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Abstract

We present MathDSL, a Domain-Specific Language (DSL) for mathematical equa-
tion solving, which, when deployed in program synthesis models, outperforms
state-of-the-art reinforcement-learning-based methods. We also introduce a quanti-
tative metric for measuring the conciseness of a mathematical solution and demon-
strate the improvement in the quality of generated solutions compared to other
methods. Our system demonstrates that a program synthesis system (DreamCoder)
using MathDSL can generate programs that solve linear equations with greater
accuracy and conciseness than using reinforcement learning systems. Addition-
ally, we demonstrate that if we use the action spaces of previous reinforcement
learning systems as DSLs, MathDSL outperforms the action-space-DSLs. We
use DreamCoder to store equation-solving strategies as learned abstractions in
its program library and demonstrate that by using MathDSL, these can be con-
verted into human-interpretable solution strategies that could have applications in
mathematical education.

1 Introduction
Building machine learning models that can replicate human reasoning abilities in symbolic domains,
such as algebra or arithmetic, is a challenging problem that researchers continue to face today [7].
Even large models that exhibit state-of-the-art performance on language modelling datasets, like GPT-
4, exhibit much poorer performance on mathematical exams involving reasoning tasks [6]. Improving
these systems to perform well on reasoning tasks often requires extensive usage of techniques such as
chain-of-thought reasoning and training on large datasets of mathematical data, which is expensive in
both time and cost.

Improving machine learning models’ mathematical reasoning ability may yield significant inter-
pretability that can provide educational benefits, as studies have shown that automated tutor systems
can yield similar or greater educational gains than human tutors [11]. Additionally, such improve-
ments, when extended to more complex mathematical domains, can aid in developing software
for researchers by helping describe the behavior of previously unknown functions [4]. Thus, an
important research goal is to develop machine-learning systems that write step-by-step solutions to
mathematical problems while being as efficient as possible regarding training data and compute.

For simple algebraic domains like linear equations, many step-by-step solvers rely on manually
written heuristics. However, those have been shown to have surprising blind spots that fail to account
for solving rare equation cases [7]. In recent years, attempts to help models learn neurosymbolic
reasoning in mathematical domains have led to the development of specific reinforcement learning
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techniques, like the Contrastive Policy Learning (ConPoLe) algorithm [7]. When presented with an
equation, ConPoLe uses reinforcement-learning techniques to query the search space and find the
most promising next step until it synthesizes a complete step-by-step solution.

However, in the linear equations domain, the solutions generated using ConPoLe often tend to be
elaborate and unwieldy [5], and often contain unnecessary steps that may confuse program users, as
demonstrated by the ConPoLe solution in Figure 1. Recent research has demonstrated that humans
find solutions simplified using skill-based, higher-level abstractions very useful [9]. One approach
that uses this idea is a theorem-proving language, Peano [8], which changes ConPoLe’s action space
to a finite set of valid axioms and discovers tactics by analyzing a batch of ConPoLe-generated
solutions. However, solution discovery in Peano is limited to a few types of equations due to the
limitations of the tactic language, and in practice, the discovered tactics are quite simple [8]. Another
approach, Lemma [5], leverages the idea of abstraction learning by examining several ConPoLe
solutions generated on a training dataset (using its original action space) and building abstractions
that ConPoLe can use to solve equations on a test dataset. However, Lemma requires training on a
large dataset of previously generated ConPoLe solutions to build high-quality abstractions. Hence, it
is not able to leverage the power of the abstractions the first time it solves tasks in a new domain.

Equation
((1 + 2x) + 3x) = 4

ConPoLe Solution

((1 + 2x) + 3x) = 4

1 + (2x+ 3x) = 4

((1 + (2x+ 3x))− 1) = (4− 1)

(((2x+ 3x) + 1)− 1) = (4− 1)

((((2 + 3) ∗ x) + 1)− 1) = (4− 1)

(((2 + 3) ∗ x) + (1− 1)) = (4− 1)

(5x+ (1− 1)) = (4− 1)

(5x+ 0) = (4− 1)

5x = (4− 1)

(x ∗ 5) = (4− 1)

(x ∗ 5) = 3

((x ∗ 5)/5) = (3/5)

(x ∗ (5/5)) = (3/5)

(x ∗ 1) = (3/5)

x = (3/5)

Lemma Solution

((1 + 2x) + 3x) = 4

(3x+ (1 + 2x)) = 4

(3x+ (2x+ 1)) = 4

4 = (3x+ (2x+ 1))

4 = ((3x+ 2x) + 1)

4 = ((3 + 2) ∗ x+ 1)

4 = ((3 + 2) ∗ x) + 1

4 = (5x+ 1)

(5x+ 1) = 4

5x = 3

x = (3/5)

DreamCoder + MathDSL
Solution

((1 + 2x) + 3x) = 4

(5x+ 1) = 4

5x = 3

(x ∗ 5)/5 = (3/5)

x = (3/5)

Figure 1: Comparison of ConPoLe solutions with more con-
cise DreamCoder+Stitch+MathDSL and Lemma solutions.
The ConPoLe solution contains unnatural subroutines, while
DreamCoder+MathDSL and Lemma offer more human-like
strategies.

Our approach, which pairs a Domain-
Specific Language (DSL) with the
DreamCoder program synthesis sys-
tem [2], overcomes this hurdle by gen-
erating powerful abstractions during
the training process that help develop
more concise solutions and improve
accuracy without requiring a large
dataset of solutions. We demonstrate
that existing action spaces are not ef-
fective DSLs for DreamCoder. In-
stead, we develop an expressive DSL,
which we name MathDSL, and use
DreamCoder with the Stitch library
learning algorithm [1] to enumerate
potential solution programs and dis-
cover abstractions. DreamCoder can
then use these MathDSL abstractions
to solve new, heldout equations, and
build a hierarchy of high-level abstrac-
tions in future training iterations.

2 Methods
Previous research on developing machine-learning models for mathematical equation solving has
shown that neural models perform poorly on arithmetic tasks unless task-specific components are
used [13]. To improve the performance of neural models, recent approaches have examined if it
is possible to use these models in sequence-to-sequence contexts by first converting mathematical
expressions into Abstract Syntax Trees (ASTs), and then into prefix sequences derived from these
trees [4]. Extending this idea, MathDSL modifies the problem domain from algebra to algebraic
manipulation and uses primitives that describe operations performed on the prefix form of equations.

Our approach involves searching the space of all possible programs in MathDSL to find the correct
program that converts the input from the prefix form of the equation to the solution state string. Thus,
the entire solution to the equation is synthesized at once, unlike previous reinforcement learning
systems, which attempt to find the next step in the solution by choosing from the existing action
space. For searching the space of MathDSL programs, we use DreamCoder [2], a library-learning
framework designed for use on inductive program synthesis problems [12]. We use DreamCoder
with the Stitch library learning algorithm [1] (as described in [3]). A complete description of the
program synthesis system and its components has been provided in Appendix A.

We provide DreamCoder with MathDSL, our DSL that encodes a set of mathematical axioms, along
with some elementary equation manipulation operations, as basic programming primitives. These
primitives can then be composed to form more complex operations that can fully convert a linear
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equation into its corresponding solution state. MathDSL performs manipulations on equations in
prefix form and comprises three types of primitive operations: tree operations, arithmetic operations,
and index operations. Tree operations, such as tree rotations and distributive operations, are defined
as operations performed on the equation’s tree structure that rearrange the equation tree to make future
simplifications easier without introducing additional nodes. Arithmetic operations, like dividing or
multiplying both sides of the equation by a term, introduce additional nodes in the equation tree.
Index operations are helper operations used to help determine the indices for accessing the specific
subtrees of an equation AST on which tree and arithmetic operations act. In MathDSL, arithmetic
operations can only accept arguments that are subtrees of the current tree, and tree operations can
only be performed on the current equation tree’s subtrees. This constraint helps us avoid having to
discretize the space of integers or real numbers in the DSL, which would make the search space much
larger and make program synthesis prohibitively expensive. In our experiments, the index operations
in MathDSL can generate integer constants from 0-110, a range much larger than the number of
subtrees in any equation in our dataset. The complete list of MathDSL’s primitive operations is
provided in Appendix B, and an example program for solving an equation is provided in Figure 2.

3 Conciseness Metric
Here, we describe a metric to measure the conciseness of solutions generated by different equation-
solving systems. We use an AST-based metric to ensure that large expressions were not added or
transposed to different sides of the equations. We define the metric function as follows, for a solution
s with n steps of an equation e:

f(s) =

n−1∑
i=1

max(|si.left− si+1.left|, |si.right− si+1.right|, 1)

Here, si refers to the equation tree of the equation at the i-th step of the solution, while x.left and
x.right refer to the size of the left and right subtrees of x, respectively, where the size is defined as
the number of subtrees of a tree (including the original tree). For a given equation, a solution with a
smaller value of f(s) indicates a more concise solution.

As demonstrated in Figure 1, solutions that introduce large terms into the equation tree without
prior simplification make the solution more difficult to interpret, especially in a pedagogical context.
Hence, this metric function penalizes solutions that introduce complicated expressions in a solution
step. Since this function assumes a cost of at least 1 occurring per step and does not normalize for
length, it rewards shorter solutions over longer solutions. As a result, the function penalizes solutions
that take many steps to simplify expressions without changing tree size (such as the ConPoLe solution
in Figure 1). However, it can also reward overly-compressed solutions. A description of metric
function limitations can be found in Appendix C.

For a given equation e, a target model A, and a baseline model B, we use the metric function to
compare two solutions to the same equation by measuring the relative improvement or decline in the
metric compared to the baseline model. Let sA and sB denote the solutions generated by the target
model and the baseline model, respectively. Then, the relative improvement or decline in performance
is measured by the score:

C(sA, sB |sA, sB both solve e) =
f(sB)− f(sA)

f(sB)

We refer to this score as the C-score of A and B on e. We report the mean C-score over all equations
solved by both the target and the baseline models. Positive mean C-scores indicate that the target
model generates more concise solutions than the baseline model on average. In contrast, negative
mean C-scores indicate that the target generates less concise solutions than the baseline on average.
To measure conciseness in our experiments, we take ConPoLe as our baseline model and compute the
C-scores of Lemma and DreamCoder (considering each DSL separately) with respect to ConPoLe.

4 Experiments and Results
For evaluating the performance of MathDSL in our program synthesis system and compare its
performance to Lemma and ConPoLe in terms of accuracy and conciseness, the models were
evaluated on a variant of the Cognitive Tutor Algebra dataset [7]. We note that it is extremely
difficult to normalize the performance of DreamCoder and its reinforcement learning alternatives,
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since DreamCoder has previously shown the ability to learn useful abstractions from a few carefully
chosen tasks [2], while both ConPoLe and Lemma rely on generating ≈ 106 equations from the
equation templates during training. Instead of training Lemma and ConPoLe from scratch on our
training set, which may reduce their efficacy by training them on a smaller set of equations, we simply
evaluated the final trained models on the infix-notation form of our train and test datasets to observe
if the models can discover the equation solutions. Our evaluation also allowed Lemma to use all the
abstractions it had discovered during its original training. Additional details about the experiments
are in Appendix D, and some abstractions discovered by DreamCoder are described in Appendix E.

Additionally, to demonstrate that the improved performance is due to using the MathDSL and not due
to DreamCoder being an inherently more powerful system, we also run experiments with DreamCoder
using ConPoLe and Lemma’s action spaces as DSLs. In our first experiment, we treat each axiom
listed by [7] in Appendix A as a separate primitive in a new DSL (titled ConPoLeDSL). In our second
experiment, in addition to the aforementioned axioms, we use the 15 abstractions discovered by [5] as
primitives in another DSL (titled LemmaDSL). The performance of the different model experiments
(DreamCoder (with MathDSL, ConPoLeDSL, and LemmaDSL), ConPoLe, and Lemma) in terms
of accuracy and the conciseness metrics (evaluated by comparing against ConPoLe as the baseline
model) are presented in Table 1.

Model Name Training Set
Accuracy

Testing Set
Accuracy

Training
Set Mean
C-Score

Testing
Set Mean
C-Score

DreamCoder + Stitch + MathDSL 0.9192 0.9070 0.5921 0.4859
Lemma∗ 0.7980 0.8488 0.5758 0.4752
ConPoLe∗ 0.8182 0.8372 0.0 0.0
DreamCoder + Stitch + ConPoLeDSL 0.0707 0.1047 -0.7932 -1.3611
DreamCoder + Stitch + LemmaDSL 0.3182 0.3488 0.5074 0.3829

Table 1: Accuracy and C-Scores (out of 198 randomly sampled training set problems and 86 test set
problems). The ∗ indicates that the model was not trained on this exact training set. Italicized text
indicates that the ConPoLe solutions were the baseline solutions, and are expected to have a Mean
C-Score of 0.

As expected, both Lemma, DreamCoder+Stitch+MathDSL, and DreamCoder+Stitch+LemmaDSL’s
conciseness metrics have positive values, since they generate shorter solutions than ConPoLe does. A
ConPoLe target with a ConPoLe baseline will give C-scores of 0 for all equations as sA = sB =⇒
f(sA) = f(sB). Since ConPoLeDSL and LemmaDSL have a large number of primitives performing
small modifications to the equation, solution programs in those DSLs are long and difficult to
discover, leading to lower overall accuracy. Thus, we can conclude that DreamCoder, when used
with MathDSL, is able to generate solutions to a large number of equations in the dataset using much
fewer training examples as compared to ConPoLe and Lemma. Additionally, the solutions generated
by composing DreamCoder’s MathDSL abstractions together tend to be much more concise in nature
as evidenced by the average percentage decrease in the metric function value when compared with
baseline models such as ConPoLe and Lemma. We also observe that after further post-processing
of DreamCoder solutions to remove identical steps (caused by intermediate abstractions that do not
change the state of the program), the mean C-Scores of MathDSL increase to 0.6237 for the training
set and 0.5521 for the test set respectively. Further details on the solution generation procedure and
the step de-duplication are provided in Appendix D. These results confirm that MathDSL, when
combined with DreamCoder, facilitates the discovery of concise, reusable abstractions, leading to
more efficient, human-interpretable and accurate equation-solving strategies.

5 Conclusions
In this paper, we introduced MathDSL, a domain-specific language designed for solving linear
equations via program synthesis. Our results demonstrate that DreamCoder combined with MathDSL
significantly outperforms existing models like ConPoLe and Lemma in terms of both accuracy and
solution conciseness. Specifically, DreamCoder+MathDSL achieved a testing set accuracy of 90.70%
and produced solutions that were on average 48.59% more concise than those generated by ConPoLe,
as evidenced by the C-score metric. Furthermore, MathDSL proved to be highly efficient in terms
of training data, requiring only 198 equation templates compared to the ∼ 106 equations required
by ConPoLe and Lemma. The system also produced human-interpretable solution strategies, unlike
ConPoLe, which lacks a structured abstraction mechanism to yield human-interpretability.
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Our experiments using ConPoLeDSL and LemmaDSL confirmed that MathDSL’s design, rather than
the underlying DreamCoder framework alone, was responsible for the improved performance. The
experiments showed that neither ConPoLeDSL nor LemmaDSL enabled DreamCoder to generate
concise solutions with comparable accuracy.

In conclusion, MathDSL offers a novel approach for generating interpretable and concise solutions
to mathematical equations, with broader applications in educational tools and automated reasoning
systems. Future work can explore extending MathDSL to more complex mathematical domains,
such as calculus or discrete mathematics, and its potential applications in automated tutoring systems
where human-like solution strategies are valuable.
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A Program Synthesis System Description

For performing program synthesis in our domain-specific language, we use DreamCoder [2], a
wake-sleep learning algorithm, alongside Stitch [1], a library-learning algorithm. DreamCoder
comprises an initial library L0 containing the "base primitives" defined in the domain-specific
DSL, which in our case would refer to MathDSL, ConPoLeDSL, or LemmaDSL. At the end of the
process, it returns a learned final library, Lf , which contains the various subroutines (or abstractions)
generated by composing the program primitives, which aided it in solving multiple tasks in the
domain. By examining the new primitives DreamCoder assigns to Lf , we can study the equation-
solving procedures and algorithms it has "learned", and compare them to similar human techniques.
Additionally, DreamCoder also returns a neural search model Q(ρ|t,L). When given a task t and
library L, Q can generate several potential solution programs ρ which have a high probability of
solving the given task [2].

In order to construct Q, DreamCoder first assigns a real-valued weight θL to each library function
l ∈ L. Then, for every l, after normalizing weights, we have a production probability P [l|L, θL].
Then for any program ρ comprising of library functions l, we have prior probability of ρ given by:

P [ρ|L, θL] =
∏
l∈ρ

P [l|L, θL] (1)

Then, a neural search model Q is constructed to predict the programs that can solve a given task
t using functions from the current library [12]. This probability is expressed as P [ρ|t, (L, θL)]
(probability of program conditioned on task, library, and library weights), so the model can be
expressed in the following manner at iteration i of training:

Qi(ρ|t,Li) ≈ P [ρ|t, (Li, θLi
)] ∝ P [t|ρ]P [ρ|(Li, θLi

)] (2)

Here, the probability P [t|ρ] is the likelihood the task is solved by the program under consideration.
Thus, programs are sampled from the prior and executed to compute the posterior probabilities of
solving tasks. Then, Q is trained to assign higher probabilities to programs with higher posterior
probabilities [2].

DreamCoder divides this program into the following three stages: wake, sleep(abstraction), and sleep
(dream). Firstly, in the wake stage, a random minibatch of tasks is sampled, and programs with higher
posterior probability are found using beam search.

Secondly, in the abstraction stage, the programs discovered via beam search are held constant, and
the library is rewritten to include new primitives that compress both the programs as well as the
description length of the updated library. For refactoring, we use Stitch, a corpus-guided top-down
synthesis algorithm which has been shown to outperform DreamCoder’s library rewriting algorithm
in certain domains [1]. Stitch uses a utility function for scoring abstractions given a corpus and a
rewrite strategy. This utility function is calculated in Equation 17 in [1] as follows:

UP,R(A) ≈ − cost(A) +
∑
p∈P

max
e∈subtrees(p)

cost(e)− cost(REWRITE(A, e)) (3)

In this equation, P is the corpus while R is the rewrite strategy, while A is the abstraction for which
utility is being computed. The summation term in the equation is summed over all programs p in the
corpus P .

Thirdly, in the dream stage, Q is trained to assign a high probability to programs ρ with higher
posterior probability. This is done by having DreamCoder generate its own examples: “replays” of
tasks it has already solved successfully, and “fantasies” of tasks which it creates on its own. These
fantasies are created by generating programs by combining various primitives in its own current
library, executing these programs on various sample inputs to generate outputs, and passing the (input,
output) data points to the neural model to train it until it learns to accurately compute the probability
for programs [2].
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B Description of MathDSL

MathDSL’s primitive operations are listed in Table 2, alongside their type annotation (which Dream-
Coder utilizes for synthesis). Table 2 also describes whether an axiom comparable to our primitive
is present in ConPoLe’s action space, while Table 3 describes ConPoLe axioms that were omitted
from MathDSL since they can be expressed using semantically equivalent programs. In the primitive
name, given an equation e to solve and an integer x, we define y as a subtree of e uniquely identified
by the integer x. Then, the complete list of all primitive operations in the DSL is as follows:
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Primitive Name Primitive Type Annotation Primitive Description Equivalent Primitive
Present in ConPoLe

add(x, e) tstr → tint → tstr arithmetic operation adding y to both
sides of e.

Yes

sub(x, e) tstr → tint → tstr arithmetic operation subtracting y from
both sides of e.

Yes

mult(x, e) tstr → tint → tstr arithmetic operation multiplying y on
both sides of e.

Yes

div(x, e) tstr → tint → tstr arithmetic operation dividing y on both
sides of e.

Yes

newConstGen(a, b, c) tint → tint → tint index operation accepting numbers a, b,
and c and returning an integer (a∗b)+c.

No

lrotate(x, e) tstr → tint → tstr performs a left rotation on y to create
y′ and replaces y with y′ in e. Also
adjusts operations according to operator
hierarchy and associativity rules.

No

rrotate(x, e) tstr → tint → tstr performs a right rotation on y to create
y′ and replaces y with y′ in e. Also
adjusts operations according to operator
hierarchy and associativity rules.

No

swap(x, e) tstr → tint → tstr swaps the left and right children of y to
create y′ and replaces y with y′ in e.

Yes

dist(x, e) tstr → tint → tstr applies the distributive property (ab +
ac) = a(b + c) on y (if applicable) to
create y′ and replaces y with y′ in e.

Yes (present within
the dist ConPoLe
axiom)

revdist(x, e) tstr → tint → tstr reverses the distributive property a(b+
c) = ab + ac on y (if applicable) to
create y′ and replaces y with y′ in e.

Yes (present within
the dist ConPoLe
axiom)

simplify(x, e) tstr → tint → tstr simplifies y to create y′ and replaces
y with y′ in e. Simplification involves
enforcing several mathematical axioms
(e.g., simplifying constants and elimi-
nating redundant terms).

Yes

- If A and B are constants, simplifies
A+B,A−B,A ∗B,A/B to a single
constant.

Yes

- If subtree x is of form A + 0, A − 0,
A ∗ 1, or A/1, simplify subtree to A.

Yes

- If subtree x is of form A−A or A ∗ 0,
simplify to 0.

Yes

- If subtree x is of form A/A, simplify
to 1 (if A ̸= 0).

Yes

addzero tstr → tint → tstr Adds zero to the right side of y. Yes
subzero tstr → tint → tstr Subtracts zero from the right side of y. Yes
multone tstr → tint → tstr Multiplies one on the right side of y. Yes
divone tstr → tint → tstr Divides by one on the right side of y. Yes

Table 2: Description of Primitives in MathDSL

ConPoLe Axiom Name Equivalent Action in MathDSL
refl We don’t need to encode reflexive equality since our commutativity

operator, swap, rearranges 2 = x =⇒ x = 2.
assoc Associativity rules are considered while performing left and right rota-

tions, so a separate operation is unnecessary.
sub_comm Left and right rotations handle reordering arguments within the same

operation for all four arithmetic operations (e.g. a+b+c = (a+c)+b)).
sub_sub The model can insert 0 via swap and addzero or subzero and simplify

the constants to convert from positive to negative constants and vice
versa. Hence the equivalence between +(−x) and (−x) does not need
to be explicitly encoded.

zero_div While zero divided by a non-zero constant will always be 0 arithmetically,
for an expression x, our system can instead multiply 0/x by x and rotate
to obtain 0 ∗ (x/x) and then simplify to get 0 ∗ 1 = 0.

Table 3: Primitives in ConPoLe’s Action Space Not Reused in MathDSL
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Figure 2: Example of an equation, its corresponding prefix form string, a solution program solv-
ing the equation written in MathDSL, and the solution string generated when the equation string
is passed as input to the solution program. An example of a useful abstraction here would be
simplify(rrotate()), which could then be composed with other abstractions to build more
powerful abstractions in future training iterations.

C Limitations of Conciseness Metric

There are two main drawbacks of the conciseness metric function f described in Section 3. The
first drawback is that since it tends to generally reward shorter solutions, it may provide solutions
with large jumps, like Ax + B = C =⇒ x = (C − B)/A, with similar scores as solutions like
Ax+B = C =⇒ Ax = C −B =⇒ x = (C −B)/A, even though the latter is arguably a clearer
and more explanatory solution.

We argue that our methods allow for the latter to be easily recoverable from the former since our
abstractions are comprised of functions composed together. Hence we can decompose the functions
in the abstraction as we wish, to adjust for the mathematical maturity of the student, and thus we
can obtain the latter solution from the former. On the other hand, we cannot assign equal metric
function values to a solution like 2x+ 5 = 7 =⇒ 2x+ 5− 5 = 7− 5 =⇒ 2x+ 0 = 7− 5 =⇒
2x = 7 − 5 =⇒ x = 1 and a solution like 2x + 5 = 7 =⇒ 2x = 7 − 5 =⇒ x = 1 and say
that the abstractions required to generate the latter solution are easily recoverable from the former.
The statement does not hold because if the abstractions are not already present in the learned library
of the model, it may lead to the former solution never being discovered by the program synthesis
model in the first place. The equation could very well not be solved within the time specified since
the syntax tree of the program required to generate the former solution is too deep, and thus never be
found by the program synthesis model.

The second drawback is that the metric function is not as helpful for comparing solutions to two
different equations, since equations have different types and different original equation tree sizes.
Complex equations with larger tree sizes will require more steps to solve than simpler equations, and
as a result, we observe that the scores are not directly comparable. However, we have developed the
notion of C-Scores in Section 3 to compensate for this drawback, as we simply take the mean of the
percentage difference in the metric function value on solved problems across the entire dataset. This
approach helps measure the performance improvement of a model across a wide variety of problems,
thus accounting for the difficulty in directly comparing two different solutions.

Future work could explore refining the metric to better account for pedagogical clarity and solution
complexity while maintaining the efficiency of program synthesis. Approaches for overcoming
these limitations may involve adding additional terms to the C-Score ensure that the length of the
target solution is at least some constant k, where k is proportional to the complexity of the equation
being solved. Additionally, researchers can conduct a user study that evaluates when students start
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to consider an equation’s solution to be too short. Then, the different terms in the C-Score can be
weighted in a manner consistent with the results of the study.

D Experiments

Cognitive Tutor is a mathematical education software developed by Carnegie Learning based on the
ACT-R theory of cognition [10]. For the evaluation of the ConPoLe model on the equations domain,
the authors constructed a dataset of 290 equations (each of a different equation type) that was built
from Cognitive Tutor templates. For our evaluation, a modified dataset using 284 of the Cognitive
Tutor equation types was used, as 6 of the equations are unsolvable. We split the dataset into a training
dataset with 198 randomly selected equation templates and a test dataset with 86 held-out problems.
Our synthesis system was run for 25 iterations with 105 recognition model training steps and an
enumeration timeout of 1000s on 95 CPUs. Evaluation on the held-out test dataset was conducted
once every 3 iterations.

As described in their respective papers, ConPoLe and Lemma were originally trained with (infix-
format) equations sampled from these Cognitive Tutor equation templates that had their constants
chosen at random. Both ConPoLe and Lemma were trained for 107 environment steps, which are
defined as queries where the environment indicates whether a problem has been solved or lists all
allowed actions in the next step [7]. This training procedure results in ≈ 106 equations generated
from the 290 Cognitive Tutor templates by replacing equation constants. DreamCoder uses only the
templates as solving one equation via a program in the DSL solves all equations in that template. As
per the authors of ConPoLe and Lemma, their models were exposed to these equation templates in
training, although since their training data was generated by random replacements of each constant
in the template, it is highly unlikely these exact equations appeared in their training data. Hence,
ConPoLe and Lemma were not trained on this specific training set, although the problems from both
our training and the testing set are from the same equation template distribution that ConPoLe and
Lemma were trained on.

Figure 3: Percentage of tasks solved across 25 iterations for DreamCoder experiments using different
DSLs.

For each model, the solutions used for the C-scores were generated as follows: for ConPoLe and
Lemma, each step discovered by the model was selected as a solution step, and its C-score was
computed accordingly. DreamCoder’s solutions were programs in the MathDSL, ConPoLeDSL,
and LemmaDSL that comprised many subprograms utilizing its learned abstractions (equation-
solving strategies). These abstractions often solve equation templates from beginning to end in a
single program. We make the first step in our solution the initial equation passed to the program.
The abstractions are composed of several lambda functions generated by Stitch via lambda-aware
unification, comprising a chain of function calls to primitive functions in the DSL. While generating
solutions from programs for measuring conciseness, if the result of the lambda function is not passed
as an argument to a DSL primitive function (which further simplifies the expression), we save the
result of a lambda function call as a step in our final solution. By doing this, we ensure that only the
highest-level lambda functions are considered while generating solution steps, and not intermediate
results later simplified by other primitives. Hence, our solutions utilizing these abstractions have
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multiple steps, even when the abstractions by themselves can directly solve the equation template.
Examples of discovered abstractions are listed in Appendix E.

However, when parsing DreamCoder solutions by evaluating the outputs of intermediate lambda
functions in the solution program, we observe that occasionally, an abstraction may be applied to the
equation that does not modify the equation state at all. In such cases, DreamCoder produces duplicate
steps in the solution since the program "halts" at a certain equation state before modifying it with
other abstractions later in the program. If we perform a post-processing step that de-duplicates the
steps in the equation solution, the conciseness metric is observed to be as follows in Table 4.

Model Name Training Set
Accuracy

Testing Set
Accuracy

Training
Set Mean
C-Score

Testing
Set Mean
C-Score

DreamCoder + Stitch + MathDSL 0.9192 0.9070 0.6237 0.5521
Lemma∗ 0.7980 0.8488 0.5758 0.4752
ConPoLe∗ 0.8182 0.8372 0.0 0.0
DreamCoder + Stitch + ConPoLeDSL 0.0707 0.1047 -0.4806 -0.7778
DreamCoder + Stitch + LemmaDSL 0.3182 0.3488 0.5836 0.4874

Table 4: Accuracy and C-Scores (out of 198 randomly sampled training set problems and 86 test set
problems) after performing a post-processing de-duplication step on DreamCoder solutions.

Mean C-Scores were computed for each model as follows: for each data set, the intersection of the set
of programs solved by the baseline model (ConPoLe) and the target model (Lemma, or DreamCoder
+ Stitch + {MathDSL/ConPoLeDSL/LemmaDSL}), S, was computed, and the C-Scores computed
for each pair of solutions to the problems in S . Then, the mean C-Score was computed by taking the
average of C-Scores of tasks in S.

E DreamCoder Abstractions for Equation Solving

This section describes some of the useful abstractions or equation-solving strategies that are generated
by Stitch and learned by DreamCoder in different domain-specific languages at the end of 25 iterations.
The first argument passed to the primitive is a string containing an equation in prefix form, and the
second argument is an integer containing the index of the subtree on which the function acts.

Note that whenever the term is enclosed by square brackets (for example, [x = A+B]), this means
that the term has had the simplify operation applied to it in its result (for example, if A = 3 and
B = 5 in the original equation, executing the abstraction generates x = 8). The Conversion Formula
Examples columns in Tables 5, 6, and 7 show an example transformation that can occur when the
program is applied to a specific equation template. The output may differ if the same program is
applied to a different equation template. A more detailed description of the ConPoLe [7] and Lemma
[5] primitives can be found in the original works.

Abstraction Conversion Formula
Examples

Description

#(lambda (#(lambda (simplify (dist (#(lambda
(swap (simplify $0 0) 0))
(rrotate (swap (div (#(lambda (simplify (dist
(rrotate $0 1) 1) 0))
(mult (swap (#(lambda (simplify (dist (rrotate
$0 1) 1) 0)) $0) 4) 3)) 3) 5) 4)) 1) 0))
(sub $0 5)))

(A/x) + B = C →
x = [A/(C −B)]

Subtract B from both
sides, simplifies the
equation, then multi-
plies both sides by x,
and then simplifying
to calculate x’s value.

#(lambda (#(lambda (lrotate (swap (#(lambda
(swap (simplify $0 0) 0)) $0) 1) 1))
(#(lambda (simplify (dist (rrotate $0 1) 1) 0))
(add $0 5))))

Ax − B = C →
Ax = [C +B]

Add B to both sides,
eliminate B from left-
hand side and sim-
plify right-hand side.

#(lambda (#(lambda (swap (simplify (rrotate
(swap (div (swap (simplify (rrotate $0 4) 0)
0) 3) 5) 4) 0) 0)) (#(lambda (simplify (dist
(rrotate $0 1) 1) 0)) (sub $0 5))))

Ax+B = C → x =
[(C −B)/A]

Subtract B from both
sides, simplify both
left-hand and right-
hand sides, and then
divide by A.

Table 5: Examples of Abstractions in MathDSL
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Abstraction Conversion Formula
Examples

Description

#(lambda (#(lambda (multone (eval (eval (dist
(eval (refl $0 0) 3) 1) 3) 2) 1)) (#(lambda
(eval (refl $0 0) 1)) $0)))

Ax+[1−A]x = C+
D → x = [C +D]

Using distributivity,
group the x terms,
and simplify.

#(lambda (eval (refl $0 0) 1)) B + C = x → x =
[B + C]

Evaluate the expres-
sion and flip the order
of equality

#(lambda (multone (eval (eval (dist (eval (refl
$0 0) 3) 1) 3) 2) 1))

(A + B)/C = x →
x = [(A+B)/C]

Flip the order of
equality, and then
evaluate repeatedly
until equation is in its
simplest form.

Table 6: Examples of Abstractions in ConPoLeDSL

Abstraction Conversion Formula
Examples

Description

#(lambda (multone (dist-dist-eval-eval-eval-eval
-multone $0 0) 1))

Ax+[1−A]x = C+
D → x = [C +D]

Apply the distributive
property, then evalu-
ate the expression un-
til it is in its simplest
form.

#(lambda (div-eval-comm-assoc-eval-multone
(sub-assoc-eval-eval-add0 $0 5) 2))

Ax+B = C → x =
C −B.

Subtract B from both
sides, simplify the
left hand side, then di-
vide both sides by A
and simplify.

#(lambda (#(lambda (div-eval-comm-assoc-eval
-multone (assoc-eval-add0 $0 0) 2)) (#(lambda
(refl (eval-eval $0 2) 0)) (dist $0 2))))

A = Bx − Cx →
x = A/(B − C).

Rearrange terms us-
ing the distributive
property on the right
side, then evaluate re-
peatedly and flip the
order of equality.

Table 7: Examples of Abstractions in LemmaDSL
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