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Abstract

Intrinsic dynamics within the brain can accelerate learning by providing a prior
scaffolding for dynamics aligned with task objectives. Such intrinsic dynamics
should self-organize and self-sustain in the face of fluctuating inputs and biological
noise, including synaptic turnover and cell death. An example of such dynamics is
the formation of sequences, a ubiquitous motif in neural activity. The sequence-
generating circuit in zebra finch HVC provides a reliable timing scaffold for
motor output in song and demonstrates a remarkable capacity for unsupervised
recovery following perturbation. Inspired by HVC, we seek a local plasticity
rule capable of organizing and maintaining sequence-generating dynamics despite
continual network perturbations. We adopt a meta-learning approach introduced
by Confavreux et al, which parameterizes a learning rule using basis functions
constructed from pre- and postsynaptic activity and synapse size, with tunable time
constants. Candidate rules are simulated within initially random networks, and
their fitness is evaluated according to a loss function that measures the fidelity
with which the resulting dynamics encode time. We use this approach to introduce
biological noise, forcing meta-learning to find robust solutions. We first show that,
in the absence of perturbation, meta-learning identifies a temporally asymmetric
generalization of Oja’s rule that reliably organizes sparse sequential activity. When
synaptic turnover is introduced, the learned rule incorporates an additional form of
homeostasis, better maintaining sequential dynamics relative to other previously
proposed rules. Additionally, inspired by recent findings demonstrating plasticity
in synapses from inhibitory interneurons in HVC, we explore the role of inhibitory
plasticity in sequence-generating circuits. We find that learned plasticity adjusts
both excitation and inhibition in response to manipulations, outperforming rules
applied only to excitatory connections. We demonstrate how plasticity acting on
both excitatory and inhibitory synapses can better shape excitatory cell dynamics
to scaffold timing representations.

1 Introduction and related work

How computational structures are organized and maintained within the brain is a central question
within neuroscience. While feedback is clearly essential for learning, self-organization of neural
circuits can unfold without feedback, e.g. during development. Brains have evolved specific cell
types with nonrandom spatial organization, plasticity rules, and connectivity that likely introduce a
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Figure 1: Meta-learning approach to discovering plasticity rules that organize sequences (a) In
zebra finch song learning, a neural representation of time (left) in HVC simplifies the sequential motor
learning task of producing the correct spectral output. (b) Putative network structure of zebra finch
HVC: a feed-forward, excitatory network with recurrent inhibition (left). HVC excitatory neurons
(red) fire sparsely in time while interneurons (blue) fire tonically (right). (c¢) Strategy for learning
plasticity underlying sequence organization: candidate plasticity rules, parameterized by a set of
coefficients and time constants, are simulated. A loss function is evaluated on the resulting dynamics,
and new candidate rules are generated. (d) Test procedure for representation of time. Networks are
activated 400 times (red bars). From the final 50 activations, six are chosen to train a decoder and six
to test the representation by decoding time from neural activity. (e) Discovery of robust plasticity
rules is encouraged by introducing synaptic turnover, the stochastic addition and removal of synapses,
into simulations.

strong set of inductive biases on the information processing they perform. How might organization of
useful circuit dynamics be established and maintained throughout life without the need for feedback?
Recent work suggests self-organized computations, once established, can accelerate learning and
improve performance when experience is limited: Nicola and Clopath [1]] demonstrated that a stable
high dimensional time signal could improve a network’s performance on sequential motor tasks (Fig.
[Th). Najarro and Risi [2] learned Hebbian plasticity that orchestrated spontaneous walking behavior
in quadruped agents; similar work has shown architectural priors increase the sample efficiency and
generalization of RL approaches to locomotion [3, 4]. Additionally, in RL settings, supplying agents
with a time input permits them to adopt time-dependent policies [S]]. The ability of computational
primitives, such as timing representations, to self-organize is challenged by the shifting structure
of neural circuits. Synaptic loss, synaptogenesis, cell death, and neurogenesis pose challenges for
all learning algorithms, but particularly for self-organization which must be based solely on local
information rather than global task performance.

Here, we aim to find plasticity rules that self-organize and maintain one useful computational
primitive: sparse, sequential activity. Such activity is widely seen in many areas of the brain including
hippocampus [6], cortex [7], and basal ganglia [8]. In the songbird zebra finch, area HVC (used as a
proper noun), a cortical-like region, displays sequential activity representing time [9], reducing the
problem of motor learning to driving the correct motor neuron at the correct moment [[10]. Extensive
literature has explored how such sequence-generating circuits could emerge in the absence of feedback
[L1H17], but has largely focused on either how these structures organize or how they self-maintain,
using guessed plasticity rules, and neglecting the effects of ongoing synaptic noise. Further, previous
work on sequence organization within HVC has focused on plasticity between excitatory (E) neurons.
Recent experimental findings show unsupervised recovery of HVC dynamics is accompanied by
changes in both E—E and also inhibitory-to-excitatory (I—+E) synaptic strength [18].



Here, instead of imposing a guessed rule, we ask which self-supervised plasticity rules can organize
and maintain sequential dynamics within a network. We employ meta-learning, a supervised method
to learn learning rules [19H23]], in order to discover rules that self-organize a sequence. Our approach
stems from a rich history of learning local plasticity rules, including rules that extract representations
from data [24]], enhance artificial agent performance on familiarity and navigation tasks [2l 23],
and explore biologically-plausible replacements or complements to backpropagation [[19| 20l 26]].
In this study, we parameterize the space of plasticity rules with a basis of activity- and synapse
size-dependent terms. The set of coefficients weighting these terms and associated time constants
are adjusted to minimize a loss function. Inspired by the HVC context, we pose the loss in terms
of the accuracy with which the time since an initial network input can be decoded from the circuit
dynamics. We first consider E=E rules alone, and then add I-+E and E—I plasticity. We then
introduce perturbations to the circuit and investigate which learned plasticity rules promote circuit
stability. We find that meta-learned rules for self-organized sequence generation and maintenance
contain distinct forms of spike-timing dependent plasticity, homeostasis, and network bounds, which
outperform previously proposed sequence-organizing rules in the presence of noise and that plasticity
on reciprocal connectivity to inhibitory neurons confers additional stability on the network dynamics.
Our main contribution is the exploration of unsupervised and unrewarded plasticity via meta-learning
that organizes and maintains a specific and biologically relevant computational motif, a sequence.

1.1 Background on zebra finch physiology

In the zebra finch, nucleus HVC contains excitatory neurons that fire sparsely (typically in one burst
of spikes) during song and are purportedly arranged in a feed-forward structure (Fig. [Ib) [27]. A
subset of these cells, known as HVC g 4) neurons, project to downstream nucleus RA (robust nucleus
of the archistriatum), which in turn projects to vocal neurons of the syrinx and to the brainstem, which
regulates respiration [9]. HVC receives excitatory projections from nucleus Uva, which controls
the onset of song syllables [28] and provides input for the duration of song [29]. HVC g 4) neurons
inhibit each other disynaptically via a population of inhibitory interneurons [30]. Remarkably, singing
behavior can persist when the nucleus is transected [31]], demonstrating its resilience.

2 Results

2.1 Learning biologically plausible plasticity on E—E synapses that organizes a
sequence-generating circuit

We first learned a plasticity rule on E—E synapses that organizes a randomly connected network into
a sequence-generating circuit in the absence of any perturbation. We initially constrained plasticity to
E—E synapses to compare with previously proposed rules, which have largely only considered E—E
plasticity. We did not include rules that imposed hard bounds on the size of individual synapses or
on the collective strength of all synapses onto a neuron, as we aimed to learn plasticity rules that
could permit flexible rescaling of connections in response to perturbations, as has been observed
experimentally [18].

We use a network of 25 E and 8 I threshold-linear neurons. Each neuron fired according to = (t) =
[V;(t) — b]*, where V;(t) evolves via 7, V; (t) = —V;(t) + > wi;x;(t). Here, w;; is the weight of
the synapse ¢ — j, 7, is the membrane time constant, and b is the bias. Initial connectivity (Fig. [2ld)
was random, but contained no I—1I connectivity as is the case in HVC [30} 32] (see Supp. Sec. 1 for
all network model details).

2.1.1 Meta-learning procedure

We adopt a meta-learning approach pioneered by Bengio et al. [19] and extended by Confavreux et al
[33]]. We parameterize a set of plasticity rules with coefficients cj, and time constants 7, such that
individual synapses, w;;, evolve according to

i () = O(Jwii (1)) D cxFi(wi(t), x5 (t), wij (t), 7h) )
k

where z; and x; are pre- and postsynaptic activities, respectively, © is the Heaviside function, and
Fy, is the k'" term in the plasticity rule (see Fig. [3p or Supp. Sec. 2 for all terms). The basis includes
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Figure 2: Meta-learning discovers unsupervised local plasticity rules that organize sequential
activity (a) Evolution of coefficients and time constants during meta-learning. (b) Training loss
(black) and test loss (blue) during meta-learning. Inset: median decoding accuracy for 14 learned
rules across 100 networks (blue points) compared to no plasticity (dashed gray line). (¢) Meta-learned
plasticity rules generate sequence dynamics. Network activity during the first activation (left), 200"
(middle), and 400" (right), sorted by ordering of mean firing time of the final activation (425").
Note: plasticity rule is held fixed during simulation. (d) Weight matrices at activation 1 and 400,
sorted based on mean firing time of the final activation. Connectivity between E cells organizes into a
feedforward structure.

terms that filter pre- and postsynaptic activities with decaying exponentials (denoted e.g. ;) as
these terms convey information about the durations of activations and relative ordering, not just their
instantaneous rates. Synapses evolving under Eq. [T] were bounded so that they obeyed Dale’s law.

We next define a loss function that evaluates the quality of the sequential dynamics organized under
a chosen {cy, 7} and attempt to minimize it using an evolutionary strategy, Covariance Matrix
Adaptation (CMA-ES) [34]. We use CMA-ES to sample from the space of possible {c, 74 } and
evaluate the loss at each point by simulating 10 randomly initialized networks under the given rule
and evaluating the resultant dynamics at the end of the simulation. Each simulation is divided into
400 activations of 110 ms. At ¢ = 10 ms of each activation, a single fixed neuron is driven by a strong
kick of excitation [17]. Following this, all other neurons in the network receive Poisson distributed
input for a period of 65 ms. A fraction of this Poisson input is held fixed from trial to trial, mirroring
input to HVC from the nucleus Uva, which likely does not provide a fully stochastic signal to the
downstream area, [28]]. The total loss for a given rule is simply the sum of losses across each of the
10 networks.

2.1.2 Loss function

To learn sequences, we define a loss function based on three principles: (1) elapsed time since initial
network activation should be readily decoded from network activity, (2) total network activity should
be sparse, and (3) total synaptic change in the network should be minimized. The latter two principles
impose the assumption that effective plasticity does not require excess network activity or synaptic
change to stabilize network function. Our loss is

T
£(e,7) = Lacele,T) 20 Y / 2o(8)dt + AP(e, ), %)
i 0

where

T
Ple, ) = Z/O |ex By (2i(t), 25 (t), wiz (t), 7)) [O(Jwi; (£) | di. 3
ij,k

P(c, ) penalizes the all synaptic changes due to each component of F. This L;-like penalty on
F penalizes each term not by the size of the term’s coefficient, ¢, but by the quantity of synaptic
change it evokes. While penalizing the magnitude of ¢y, is standard [20} [33]], we take this approach to
compare different terms on a common scale, as each component of F has differing dependence on z;,

x;, and w;;. A\, and Ag are positive constants weighting the activity and synaptic change penalties.
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Figure 3: Perturbing learned plasticity rules reveals dependence on temporally asymmetric
Hebbian learning and a postsynaptic activity bound (a) Distributions of coefficients (blue) and
time constants (purple) of basis terms across N=14 training instances (individual instances in black).
The basis set consists of functions of pre and post-synaptic neural activity and synaptic weights. z =
activity of pre-synaptic neuron; y = activity of post-synaptic neuron; w = weight of synapse; x;,; = T
(x filtered with 7). (b) Test loss when individual coefficients are set to zero. (c) Difference in median
loss between full learned solutions run on 100 test networks and solutions with one term dropped.
Separate column denotes median loss for terms across all trials. (d) Progressive refitting of model
in order of impact on median loss with and without term. Symbols indicate the term added at each
refitting. Losses for 100 test networks shown (blue); medians shown as black crosses.

To determine the decoder loss L. (¢, T), the activity of networks was sampled at 500 time points of
six activations of the network. From these, a linear decoder was constructed and used to decode the
activity at 200 time points of six subsequent activations. Note that since the initial kick of excitation
was time-locked to beginning of each activation, constructing a decoder to read out time elapsed since
the beginning of the activation was equivalent to decoding time elapsed since the initial excitatory
kick was presented.

2.1.3 Learned E—E plasticity induces sequences using temporally asymmetric Hebbian
learning and a peak postsynaptic activity bound

Meta-learning reliably found plasticity rules that organized random E synaptic connectivity into
feed-forward structures that generated sequences when activated (Fig. [2ld-e). The organized structures
were not grouped into links, as in a synfire chain, but were better described by a kernel in which the
strength of a synapse between two cells depended on the lag between their mean firing times (Fig.
24, right). The set of rules discovered by meta-learning are not sparse in the space of {c, 7 } (Fig.
3p). To test whether learned plasticity rules truly required all terms with nonzero coefficients, we
compared ‘dropout’ variants of the discovered rule, in which one coefficient within {c;, } was set to
zero, to its unaltered form. We computed the loss of these variants on test networks to determine if a
term’s absence impacted the loss (Fig. [3b). Computing the change in the median loss of networks
organized by the learned solution and a dropout variant across 14 discovered rules revealed reliable
trends in the importance of various terms (Fig. Bk). We refit these terms progressively in order of the
impact on loss across all training runs and found a sharp elbow at 3 terms: a temporally asymmetric
Hebbian learning term, Z;; (blue pentagon in Fig. , its complement x;Z; (orange square), and
a term second order in the postsynaptic activity multiplied by the synapse size, w;;Z;x; (purple
triangle). The first term was consistently learned with a positive coefficient while the latter two were



always almost negative (Fig. [3p), rendering the effective learning rule

U'}ij = Coi‘il‘j — Clﬂﬁijj — ngij.ijl‘j. (4)
where all {¢;} are non-negative and time constants are different for each term. The 3 most important
terms can be interpreted as a temporally asymmetric generalization of Oja’s rule in that the Hebbian
learning term, x;x;, is replaced by the first two terms in Eq. @ which depend on the relative timing
of z; and x;. The time constant of the third term was on average short (~1 ms), making this term
akin to wijarf, the normalizing term of Oja’s rule.

2.2 Biological noise alters the learned plasticity rules

We next asked whether ongoing disruptions to network structure alter which plasticity rules are meta-
learned. To explore this, we introduced synaptic turnover to the simulation phase of the meta-learning
loop. Synaptic turnover is a stochastic process by which existing synapses disappear and new, small
synapses emerge (Fig. [Ie). Prior to each network activation, all connections were updated according
to

0 |wij| >0 and zsT < psr

w; wij  |wi| >0 and  xgr > pst )
€ |lwij|] =0 and zgT < psr
0  |wy|=0 and xgr > psr,

where zg1 ~ UJ0,1], pst is the probability of single synapse turnover per activation, and e is a
small positive (negative) constant if the presynaptic cell is excitatory (inhibitory). Since plasticity is
unable to act on connections of size 0 (see Eq. [I)), synaptic turnover determines the set of synapses
available to the plasticity rule. To ensure learned rules were robust to a spectrum of rates of synaptic
turnover, only half the networks used to evaluate the batch loss underwent this process.

We found that meta-learned rules were able to organize persistent representations of time despite
synaptic turnover, with performance near that of rules learned on unperturbed networks. Our term-
sensitivity analysis (Fig @) showed that solutions again heavily depended on temporally asymmetric
Hebbian learning, i.e. Z;x; (light blue hexagon), and the bound on postsynaptic activity, w;;Z ;T ;
(purple triangle); however, we frequently found dependence on two additional terms: one that
constantly strengthened all synapses (dark blue pentagon) and an activity bound independent of
synapse size (orange square). Refitting the plasticity rule in order of impact on loss demonstrated that
these 4 terms recapitulated most of the success of the learned solutions. The effective rule may be
written as

u';ij =g+ Clii'ifbj — czijxj — ngijjjfﬁj, (6)
where again all {c; } are non-negative. Synapses for which postsynaptic activity, z;, remains chron-
ically small will be potentiated by cy; however, adding this potentiating term also necessitates an
activity bound that does not scale with synapse size, such as the term with prefactor ¢, in Eq. [6] To
understand this impact of this term, consider a synapse between two neurons whose typical firing
times are far apart, i.e. Z;x; is nearly zero, the fixed point under this rule is

(w;;) = max (f‘) _ C27O> )
c3(Zjzj) 3

if (Zjz;) > 0, where (-) denotes the time average. Thus, a large enough choice of ¢, prevents every
synapse in the network from growing, enforcing sparsity and decreasing the risk of a neuron changing
its firing time upon loss of its original inputs. We additionally note that Eq. [6| does not contain —z;%;,
which appeared in the reduced rule learned in the absence of synaptic turnover (Eq. ). This may be
because the roles of —x;Z; and —Z ;x; are partially redundant: both terms can suppress synapses that
run counter to the sequential dynamics in the network. When constant potentiation of all synapses
occurs, the term in Z;x; is preferable as it offsets constant potentiation of all synapses. In the
unperturbed context, where constant synaptic growth is unnecessary, the term in Z;x; is problematic
in that it can set all afferent synapses to a driven neuron to zero (whereas —w;;Z ;; cannot). Thus,
the term in x;Z; becomes preferable in the unperturbed context.

2.2.1 Comparison to existing models of sequence formation

Do these discovered learning rules more robustly encode timing than previously proposed rules when
the circuit is disrupted with biologically relevant noise? We hypothesized this would be true given
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Figure 4: Discovered rules organized dense feedforward structures (a) Median impact of loss
when coefficient of given plasticity is set to zero for a given learned solution. (b) Refitting terms
in order of median impact on loss shows sequence generation in synaptic turnover context is well
captured by 4 terms. (c) Task structure for comparison between different rules. Rules are given 400
activations to organize dynamics. At the end, the decoder is constructed. Networks then undergo
synaptic perturbation for 150 activations. Finally, the decoder attempts to decode time from the
resulting dynamics to determine the loss. (d) Comparison between multiplicative Hebbian learning
and summed synaptic bound, meta-learned without synaptic turnover, and meta-learned with synaptic
turnover on time encoding task illustrated in (c). Trials shown in grey do not include synaptic turnover;
light purple include synaptic turnover. Black crosses indicate median values for each condition.

that discovered rules do not impose hard bounds on the size of single synapses, total synaptic strength
onto a neuron, nor number of synapses, as other models of sequence formation have [[11H13L17]. The
absence of these constraints permits compensatory rescaling of synapses in response to disruptions.
We compared meta-learned rules trained with and without synaptic turnover to a previously proposed
sequence learning rule that used multiplicative asymmetric Hebbian learning, a single synapse bound,
and bounds on the total strength of synapses onto and out of individual neurons [[L1]. Each rule was
applied to 100 test networks for 400 activations without disruption. Following this, a decoder was
constructed to read out time from the neural activity, and then synapses in the networks were turned
over during an additional 150 activations, after which the loss was evaluated using the constructed
decoder (Fig. ). We compared the best versions of each rule when synapses were turned over
(with probability pgr = 0.00072) at each activation, equivalent to a 90% probability of individual
synapse survival during the disruption period (Fig. [, light purple points), and when they were not
turned over (Fig. [ld, grey points; see Supp. Sec. 4). We used the Kruskal-Wallis H test to test for
equality of medians. We found that meta-learned rules trained with and without synaptic turnover
outperformed the rule based based on rigid synapse constraints (p = 2.5x 1078, Cohen’s d = —0.45
andp = 7.2x 10~7, Cohen’s d = —0.44, respectively), while in the absence of perturbation, medians
were not distinct after 4-fold Bonferroni correction (p = 0.016, Cohen’s d = —0.29 and p = 0.029,
Cohen’s d = —0.30, respectively). When we studied the connectivity structure of networks organized
by meta-learned rules, we found that the discovered rule generated denser feedforward connectivity
in comparison to other plasticity rules with alternative forms of Hebbian learning and heterosynaptic
competition (see Supp. Sec. 5).

2.3 Including inhibitory plasticity

Meta-learning allows the exploration of multiple plasticity rules operating on distinct sets of synapses
within the same circuit, as might arise if there are multiple cell types [35}36]]. In particular, I -E
plasticity has been the focus of much recent work [37H42]. The interaction of many plasticity rules
is challenging to analyze theoretically, but meta-learning allows exploration of these interactions
[43, 144]]. Recent evidence suggests there may be multiple forms of plasticity within sequence-
generating circuits: Wang et al. [18]] increased the intrinsic excitability of in vivo HVC g ) neurons
and found that the strength of both E—I and I—+E connections could dynamically shift in response.
Targeted cells received increased total inhibitory synaptic strength and decreased excitatory strength.
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Figure 6: Network perturbations reveal homeostatic compensation in E—E and I-E synapses
(a) Response of the magnitude of summed E—E weights |[W*¢| = |3, wf 7| (top) and summed

recurrent weight |[W;*¢| = | ", w;Ek_)IwIk_;E| (bottom) to the imposed scaling down of E— E weights
to a single cell. Values for neuron with perturbed inputs shown in light purple; all others black. Each
line represents average values for a single learned rule over N=20 networks. (b) Same as (a), but
for imposed upscaling of E— E weights to one cell (light purple). (¢) Same as (a), but frequency of
stochastic inputs to one cell is greatly increased (light purple) relative to all other cells (black). (d-f)
Postsynaptic response of affected neurons in 20 networks plotted in the space of normalized peak
amplitude and duration for manipulations (a-c). Black dots represent pre-perturbation responses;
light purple, immediately after perturbation; blue, 25 activations after perturbation. (g) Schematic of
feed-forward motif maintaining homeostasis via its E input. (h) Schematic of feed-forward motif
with homeostasis on E—E and I—E synapses. (i) Phase flow in space of output firing envelope
duration and amplitude (left) for a single neuron. Black points are first responses of the neuron for
various inputs; blue stars represent responses after 200 activations. Note: initial and final output
durations and delays are roughly the same. Colors of trajectories indicate how the neuron’s input
weight changes to satisfy the plasticity rule: see legend. (j) If the forms of homeostasis on E—E and
I—E maintain different aspects of the postsynaptic response, an attractor forms in the duration and
peak amplitude of the postsynaptic response (left). The response delay is also constrained (right).



To understand the role of this additional plasticity, we meta-learned plasticity on all sets of synapses
within the circuit (Fig. [Sh) both with and without synaptic turnover. Specifically, we attempted to
learn three independent plasticity rules that operated on three distinct groups of synapses (E—E,
E—I, and I=E; see Supplementary Section 6).

2.3.1 E-—Iand I—E synaptic plasticity improves decoding of time, particularly in the
presence of synaptic turnover

Meta-learning uncovered triplets of plasticity rules that successfully organized initially random
networks into sequence generators (Fig. [5b). When trained with turnover in E—E synapses, solutions
that acted upon E—I and I—E synapses in addition to E—E outperformed solutions that only
acted upon E—E connections, particularly when the rate of synaptic turnover was high (Fig. 5t),
suggesting this additional plasticity played an important role in maintaining network dynamics
through perturbation.

To investigate how rules acting on all synapses generated improved time representations, we repeated
the dropout analysis. We found that E—E plasticity within these learned triples was largely similar
to the rules previously learned on E—E synapses alone (Eqs. 4 and [6): solutions were consistently
sensitive to the removal of Z;x; and w;;Z ;x;, which appeared consistently with positive and negative
coefficients, respectively. Further, dependence on these terms persisted when we trained networks
with turnover on E—E synapses or [-E synapses (Supp. Fig. 6). As expected, we also found that
solutions depended heavily upon terms that acted upon E—1I and [ -E synapses, but this plasticity
was more difficult to interpret due to increased trial to trial variability in the discovered rules. We
found, however, that the E—1 plasticity rule consistently depended on the second order presynaptic
term Z;x;, which always appeared with a positive coefficient, suggesting that E cells project to
inhibitory counterparts with a strength that increases with the E cell level of activity. An implication
of dependence on this term is that the strength of an E neuron’s recurrent inhibition, defined as
|Wreel =132 w;E,jIw,IﬁEL where i is the index of the E cell and k indexes the I cells to which it
projects, might depend on its level of activity. Thus, ablation of excitatory inputs to an E cell might
cause its recurrent, disynaptic inhibition to lower in a manner that homeostatically restores its firing.

2.3.2 Recurrent inhibition of E neurons is homeostatic in networks with learned plasticity

As the role of E—I and I—E plasticity was not completely clarified by our perturbations so far, we
next investigated how this plasticity adjusted synapses coupled to an individual E cell when its typical
input was manipulated. Noting the dependence of the E—1 plasticity rule on z;x;, we hypothesized
that a targeted neuron’s recurrent inhibition and excitatory afferents might be adjusted in concert to
restore its typical firing pattern. We used discovered learning rules to organize sequences and then
performed three varieties of in silico manipulations of individual E cells within these networks. In
the first, we scaled down the excitatory afferents to the targeted E cell by 50% (Fig. [6p, diagram).
In the second, we scaled up the same connections by 50% (Fig. [6b). In the last, we increased the
rate of the targeted cell’s input Poisson process by a factor of 10 (Fig. [6k). This final manipulation
mirrored the viral insertion of NaChBac to HVCgr 4 neurons inWang et al.l, which causes these cells
to become hyper-excitable [18||45]46]. Wang et al.|found that manipulated cells recruited additional
inhibition and weakened excitatory afferents.

We found that scaling down a targeted E cell’s excitatory afferents resulted in a rescaling of those
excitatory weights and an accompanying decrease in |W}°¢| (Fig. [0p). We further found that these
synaptic changes restore the initial firing pattern of the E cell: in Fig|6d, we plot the initial responses
of targeted E cells across 20 self-organized sequences in the space of duration and peak amplitude of
response (black points). Scaling down the excitatory afferents initially causes both the peak amplitude
and duration of response to decrease (Fig. [6d; light purple points), but these responses largely recover
after ~25 activations of the network (Fig. [o[d; blue points). When we instead strengthened E afferents
to the targeted cell, we found these connections weakened and recurrent inhibition strengthened in
compensatory fashion (Fig. [6b). In these networks, we found that targeted E cell responses that were
initially lengthened with increased peak amplitude (Fig. [6f; light purple points) were reduced back to
their pre-perturbation values of duration and amplitude (Fig. [6f; black points show initial responses;
blue points, responses after 25 activations). Finally, rendering the targeted E cell hyper-excitable
caused it to scale down its excitatory afferents and increase its recurrent inhibition in a manner that
restored its typical firing pattern. In summary, plasticity rules on excitatory afferents and recurrent



inhibition operate in tandem to maintain the firing pattern of the neuron (see Supp. Sec. 7 for
additional details).

2.3.3 Two forms of homeostasis create an attractor in postsynaptic response and timing

How might modulation of recurrent inhibition contribute differently to the modulation of excitation in
preserving network dynamics? We hypothesized that distinct plasticity on different sets of synapses
might confer a robust representation of time if these rules governed distinct aspects of the desired
network function. For instance, within our HVC-like circuit, peak firing of E neurons might be
controlled by E—E plasticity while total activity might be controlled by I—E plasticity. Since
excitatory and inhibitory inputs to E cells differ in their timescales (E inputs are transient while
I inputs are relatively tonic), we reasoned plasticity on both sets of synapses should increase the
control of the postsynaptic response. While it is already known that multiple plasticity mechanisms
can sharpen the responses of neurons to stimuli [37]], prior work has not addressed whether similar
plasticity might be leveraged to preserve the timing of such responses, which is crucial to timing
representations. To explore this, we constructed a simplified model of a single neuron responding
to a broad range of excitatory inputs, characterized by varying peak amplitudes and durations, and
a tonic inhibitory input. We compared the responses of the neuron when both the excitatory and
inhibitory input synapses (Fig. [6h) evolved under plasticity rules to responses produced when only
the excitatory synapse evolved under a plasticity rule (Fig. [}g) and found the two rule model was
able to better constrain the duration, peak amplitude, and timing of the postsynaptic response the E
neuron (Fig. [6j-j; see Supp. Sec. 8 for full description of reduced model).

3 Discussion and limitations

Meta-learning plasticity rules via stochastic optimization is a promising technique, but suffers a
number of limitations. One, the optimization process becomes expensive as the size of the rule basis,
the number of neurons in the network, and amount of simulation time required grows. Further, CMA-
ES may require many epochs to converge on good solutions. Training E—E plasticity (plasticity on
all synapses) across 10 networks in batch typically required 24 (72) hours of compute on 30 Cascade
Lake or Ice Lake Intel CPU cores to yield reasonable solutions. Two, meta-learning tends to generate
different solutions based on the seed; due to the expensive nature of each trial, we did not carry out
enough trials to claim full knowledge of the solution space. Three, the plasticity rules learned were
quite dense in our choice of basis, limiting interpretation, and we ultimately employed perturbations
to better understand the critical terms. Four, the choice of basis limits the space of discoverable
rules; for instance, we did not include feedback-modulated plasticity in this study. Five, the initial
connectivity of the circuit likely has a strong bearing on the sort of plasticity that successfully can
leverage it [47,148]).

Prior to any experience, intrinsic, self-organized dynamics within the brain can serve as powerful
priors that can accelerate and shape successful, feedback driven learning. In this work, we study how
one such computational primitive could emerge by adapting a meta-learning procedure to learn the
learning rules that self-organize and maintain robust representations of time in neural dynamics. Meta-
learning discovers a temporally asymmetric (STDP-like) generalization of Oja’s rule that organizes
and maintains sparse, sequential activity out of initially random connectivity, which outperforms
other models of sequence generation in the presence of synaptic turnover by permitting flexible
rescaling of inputs to restore dynamics. Additionally we found that plasticity rules learned on all sets
of synapses outperform plasticity rules applied only to E connections. Through a toy model, we show
how plasticity on all synapses could confer extra timing stability if the plasticity in distinct sets of
synapses act on different moments of an E neuron’s activity.

In this work, we have developed a paradigm to understand how computational primitives might
self-organize within neural circuits and selected sequences as our test example. Future work could
study the emergence of other canonical forms of neural dynamics that have been widely identified in
brain activity and serve as fundamental components of computation, such as line attractors or limit
cycles, or how plasticity rules generating such components interact with rules requiring feedback.
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material?
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Answer: [Yes]
Justification: Code referenced in supplementary section, Code Availability.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper clearly outlines all methods. See section: Results, and also supple-
ment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Section 2, results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The computational resources used are detailed in the Discussion section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The NeurIPS code of ethics is fully abided by in this work.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Societal impacts are expounded upon in the discussion section.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Code, data, and models used in the study belong to the authors or are properly
credited.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: All new assets are well documented.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjected were used in this study.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines: No IRB approvals were required for this study.
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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