2 (dσ
2
2+1)E||∇f(wk)−∇f(wk−1)||2

(a)

≤ 8C2
1 (dσ

2
1+1)E||xk−x⋆||2+8C2

1 (dσ
2
1+1)E||wk−x⋆||2

+8C2
2 (dσ

2
2+1)E||∇f(wk)||2+8C2

2L
2(dσ2

2+1)E||wk − wk−1||2

(b)

≤ 8C2
1 (dσ

2
1+1)E||xk−x⋆||2+8C2

1 (dσ
2
1+1)E||wk−x⋆||2

+8C2
2 (dσ

2
2+1)E||∇f(wk)||2+8C2

2L
2(dσ2

2+1)η2
G̃2

pe2
· e2

≤8C2
1 (dσ

2
1+1)E||xk−x⋆||2+8C2

1 (dσ
2
1+1)E||wk−x⋆||2

+8C2
2 (dσ

2
2+1)E||∇f(wk)||2+4C2

2L
2(dσ2

2+1)η2
G̃2

pe2
(E||xk−x⋆||2+E||wk−x⋆||2)

≤(8C2
1 (dσ

2
1+1)+

4η2

pe2
G2C2

2 (dσ
2
2+1))︸ ︷︷ ︸

:=N1

(E||xk−x⋆||2+E||wk−x⋆||2)

+8C2
2 (dσ

2
2+1)︸ ︷︷ ︸

:=N2

E||∇fi(wk)−∇fi(x⋆)||2︸ ︷︷ ︸
:=Dk

.

(45)

Where, (a) follows from the L-smooth property, and (b) follows from (22), G̃ is given by (46).
Similarly, for E∥g̃k∥, we have:

E||g̃k||≤
√
E||g̃k||2

≤(4C2
1 (dσ

2
1+1)||xk−wk||2+4C2

2 (dσ
2
2+1)||∇f(wk−1)||2) 1

2

≤(
4C2

1 (dσ
2
1+1)

µ2
||∇f(xk)−∇f(wk)||2+4C2

2 (dσ
2
2+1)||∇f(wk−1)||2) 1

2

≤(
8C2

1 (dσ
2
1+1)G2

µ2
+ 4C2

2 (dσ
2
2+1)G2)

1
2

=
2G

µ

√
2C2

1 (dσ
2
1+1) + µ2C2

2 (dσ
2
2+1) := G̃

(46)

Similarly, for the two types of clipping bias, we have:

bk1 :=
1

|S|
∑
i∈S

clip(∆k
i , C1||xk−wk||)−∆k

S ,

bk2 :=
1

|D|
∑
i∈D

clip(∇fi(wk), C2||∇f(wk−1)||)−∇f(wk)
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Following all the previously introduced notations, we have:

bk1 =
1

|S|
∑
i∈S

clip(∆k
i , C1||xk−wk||)−∆k

S

=
1

|S|
(
∑
i∈Jk

1

∆k
i +

∑
i∈Jk

2

C1k

||∆k
i ||

∆k
i )−∆k

S

=
1

|S|
∑
i∈Jk

2

(
C1k

||∆k
i ||
− 1) ·∆k

i

=
1

|S|
∑
i∈Jk

2

(C1||xk−wk|| − ||∆k
i ||)︸ ︷︷ ︸

<0

· ∆k
i

||∆k
i ||

bk2 =
1

|D|
∑
i∈Jk

2

(C2||∇f(wk−1)||−||∇fi(wk)||)︸ ︷︷ ︸
<0

· ∇fi(w
k)

||∇fi(wk)||

(47)

Similarly, for the first type of clipping, we define Pk
1 := Ek[1{∥∆k

i ∥≤C1k}], and we have:

E[⟨bk1 , x⋆ − xk⟩] = E[⟨ 1
|S|

∑
i∈Jk

2

(C1||xk−wk||−||∆k
i ||)︸ ︷︷ ︸

<0

· ∆k
i

||∆k
i ||

, x⋆ − xk⟩]

≤ E[
1

|S|
∑
i∈Jk

2

(||∆k
i || − C1||xk−wk||) · ||xk−x⋆||]

≤ E[
1

|S|
∑
i∈Jk

2

(L||xk − wk|| − C1||xk − wk||) · ||xk − x⋆||]

≤ E(1− Pk
1)(L− C1)||xk − wk|| · ||xk − x⋆||

(a)

≤ η(L− C1)
GG̃

pµe2
E||xk−x⋆||2

(48)

Here, (a) follows directly from (21). For the second type of clipping, we define Pk
2 :=

Ek[1{∥∇fi(wk)∥≤C2k}], and we have:

E⟨bk2 , x⋆−xk⟩=E⟨ 1

|D|
∑
i∈Jk

2

(C2||∇f(wk−1)||−||∇fi(wk)||)︸ ︷︷ ︸
<0

· ∇fi(w
k)

||∇fi(wk)||
, x⋆−xk⟩

≤E
1

|D|
∑
i∈Jk

2

(||∇fi(wk)||−C2||∇f(wk−1)||) · ||xk−x⋆||]

≤E
1

|D|
∑
i∈Jk

2

(||∇fi(wk)||−C2||∇f(wk)||+C2||∇f(wk)−∇f(wk−1)||)·||xk−x⋆||

≤E
1

|D|
∑
i∈Jk

2

((τ−(C2−1)||∇f(wk)||︸ ︷︷ ︸
≤0

)+C2||∇f(wk)−∇f(wk−1)||)·||xk−x⋆||

≤E
1

|D|
∑
i∈Jk

2

C2||∇f(wk)−∇f(wk−1)||·||xk−x⋆||

≤E(1− Pk
2)LC2||wk − wk−1|| · ||xk − x⋆||

(a)

≤ LpC2E||xk−1 − wk−1|| · ||xk − x⋆||
(b)

≤ ηLpC2
GG̃

pµe2
· e2

(c)

≤ ηLC2
GG̃

µe2
· E||xk−x⋆||2

(49)
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Here, (a) comes from the iterative update rule of wk; (b) follows directly from (22); and (c) is due to
the precision conditions we imposed. In summary, let A := 2GG̃

pµe2 [(pC2+1)L−C1]. We then consider
the worst case, i.e., A>0. In this case, similarly, we have:

E||xk+1−x∗||2=E||xk−x∗−ηg̃k||2

=E||xk−x∗||2+E[2η⟨g̃k, x∗ − xk⟩] + η2E||g̃k||2

≤E||xk−x∗||2+2ηE⟨∇f(xk)+bk1+bk2 , x
∗−xk⟩+η2E||g̃k||2

≤E||xk−x∗||2+2η (f∗−Ef(xk)−(µ
2
−ηA

2
)E||xk−x∗||2)︸ ︷︷ ︸

µ−strongly convex

+η2E||g̃k||2

=E||xk−x∗||2(1−ηµ+η2A)+2η(f∗−Ef(xk))+η2E||g̃k||2

(50)

In (45), let Dk := E∥∇fi(wk) − ∇fi(x⋆)∥2, N1 := 8C2
1 (dσ

2
1+1)+ 4η2

pe2 G
2C2

2 (dσ
2
2+1), N2 :=

8C2
2 (dσ

2
2+1). Substituting these into (50), we obtain:

E||xk+1−x⋆||2≤(1−ηµ+η2(N1+A)E||xk−x⋆||2+η2N1E||wk−x⋆||2

+ η2N2D
k− 2η(Ef(xk)− f⋆)

(51)

Similarly, from the iterative update rule, we have:

E||wk+1 − x⋆||2 = pE||xk − x⋆||2 + (1− p)E||wk − x⋆||2

Dk+1 = (1− p)Dk + pE||∇fi(xk)−∇fi(x⋆)||2

≤ (1− p)Dk + 2Lp(Ef(xk)− f⋆)

(52)

We define the Lyapunov function of the system as follows:

Φk= E||xk−x⋆||2+2N1η
2

p
E||wk−x⋆||2+2N2η

2

p
Dk (53)

Similarly, let η<min{ µ
3N1+A , 1

2LN2
}, then we have:

Φk+1=E||xk+1−x⋆||2+2N1η
2

p
E||wk+1−x⋆||2+2N2η

2

p
Dk+1

≤(1−µη+(N1+A)η2+p
2N1η

2

p
)E||xk−x⋆||2+(N1η

2+(1−p)2N1η
2

p
)E||wk−x⋆||2

+(N2η
2+(1−p)2N2η

2

p
)Dk+(4LN2η

2−2η)︸ ︷︷ ︸
<0

(Ef(xk)−f⋆)

=(1−µη+(3N1+A)η2)︸ ︷︷ ︸
<1

E||xk−x⋆||2+(1− p

2
)
2N1η

2

p
E||wk−x⋆||2+(1− p

2
)
2N2η

2

p
Dk

(54)
From this we can obtain the following:

Φk+1 ≤ max{1−µη+(3N1+A)η2, 1− p

2
} · Φk < Φk (55)

which implies an exponential decay of the Lyapunov function.

C.5 PROOF OF THEOREM 5

Similar to DP-C4, we first derive the upper bound of E∥g̃k∥2. From (45), we have:

E||g̃k||2≤ 4C2
1 (dσ

2
1+1)||xk−wk||2+4C2

2 (dσ
2
2+1)||∇f(wk−1)||2

≤ 4C2(dσ2
1+1)+4G2C2

2 (dσ
2
2+1) := G̃

(56)
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Next, we discuss the lower bound of E⟨∇f(xk), gk⟩. Let ∆k
i := ∇fi(xk) − ∇fi(wk),∆k :=

∇f(xk)−∇f(wk), ξk1i := ∆k
i −∆k, ξk2i := ∇fi(wk)−∇f(wk). Similarly, we can obtain:

E⟨∇f(xk), gk⟩

= E⟨∇f(xk),Ek[(∆
k + ξk1i) ·min{1, C1k

||∆k + ξk1i||
}+ (∇f(wk) + ξk2i) ·min{1, C2k

||∇f(wk) + ξk2i||
}]⟩

= E⟨∇f(xk),Ek[(∆
k + ξk1i) ·min{1, C1k

||∆k + ξk1i||
}]−∆k⟩︸ ︷︷ ︸

C:=Coupled Term

+ E⟨∇f(xk),Ek[(∇f(wk) + ξk2i) ·min{1, C2k

||∇f(wk) + ξk2i||
}]−∇f(wk) +∇f(xk)⟩︸ ︷︷ ︸

A:=Anchor Term

(57)
We denote Pk

1 := Ek[1{∥∆k+ξk1i∥≤C1k}],P
k
2 := Ek[1{∥∇f(wk)+ξk2i∥≤C2k}], and assume that C1 > 1

and C2 > 1. Similarly, for the Anchor Term A, we have:

A=E||∇f(xk)||2+E
[
Ek 1{||∇f(wk)+ξk2i||>C2k}(C2||∇f(wk−1)||−||∇f(wk)+ξk2i||)︸ ︷︷ ︸

<0

⟨∇f(xk),
∇f(wk)+ξk2i
||∇f(wk)+ξk2i||

⟩
]

≥E||∇f(xk)||2+E
[
Ek1{||∇f(wk)+ξk2i||>C2k} ·(C2||∇f(wk−1)||−||∇f(wk)+ξk2i||)·||∇f(xk)||

]
≥E||∇f(xk)||2+E

[
Ek1{||∇f(wk)+ξk2i||>C2k} ·(C2||∇f(wk−1)||−||∇f(wk)||−||ξk2i||)·||∇f(xk)||

]
≥E||∇f(xk)||2+E

[
Ek1{||∇f(wk)+ξk2i||>C2k} ·(C2||∇f(wk)||

−C2||∇f(wk)−∇f(wk−1)||−||∇f(wk)||−||ξk2i||)·||∇f(xk)||
]

(a)

≥ E||∇f(xk)||2+E
[
Ek1{||∇f(wk)+ξk2i||>C2k} ·((C2 − 1)||∇f(wk)||−||ξk2i||)·||∇f(xk)||

]
︸ ︷︷ ︸

same as DP−C4

−E
[
Ek1{||∇f(wk)+ξk2i||>C2k}L||w

k − wk−1||·||∇f(xk)||
]

≥E||∇f(xk)||2+E
[
(1−Pk

2)(C2−1)||∇f(xk)||·||∇f(wk)||
]
− E

[
||∇f(xk)||·τ

√
1−Pk

2

]
−LpE

[
||xk−1 − wk−1||·||∇f(xk)||

]
(b)

≥ E||∇f(xk)||2+E
[
(1−Pk

2)(C2−1)||∇f(xk)||·||∇f(wk)||
]
− E

[
||∇f(xk)||·τ

√
1−Pk

2

]
−η · LGG̃

(58)
Here, (a) follows the same treatment as in DP-C4, and (b) can be directly obtained from (22).
Similarly, for the Coupled Term C, we have:

C=E⟨∇f(xk),Ek

[ ∆k + ξk1i
||∆k + ξk1i||

· (C1k − ||∆k + ξk1i||) · 1{||∆k+ξk1i||>C1k}︸ ︷︷ ︸
<0

]
⟩

≥E
[
Ek[(C1k − ||∆k + ξk1i||) · 1{||∆k+ξk1i||>C1k}] · ||∇f(x

k)||
]

≥E
[
Ek[(C1||xk − wk|| − ||∆k|| − ||ξk1i||) · 1{||∆k+ξk1i||>C1k}] · ||∇f(x

k)||
]

≥E
[
(
C1

L
−1)||∆k||·Ek1{||∆k+ξk1i||>C1k}]·||∇f(x

k)||
]
−E

[
||∇f(xk)||·Ek

[
||ξk1i||·1{||∆k+ξk1i||>C1k}

]]
≥ E(1− Pk

1)(
C1

L
− 1)||∆k||·||∇f(xk)|| − E||∇f(xk)|| ·

√
(1− Pk

1) ·
√

Ek[||ξk1i||2]

≥ E(1− Pk
1)(

C1

L
− 1)||∇f(xk)−∇f(wk)||·||∇f(xk)|| − 2τE||∇f(xk)|| ·

√
(1− Pk

1)

(59)
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Combining the results of the two terms, we obtain:

E[⟨∇f(xk), gk⟩] ≥ E||∇f(xk)||2 + E(1− Pk
1)(

C1

µ
− 1)||∇f(xk)|| · ||∇f(xk)−∇f(wk)||

+ E(1−Pk
2)(C2−1)||∇f(xk)||·||∇f(wk)|| − 2E||∇f(xk)|| ·

√
(1− Pk

1) · τ

− E||∇f(xk)|| ·
√

(1− Pk
2) · τ − η · LGG̃

(60)
Similar to the treatment in (42) and (43), denoting Pk := Pr(∥∇f(xk)∥ < 3τ | xk−1), we have:

E⟨∇f(xk), gk⟩+LGG̃η ≥E (1−(1−Pk)
2
√

1−Pk
1+

√
1−Pk

2

3
)︸ ︷︷ ︸

0≤λk
1≤1

||∇f(xk)||2

+ E (1−Pk
2)(C2−1)︸ ︷︷ ︸
λk
2≥0

||∇f(xk)||·||∇f(wk)||

+ E (1−Pk
1)(

C1

µ
−1)︸ ︷︷ ︸

λk
3≥0

||∇f(xk)||·||∇f(xk)−∇f(wk)||

− E
Pk ·(2

√
1−Pk

1+
√
1−Pk

2)

3︸ ︷︷ ︸
0≤λk

4≤1

||∇f(xk)||·3τ

(61)

For notational simplicity, we further define and restate:

λk
1 :=1− 1

3
(1−Pk)(2

√
1−Pk

1+
√

1−Pk
2), λk

2 :=(1−Pk
2)(C2−1), λk

3 :=(1−Pk
1)(

C1

L
−1)

λk
4 :=

1

3
Pk(2

√
1− Pk

1 +
√
1− Pk

2), Pk :=Pr
(
∥∇f(xk)∥≤3τ | xk−1

)
,

Pk
1 := Ek

[
1{∥∇fi(xk)−∇fi(wk)∥≤C1k}

]
, Pk

2 := Ek

[
1{∥∇fi(wk)∥≤C2k}

]
.

Similarly, substituting into (29) and summing over the iterations, and setting η =
√

2(f(x0)−f(x∗))

TLG̃(1+4G)
,

we obtain:

1

T

T∑
k=1

E
[
λk
1 ||∇f(xk)||2 + λk

2 ||∇f(xk)||·||∇f(wk)||+ λk
3 ||∇f(xk)|| · ||∇f(xk)−∇f(wk)||

]
≤ f(x0)− f(x⋆)

ηT
+

ηL

2T

T∑
k=1

G̃+
2η

T

T∑
k=1

LGG̃+
1

T

T∑
k=1

E
[
λk
4 · 3τ ||∇f(xk)||

]

≤ 2

√
(f(x0)− f(x⋆))LG̃(1 + 4G)

2T
+

1

T

T∑
k=1

E
[
λk
4 · 3τ ||∇f(xk)||

]
(62)

D PROOFS OF PRIVACY ANALYSIS

In this section, we present the detailed proofs of the privacy results, i.e., Thm.3 . It is worth noting
that we only discuss the privacy guarantees of DP-C4. For DP-C4+, the privacy analysis is almost
identical, since they share similar iterative formats. The only difference lies in the clipping coef-
ficients C1k and C2k, which leads to nearly the same conclusions. Therefore, we only present the
privacy analysis for DP-C4.
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D.1 PROOF OF THEOREM 3

We utilize Rényi Differential Privacy (RDP) as a bridge to analyze the privacy guarantees of DP-C4.
Our insight is that each update of DP-C4 consists of two components, namely the Coupled Term and
the Anchor Term, and we allocate different privacy budget weights to these components to discuss
the corresponding noise levels. We first introduce several definitions and lemmas:
Definition 3 (Rényi Differential Privacy (RDP) (Mironov, 2017)). A randomized mechanismM :
D → R satisfies (α, ε)-RDP (α ∈ (1,∞), ε > 0) if for any datasets D,D′ ∈ D with dH(D,D′) =
1, it holds that

1

α− 1
logEo∼M(D′)

[(M(D)(o)

M(D′)(o)

)α
]
≤ ε,

whereM(D)(o) denotes the density ofM(D) at o.
Lemma 2 (Post-processing Property of RDP (Mironov, 2017)). LetM : D → R be (α, ε)-RDP
and g : R → R′ be any function. Then the composed mechanism g ◦ M : D → R′ is also
(α, ε)-RDP.
Lemma 3 (Composition of RDP Mechanisms (Mironov, 2017)). LetMr : R1×· · ·×Rr−1×D →
Rr be (α, εr)-RDP for r ∈ [R]. Then the mechanism

M(D) := (M1(D),M2(M1(D), D), . . . ,MR(M1(D), . . . , D))

is (α,
∑R

r=1 εr)-RDP.
Lemma 4 (Conversion from RDP to DP (Mironov, 2017)). If a mechanismM is (α, ε)-RDP, then
M also satisfies (ε+ log(1/δ)

α−1 , δ)-DP for any δ ∈ (0, 1).
Lemma 5 (Gaussian Mechanism (Mironov, 2017)). Given a function h, the Gaussian Mechanism

M(D) := h(D) +N (0, σ2I)

satisfies (α, α∆2(h)/(2σ2))-RDP for every α ∈ (1,∞).

With these preparations, we first analyze the sensitivity of each component in DP-C4(+). We have
the following lemma:
Lemma 6 (ℓ2-sensitivity). In Algorithm 3, the sensitivities of the Coupled Term gk1 and the Anchor
Term gk2 are given by

∆1k =
2C1k

|S|
, ∆2k =

2C2k

|D|
.

Proof. For the Coupled Term, we have:

gk1 =
1

|S|
∑
i∈S

clip
(
∇fi(xk)−∇fi(wk), C1k

)
.

The ℓ2-sensitivity of gk1 is bounded by

max
S,S′
∥gk1 − g′k1 ∥ = max

S,S′

∥∥∥ 1

|S|
∑
i∈S

clip
(
∇fi(xk)−∇fi(wk)

)
− 1

|S′|
∑
i∈S′

clip
(
∇fi(xk)−∇fi(wk)

)∥∥∥
= max

S,S′

1

|S|
∥clip(∇fj(xk)−∇fj(wk))− clip(∇f ′

j(x
k)−∇f ′

j(w
k))∥

= max
S,S′

1

|S|

∥∥∥min
{ C1k

∥∇fj(xk)−∇fj(wk)∥
, 1
}
(∇fj(xk)−∇fj(wk))

−min
{ C1k

∥∇f ′
j(x

k)−∇f ′
j(w

k)∥
, 1
}
(∇f ′

j(x
k)−∇f ′

j(w
k))

∥∥∥
≤ max

S,S′

1

|S|

(∥∥∥min
{ C1k

∥∇fj(xk)−∇fj(wk)∥
, 1
}
(∇fj(xk)−∇fj(wk))

∥∥∥
+
∥∥∥min

{ C1k

∥∇f ′
j(x

k)−∇f ′
j(w

k)∥
, 1
}
(∇f ′

j(x
k)−∇f ′

j(w
k))

∥∥∥)
≤ 2C1k

|S|
:= ∆1k.
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For the Anchor Term, we have:

gk2 =
1

|D|
∑
i∈D

clip(∇fi(wk), C2k).

The ℓ2-sensitivity of gk2 can be bounded as

max
D,D′

∥gk2 − g′k2 ∥ = max
D,D′

∥∥∥ 1

|D|
∑
i∈D

∇fi(wk)− 1

|D′|
∑
i∈D′

∇fi(wk)
∥∥∥

= max
D,D′

1

|D|
∥∇fj(wk)−∇f ′

j(w
k)∥

= max
D,D′

1

|D|

∥∥∥min
{ C2k

∥∇fj(wk)∥
, 1
}
∇fj(wk)−min

{ C2k

∥∇f ′
j(w

k)∥
, 1
}
∇f ′

j(w
k)
∥∥∥

≤ max
D,D′

1

|D|

(∥∥∥min
{ C2k

∥∇fj(wk)∥
, 1
}
∇fj(wk)

∥∥∥+∥∥∥min
{ C2k

∥∇f ′
j(w

k)∥
, 1
}
∇f ′

j(w
k)
∥∥∥)

≤ 2C2k

|D|
:= ∆2k.

With all the necessary preparations in place, we now proceed to the next step. We focus on analyzing
Routines 1 and 2; the analysis for the remaining paths is similar, yielding the same conclusions. First,
we derive an RDP bound for each term gk1 and gk2 .

For gk1 , from Lemma.5, when we add noise nk
1 ∼ N (0, σ2

1C
2
1k), the term gk1 satisfies (α, 2α/(σ2

1 ·
|S|2))-RDP, where the sensitivity of gk1 is given in Lemma.6.

Similarly, for gk2 , from Lemma.5, when we add noise nk
2 ∼ N (0, σ2

2C
2
2k), the term gk2 satisfies

(α, 2α/(σ2
2 · |D|2))-RDP, where the sensitivity of gk2 is given in Lemma.6.

From Lemma.3, Alg.3 satisfies

(α,
2αT

σ2
1 · |S|2

+
2αTp

σ2
2 · |D|2

)-RDP.

Then, by Lemma.4, it follows that Algorithm 3 satisfies( 2αT

σ2
1 |S|2

+
2αTp

σ2
2 |D|2

+
log(1/δ)

α− 1
, δ

)
-DP.

For any target DP parameters (ϵDP , δDP ), we discuss the variance of these noises through the allo-
cation of the privacy budget. We set:

1
2ϵDP = log (1/δ)

α−1
1
2ϵDP = 2αT

σ2
1 |S|2 + 2αTp

σ2
2 |D|2

δDP = δ

(63)

From the first line of the above equation, we obtain α = 1 + 2 log(1/δDP )/ϵDP . In the following,
under the constraint 1

2ϵDP = 2αT
σ2
1 |S|2 +

2αTp
σ2
2 |D|2 , we aim to minimize the total noise magnitude added

to the gradient estimator per iteration, i.e., σ2
1 + σ2

2 .

Let 2αT
σ2
1 |S|2 =

1
2βϵDP ,

2αTp
σ2
2 |D|2 =

1
2 (1−β)ϵDP , where β ∈ (0, 1). Solving for σ2

1 and σ2
2 yields:

σ2
1 =

4αT

β|S|2ϵDP
, σ2

2 =
4αTp

(1− β)|D|2ϵDP
(64)

Continuing the above objective, we aim to minimize the total noise per step by adjusting the budget
allocation coefficient β, i.e., minβ σ

2
1+σ2

2 , and let θ= |D|2
|S|2 ≥ 1. That is,

min
β∈(0,1)

1

β
+

p

(1− β)θ
:= y (65)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Taking the derivative with respect to β and setting it to zero, we obtain:

dy

dβ
= − 1

β2
+

p

θ(1− β)2
= 0 (66)

Solving this, we obtain the value of β that minimizes minβ σ
2
1 + σ2

2 as:

β∗ =
1

1 +
√

p
θ

(67)

Substituting back into (64), we obtain:

σ2
1 =

4T (2 log(1/δDP ) + ϵDP )

|S|2ϵ2DP

· (1 +
√

p

θ
),

σ2
2 =

4T (2 log(1/δDP ) + ϵDP )

|D|2ϵ2DP

· √p · (
√
θ +
√
p)

=
4T (2 log(1/δDP ) + ϵDP )

|S|2ϵ2DP

· (p
θ
+

√
p

θ
)

(68)

Let σ2 = 4T (2 log(1/δDP )+ϵDP )
|S|2ϵ2DP

. It is straightforward to see that σ2 = σ2
DP-SGD coincides exactly

with the noise magnitude used in DP-SGD. In summary, we have:

(σ2
1 , σ

2
2)Routine 1&2 =

(
(1 +

√
p

θ
)σ2, (

p

θ
+

√
p

θ
)σ2

)
(69)

For (σ2
1 + σ2

2)Routine 1&2, since p
θ is very small, we have:

(σ2
1 + σ2

2)Routine 1&2 =
(
1 +

√
p

θ
+

p

θ
+

√
p

θ

)
σ2

= (1 +

√
p

θ
)2 · σ2 ≈ σ2

(70)

For Routines 3 and 4, since gk1 = 0 when wk+1 = xk+1, under T iterations, we only compute gk1
for T (1−p) rounds. Similarly, we can obtain:

(σ2
1 , σ

2
2)Routine 3&4 =

(
(1−p+

√
p(1−p)

θ
)σ2, (

p

θ
+

√
p(1−p)

θ
)σ2

)
(71)

For (σ2
1 + σ2

2)Routine 3&4, let p= 2|S|
|D| , we have:

(σ2
1 + σ2

2)Routine 3&4 = (1−p+
√

p(1−p)
θ

+
p

θ
+

√
p(1−p)

θ
)σ2

= (
√
1− p+

√
p

θ
)2 · σ2

= (1− p

2
− p2

8
−O(p3) +

p
3
2

2
) · σ2

= (1− (
p

2
+

p2

8
)−O(p3) +

p
3
2

2
) · σ2

≤ (1−O(p3)) · σ2 < σ2

(72)

For comparison, in the case of DP-SVRG, The noise added to the gradient estimator consists of
three components. Similarly, we can derive that:

(σ2
1 + σ2

2 + σ2
3)

DP−SV RG
Routine 1&2 = (1 +

√
2p

θ
)2 · σ2 > σ2

(σ2
1 + σ2

2 + σ2
3)

DP−SV RG
Routine 3&4 = (

√
2(1− p) +

√
p

θ
)2 · σ2 > σ2

(73)

From this, the multipliers for each kind of noise are summarized in the following table:
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Table 3: Routine 1&2

Methods σ2
DP−SGD σ2

DP−SV RG σ2
DP−C4(+)

Noise Multiplier σ2 σ2 ·(1+
√

2p
θ )2 σ2 ·(1+

√
p
θ )

2

Comparison σ2
DP−SGD=σ2 σ2

DP−SV RG>σ2 σ2
DP−C4(+)≈σ2

Table 4: Routine 3&4

Methods σ2
DP−SGD σ2

DP−SV RG σ2
DP−C4(+)

Noise Multiplier σ2 σ2 ·(
√
2(1−p)+

√
p
θ )

2 σ2 ·(
√
1−p+

√
p
θ )

2

Comparison σ2
DP−SGD=σ2 σ2

DP−SV RG>σ2 σ2
DP−C4(+) <σ2

E ADDITIONAL EXPERIMENTS

In this section, we provide additional information and results on our numerical experiments that are
not given in the main paper due to the space limitation.

Datasets Information We conduct experiments on Mushroom, MNIST, CIFAR-10, CIFAR-100,
IMDb, and GLUE-SST-2. The information of all datasets used is summarized in Table 5.

Table 5: The summary of the datasets used in the experiments.

Dataset Samples Type Classes Task
Mushroom 8,124 Tabular 2 SVM
MNIST 70,000 Image (28×28, Gray) 10 CV
CIFAR-10 60,000 Image (32×32, RGB) 10 CV
CIFAR-100 60,000 Image (32×32, RGB) 100 CV
IMDb 50,000 Text (Reviews) 2 NLP
GLUE-SST-2 67,349 Text (Sentences) 2 NLP

Results on Different C1 and C2 First, we provide an ablation study on the selection of clipping
thresholds C1 and C2. We conduct experiments on the CIFAR-10 dataset with the learning rate set
to η = 0.025 and the privacy parameter (ϵ, δ) = (5, 10−5). Following the main experiment, we set
the mini-batch size to |S| = 256, the large-batch size to |D′| = 4096 and p = 2|S|

|D′| = 0.125. We
fix C = 1 and vary C1 and C2 over the range {0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64}. We report the
results for each configuration and compare them against DP-SGD. The experimental results of DP-
C4 and DP-C4+ are presented in Figure.2 and Figure.3, respectively. In each cell of the heatmap,
the color encodes the corresponding accuracy, with warmer shades indicating higher accuracy and
cooler shades indicating lower accuracy. Each cell further reports the accuracy associated with the
corresponding clipping thresholds, while the value in parentheses denotes the accuracy difference
relative to DP-SGD.

On the one hand, for both DP-C4 and DP-C4+, when examining a single row or column of the
grid, we observe that increasing C1 initially improves accuracy, which subsequently decreases; a
similar trend is observed when increasing C2. More specifically, as C1 and C2 gradually increase,
the injected noise becomes larger, leading to a gradual degradation in accuracy until it converges to
a constant value. In particular, when C1 = C2 = 64, the accuracies of both DP-C4 and DP-C4+

converge to 61.16, since in this case a constant clipping threshold is applied at each iteration (i.e.,
in DP-C4: C1k = min{C,C1∥∆k

S∥} = C, C2k = min{C,C2∥∇f(wk)∥} = C; in DP-C4+:
C1k = min{C,C1∥xk − wk∥} = C, C2k = min{C,C2∥∇f(wk−1)∥} = C).
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0.1
25 0.2

5 0.5 1 2 4 8 16 32 64

C2

0.125

0.25

0.5

1

2

4

8

16

32

64

C1

51.50(-1.55) 57.74(+4.69) 63.29(+10.24) 65.15(+12.10) 65.44(+12.39) 65.37(+12.32) 65.51(+12.46) 65.47(+12.42) 65.49(+12.44) 65.49(+12.44)

51.64(-1.41) 57.65(+4.60) 62.85(+9.80) 65.93(+12.88) 66.20(+13.15) 65.97(+12.92) 65.80(+12.75) 65.64(+12.59) 65.82(+12.77) 65.82(+12.77)

50.91(-2.14) 55.36(+2.31) 60.30(+7.25) 64.31(+11.26) 63.60(+10.55) 63.71(+10.66) 63.84(+10.79) 63.82(+10.77) 63.82(+10.77) 63.82(+10.77)

45.87(-7.18) 50.64(-2.41) 56.45(+3.40) 61.89(+8.84) 62.68(+9.63) 62.59(+9.54) 62.40(+9.35) 62.36(+9.31) 62.36(+9.31) 62.36(+9.31)

41.70(-11.35) 46.60(-6.45) 54.65(+1.60) 61.54(+8.49) 61.31(+8.26) 61.07(+8.02) 61.11(+8.06) 60.65(+7.60) 60.65(+7.60) 60.65(+7.60)

39.87(-13.18) 46.33(-6.72) 54.92(+1.87) 62.43(+9.38) 61.05(+8.00) 61.31(+8.26) 61.09(+8.04) 61.00(+7.95) 61.00(+7.95) 61.00(+7.95)

39.97(-13.08) 46.10(-6.95) 55.12(+2.07) 61.91(+8.86) 60.51(+7.46) 60.04(+6.99) 61.26(+8.21) 61.19(+8.14) 61.16(+8.11) 61.16(+8.11)

40.08(-12.97) 46.34(-6.71) 55.12(+2.07) 61.98(+8.93) 60.51(+7.46) 61.01(+7.96) 61.14(+8.09) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11)

40.08(-12.97) 46.34(-6.71) 55.12(+2.07) 61.98(+8.93) 60.51(+7.46) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11)

40.08(-12.97) 46.34(-6.71) 55.12(+2.07) 61.98(+8.93) 60.51(+7.46) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11)
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Figure 2: Accuracy of DP-C4 with different C1 and C2

0.1
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C2

0.125

0.25

0.5

1

2

4

8

16

32

64

C1

51.03(-2.02) 57.15(+4.10) 63.01(+9.96) 67.42(+14.37) 67.03(+13.98) 67.09(+14.04) 67.10(+14.05) 67.10(+14.05) 67.10(+14.05) 67.10(+14.05)

51.29(-1.76) 57.39(+4.34) 63.12(+10.07) 67.14(+14.09) 67.70(+14.65) 67.55(+14.50) 67.56(+14.51) 67.56(+14.51) 67.56(+14.51) 67.56(+14.51)

51.61(-1.44) 56.95(+3.90) 63.03(+9.98) 66.69(+13.64) 65.78(+12.73) 65.84(+12.79) 65.88(+12.83) 65.88(+12.83) 65.88(+12.83) 65.88(+12.83)

47.21(-5.84) 53.11(+0.06) 59.72(+6.67) 64.50(+11.45) 63.27(+10.22) 63.44(+10.39) 63.57(+10.52) 63.57(+10.52) 63.57(+10.52) 63.57(+10.52)

43.87(-9.18) 49.35(-3.70) 56.59(+3.54) 62.88(+9.83) 62.78(+9.73) 63.34(+10.29) 63.21(+10.16) 63.21(+10.16) 63.21(+10.16) 63.21(+10.16)

41.80(-11.25) 48.25(-4.80) 55.72(+2.67) 61.66(+8.61) 61.87(+8.82) 61.89(+8.84) 61.84(+8.79) 61.84(+8.79) 61.84(+8.79) 61.84(+8.79)

41.00(-12.05) 47.57(-5.48) 56.26(+3.21) 61.79(+8.74) 60.50(+7.45) 61.21(+8.16) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11)

40.61(-12.44) 46.73(-6.32) 55.29(+2.24) 61.98(+8.93) 60.51(+7.46) 61.19(+8.14) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11)

40.35(-12.70) 46.11(-6.94) 55.12(+2.07) 61.98(+8.93) 60.51(+7.46) 61.19(+8.14) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11)

40.32(-12.73) 46.52(-6.53) 55.12(+2.07) 61.98(+8.93) 60.51(+7.46) 61.19(+8.14) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11) 61.16(+8.11)
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Figure 3: Accuracy of DP-C4+ with different C1 and C2
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On the other hand, when C1 is small, the accuracy does not decrease significantly. This is because as
C1 → 0, the coupled term of DP-C4(+) vanishes, which essentially reduces the method to a large-
batch variant of delayed DP-SGD. The iterative structure is thus not severely disrupted, while the
injected noise is substantially reduced. In contrast, when C2 is small, accuracy drops sharply. This is
due to the excessive clipping bias, which prevents effective updates (i.e., 1

|S|
∑

i∈S clip(∇fi(xk)−
∇fi(wk)) + 1

|D|
∑

i∈D clip(∇fi(wk)) ≈ 1
|S|

∑
i∈S clip(∇fi(xk) − ∇fi(wk))). In summary, the

vanishing of the coupled term can be tolerated since it still preserves an effective optimization struc-
ture, whereas the vanishing of the anchor term is detrimental, as it leads to severe performance
degradation.

Results on Different C We also conduct an ablation study on the overall clipping threshold C.
The experiments are performed on CIFAR-10 with η = 0.025, |S| = 256, |D′| = 4096, the
privacy parameter (ϵ, δ) = (5, 10−5), and p = 0.125. We fix C1 = C2 = 1 and vary C over
the set {0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64}. The results comparing DP-C4(+) with DP-SGD are
summarized in Table 6.

Table 6: Test accuracy of different methods on different clipping threshold C.

Method
Values of Clipping Threshold C

0.125 0.25 0.5 1 2 4 8 16 32 64
DP-SGD 54.91 55.36 53.42 53.05 41.01 27.40 18.36 16.41 14.93 10.74
DP-C4 55.39 59.91 62.78 61.89 59.84 59.80 59.65 59.65 59.65 59.65
DP-C4+ 55.84 59.22 61.52 64.50 61.30 52.81 42.14 34.89 28.25 24.41

It can be observed that, on the one hand, as C decreases, the accuracy of both DP-SGD and DP-
C4(+) first increases and then decreases. This behavior is attributed to the reduction of the injected
noise and the simultaneous growth of the clipping bias. When C becomes sufficiently small, ev-
ery term is clipped on a per-sample basis, and thus the iterations of all three methods resemble
a normalized update scheme. On the other hand, as C increases, the accuracy of DP-SGD drops
rapidly, while that of DP-C4+ decreases more slowly, and DP-C4 eventually converges to a fixed
accuracy level of 59.65%. This robustness stems from the fact that the effective clipping thresh-
olds of DP-C4 are determined by C1k = min{C, C1∥∇fS(xk) − ∇fS(wk)∥} ≤ 2C1G,C2k =
min{C, C2∥∇f(wk)∥} ≤ C2G, which are governed by the gradient difference and the full gra-
dient, and therefore do not grow unbounded. In contrast, for DP-C4+, the clipping coefficient of
the coupled term is given by C1k = min{C, C1∥xk − wk∥}, as the iterations proceed, ∥xk − wk∥
may occasionally become relatively large with non-negligible probability, which in turn introduces
a larger amount of noise and leads to performance degradation.

Results on Different Routine We further conduct experiments on CIFAR-10 using different rou-
tines. We fix C = C1 = C2 = 1, while keeping the remaining parameters unchanged. The results
are reported in Table 7.

Table 7: Test accuracy of DP-C4(+) on different routines.

Method
Different Routines

1 2 3 4
DP-C4 61.89 62.16 61.23 62.10
DP-C4+ 64.50 64.39 63.97 64.28

We observe that the results of the four routines are similar. This is because the different routines only
modify the update strategy of wk and do not alter the intrinsic properties of the DP-C4(+) iterative
scheme, so that their behavior is largely similar in expectation.

Results on Different Large Batchsizes We conduct experiments on CIFAR-10 using DP-C4(+)

under different large-batch sizes. The learning rate is set to η = 0.025, with C = C1 = C2 = 1,
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|S| = 256, and p = 0.125. We vary the large-batch size as |D′| ∈ {512= 2 · |S|, 22· |S|, 23· |S|, 24·
|S|, 25·|S|=8192}, and record the corresponding accuracies of DP-C4(+). The detailed results are
presented in Table 8.

Table 8: Test accuracy of DP-C4(+) on different large-batch sizes.

Method
Different Large-batch Sizes

512 1024 2048 4096 8192
DP-C4 44.18 52.60 58.68 61.89 59.93
DP-C4+ 41.12 52.99 60.98 64.50 58.91

We observe that as |D′| increases, the accuracy of DP-C4(+) first rises and then decreases. This
behavior occurs because a relatively small large batch leads to inaccurate estimation of the full gra-
dient and, compared to DP-SGD, introduces excessive clipping bias. Conversely, an excessively
large batch significantly increases the number of samples averaged in each iteration, which effec-
tively reduces the number of updates and consequently degrades performance.

Results on Different p We conducted experiments on CIFAR-10 to evaluate DP-C4(+) under
different update probabilities p. We set the learning rate to η = 0.025, with C = C1 = C2 = 1,
|S| = 256, and |D′| = 4096. We varied p ∈ { 12 ,

1
22 ,

1
23 ,

1
24 ,

1
25 } and recorded the corresponding

accuracy of DP-C4(+). The detailed results are presented in Table 9.

Table 9: Test accuracy of DP-C4(+) on different p.

Method
Different p

0.5 0.25 0.125 0.0625 0.03125
DP-C4 58.92 60.83 61.89 63.40 61.76
DP-C4+ 60.04 63.67 64.50 63.65 62.71

We can observe that as p decreases, the accuracy of DP-C4(+) first increases and then decreases.
This phenomenon can be explained as follows: when p is relatively large, the anchor term is updated
frequently, which increases the average data consumption per iteration and consequently reduces the
effective number of iterations, leading to suboptimal performance. On the other hand, when p is too
small, the anchor term is updated too infrequently, which also negatively impacts the accuracy.
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