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Abstract

Determining the 3D orientations of an object in an image, known as single-image
pose estimation, is a crucial task in 3D vision applications. Existing methods typi-
cally learn 3D rotations parametrized in the spatial domain using Euler angles or
quaternions, but these representations often introduce discontinuities and singulari-
ties. SO(3)-equivariant networks enable the structured capture of pose patterns with
data-efficient learning, but the parametrizations in spatial domain are incompatible
with their architecture, particularly spherical CNNs, which operate in the frequency
domain to enhance computational efficiency. To overcome these issues, we pro-
pose a frequency-domain approach that directly predicts Wigner-D coefficients
for 3D rotation regression, aligning with the operations of spherical CNNs. Our
SO(3)-equivariant pose harmonics predictor overcomes the limitations of spatial
parameterizations, ensuring consistent pose estimation under arbitrary rotations.
Trained with a frequency-domain regression loss, our method achieves state-of-
the-art results on benchmarks such as ModelNet10-SO(3) and PASCAL3D+, with
significant improvements in accuracy, robustness, and data efficiency.
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Figure 1: Types of representations for 3D ro-
tation prediction. Existing methods consider
predicting 3D rotations in the spatial domain. Our
method predicts Wigner-D coefficients in the fre-
quency domain, to obtain accurate pose in contin-
uous space using an SO(3)-equivariant network.

Predicting the 3D pose of objects, i.e., position
and orientation, in 3D space from an image is
crucial for numerous applications, including aug-
mented reality [56], robotics [4, 5, 60, 65], au-
tonomous vehicles [21, 47], and cryo-electron
microscopy [75]. Estimating 3D orientation is
particularly challenging due to rotational symme-
tries and the non-linear nature of rotations. In
addition, unlike translations, rotations introduce
unique challenges such as gimbal lock and the
requirement for continuous, singularity-free rep-
resentations. Existing methods often learn 3D
rotations using spatial domain parameterizations
like Euler angles, quaternions, or axis-angle rep-
resentations, as illustrated in Figure 1. However,
these parameterizations suffer from issues such
as discontinuities and singularities [51, 55, 76],
which can hinder the performance and reliability.
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SO(3)-equivariance enables accurate 3D pose estimation and improves generalization to unseen
rotations. It ensures that outputs consistently change with the 3D rotation of the input, maintaining ro-
tational consistency between the input and output across network layers. Despite its importance, many
existing methods [3, 41, 49, 71, 76] often design networks without considering SO(3)-equivariance,
resulting in suboptimal performance when dealing with 3D rotations. In addition, in the context of
spherical CNNs [9, 10, 12, 16–18, 36] for efficient SO(3)-equivariant operations, the 3D rotation
parametrization in the spatial domain is inadequate because these SO(3)-equivariant networks operate
in the frequency domain.

To address these challenges, we propose an SO(3)-equivariant pose harmonics regression network
that directly predicts Wigner-D coefficients in the frequency domain for 3D rotation regression.
Building on prior work [28, 35], our method leverages the properties of spherical CNNs [11], which
operate in the frequency domain, to guarantee SO(3)-equivariant output representation. By directly
regressing Wigner-D matrix coefficients, our approach eliminates the need to convert outputs into
spatial representations during training, ensuring alignment with the operations of spherical CNNs.
This design allows us to bypass the limitations inherent in traditional spatial parameterizations—such
as discontinuities and singularities [51, 55, 76]—resulting in more precise and continuous pose
estimation. We further introduce a frequency-domain MSE loss to enable continuous training of
3D rotations, with the flexibility to incorporate distributional losses [49] for effectively capturing
rotational symmetries in objects. Our method achieves state-of-the-art performance on standard single
object pose estimation benchmarks, including ModelNet10-SO(3) and PASCAL3D+, demonstrating
high sampling efficiency and strong generalization to unseen 3D rotations.

2 Related Work

SO(3) pose regression. The choice of rotation representation is a fundamental aspect of the current
SO(3) pose estimation methods. In the early stages of deep learning, methods for SO(3) pose
regression choose the rotation representation by direct cosine matrices [29, 69], Euler angles [37,
45, 46, 57, 58], quaternions [5, 13, 31, 32, 66, 74], and axis-angles [14, 20, 59]. However, according
to [76], for any representation R in a Euclidean space of dimension d ≤ 4, such as Euler angles
and quaternions, R is discontinuous and unsuitable for deep learning. In addition, Euler angles
can cause gimbal lock, which restricts certain rotations, whereas quaternions avoid this issue but
their double representation of rotations in SO(3) can lead to complications such as local minima
in optimization problems. As an alternative, a continuous 6D representation with Gram-Schmidt
orthonormalization [76] and 9D representation with singular value decomposition (SVD) [8, 38] have
been proposed, and [7] proposes manifold-aware gradient layer to facilitate the learning of rotation
regression. Denoising diffusion models are employed in the context of SO(3) pose regression [61], or
for solving pose estimation by aggregating rays [72]. In contrast to existing SO(3) pose regression
methods that formulate rotation representations in the spatial domain, we define the Wigner-D
coefficients as the output of the network in the frequency domain, using SO(3)-equivariant networks.

Pose estimation with a parametric distribution. To model rotation uncertainty, parametric distribu-
tions on the rotation manifold are employed in a probabilistic manner. [54] predicts parameters of a
mixture of von Mises distributions over Euler angles using Biternion networks. [5, 13, 23] utilize the
Bingham distribution over unit quaternions to generate multiple hypotheses of rotations. [48, 70]
leverage the matrix Fisher distribution [33] to construct a probabilistic model for SO(3) pose esti-
mation. Additionally, [71] propose the Rotation Laplace distribution for rotation matrices on SO(3)
to suppress outliers, and the Quaternion Laplace distribution for quaternions on S3. Nevertheless,
parametric models rely on predefined priors. In contrast, our model uses non-parametric modeling
during inference to capture more complex pose distributions.

Pose estimation with a non-parametric distribution. Probabilistic pose estimation can also
be achieved by predicting non-parametric distributions. IPDF [49] introduces the estimation of
arbitrary, non-parametric distributions on SO(3) using implicit functions with MLPs, and Hyper-
PosePDF [27] uses hypernetworks to predict implicit neural representations by Fourier embedding.
ExtremeRotation [6] predicts discretized distributions over N bins for relative 3D rotations trained
with cross-entropy loss. RelPose [40, 73] uses an energy-based formulation to represent distributions
over the discretized space of SO(3) relative rotation. Several SO(3)-equivariant modeling methods
construct non-parametric distributions by utilizing icosahedral group convolution [34], projecting
image features orthographically onto a sphere [35], and satisfying consistency properties of SO(3)
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by translating them into an SO(2)-equivariance constraint [28]. RotationNormFlow [41] uses dis-
crete normalizing flows to directly generate rotation distributions on SO(3). These non-parametric
methods, which are trained with loss functions in discretized distributions, such as cross-entropy and
negative log-likelihood, tend to lose precision in rotation prediction. In contrast, our method predicts
continuous SO(3) transformations through regression, eliminating the need to approximate SO(3)
poses within a discretized space and enabling our model to achieve accurate 3D rotations.

3 Preliminary

3.1 Representations of Rotations

Rotation representation in spatial domain. In 3D rotation, Euler angles are a common SO(3)
representation but suffer from non-uniqueness and gimbal lock, making them less suitable for
neural network predictions. Quaternions offer a solution by preventing gimbal lock, but their non-
unique representation (q and -q) can complicate certain optimization processes. The axis-angle
representation is intuitive but can encounter singularities. The 6D and 9D representations provide
newer approaches that simplify optimization in deep networks by avoiding non-linear constraints and
ensuring orthogonality. However, they also introduce complexities in maintaining constraints during
the learning process. Thus, choosing an appropriate rotation representation is crucial for accurate
pose estimation in various computational applications. For a detailed explanation, please refer to
Sec. A.1 and an overview of learning 3D rotations in [51, 55].

Rotation representation in frequency domain. In the frequency domain, 3D rotation is managed
by manipulating spherical harmonics coefficients. Spherical harmonics, denoted as Y l

m(θ, ϕ), are
functions defined on the surface of a sphere using polar (θ) and azimuthal (ϕ) angles. These harmonics
are characterized by their degree l and order m, truncated to a maximum degree L for computational
feasibility. The rotation of spherical harmonics is represented by the shift theorem [43], where a
rotation operator Λg acts on spherical harmonics, transforming them via a matrix Dl

mn(g):

ΛgY
l
m(x) =

∑
|n|≤l

Dl
mn(g)Y

l
n(x). (1)

This matrix, part of the irreducible unitary representation of SO(3), expresses how each harmonic
changes under rotation, summing over all orders n from −l to l, called Wigner-D matrix. The
Wigner-D rotation representation is not limited to a specific case of 3D rotations but can be converted
from any 3D rotation representation, such as Euler angles, quaternions, and 3D rotation matrices.
Our SO(3) equivariant network predicts the Wigner-D representation in the frequency domain instead
of predicting rotations in the spatial domain. For a detailed explanation, please refer to Sec. A.2.

3.2 SO(3)-Equivariance

Equivariance. Equivariance is a useful property to have because transformations T applied to
the input produce predictable and consistent output of the features through transformations ϕ ∈ Φ,
enhancing both interpretability and data efficiency. For example, a feature extractor Φ is equivariant to
a transformation if applying the transformation to the input and then applying the extractor produces
the same output as applying the extractor first and then the transformation:

Φ(Tg(x)) = T ′
g(Φ(x)) (2)

where Tg and T ′
g represent transformations acting on a group g ∈ G of the input and output spaces,

respectively. This ensures that the network’s output remains consistent with transformations applied
to the input. For translation groups, convolution inherently maintains this property. For rotations,
additional rotation-equivariant layers are integrated into the network design.

Group-equivariant convolutional networks [10] extend this concept to complex groups like rotations
or other symmetries. By designing convolutions that are equivariant to these group actions, these
networks can handle a broader range of transformations. This can be mathematically described as:

[h ∗ ϕ](g) =
∑
y∈X

h(y) · ϕ(g−1y) (3)

where h is the input function over space X , ϕ is the filter or kernel, and g ∈ G is an element of
the group. The term g−1y represents the transformation of y by the inverse of g. This operation
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Figure 2: Overall architecture. Our network for SO(3)-equivariant pose estimation consists of four
parts: feature extraction, spherical mapper, Fourier transformer, and SO(3)-equivariant layers. First,
we extract a feature map using a pre-trained ResNet. Next, the spherical mapper orthographically
projects the extracted feature map onto a spherical surface. The Fourier transformer converts this
spatial information into the frequency domain. We utilize spherical convolutions to obtain the final
Wigner-D harmonics coefficients Ψ which represent SO(3) rotations of spherical harmonics, where
M denotes the total number of Wigner-D matrix coefficients.

ensures that the network remains equivariant to the actions of the group G, allowing it to handle
inputs transformed by any element of this symmetry group.

On the sphere in 3D, however, there is no straightforward way to implement a convolution in
the spatial domain due to non-uniform samplings [12]. This challenge arises because traditional
convolution operations rely on uniform grid structures, which are not applicable to spherical data.
To address this, specialized methods such as spherical convolutions or graph-based approaches are
employed to handle the unique structure and sampling patterns of spherical data, thereby ensuring
effective feature extraction and equivariance on spherical surfaces.

Spherical convolutions for SO(3)-equivariance. To effectively analyze complex spatial data,
such as for volumetric rendering and 3D pose estimation, it is necessary to develop functions with
equivariance to the SO(3) group. Early methods for spherical convolution were defined by computing
Fourier transforms and convolution on the 2-sphere [15]. However, the output of these spherical
convolutions is a function on the sphere, not on SO(3). Spherical CNNs [11] extended this approach
to effectively convolve on the SO(3) group. Using the truncated Fourier transform, signals on S2 are
modeled with spherical harmonics Y l

n, and on SO(3) with Wigner-D matrix coefficients Dl
mn.

To efficiently compute the S2 and SO(3) convolution, generalized fast Fourier transforms (GFFTs)
demonstrate optimized computation [11]. The GFFTs show robustness and efficiency in spherical
signal processing, where the spectral group convolutions become simpler element-wise multiplications
in the Fourier domain. Specifically, for S2, the process uses vectors of spherical harmonic coefficients,
forming a block diagonal matrix analogous to SO(3) convolution. Both convolutions on S2 and
SO(3) generate output signals that reside on SO(3).

4 SO(3)-Equivariant Pose Harmonics Predictor

The goal of our network is to accurately predict the SO(3) pose of an object in an image. To
achieve, we employ spherical CNNs [11] to obtain SO(3)-equivariant representation, and our model is
trained with frequency-domain supervision using Wigner-D coefficients. This approach enhances data
efficiency by capturing patterns with fewer training samples and ensures precise SO(3) pose estimation
by aligning the parametrization of 3D rotations with the Wigner-D matrices in the frequency domain.

Figure 2 provides an overview of our SO(3)-equivariant pose estimation network. In Sec. 4.1, we
explain the steps for obtaining the Wigner-D representation, following the method described in [35].
In Sec. 4.2, we introduce a frequency-domain regression loss, where we train the network using MSE
loss between the predicted representation and the ground truth (GT) Wigner-D coefficients. Finally,
in Sec. 4.3, we describe the inference process by constructing an SO(3) grid for evaluation.

4.1 SO(3)-Equivariant Pose Estimation Network

In this subsection, we explain our SO(3)-equivariant pose estimation network, highlighting that its
key components are shared with the architecture of [35].
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Image feature extraction. We first apply a feature extractor to obtain an image feature map that
encodes semantic and geometric information: F = ρ(I), where F ∈ RC×H′×W ′

and ρ denotes
ResNet. We utilize a ResNet feature extractor that is pre-trained on ImageNet same to [28, 35, 41,
48, 49, 71]. We then perform dimensionality reduction on the image feature F to match the input
dimension of the subsequent spherical feature using a 1x1 convolution: F ′ = Conv1×1(F ), where
F ′ ∈ RC′×H′×W ′

.

Ψ ∈ ℝ𝑀

𝑆𝑂(3) filter

ReLU

𝑆2 filter 

Orthographic 
projection & 
Fast Fourier 
Transform

Non-linear 
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Figure 3: Illustration of spherical mapper and
spherical convolution for SO(3)-equivariance.
This structure allows for the prediction of 3D ro-
tations while preserving the SO(3)-equivariance
of the input structure. Predicting the Wigner-D
harmonics Ψ enables continuous 3D rotation mod-
eling, without discretizing the group actions.1

Spherical mapper. To begin, we lift the im-
age features to the 2-sphere using orthographic
projection [35]. This involves mapping the 2D
feature F ′ to a spherical feature ψ ∈ RC′×p,
where p denotes the number of points on the
sphere. The orthographic projection links pixels
in the image space to points on the sphere by or-
thogonally mapping S2 coordinates to the image
plane, thereby preserving the spatial information
of the dense 2D feature map.

Initially, we model spherical coordinates using
an S2 HEALPix [24] grid over a hemisphere.
Within this hemisphere, the set {xi} ⊂ S2 rep-
resents the vertices of the grid. Each vertex xi is
mapped to a position P (xi) on the image plane.
Formally, the orthographic projection P maps
3D coordinates on the hemisphere to 2D coordi-
nates on the image plane as P (x, y, z) = (x, y).

Due to the fixed perspective, only one hemi-
sphere of the sphere is visible, resulting in a
localized signal ψ(x) = F ′(P (x)) supported
over this hemisphere. The value of ψ(xi) is ob-
tained by interpolating F ′ at the pixels near P (xi) in the image space using an interpolation function
η, so ψ(xi) = η(F ′, P (xi)). Figure 3 illustrates the processes of the spherical mapper, and the
following frequency domain conversion and spherical convolution for SO(3)-equivariance.

Convert to the frequency domain. The transition of the spherical feature ψ into the frequency
domain is achieved using the fast Fourier transform (FFT) adapted for spherical topology. By
employing the FFT, we efficiently convert ψ to spherical signals S , represented as a sum of spherical
harmonics. This transformation allows us to capture and manipulate the spatial frequencies inherent
to the spherical surface. Specifically, the transition to the frequency domain enables the derivation
of Wigner-D coefficients, which effectively model the SO(3). The Fourier series of S is truncated
at frequency L [11], expressed as: S(x) ≈

∑L
l=0

∑l
m=−l c

l
mY

l
m(x), where S ∈ RC′×N , N is the

total number of spherical harmonics determined by the maximum frequency L, and Y l
m(x) are the

spherical harmonics. Operating in the frequency domain facilitates the effective convolution of signals
on the sphere (S2) and within the 3D rotation group (SO(3)), preserving the geometric properties of
input features through spherical equivariance.

To address sampling errors from approximating the Fourier series via truncation, we apply two
techniques proposed in [35]. First, to prevent discontinuities on the 2-sphere, we gradually decrease
the magnitude of projected features near the image edge: ψ′(xi) = w(xi) · ψ(xi). Second, for each
projection, we randomly select a subset of grid points on the S2 HEALPix grid as a dropout.

Spherical convolution for SO(3)-equivariance. We aim to predict 3D rotations while preserving
SO(3)-equivariance using the projected features on sphere. First, the spherical signal S is processed
with an S2-equivariant convolutional layer [11, 35]. Unlike conventional convolutions with local
filters, S2 convolution uses globally supported filters, offering a global receptive field. This allows
for a shallower network, which is important due to the high computational and memory demands of
spherical convolutions at a high bandlimit L.

1We use the visualization tools available in the source code of the image2sphere GitHub repository.
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In this stage, we obtain SO(3) representations inherent to spherical CNNs [11]. The output of S2

convolutions lies in the SO(3) domain because S2 convolutions replace translations with rotations,
and the space of 3D rotations forms the SO(3) group. Consequently, we obtain feature results sized
in RC′′×M , where C ′′ is the hidden dimension of the SO(3) features, and M is the total number of
Wigner-D matrix coefficients, given by M =

∑L
l=0(2l + 1)× (2l + 1), created by SO(3) irreps.

We apply non-linearities between convolutional layers by transforming the signal to the spatial domain,
applying a ReLU, and then transforming back to the frequency domain, following the approach of
spherical CNNs [11]. This method can be extended to FFT-based approximate non-linearity [19] and
equivariant non-linearity for tensor field networks [52, 67].

Subsequent to the S2-equivariant convolutional layer, we perform an SO(3)-equivariant group
convolution [11, 35] using a locally supported filter to refine the SO(3) pose space. Unlike typical
spherical CNNs, we bypass the inverse fast Fourier transform (iFFT) and instead use the output
harmonics of Wigner-D prediction. This approach, unlike that of [35], improves the efficiency of our
method. The final output of the equivariant network is the Wigner-D matrix coefficients Ψ ∈ RM .

4.2 Frequency-Domain Regression Loss

The output of the SO(3)-equivariant convolutional layers is a linear combination of Wigner-D
matrices, represented as a flattened vector of the Wigner-D coefficients. The output Ψ indicates
specific object orientations in an image. To generate the ground-truth (GT) Wigner-D coefficients,
we convert the GT 3D rotations from Euler angles using the ZY Z sequence of rotation R, expressed
as R = Rz(γ)Ry(β)Rz(α) to the Wigner-D matrices Dl

mn(α, β, γ), where D represents an action
of the rotation group SO(3). We calculate the Mean Squared Error (MSE) loss as follows:

L(Ψ̂,ΨGT) =

L∑
l=0

l∑
m=−l

wl(Ψ̂lm −ΨGT
lm )2, (4)

where wl are weights assigned to each harmonic frequency level l, normalizing the output Wigner-
D matrices for a frequency-domain specific MSE loss. This loss function enables continuous
prediction of SO(3) poses using SO(3)-equivariant networks, whereas the previous methods [28, 35,
49] predicted outputs in a discretized distribution, leading to degradation in prediction precision. With
this re-parametrization in the frequency domain, we use Euclidean distance because it is simple yet
effective for pose prediction. It allows straightforward calculation while considering both the direction
and magnitude of the vectors. Many distance metrics defined in the spatial domain [2, 25, 30, 55] may
not be directly appropriate for the frequency domain without adaptation. For example, cosine and
angular distances ignore magnitude, where the amplitude of frequency components carries significant
information. Chordal and geodesic distances require normalization, can be less intuitive, and often
involve more complex computations.

4.3 Inference

For evaluation, the output Wigner-D representation Ψ is converted to an SO(3) pose in the spatial
domain. Figure 4 illustrates the inference process inspired by [35, 49]. Specifically, we map the
predicted Wigner-D coefficients Ψ̂ from the frequency domain to a 3x3 rotation matrix R by querying
Ψ̂ on a predefined SO(3) grid. To achieve this mapping, we calculate the similarities between the
output vector Ψ and the SO(3) grid P (· | I). These similarities are then normalized using a softmax
function to produce a non-parametric categorical distribution P (R | I). The final 3D rotation matrix
R̂ is determined either by taking the argmax of this distribution or by applying gradient ascent [49].

To generate the SO(3) equivolumetric grids, we utilize the hierarchical equal area isolatitude pixelation
of the sphere (HEALPix) [24, 26], consistent with methods used in [28, 35, 41, 49, 71]. To lift the
S2 HEALPix to SO(3) HEALPix, we create equal-area grids on the 2-sphere and cover SO(3) by
threading great circles through each point using the Hopf fibration from [68].

This inference scheme effectively models objects with ambiguous orientations or symmetries by em-
ploying multiple hypotheses, thereby overcoming the limitations of single-modality predictions [44].
In addition to joint training with distributional cross-entropy loss [49], our network can model the
non-parametric and multi-modal distribution in pose space to address pose ambiguity and aid in
modeling 3D symmetry.
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Figure 4: Inference time. We query the output vector of Wigner-D coefficients Ψ against the
predefined SO(3) HEALPix grid with a resolution ofQ points. We finally obtain the SO(3) probability
distribution P (R | I), where each position represents the probability of a specific SO(3) pose.2

5 Experiment

5.1 Implementation Details

We input a 2D RGB image I ∈ R3×224×224. A ResNet backbone, pretrained on ImageNet, extracts
feature maps of shape F ∈ R2048×7×7. We then perform dimension reduction using a 1x1 convolution
to obtain F ′ ∈ R512×7×7. In the spherical mapper, the features are mapped onto an S2 grid generated
by recursion level 2 of HEALPix on half of the sphere, and then sampled at 20 points, resulting in
ψ ∈ R512×20. By converting ψ to the frequency domain, the spherical signals S ∈ R512×49 are
obtained. The Wigner-D representation is implemented in a flattened form across different frequency
levels. For example, the matrix coefficients at a frequency level l are represented as a flattened vector
of size (2l + 1)× (2l + 1). We use a maximum frequency level of L = 6, resulting in a total size of
M = 455, computed as

∑6
l=0(2l + 1)× (2l + 1). These coefficients are then flattened into a single

vector for the Wigner-D prediction. The spherical convolution on the S2 kernel uses an 8-dimensional
hidden layer with global support to obtain intermediate SO(3) features in R8×455. After nonlinear
activation, we finally obtain the 1-dimensional output Ψ ∈ R1×455 using an SO(3) convolution with
a locally supported filter to handle rotations up to 22.5◦. At inference, we employ a recursive level 5
of SO(3) HEALPix grid with 2.36 million points, achieving a precision of 1.875◦, as in [28, 35].

5.2 Benchmarks

ModelNet10-SO(3) [39] is a common dataset for estimating a 3D rotation from a single image.
The images are created by rendering CAD models from the ModelNet10 dataset [63]. The dataset
includes 4,899 objects across 10 categories, each image is labelled with a single 3D rotation. The
rotations are uniformly sampled from each CAD model. From a single CAD model, the training set
comprises 100 3D rotations on SO(3), while the test set includes 4 unseen 3D rotations.

PASCAL3D+ [64] is a widely-used benchmark for evaluating pose estimation in images captured in
real-world settings. It includes 12 categories of everyday objects, which were created by manually
aligning 3D models with their corresponding 2D images. This dataset presents challenges due to the
significant variation in object appearances, the high variability of natural textures, and the presence
of novel object instances in the test set. To be consistent with the baselines, we conduct training data
augmentation using synthetic renderings [57].

ModelNet10-SO(3) Few-shot Views is used to evaluate the data efficiency of pose estimation models.
Unlike the original ModelNet10-SO(3) [39], we have expanded this to evaluate various amounts of
training data, by setting the number of training views per CAD model to 3, 5, 10, 20, 30, 40, 50, 70,
90, and 100. This benchmark verifies the sampling efficiency of our equivariant networks. We use
the same test dataset as that of ModelNet10-SO(3).

Evaluation Metrics. We calculate the angular error, measured in degrees using geodesic distance,
between the network-predicted SO(3) pose and the ground-truth rotation matrix: θError(R, R̂) =

cos−1
(

trace(∆R)−1
2

)
, and ∆R = RR̂T . We adopt two commonly used metrics: the median rotation

error (MedErr) and the accuracy within specific rotation error thresholds (Acc@15◦and Acc@30◦).

2We use the illustration to represent the SO(3) grid P (· | I) from s2fft github repository [53].
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Method Acc@15 Acc@30 Rot Err.
(Median)

Zhou et al. [76] 0.251 0.504 41.1°
Bréiger [3] 0.257 0.515 39.9°
Liao et al. [39] 0.357 0.583 36.5°
Prokudin et al. [54] 0.456 0.528 49.3°
Deng et al. [13] 0.562 0.694 32.6°
Mohlin et al. [48] 0.693 0.757 17.1°
Murphy et al. [49] 0.719 0.735 21.5°
Yin et al. [70] - 0.751 16.1°
Yin et al. [71] 0.742 0.772 12.7°
Klee et al. [35] 0.728 0.736 15.7°
Liu et al. (Uni) [41] 0.760 0.774 14.6°
Liu et al. (Fisher) [41] 0.744 0.768 12.2°
Howell et al. [28] - - 17.8°
ours (ResNet-50) 0.759 0.767 15.1°
ours (ResNet-101) 0.773 0.780 11.9°

Table 1: Results on ModelNet10-SO(3). The scores
have been averaged across all ten object categories.

Method Acc@30 Rot Err.
(Median)

Zhou et al. [76] - 19.2°
Bréiger [3] - 20.0°
Tulsiani & Malik [58] - 13.6°
Mahendran et al. [42] - 10.1°
Liao et al. [39] 0.819 13.0°
Prokudin et al. [54] 0.838 12.2°
Mohlin et al. [48] 0.825 11.5°
Murphy et al. [49] 0.837 10.3°
Yin et al. [71] - 9.4°
Klee et al. [35] 0.872 9.8°
Liu et al. (Uni) [41] 0.827 10.2°
Liu et al. (Fisher) [41] 0.863 9.9°
Howell et al. [28] - 9.2°
Ours 0.892 8.6°

Table 2: Results on PASCAL3D+ with
ResNet-101 backbone. Scores are averaged
across all twelve classes.
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Figure 5: Experiment on ModelNet10-SO(3) with few-shot training views. Results with solid
lines of I-PDF [49], I2S [35], and RotLaplace [71] denote to a ResNet-50 backbone, while dotted
lines indicate a ResNet-101 backbone. Our method outperforms all metrics and reduces training
views. Baseline results [35, 71] were obtained using the source code provided by the authors.

5.3 Results

Table 1 shows the pose estimation results on the ModelNet10-SO(3) dataset, where our model outper-
forms all baselines across multiple evaluation metrics. Notably, our Wigner-D harmonics prediction
network surpasses methods in non-probabilistic rotation estimation [3, 39, 76], parametric probability
distribution estimation [13, 41, 48, 54, 70, 71], and non-parametric distribution prediction [28, 35, 49],
by leveraging SO(3) equivariance and rotation parametrization in the frequency domain.

Table 2 shows the results on the PASCAL3D+ benchmark. Our SO(3) Wigner-D harmonics predictor
achieves state-of-the-art performance on these challenging benchmarks. It demonstrates robustness
to changes in object appearance, real textures, and generalizes well to novel object instances. We
additionally report fine-scale accuracies, i.e., Acc@3◦, Acc@5◦and Acc@10◦, in Tables A1 and A2,
and class-wise evaluation of the results in Tables A3 and A4 of appendix B.

5.4 Few-shot Training Views

Figure 5 illustrates the pose estimation results on ModelNet10-SO(3) with few-shot training views.
Notably, as the number of training views from a single CAD model decreases, our model consistently
achieves the highest accuracy and lowest error. This performance surpasses the baselines of direct
rotation regression [3, 76], parametric distribution parameters regression [71], and non-parametric
distribution estimation [35, 49]. This few-shot training experiment verifies that our SO(3)-equivariant
model contributes to superior data efficiency and generalization to unseen rotations.
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Method Acc@15° Acc@30° Rot Err.
Wigner (ours) 0.6807 0.6956 22.27°
Euler 0.0010 0.0072 132.56°
Quaternion 0.0510 0.1629 75.95°
Axis-Angle 0.0124 0.0815 88.66°
Rotmat 0.3909 0.5682 37.54°

Table 3: Comparison of different parametriza-
tions of 3D rotations. To validate our Wigner-D
representation in the frequency domain, we train
using various output rotation representations.

Loss Function Acc@15° Acc@30° Rot Err.
MSE Loss 0.6807 0.6956 22.27°
L1 loss 0.6796 0.6933 22.12°
Huber loss 0.6710 0.6873 19.26°
Cosine loss 0.4414 0.4978 64.29°
Geodesic loss 0.0009 0.0071 132.65°

Table 4: Comparison of different loss functions.
To validate our choice of MSE loss, we experi-
ment with various distance functions between the
predicted output and the ground truth.

5.5 Ablation Studies & Design Choices

5.5.1 SO(3) Parmetrizations

Table 3 shows results validating design choices on ModelNet10-SO(3) with 20-shot training views,
using a ResNet-50 backbone. First, we compare the effects of different rotation parametrizations on
model performance by changing the prediction head and ground-truth rotations, to verify our proposed
Wigner-D compared to other rotation representations. For all cases, we retained the backbone
networks and SO(3)-equivariant layers. The only modifications were the output prediction dimension
size and the ground-truth rotation representation. Our Wigner-D parametrization outperforms Euler
angles (3 dim.), quaternions (4 dim.), axis-angle (4 dim.), and rotation matrices (9 dim.). This
demonstrates that frequency domain rotation re-parametrization enables accurate 3D rotations when
used with the SO(3)-equivariant spherical CNNs in the frequency domain.

5.5.2 Loss Functions

Table 4 compares various loss functions trained on ModelNet10-SO(3) with 20-shot learning using a
ResNet-50 backbone. While Huber and L1 losses are alternatives, they do not perform as well as
MSE in our context. Cosine loss measures only angle distances between vectors, ignoring magnitude,
which is an essential factor in frequency-domain applications. Geodesic loss in the frequency domain
is ineffective because it requires separate calculations for each frequency level of the Wigner-D
matrix, potentially losing the precision of the original 3D rotation, as we truncate the Fourier basis at
a frequency level of 6. Therefore, we choose MSE regression loss for our design choice given its
simplicity and effectiveness.

5.5.3 Ablation Studies

Acc@15° Acc@30° Rot Err.
ours 0.6807 0.6956 22.27°
w.o equivConv 0.1056 0.1308 149.25°

Random SO(3) 0.6797 0.6946 22.16°
SuperFibonacci 0.6785 0.6932 22.15°

Table 5: Comparison of results without the
SO(3)-equivariant module and with different
SO(3) grids at inference. The first group shows
the results using conventional convolution instead
of equivariant convolution. The second group
presents the results with different SO(3) grids at
inference time. ‘ours’ denotes the proposed model
architecture.

In Table 5, we experiment with replacing SO(3)-
equivariant layers with conventional convolu-
tional layers. Specifically, we use two-layer 1x1
convolutional layers with ReLU activation and a
final linear layer with 455 output channels. The
results indicate that CNNs without equivariant
layers perform poorly, especially in terms of me-
dian error, suggesting that using the equivariant
networks generalize better to unseen samples.
Additionally, the Wigner-D prediction should be
paired with an SO(3)-equivariant network to en-
able reliable 3D rotation prediction in the fre-
quency domain.

Lastly, we evaluate the impact of different SO(3)
grids by switching from a HEALPix grid to a
random SO(3) grid and super-Fibonacci spirals [1], which use the same number of SO(3) rotations.
Our Wigner-D harmonics predictor performs consistently, regardless of the SO(3) grid sampling type
at inference time.
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SYMSOL I SYMSOL II

avg cone cyl tet cube icosa avg sphereX cylO tetX

Lwigner 2.54 2.42 2.68 2.93 2.67 1.99 -8.88 4.51 -7.64 -23.52
Ldist [35] 3.41 3.75 3.10 4.78 3.27 2.15 4.84 3.74 5.18 5.61
Lwigner+Ldist 4.11 4.43 3.76 5.59 3.93 2.85 6.20 6.66 5.85 6.11

Table 6: Results on SYMSOL I and II [49]. We report the average log likelihood on both parts of
the SYMSOL datasets. Lwigner denotes the results obtained with our Wigner-D regression loss. Ldist
denotes the results using the distribution loss from I-PDF [49], which are the same as the results of
I2S [35]. The third row presents the results of joint training using both our regression loss and the
distribution loss.

5.6 Results on SYMSOL

Table 6 shows symmetric object modeling on the SYMSOL datasets [49]. Compared to the first row
and second row [35], our model with only the Wigner-D regression loss derives on sharp modalities,
which can be less effective than [35] for symmetric objects in SYMSOL I.

For clearly defined pose cases (e.g., SphereX in SYMSOL II), our Wigner-D loss alone performs
well. However, in other SYMSOL II scenarios, the sharp distributions produced by our model can
lead to low average log likelihood scores. This metric is particularly harsh on models with sharp
peaks, making them vulnerable to very low scores in some failure cases.

Figure 6: Visualization of pose distribution on
SYMSOL. The results are obtained by joint train-
ing with both our regression loss and the cross-
entropy distribution loss [35, 49].

In the third row, joint training of our method with
the distribution loss [35, 49] achieves better per-
formance than the baseline [35], demonstrating
its ability to model symmetric objects. These re-
sults highlight the potential of our method in han-
dling complex symmetries and predicting multi-
ple hypotheses. Figure 6 shows the visualization
of pose distribution on the SYMSOL I and II
datasets.

Most real-world objects have unique, unam-
biguous poses, validating our single pose re-
gression method (e.g., ModelNet10-SO(3), PAS-
CAL3D+). If the task needs to cover symmetric
cases, our model can be modeled with distribu-
tion loss [35, 49].

6 Conclusion

In this paper, we proposed a novel method for 3D rotation estimation by predicting Wigner-D
coefficients directly in the frequency domain using SO(3)-equivariant networks. Our approach
effectively overcomes the limitations of existing spatial domain parameterizations of 3D rotations,
such as discontinuities and singularities, by aligning the rotation representation with the operations
of spherical CNNs. By leveraging frequency-domain regression, our method ensures continuous
and precise pose predictions and demonstrates state-of-the-art performance across benchmarks
like ModelNet10-SO(3) and PASCAL3D+. Additionally, it offers enhanced data efficiency and
generalization to unseen rotations, validating the robustness of SO(3)-equivariant architectures. Our
method also supports the modeling of 3D symmetric objects by capturing rotational ambiguities, with
further accuracy improvements achievable through joint training with distribution loss. Future work
can build on this foundation to explore frequency-domain representations in 3D vision tasks, develop
more effective rotation representations for 3D space, and further optimize computational efficiency.
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Appendix / Supplementary Materials

A Rotation Representations

A.1 Rotation Representation in Spatial Domain

We recommend checking out a detailed overview of learning 3D rotations in [51, 55]. Rotations in
both 2D and 3D spaces can be represented using various mathematical frameworks, each with its
own advantages and limitations, crucial for applications in fields such as computer graphics, robotics,
and deep learning. In 2D space, rotation angles can be expressed as following SO(2) representations:
angle (α) or Trigonometric functions (cos(α), sin(α)).

In 3D space, Euler angles in R3 are a representative form of SO(3) representation. Euler angles
have 3 DoF consisting of three angles α, β, γ ∈ [−π, π) to describe a 3D rotation (roll, pitch, yaw).
3D rotation matrix can be composed of a fixed sequence rotation using the angles R(α, β, γ) =
Rz(α)Ry(β)Rz(γ). The standard Euler angles can be divided into 2 forms: Tait-Bryan angles (a.k.a.
Cardan angles) which consists of permutations of three items (XYZ, XZY, YXZ, YZX, ZXY, ZYX),
and proper Euler angles which starts and ends with rotations around the same axis (ZYZ, ZXZ, XYX,
XZX, YZY, YXY), total 12 possible unique sequences. Because of non-uniqueness of Euler angles,
existing studies [3, 51, 76] do not encourage the Euler angles as an output representation for 3D
rotation prediction in deep neural network.

Quaternions in S3 is for 4-dimensional complex number to represent a 3D rotation. A quaternion q is
composed of one real part and three imaginary parts: q = w + xi + yj + zk, where w, x, y, z are
real numbers and i, j, k are the fundamental quaternion units. Quaternions can prevent gimbal lock, a
problem that occurs with Euler angles where one degree of freedom is lost during 3D rotation.

Axis-angle in R4 consists of an angle θ and an axis vector u in 3D space. To rotate a point p ∈ R3

about the axis u by an angle θ, you can use Rodrigues’ rotation formula: p′ = pcos(θ)+u×psin(θ)+
u(u · p)(1 − cos(θ)). The axis-angle representation can be converted into a rotation matrix or a
quaternion. Even it has advantages of intuitive form and compact to describe 3D rotation with four
parameters, the axis-angle can suffer from singularities in a scenario of angle multiples of θ = 2π.

6D representation [3, 76] is a relatively newer concept compared to the traditional representation like
Euler angles, rotation matrices and quaternions. A rotation is described by two 3D vectors that are
orthogonal to each other, and the rotation matrix can be obtained by Gram-Schmidt orthonormalization
(GSO). This representation can be directly predicted and optimized by deep networks because it
avoids the non-linear constraints found in quaternions and rotation matrices. Quaternions require
maintaining a unit norm, which introduces complexity in ensuring the quaternion remains normalized
throughout the optimization process. Therefore, [7, 8, 76] adopt this 6D representation with GSO.

9D representation [3, 38] is direct parametrization of 3× 3 matrix, which can be projected to SO(3)
using singular value decomposition (SVD). Predicting 9D representation for rotation matrices involves
orthogonality constraints, meaning the rows and columns must remain orthonormal, and determinant
constraints, where the determinant must equal +1. These constraints complicate the learning and
optimization process, making this representation more suitable for direct prediction and optimization
by deep networks. Therefore, 9D representation is less common as a direct method to predict rotation,
but [7, 8, 38] use this to mitigate issues associated with discontinuous parameterizations of pose.

A.2 Rotation Representation in Frequency Domain

3D rotation in the frequency domain is accomplished by manipulating spherical harmonics coefficients.
Spherical harmonics Y l

m(x) = Y l
m(θ, ϕ) are a function defined on the surface of a sphere, where θ

and ϕ are the polar and azimuthal angles, respectively. Here, l represents the degree of the spherical
harmonics, m is the order. To ensure computational feasibility, we truncate the degree of harmonics
to a finite L = lmax. Rotations of spherical functions can be represented by matrices that operate on
the coefficients of their harmonics expansion. The rotation of spherical harmonics is expressed via
the shift theorem [43] of spherical harmonics:

ΛgY
l
m(x) =

∑
|n|≤l

Dl
mn(g)Y

l
n(x), (5)
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where ΛgY
l
m(x) denotes the spherical harmonic Y l

m(x) after rotation by g, and Λg is the rotation
operator. Spherical harmonics Y l

m(x), defined by degree l and order m (l ≥ 0, |m| ≤ l), use
x to represent spherical coordinates. The matrix U l

mn(g) forms part of the irreducible unitary
representation of SO(3), showing how each harmonic is transformed under rotation. The sum over
all orders n from −l to l,

∑
|n|≤l, shows that Y l

m is a linear combination of all harmonics of degree l.

This rotation of spherical harmonics can be described by the Wigner-D matrix Dl
mn(R), which is a

unitary matrix that describes the effect of a rotation R on the spherical harmonics basis functions. We
can rewrite U l

mn(g) = Dl
mn(α, β, γ). Each element of the matrix represents the amplitude and phase

shift that a spherical harmonic Y l
m undergoes due to the rotation R. The rotation R can be specified

by Euler angles α, β, and γ in the ZYZ-axes configuration. The matrix elements Dl
mn(α, β, γ) can

be explicitly expressed as:

Dl
mn(α, β, γ) = e−imαdlmn(β)e

−inγ , (6)

where dlmn(β) are the elements of the Wigner (small) d-matrix, which depend only on the angle
β and are real-valued. These elements capture the intermediate rotation about the Y-axis, where
the angle β represents the tilt of the axis of rotation. To rotate a spherical harmonic expansion of a
function f , represented as:

f(θ, ϕ) =

∞∑
l=0

l∑
m=−l

f lmY
l
m(θ, ϕ), (7)

we need to account for the coefficients f lm of the expansion. The rotated coefficients f ′lm are computed:

f ′lm =

l∑
n=−l

Dl
mn(R)f

l
n, (8)

where Dl
mn(R) encodes the effect of the rotation on the original coefficients. This transformation

preserves the orthonormality and completeness of the spherical harmonics basis, ensuring that the
rotated function f ′(θ, ϕ) remains a valid representation of the original function f(θ, ϕ) under the
rotation R. The expansion coefficients f lm can be calculated using the original spatial coordinates
(θ, ϕ) of the sphere surface according to the spherical harmonic expansion:

f lm =

∫ 2π

0

∫ π

0

f(θ, ϕ)Y l
m(θ, ϕ) sin θ, dθ, dϕ, (9)

where Y l
m(θ, ϕ) denotes the complex conjugate of the spherical harmonic function Y l

m(θ, ϕ).

B Additional Results

B.1 Results of Finer Threshold Accuracy

B.1.1 ModelNet10-SO(3)

Table A1 presents a comparison of existing methods with different backbones on the ModelNet10-
SO(3) dataset3, highlighting performance across multiple accuracy thresholds and median error. For
the ResNet-50 backbone, our method achieves the highest accuracy at 3° (0.422) and 5° (0.640) with
a median error of 15.1°, outperforming the existing methods [13, 28, 35, 49]. In particular, our model
demonstrates significantly better performance than the strong baselines [28, 35] that use equivariant
networks to estimate non-parametric SO(3) healpix distribution at the finer thresholds. Compared
to [35], our model achieves 11.2%p, 7.9%p, and 3.9%p higher at the 3°, 5°, and 10° thresholds,
respectively. For the ResNet-101 backbone, our method also demonstrates superior performance with
the highest accuracy at 3° (0.513) and 5° (0.688), and the lowest median error of 11.9°, compared
to [39, 41, 48, 71]. The table includes accuracies at 10°, 15°, and 30° thresholds, where our method
consistently shows top performance across these metrics. The scores are averaged across all ten
object categories.

3We obtained the ModelNet10-SO(3) dataset from the following link: https://github.com/leoshine/
Spherical_Regression/blob/master/dataset/ModelNet10-SO3/Readme.md , and the PASCAL3D+
dataset from the following link https://cvgl.stanford.edu/projects/pascal3d.html.

2

https://github.com/leoshine/Spherical_Regression/blob/master/dataset/ModelNet10-SO3/Readme.md
https://github.com/leoshine/Spherical_Regression/blob/master/dataset/ModelNet10-SO3/Readme.md
https://cvgl.stanford.edu/projects/pascal3d.html


Method Backbone Acc@3° Acc@5° Acc@10° Acc@15° Acc@30° Med. (°)

Deng et al. [13] ResNet-34 0.138 0.301 0.502 0.562 0.694 31.6
Murphy et al. [49] ResNet-50 0.294 0.534 0.680 0.719 0.735 21.5
Klee et al. [35] ResNet-50 0.310 0.561 0.705 0.728 0.736 15.7
Howell et al. [28] ResNet-50 - - - - - 17.8
ours ResNet-50 0.422 0.640 0.744 0.759 0.767 15.1
Liao et al. [39] ResNet-101 - - - 0.496 0.658 28.7
Mohlin et al. [48] ResNet-101 0.164 0.389 0.615 0.693 0.757 17.1
Yin et al. [71] ResNet-101 0.447 0.611 0.715 0.742 0.772 12.7
Liu et al. [41] ResNet-101 0.511 0.637 0.719 0.744 0.768 12.2
ours ResNet-101 0.513 0.688 0.763 0.773 0.780 11.9

Table A1: Comparison with finer thresholds on ModelNet10-SO(3). We compare additional
thresholds, including Acc@3°, Acc@5°, and Acc@10°. The tables are organized by the size of the
backbone. The scores are averaged across all ten object categories.

Method Acc@3° Acc@5° Acc@10° Acc@15° Acc@30° Med. (°)

Tulsiani & Malik [58] - - - - 0.808 13.6
Prokudin et al. [54] - - - - 0.838 12.2
Mahendran et al. [42] - - - - 0.859 10.1
Liao et al. [39] - - - - 0.819 13.0
Mohlin et al. [48] 0.089 0.215 0.484 0.650 0.827 11.5
Murphy et al. [49] 0.102 0.242 0.524 0.672 0.838 10.2
Yin et al. [71] 0.134 0.292 0.574 0.714 0.874 9.3
Klee et al. [35] 0.134 0.270 0.580 0.716 0.867 9.6
Liu et al. [41] 0.117 0.264 0.552 0.706 0.863 10.0
Howell et al. [28] - - - - - 9.2
ours 0.153 0.310 0.595 0.754 0.892 8.6

Table A2: Comparison with finer thresholds on PASCAL3D+. We compare additional metrics,
including Acc@3°, Acc@5°, and Acc@10°, adding on the Table 2. Most baselines [35, 39, 41, 42,
48, 49, 71], including ours, use ResNet-101 backbone networks in this experiment.

B.1.2 PASCAL3D+

Table A2 presents a comparison of various methods on the PASCAL3D+ dataset, focusing on finer
accuracy thresholds (Acc@3°, Acc@5°, and Acc@10°) and median error. The table includes methods
that primarily use the ResNet-101 backbone, comparing our approach against several existing methods.
Our method achieves the highest accuracies with 0.153 at 3°, 0.310 at 5°, and 0.595 at 10°, with the
lowest median error of 8.6°. Compared to the previous state-of-the-art Yin et al. [71], our method
shows performance improvements of 1.9%p at 3°, 1.8%p at 5°, and 2.1%p at 10°, while also reducing
the median error by 0.7°.

B.1.3 ModelNet10-SO(3) Few-shot Views

Figure A1 shows the results with finer thresholds, Acc@3°, Acc@5°, and Acc@10°, on the
ModelNet10-SO(3) few-shot training views, which are additional results to Figure 5. The graphs
illustrate that our method outperforms all other methods across all metrics (Acc@3°, Acc@5°, and
Acc@10°) and requires fewer training views to achieve high accuracy, even at finer thresholds. This
shows that our model is capable of more precise pose estimation with less number of training data,
proving the data efficiency of our SO(3)-equivariant harmonics pose estimator. Baseline results
[35, 71] were obtained using the source code provided by the authors.

B.2 Per-Category Results

B.2.1 ModelNet-SO(3) Categorical Results

Table A3 provides a comprehensive comparison across 10 object categories on the ModelNet10-SO(3)
dataset, including Bathtub, Bed, Chair, Desk, Dresser, TV Monitor, Night Stand, Sofa, Table, and
Toilet. Each image is labeled with a single 3D rotation matrix, even though some categories, such

3
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Figure A1: Results with finer thresholds on ModelNet10-SO(3) few-shot training views. Results
with solid lines denote a ResNet-50 backbone, while dotted lines indicate a ResNet-101 backbone. Our
method outperforms all metrics and reduces training views even at finer thresholds. For comparison,
the I2S (ResNet-50) model [35] is shown with a blue line, and the RotLaplace (ResNet-50 and
ResNet-101) models [71] are depicted with purple solid and dashed lines, respectively.

as desks and bathtubs, may have ambiguous poses due to symmetry. This poses a challenge for
methods that cannot handle uncertainty over orientation. However, in terms of accuracy at 15°, our
model consistently achieves the best performance in the desk and bathtub categories, demonstrating
robustness against pose ambiguity and symmetry. The table is divided into sections for ResNet-50 and
ResNet-101, indicating different network architectures used. For ResNet-50, our method achieves the
lowest average median error of 15.1°, with particularly strong performance in 9 categories: bed (2.7°),
chair (3.8°), desk (4.2°), dresser (2.7°), tv monitor (2.7°), night stand (3.4°), sofa (7.2°), and toilet
(3.0°). For ResNet-101, our model demonstrates the lowest average median error of 11.9°. Although
Liu et al. (Uni.) [41] generally obtain better results in terms of median error with the ResNet-101
backbone, our model outperforms Liu et al. (Uni.) [41] on Acc@15° in most cases. This indicates
that our model estimates poses correctly at a finer level of detail.

In terms of accuracy at 15°, our method achieves the highest average accuracy of 0.759 for ResNet-50,
with best performance in all categories. For ResNet-101 at 15°, our model leads with an average
accuracy of 0.773, achieving state-of-the-art performance in 8 out of 10 categories. In terms of
accuracy at 30°, our method achieves the highest average accuracy of 0.773 for ResNet-50, with
the best results in 9 out of 10 categories. For ResNet-101 at 30°, our model maintains the highest
average accuracy of 0.905, with strong results in categories such as Chair, Desk, TV Monitor,
and Sofa. Overall, our equivariant harmonics pose estimator demonstrates superior performance
across both ResNet-50 and ResNet-101 architectures in terms of both median error and accuracy at
different angles. This highlights its effectiveness and robustness across various object categories in
the ModelNet10-SO(3) dataset, consistently outperforming other recent methods in most categories
and metrics.

B.2.2 PASCAL3D+ Categorical Results

Table A4 presents comprehensive comparisons on the PASCAL3D+ dataset across 12 categories
(Aeroplane, Bicycle, Boat, Bottle, Bus, Car, Chair, Dining Table, Motorbike, Sofa, Train, TV Monitor)
using median error and Acc@30° metrics. This benchmark is challenging due to significant variations
in object appearances, high variability of natural textures, and the presence of novel object instances
in the test set. Our method demonstrates superior performance with the lowest average median error
of 8.6° and the highest average accuracy of 0.892, excelling in categories such as "aero," "bike," "car,"
"chair," "table," and "mbike" in median error, and achieving best performance in 8 out of 12 categories
in accuracy at 30°. The results indicate that different methods have varying strengths across different
categories, with our SO(3)-equivariant pose harmonics estimation method consistently outperforming
others in both accuracy and error metrics, demonstrating its robustness and efficacy.
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ModelNet10-SO(3) categories

Methods Avg. Bath Bed Chair Desk Dress Tv Stand Sofa Table Toilet

M
ed

ia
n

er
ro

r(
°)

R
es

N
et

-5
0

Prokudin et al. (2018) [54] 49.3 122.8 3.6 9.6 17.2 29.9 6.7 73.0 10.4 115.5 4.1
Zhou et al. (2019) [76] 41.1 103.3 18.1 18.3 51.5 32.2 19.7 48.4 17.0 88.2 13.8
Deng et al. (2022) [13] 32.6 147.8 9.2 8.3 25.0 11.9 9.8 36.9 10.0 58.6 8.5
Brégier (2021) [3] 39.9 98.9 17.4 18.0 50.0 31.5 18.7 46.5 17.4 86.7 14.2
Murphy et al. (2021) [49] 21.5 161.0 4.4 5.5 7.1 5.5 5.7 7.5 4.1 9.0 4.8
Klee et al. (2023) [35] 16.3 124.7 3.1 4.4 4.7 3.4 4.4 4.1 3.0 7.7 3.6
Howell et al. (2023) [28] 17.8 124.7 4.6 5.5 6.9 5.2 6.1 6.5 4.5 12.1 4.9
Ours 15.1 117.4 2.7 3.8 4.2 2.7 3.8 3.4 2.5 7.2 3.0

R
es

N
et

-1
01

Liao et al. (2019) [39] 36.5 113.3 13.3 13.7 39.2 26.9 16.4 44.2 12.0 74.8 10.9
Mohlin et al. (2020) [48] 17.1 89.1 4.4 5.2 13.0 6.3 5.8 13.5 4.0 25.8 4.0
Yin et al. (2023) [71] 12.2 85.1 2.3 3.4 5.4 2.7 3.7 4.8 2.1 9.6 2.5
Liu et al. (2023) (Uni.) [41] 14.6 124.8 1.5 2.8 2.7 1.5 2.6 2.4 1.5 3.9 2.0
Liu et al. (2023) (Fisher.) [41] 12.2 91.6 1.8 3.0 5.5 2.0 3.2 4.3 1.6 6.7 2.1
Ours 11.9 91.9 2.3 3.3 3.2 2.1 3.4 2.7 2.2 5.4 2.6

A
cc

@
15

°

R
es

N
et

-5
0 Prokudin et al. (2018) [54] 0.456 0.114 0.822 0.662 0.023 0.406 0.704 0.187 0.590 0.108 0.946

Deng et al. (2022) [13] 0.562 0.140 0.788 0.800 0.345 0.563 0.708 0.279 0.733 0.440 0.832
Murphy et al. (2021) [49] 0.719 0.392 0.877 0.874 0.615 0.687 0.799 0.567 0.914 0.523 0.945
Klee et al.* (2023) [35] 0.736 0.414 0.845 0.888 0.641 0.672 0.793 0.654 0.900 0.548 0.957
Ours 0.759 0.425 0.891 0.918 0.704 0.743 0.833 0.646 0.935 0.525 0.971

R
es

N
et

-1
01 Mohlin et al. (2020) 0.693 0.322 0.882 0.881 0.536 0.682 0.790 0.516 0.919 0.446 0.957

Yin et al. (2023) 0.741 0.390 0.902 0.909 0.644 0.722 0.815 0.590 0.934 0.521 0.977
Liu et al. (2023) (Uni.) [41] 0.760 0.402 0.896 0.927 0.704 0.753 0.843 0.602 0.939 0.561 0.975
Liu et al. (2023) (Fisher.) [41] 0.744 0.439 0.890 0.909 0.638 0.715 0.810 0.585 0.938 0.535 0.978
Ours 0.773 0.453 0.903 0.932 0.726 0.763 0.842 0.654 0.940 0.540 0.980

A
cc

@
30

°

R
es

N
et

-5
0 Prokudin et al. (2018) [54] 0.528 0.175 0.847 0.777 0.061 0.500 0.788 0.306 0.673 0.183 0.972

Deng et al. (2022) [13] 0.694 0.325 0.880 0.908 0.556 0.649 0.807 0.466 0.902 0.485 0.958
Murphy et al. (2021) [49] 0.735 0.410 0.883 0.917 0.629 0.688 0.832 0.570 0.921 0.531 0.967
Klee et al.* (2023) [35] 0.736 0.427 0.848 0.915 0.642 0.672 0.819 0.565 0.902 0.555 0.964
Ours 0.767 0.434 0.894 0.939 0.708 0.743 0.857 0.647 0.940 0.529 0.979

R
es

N
et

-1
01 Mohlin et al. (2020) [48] 0.757 0.403 0.908 0.935 0.674 0.739 0.863 0.614 0.944 0.511 0.981

Yin et al. (2023) [71] 0.770 0.430 0.911 0.940 0.698 0.751 0.869 0.625 0.946 0.541 0.986
Liu et al. (2023) (Uni.) [41] 0.774 0.419 0.904 0.946 0.722 0.766 0.868 0.617 0.948 0.567 0.982
Liu et al. (2023) (Fisher.) [41] 0.768 0.460 0.898 0.934 0.694 0.738 0.859 0.615 0.948 0.544 0.987
Ours 0.780 0.459 0.905 0.950 0.728 0.763 0.871 0.654 0.943 0.544 0.983

Table A3: Evaluation on ModelNet10-SO(3) by method across different categories. * denotes
reproduced results from the source code provided by authors.

PASCAL3D+ categories

Method avg. aero bike boat bottle bus car chair table mbike sofa train tv

M
ed

ia
n

er
ro

r(
°)

Zhou et al. (2019) [76] 19.2 24.7 18.9 54.2 11.3 8.4 9.5 19.4 14.9 22.5 17.2 11.4 17.5
Brégier (2021) [3] 20.0 27.5 22.6 49.2 11.9 8.5 9.9 16.8 27.9 21.7 12.6 10.2 20.6
Liao et al. (2019) [39] 13.0 13.0 16.4 29.1 10.3 4.8 6.8 11.6 12.0 17.1 12.3 8.6 14.3
Mohlin et al. (2020) [48] 11.5 10.1 15.6 24.3 7.8 3.3 5.3 13.5 12.5 12.9 13.8 7.4 11.7
Prokudin et al. (2018) [54] 12.2 9.7 15.5 45.6 5.4 2.9 4.5 13.1 12.6 11.8 9.1 4.3 12.0
Tulsiani & Malik (2015) [58] 13.6 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4
Mahendran et al. (2018) [42] 10.1 8.5 14.8 20.5 7.0 3.1 5.1 9.3 11.3 14.2 10.2 5.6 11.7
Murphy et al. (2021) [49] 10.3 10.8 12.9 23.4 8.8 3.4 5.3 10.0 7.3 13.6 9.5 6.4 12.3
Yin et al. (2023) [71] 9.4 8.6 11.7 21.8 6.9 2.8 4.8 7.9 9.1 12.2 8.1 6.9 11.6
Liu et al. (Uni.) (2023) [41] 10.2 8.9 15.2 24.9 6.9 2.9 4.3 8.7 10.7 12.8 9.3 6.3 11.3
Liu et al. (Fisher) (2023) [41] 9.9 9.6 12.4 22.7 7.5 3.1 4.8 9.2 8.6 13.5 8.6 6.7 11.6
Klee et al. (2023) [35] 9.8 9.2 12.7 21.7 7.4 3.3 4.9 9.5 9.3 11.5 10.5 7.2 10.6
Howell et al. (2023) [28] 9.2 9.3 12.6 17.0 8.0 3.0 4.5 9.4 6.7 11.9 12.1 6.9 9.9
ours 8.6 8.3 12.1 17.2 7.9 2.9 4.2 8.1 5.5 10.4 9.3 7.1 10.7

A
cc

@
30

°

Liao et al. (2019) [39] 0.819 0.82 0.77 0.55 0.93 0.94 0.94 0.85 0.61 0.80 0.95 0.83 0.82
Mohlin et al. (2020) [48] 0.825 0.80 0.75 0.53 0.95 0.96 0.96 0.78 0.62 0.87 0.93 0.77 0.84
Prokudin et al. (2018) [54] 0.838 0.89 0.83 0.46 0.96 0.93 0.90 0.80 0.76 0.90 0.90 0.82 0.91
Tulsiani & Malik (2015) [58] 0.808 0.81 0.77 0.59 0.96 0.98 0.89 0.80 0.62 0.88 0.92 0.80 0.90
Mahendran et al. (2018) [42] 0.859 0.87 0.81 0.64 0.96 0.97 0.95 0.92 0.67 0.85 0.97 0.82 0.88
Murphy et al. (2021) [49] 0.837 0.81 0.85 0.56 0.93 0.95 0.94 0.87 0.78 0.85 0.88 0.78 0.86
Yin et al. (2023) [71] 0.876 0.90 0.90 0.60 0.96 0.98 0.96 0.91 0.76 0.88 0.97 0.80 0.88
Liu et al. (Uni.) (2023) [41] 0.827 0.83 0.78 0.56 0.95 0.96 0.93 0.87 0.62 0.85 0.90 0.81 0.86
Liu et al. (Fisher) (2023) [41] 0.863 0.89 0.89 0.55 0.96 0.98 0.95 0.94 0.67 0.91 0.95 0.82 0.85
Klee et al.* (2023) [35] 0.851 0.89 0.84 0.60 0.90 0.98 0.95 0.86 0.71 0.90 0.93 0.83 0.82
ours 0.892 0.92 0.88 0.65 0.92 1.00 0.99 0.94 0.86 0.93 0.93 0.84 0.85

Table A4: Evaluation on PASCAL3D+ by method across different categories. * denotes repro-
duced results from the source code provided by authors.
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# of width Acc3° Acc5° Acc10° Acc15° Acc30° Rot
points of a bin Err.

72 60° 0.000 0.002 0.016 0.055 0.415 45.9°
576 30° 0.002 0.014 0.122 0.396 0.765 27.1°
4.6K 15° 0.026 0.116 0.615 0.750 0.767 19.7°

36.9K 7.5° 0.150 0.464 0.734 0.757 0.766 17.1°
294.9K 3.75° 0.343 0.611 0.742 0.758 0.766 15.8°
2.36M 1.875° 0.424 0.641 0.746 0.760 0.767 14.7°
18.87M 0.938° 0.443 0.646 0.746 0.759 0.768 15.0°

Table A5: Evaluation by changing the size of the SO(3) grid at inference. To analyze the sensitivity
of discretization on precision (Q of Fig. 4), we vary the recursion levels of the SO(3) HEALPix from
0 to 6. We use a ResNet-50 backbone on ModelNet10-SO(3).

inference Acc@15° Acc@30° Rot Err.

w/ argmax 0.7576 0.7651 12.79°
w/ grad ascent 0.7591 0.7660 12.43°

Table A6: Comparison of inference methods
on pose distribution. We compare argmax and
gradient ascent in the predicted distribution.

Backbone Acc@15° Acc@30° Rot Err.

ResNet-50 0.6807 0.6956 22.27°
ViT 0.6384 0.6525 40.66°

Table A7: Results of using transformer instead
of convolution. We train our models by replacing
the backbone with Vision Transformer (ViT).

B.3 Impact of SO(3) Discretization Sizes and Continuity of Rotations

Table A5 reports the effect of varying the grid size (Q) on performance for the ModelNet10 benchmark.
We observe comparable results in common evaluation metrics, such as Accuracy at 15 degrees
(Acc@15) and 30 degrees (Acc@30), even with a lower grid resolution (Q = 4.6K). A higher
resolution grid (18.87M) improves performance under stricter evaluation thresholds. With our
chosen grid size of Q = 2.36M, the model achieves strong performance sufficiently, particularly for
low-threshold metrics like Acc@3. Table A1 provides additional comparisons to baseline methods.

Therefore, we carefully claim that our learning method focuses on continuous rotations. Our model
directly learn the Wigner-D coefficients, which are derived from 3D rotations (Euler angles), without
any discretization during the training phase. During inference the use of the SO(3) HEALPix grid
serves two purposes: 1) To convert SO(3) rotations from the frequency domain to the spatial domain,
and 2) To address pose ambiguity by providing multiple solutions. As a result, we obtain a distribution
with very sharp modality. By taking the argmax of this distribution, we achieve sufficient precision in
3D orientation estimation, specifically around 1.5◦.

Maintaining continuity in rotations allows our method to deliver more accurate and precise pose
predictions, giving us a clear advantage over the methods that experience precision loss from
discretization during training. As a result, we achieve consistently high accuracy across different
levels of discretization.

B.4 Discretised distribution on SO(3)

Table A6 shows the evaluation results using gradient ascent on the predicted SO(3) pose distribution
in ModelNet10-SO(3), to fully exploit the distribution prediction in Sec. 4.3 during inference time.
While gradient ascent does provide some performance improvement, the increase in inference time
outweighs these gains, so argmax is our preferred method for simplicity and fast evaluation.

B.5 Transformer instead of convolution

Table A7 presents the results when transformers are used as the backbone network instead of the
convolutional feature extractor, trained on ModelNet10-SO(3) with 20-shot learning. We trained the
model using a Vision Transformer (ViT) backbone pre-trained by the geometric task of cross-view
masked image modeling [62]. Although the ViT is heavier and requires longer training time (1.4x),
its performance actually declines. This suggests that convolutional image feature extractor may still
be more effective for this 3D orientation estimation task.
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B.6 Searching Frequency Level L

Table A8 presents the impact of varying the maximum frequency level L by truncation for efficient
SO(3) group convolutions on pose prediction accuracy and median error. The results show that
as L increases from 1 to 5, there is a consistent improvement in accuracy metrics. The optimal
performance is observed at L = 5.

L Acc@15◦ Acc@30◦ Rot Err.

1 0.3637 0.5598 38.76°
2 0.5850 0.6839 29.00°
3 0.6302 0.6972 26.34°
4 0.6670 0.6998 23.63°
5 0.6816 0.7014 22.23°
6 0.6807 0.6956 22.27°
7 0.6731 0.6870 21.69°
8 0.6724 0.6848 21.46°
9 0.6761 0.6884 25.34°
10 0.6701 0.6817 21.89°
11 0.6625 0.6736 21.51°
12 0.5815 0.5956 55.23°
13 0.5390 0.5586 55.53°
14 0.5228 0.5427 58.38°

Table A8: Results of various num-
ber of maximum frequency L in
ModelNet10-SO(3) 20-shot training
views.

Beyond this point, additional frequency levels do not con-
tribute to improved accuracy and can even degrade per-
formance. When L > 5, the accuracy does not improve
significantly and starts to fluctuate, with rotation error
remaining relatively low up to L = 10. However, at
L = 11, accuracy starts to decline more noticeably. For
L ≥ 12, there is a sharp decline in performance, with
Acc@15° dropping to 0.5815 and continuing to decrease,
Acc@30° following a similar trend, and rotation error
increasing significantly to over 55°. We infer that high fre-
quencies do not improve performance despite the increase
in learnable parameters because they lead to overfitting
to high-frequency noise. This overfitting occurs when the
high-frequency model captures irrelevant noise and pat-
terns in the training data, reducing its generalizability to
new, unseen data.

In conclusion, including higher frequencies (L > 6) ap-
pears to introduce more noise or overfitting, leading to
decreased accuracy and increased rotation error. However,
we choose a maximum frequency level L = 6 for a fair
comparison to [35], and to balance efficiency and accuracy.

B.7 Justification of the Spherical Mapper

ModelNet10-SO(3)
projection mode Acc@15° Acc@30° Rot Err.
spherical mapper 0.7590 0.7800 15.11°
MLP mapper 0.7396 0.7457 14.98°

PASCAL3D+
Spherical mapper 0.7535 0.8918 8.64°
MLP mapper 0.7283 0.8745 9.11°

ModelNet10-SO(3) 20-Shots
Spherical mapper 0.6807 0.6956 22.27°
MLP mapper 0.6446 0.6567 44.52°

Table A9: Validating the design choice of the
spherical mapper. The ‘MLP mapper’ denotes
the Fourier projection, which directly maps im-
age features to harmonics using an MLP, and the
‘spherical mapper’ denotes our choice of ortho-
graphic projection [35].

The spherical mapper in Sec. 4.1 maintains the
geometric structure of the image when project-
ing onto the S2 sphere, as detailed in [35]. This
method involves lifting the 2D image onto the
sphere and converting spherical points using
spherical harmonics. Table A9 shows that the
spherical mapper outperforms simple Fourier
transforms on 2D feature maps.

Using depth information from methods like
DepthAnythingv2 for 3D lifting is a good idea
and can enhance geometric accuracy. Addition-
ally, centroid ray regression has been explored
in research such as [72]. However, incorporating
external depth modules increases computational
costs and broadens our research scope, so we
consider this for future work.

B.8 OOD Evaluation

Evaluating out-of-distribution (OOD) performance is generally not the primary focus in the context
of this 3D orientation estimation task. However, we have conducted OOD generalization experiments
using our proposed method by training the model on different datasets, between ModelNet10 and
PASCAL3D+. The results are presented in Table A10. As the results indicate, the model does not
perform well when evaluated on an out-of-distribution dataset. Nevertheless, we recognize this as an
important area for future research.
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Training Dataset Evaluation Dataset Acc@15 Acc@30 Rot. Err.
ModelNet-SO(3) ModelNet-SO(3) 0.7590 0.7668 15.08°
ModelNet-SO(3) PASCAL3D+ 0.0004 0.0019 112.98°
PASCAL3D+ ModelNet-SO(3) 0.0015 0.0086 130.44°
PASCAL3D+ PASCAL3D+ 0.7495 0.8965 8.92°

Table A10: Cross-dataset evaluation for validating out-of-distribution generalization on
ModelNet10-SO(3) and PASCAL3D+ datasets.

Klee et al. [35] Yin et al. [71] Liu et al. [41] ours

Time (sec. / 1 frame) 0.0286 0.0171 3.9960 0.0109
GPU memory (GB) 1.156 0.912 1.130 5.172

Table A11: Comparison of computational cost. We compare the inference time of one image and
GPU memory consumption on ModelNet10-SO(3) test split. To measure the inference time, we
average the results of total 18,160 samples of ModelNet10-SO(3) test split.

B.9 Computational Cost Analysis

Table A11 presents a detailed comparison of computational cost, focusing on both inference time
and GPU memory consumption. The comparison includes the recent baselines; Image2Sphere
(2023) [35], RotationLaplace (2023) [71], and RotationNormFlow (2023) [41]. The evaluation is
based on the ModelNet10-SO(3) test split, averaging the results from a total of 18,160 samples.
We use a machine equipped with an Intel i7-8700 CPU and an NVIDIA GeForce RTX 3090 GPU,
utilizing a batch size of 1. The key metrics presented in the table are the inference time per frame (in
seconds) and the GPU memory consumption (in gigabytes).

Our model demonstrates the best inference time of 0.0109 seconds per frame, significantly outper-
forming other models in terms of speed. This efficient inference time translates to approximately
92.5 frames per second (FPS) for an image size of 224x224, making our model suitable for real-time
applications. However, this performance comes at the cost of higher GPU memory consumption,
which is recorded at 5.172 GB. Since our model performs all operations on the GPU, we achieve a
temporal advantage in inference time, despite having many overlapping modules with Klee et al. [35],
whose model performs some computations on the CPU. In summary, our model achieves the best
inference time, facilitating real-time application potential, by trading off increased GPU memory
consumption.

B.10 Experiment of Statistical Significance

Table A12 presents the results of a 5-trial experiment to evaluate the training sensitivity of our models,
with ResNet-50 and ResNet-101, on the ModelNet10-SO(3) 20-shot training views. The table lists
individual trial results, along with the average (µ) and standard deviation (σ) for each metric. The
standard deviation values (σ) for both backbones are relatively small across all metrics, suggesting
that the models yield consistent results over multiple trials. For instance, the standard deviation of
Acc@3° for ResNet-50 is 0.0047, and for ResNet-101, it is 0.0052, which are both quite low. This
low variance indicates that the training results are stable and reproducible. These findings highlight
the robustness and reliability of the training process and the effectiveness of ResNet-101 for the given
task.

C Training Details

We utilize the e3nn library [22] for S2 and SO(3) convolutions for efficient handling of both Fourier
and inverse Fourier transforms, healpy [24, 77] for HEALPix grid generation, and PyTorch [50]
for model implementation. We use a machine with an Intel i7-8700 CPU and an NVIDIA GeForce
RTX 3090 GPU. With a batch size of 64, our network is trained for 50 epochs on ModelNet10-SO(3)
taking 25 hours, and for 80 epochs on PASCAL3D+ taking 28 hours. We start with an initial learning
rate of 0.1, which decays by a factor of 0.1 every 30 epochs. We use the SGD optimizer with Nesterov
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Trial Acc@3° Acc@5° Acc@10° Acc@15° Acc@30° Med Err.

R
es

N
et

-5
0

1 0.2299 0.4632 0.6490 0.6807 0.6956 22.27°
2 0.2336 0.4687 0.6503 0.6793 0.6944 21.97°
3 0.2292 0.4691 0.6522 0.6827 0.6963 21.00°
4 0.2252 0.4593 0.6465 0.6802 0.6949 28.06°
5 0.2375 0.4699 0.6535 0.6847 0.6978 18.93°

µ 0.2311 0.4660 0.6503 0.6815 0.6958 22.49°
σ 0.0047 0.0046 0.0027 0.0022 0.0013 3.92

R
es

N
et

-1
01

1 0.3108 0.5418 0.6877 0.7099 0.7214 20.91°
2 0.3115 0.5414 0.6848 0.7076 0.7184 20.77°
3 0.3054 0.5413 0.6843 0.7067 0.7188 21.61°
4 0.3158 0.5451 0.6875 0.7101 0.7216 20.87°
5 0.3027 0.5366 0.6842 0.7088 0.7204 16.83°

µ 0.3092 0.5412 0.6857 0.7086 0.7201 20.20°
σ 0.0052 0.0030 0.0018 0.0015 0.0015 1.91

Table A12: Experiment of 5-trials training of our model for statistical significance on
ModelNet10-SO(3) 20-shot training views. µ denotes the average, and σ denotes the standard
deviation.

momentum set at 0.9. Unlike baselines that encode object class information via an embedding layer
during training [35] and both training and testing [41, 71], our model does not use class embeddings,
maintaining a class-agnostic framework during both training and testing. Additionally, we train a
single model for all categories in each dataset, unlike [7], which trains separate models for each class.

D Baselines of Single-View Pose Estimation

We compare our method against competitive single-view SO(3) pose estimation baselines including
regression methods and distribution learning methods. Zhou et al. [76] predict 6D representations
using Gram-Schmidt orthonormalization processes for 3D rotations, analyzing the discontinuities in
rotation representations. Brégier [3] extends deep 3D rotation regression with a differentiable Pro-
crustes orthonormalization, which maps arbitrary inputs from Euclidean space onto a non-Euclidean
manifold. Tulsiani and Malik [58] train a CNN using logistic loss to predict Euler angles. Mahendran
et al. [42] predict three Euler angles using a classification-regression loss to estimate fine-pose
while modeling multi-modal pose distributions. Liao et al. [39] also predict Euler angles using a
classification-regression loss by introducing a spherical exponential mapping on n-spheres at the
regression output.

On the other hand, the other baselines are generating probability distributions for estimating SO(3)
pose. Prokudin et al. [54] represents rotation uncertainty with a mixture of von Mises distributions
over each Euler angle, while Mohlin et al. [48] predicts the parameters for a matrix Fisher distribution.
Deng et al. [13] predict multi-modal Bingham distributions. Murphy et al. [49] trains an implicit
model to generate a non-parametric distribution over 3D rotations. Yin et al. [70, 71] predict the
parameter of SO(3) parametric distribution using matrix-Fisher distribution and rotation Laplace
distribution, respectively. Klee et al. [35] predicts non-parametric distribution with equivariant feature
prediction by orthographic projection, and Howell et al. [28] extends to construct neural architectures
to satisfy SO(3) equivariance using induced and restricted representations. Liu et al. [41] use discrete
normalizing flows for rotations to learn various kinds of distributions on SO(3). Results are from the
original papers when available.

E Qualitative Results

Figures A2 and A3 show qualitative results randomly selected from ModelNet10-SO(3) and PAS-
CAL3D+, respectively. For visualization, we display distributions over SO(3) as proposed in
I-PDF [49]. To illustrate the SO(3) distribution, we use the Hopf fibration to visualize the entire
space of 3D rotations [68]. This approach maps each point on a great circle in SO(3) to a point on the
discretized 2-sphere and uses a color wheel to indicate the location on the great circle. Essentially,
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each point on the 2-sphere represents the direction of a canonical z-axis, and the color represents the
tilt angle around that axis. To depict probability score, we adjust the size of the points on the plot.
Lastly, we present the 2-sphere’s surface using the Mollweide projection.

Comparison of pose visualization. Figures A4 and A5 show a comparison of pose visualizations on
ModelNet10-SO(3) and PASCAL3D+, respectively. This visualization method is the same to those
used in Figures A2 and A3. We compare our model to the I2S [35] baseline. The numbers next to
"Err" above the input images represent the error in degrees between the model’s predicted pose and
the ground truth (GT) pose. These results demonstrate that our model provides more accurate and
precise pose estimations, even in cases where the I2S baseline fails. Additionally, on the PASCAL3D+
benchmark, which includes objects captured in real-world scenarios, our model consistently shows
correct pose estimations, particularly in challenging scenarios where the I2S baseline struggles.

F Limitation

Our proposed method significantly advances 3D rotation estimation accuracy; however, a notable
challenge in pose estimation is the issue of pose ambiguity, particularly for objects with symmetrical
features or those viewed from certain angles, e.g., bathtub category in ModelNet10-SO(3). Despite
high accuracy, our method can suffer from significant errors due to the loss of spatial information
when projecting 3D data onto spherical harmonics. Future work could integrate additional contextual
or spatial information to mitigate these ambiguities, improve reliability, and enhance the model’s
robustness in diverse scenarios. Additionally, while the mathematical rigor of using spherical
harmonics and Wigner-D coefficients supports the model’s success and improves interpretability
through equivariant networks, further exploration is needed to make the model more interpretable.
Finally, the computational cost associated with Wigner-D coefficients and SO(3)-equivariant networks
should be improved to enhance practicality for real-time applications and deployment on devices
with limited processing power.

G Broader Impacts

The method proposed in this paper has several potential positive societal impacts. First, it can enhance
robotics and automation. Accurate 3D pose estimation is crucial for these fields, and improved
accuracy can lead to more efficient and safer robotic systems in manufacturing, healthcare, and
service industries. Second, it can significantly advance augmented reality (AR) applications by
providing more precise alignment of virtual objects with the real world, which can be beneficial
in education, gaming, and industrial design. Third, the method can improve autonomous vehicles,
which rely on precise 3D pose estimation to understand their environment, contributing to safer and
more reliable autonomous driving systems. Finally, in medical imaging, accurate pose estimation
can improve the analysis and interpretation of complex 3D data, aiding in diagnosis and treatment
planning.

However, the paper also suggests potential negative societal impacts. Improved pose estimation
techniques could be used in surveillance systems, leading to privacy concerns if deployed without
proper regulations and oversight. Enhanced 3D pose estimation could be exploited to create more
realistic deepfakes, contributing to the spread of disinformation and manipulation. Deployment of
these technologies could inadvertently reinforce existing biases if the training data is not representative
of diverse populations, leading to unfair treatment of specific groups in applications like security
and hiring. Additionally, the misuse of accurate pose estimation in security-sensitive areas, such as
military applications or unauthorized monitoring, could pose significant risks.

To address these potential negative impacts, several mitigation strategies could be implemented.
Controlled release of models and methods to ensure ethical and responsible use is one approach.
Regular audits to ensure the training data and algorithms do not propagate biases are also crucial.
Implementing robust privacy protection measures can safeguard individual privacy in applications
involving surveillance. Developing complementary technologies to detect and mitigate the effects of
deepfakes and other forms of disinformation is another necessary step.
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Err: 1.36 Err: 179.70

Err: 8.17 Err: 5.92

Err: 3.22 Err: 1.94

Err: 2.90 Err: 3.08

Err: 3.70 Err: 1.55

Err: 1.17 Err: 4.67

Figure A2: Randomly selected qualitative results of pose estimation on ModelNet10-SO(3) using
our SO(3) equivariant harmonics pose estimator. The error value, indicating the difference between
the estimated and ground truth orientations in degrees, is labeled above each plot. Most images with
clearly posed objects in the input image show an error of 10◦or less, demonstrating high accuracy of
the pose estimation algorithm. The example in the first row, second column, shows a significant error
of 179.70◦. This high error is attributed to the ambiguity in pose information, as the projection of the
3D object causes a loss of spatial information, resulting in larger discrepancies between the ground
truth and estimated poses. Other examples with low errors, such as the top-left corner (Err: 1.36◦)
and second row, second column (Err: 1.94◦), indicate successful pose estimations.
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Err: 25.42 Err: 2.54

Err: 20.46 Err: 1.80

Err: 4.97 Err: 6.42

Err: 11.76 Err: 6.01

Err: 38.50 Err: 28.82

Err: 6.52 Err: 6.48

Figure A3: Randomly selected qualitative results on PASCAL3D+ using our SO(3) equivariant pose
harmonics estimator. The error value, indicating the difference between the estimated and ground
truth orientations in degrees, is labeled above each plot. Most images with clearly posed objects in
the input image show an error of 10◦or less, demonstrating high accuracy of the pose estimation
algorithm. For example, the airplane in the first row, second column, shows a low error of 2.54◦,
indicating precise pose estimation. However, some objects, like the monitor (Err: 38.50◦), airplane
(Err: 28.82◦) in the fifth row, exhibit larger errors, possibly due to pose ambiguity in the input image
by symmetry. The variability in errors across different objects highlights the our model’s performance
variability depending on the object’s shape and the clarity of pose information in the input image.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We give an overview and scope of the SO(3) equivariant pose harmonics
predictor in section 1. At the introduction section, we summarize our contribution, the
prediction of wigner-D coefficients via 3D rotation reparametrization to the frequency
domain, is a first attempt.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes we discuss our limitation in section F. We also discuss our experiments on
training sensitivity (section B.10) and limitations in the frequency domain (section 6).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, we discuss the necessary prior knowledge in the preliminary part of the
text (section 3) and develop it through formulas in the method part (section 4). More detailed
assumptions and proofs are discussed in sections ??, A of the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we have described the implementation details in section 5.1, including the
detailed training method and specific configuration to reproduce the experimental results.
We have also described the benchmark settings and dataset split. (section 5.2)

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we provide sources and links to the publicly available data, the
ModelNet10-SO(3) dataset and the PASCAL3D+ dataset in section B. We will also make
our code publicly available after acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we have described the implementation details such as data splits, hyper-
parameters, type of optimizer in section 5.1. We also reported experiments to validate our
design choice in section 5.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Yes, we describe our experiments for statistical significance in section B.10.
Multiple experiments show that our experiments are not wrong or accidental.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have written information about compute resources such as CPU and GPU
specification, training time for each dataset in section. 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we have reviewed the Code of Ethics on the NeurIPS homepage and
confirm that we are in compliance with the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, we discuss the possible positive and negative impacts of this study in
section G: broader impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do use the ImageNet pretrained model, but we do not discuss it in the paper
as we do not believe it has a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we are attributing any code, libraries, or illustrations in footnotes, or in
the text at the section 5.1, and following the licenses.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We are not introducing any new assets in this paper, but we will be releasing
the code publicly to aid in reproduction after acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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