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Abstract

Localized receptive fields—neurons that are selective for certain contiguous spa-
tiotemporal features of their input—populate early sensory regions of the mam-
malian brain. Unsupervised learning algorithms that optimize explicit sparsity or
independence criteria replicate features of these localized receptive fields, but fail
to explain directly how localization arises through learning without efficient coding,
as occurs in early layers of deep neural networks and might occur in early sensory
regions of biological systems. We consider an alternative model in which localized
receptive fields emerge without explicit top-down efficiency constraints—a feed-
forward neural network trained on a data model inspired by the structure of natural
images. Previous work identified the importance of non-Gaussian statistics to
localization in this setting but left open questions about the mechanisms driving dy-
namical emergence. We address these questions by deriving the effective learning
dynamics for a single nonlinear neuron, making precise how higher-order statistical
properties of the input data drive emergent localization, and we demonstrate that
the predictions of these effective dynamics extend to the many-neuron setting.
Our analysis provides an alternative explanation for the ubiquity of localization as
resulting from the nonlinear dynamics of learning in neural circuits.1

1 Introduction

A striking feature of peripheral responses in the animal nervous system is localization—that is, the
linear receptive fields of simple-cell neurons often respond to contiguous regions much smaller than
their full input domain. In vision, retinal ganglion cells approximate localized center-surround filters
that tile the input [Dac+00; Doi+12; KK78], and simple cells downstream in primary visual cortex
have localized filters that are selective for spatial frequency and orientation [HW59; HW68; RT95;
NS08; WMG11; RSH02; Rin02]. In primary somatosensory cortex, neurons respond to stimulation
of restricted regions of skin [Cro+11] and in primary auditory cortex, spatiotemporal receptive fields
are typically localized in both time and frequency domains [DWZ03; HDZ08]; see Fig. 1 (left).

By contrast, artificial learning systems do not always learn localized filters. Principal component
analysis tends to fit weights that span the entire input signal, as do unregularized autoencoder neural
network architectures and restricted Boltzmann machines [Sax+11]. This difference has prompted
the search for artificial learning models that can learn localized receptive fields from naturalistic
stimuli, the most notable of which are sparse coding [OF96; OF97] and independent component
analysis [ICA; BS97; vHvdS98]. Sparse coding, ICA, and related compression methods that produce
localized receptive fields from naturalistic data share a top-down approach—they find an efficient
representation of the input signal by optimizing an explicit sparsity criterion, or an independence
criterion that necessitates sparsity in a critically parameterized regime [Fie99; Sax+11].

1Code to replicate experiments and figures at https://github.com/leonlufkin/localization.
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Figure 1: (Left) Localization in spatial receptive fields (RFs) measured from non-human primate (NHP) primary
visual cortex [Rin02, Fig. 2] and in spatiotemporal RFs measured from NHP [dBM98, Fig. 2] and ferret [Sin+18,
Fig. 2] primary auditory cortex. (Center) Half-slice of the localized first-layer kernels of AlexNet trained
for ImageNet classification [KSH12]. (Right) Localized receptive fields learned from the task of Section 2.3
in 2-D using ICA [HO00] and the soft committee machine (SCM; M1 with fixed second-layer weights) of
Section 2.1. Localization—spatial and/or temporal selectivity—appears across settings, as measured by response
maximization in biological systems (left) and by inspecting linear filters in artificial systems (center, right).

Though sparsity is appealing as a potentially unifying explanation for localization, localization also
emerges naturally in networks trained to perform classification tasks without any explicit sparsity
regularization [KSH12; ZF13; Yos+15; Sen+18]; see Fig. 1 (center) for an example. Ingrosso
and Goldt [IG22] distilled such examples of emergent localization by demonstrating that localized
receptive fields emerge in simple feedforward neural networks trained on a data model with properties
meant to approximate natural visual input, in particular, locality structure (statistical independence
of non-collocated dimensions) and non-Gaussianity (higher-order cumulants are non-null). In
simulations, Ingrosso and Goldt [IG22] tie the dynamical emergence of localization to increased
tuning to higher-order statistics of the input, and demonstrate that even a single neuron is sufficient to
learn a localized receptive field in this setting.

In this work, we build on the demonstration of Ingrosso and Goldt [IG22] with the aim of describing
the mechanisms behind the emergence of a localized receptive field in this minimal setting. The
higher-order input statistics that drive localization are challenging to analyze with existing tools that
exploit implied Gaussianity [Gol+20]. By separating two stages of learning, we are able to derive
equations for the effective early-time learning dynamics of the single neuron model that learns a
localized receptive field from idealized naturalistic data. Our analytical model identifies a concise
description of the higher-order statistics that drive emergence, and we validate both positive and
negative predictions of this analytical model via simulations with many neurons; see Fig. 1 (right).
These findings suggest an alternative path to account for the ubiquity of localization in early neural
responses as resulting from the interaction of the nonlinear dynamics of learning in neural circuits and
naturalistic data with higher-order statitistical structure, rather than an explicit efficiency criterion.

2 Modeling approach

We extend the setting of Ingrosso and Goldt [IG22], a minimal example of a neural network that
learns localized receptive fields from idealized naturalistic data. We analyze the dynamics of learning
in this setting in Section 3 and validate our analytical model with simulations in Section 4.

2.1 Neural network architecture and learning algorithm

We consider a two-layer feedforward neural network with nonlinear activation and scalar output.
While simple, this architecture is highly expressive, capable of approximating arbitrary integrable
univariate functions with appropriate scaling [Bar93; Pin99], and exhibits rich feature learning
dynamics that underlie the performance of models at scale [Woo+20], making this architecture the
ongoing subject of theoretical neural network analyses [MMN18; Gol+19; Vei+22]. We denote a
two-layer network with N -dimensional input, M hidden units, and one-dimensional scalar output as
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Model 1 (many-neuron architecture).

(M1) ŷ(x) = b(2) +
∑M

m=1 w
(2)
m σ

(
b(1)m + ⟨w(1)

m ,x⟩
)

where σ : R → R is a pointwise nonlinearity such as the rectified linear unit (ReLU) or sigmoid
function, w(1)

m ∈ RN and w(2)
m ∈ R are learnable weights, b(1)m , b(2) ∈ R are learnable bias terms, and

⟨·, ·⟩ denotes the standard Euclidean inner (dot) product on RN . When the second-layer parameters are
fixed, this model is known as a soft-committee machine [SCM; SS95], which [IG22] notes learns less
noisy receptive fields but exhibits similar localization behavior. The many-neuron architecture in M1
is the focus of our simulations (Section 4), but the dynamics of this model are too complex to analyze
directly, even for the idealized naturalistic data model considered here. In order to derive analytical
results (Section 3), we consider the simplest neural network exhibiting the desired localization
phenomenon, a single hidden neuron without bias and with rectified linear unit activation, written as

Model 2 (single-neuron architecture).

(M2) ŷ(x) = ReLU (⟨w,x⟩)

where ReLU(x) = max(x, 0), applied pointwise to vectorial input. As Ingrosso and Goldt [IG22]
demonstrate, the localized receptive fields learned by the many- and single-neuron models defined
in M1 and M2 are qualitatively similar up to spatial translation, which permits us to generalize
insights from analyzing the learning dynamics of the single-neuron M2 to the many-neuron M1. For
simulations, we initialize the weights and biases as independent draws from an isotropic Gaussian
distribution with scaled variance, and train with batch gradient descent with a fixed learning rate on
the mean-squared error (MSE) evaluated on input-output pairs from the task; see Section 2.3 for task
sampling procedures.

2.2 Stimulus properties

The data model of Ingrosso and Goldt [IG22] can be shown to satisfy three conditions that enable the
analysis we give in Section 3. We consider several other data models that share the below properties
but differ in generative mechanism in order to probe the effect of these properties on localization.
In particular, we consider data X sampled from distributions p on RN satisfying the following:

Stimulus properties 1–3 (idealization of natural images).

(S1) (Positional) weak dependence: for any fixed ρ ∈ (0, 1), as N → ∞,

α(N) ≜ sup
A⊆R,B⊆R(1−ρ)N

|P(X1 ∈ A,X>ρN ∈ B)−P(X1 ∈ A)P(X>ρN ∈ B)| → 0 ,

(S2) Translation invariance: p(X = x) = p(X = Sx) for all x ∈ RN , where S is the
circular shift operator, and

(S3) Sign symmetry: p(X = x) = p(X = −x) for all x ∈ RN .

Properties S1 and S2 are defining characteristics of natural image data [HHH09]. Property S3 can
also be seen to hold for natural images after centering and is convenient analytically because it implies
that E[X] = 0. Property S1 assumes that p is implicitly parameterized by N in order to state that the
statistical dependence between entries of X vanishes as their separation increases.2

We denote the covariance of X by Σ ≜ Cov[X], the square of principal-diagonal entries (the variance
of each entry of X) by σ2, and the i-th row by σi. Weak dependence (S1) implies that entries far from
the principal diagonal of Σ will be 0, while translation-invariance (S2) implies that Σ is circulant
(i.e., entries along each diagonal are equal) and thus identifiable by a single row; see Fig. 2 (center).

2The weak dependence condition in S1 is based on strong α-mixing, a notion first introduced by [Ros56] to
obtain a generalization of the central limit theorem, which we employ later on. We choose α-mixing because it
is easy to interpret and verify, but alternative definitions of weak dependence [e.g., Bar+08] can be substituted.
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Figure 2: From left: Long- and short-lengthscale samples x, covariances Σ for one lengthscale, and marginals
p(Xi) for the data models described in Section 2.3: Ising (with J = 1.2, 0.3 for left, right samples), the
nonlinear Gaussian process [NLGP; IG22], and the controllable kurtosis model, Kur (with ξ = 5, 1 for left, right
samples). Each model generates samples centered about zero and with covariances that can be constrained to
be similar, but with differing higher-order statistics, as can be seen from the dimension-wise marginals.

2.3 Lengthscale discrimination task

Ingrosso and Goldt [IG22] develop a minimal task for which localization emerges in a feedforward
neural network: binary discrimination between inputs from two distributions that differ in the
lengthscale of the correlations between their entries. This lengthscale discrimination task can be seen
as a pretext task for self-supervised learning [KZB19; Che+20] of representations [cf. unsupervised:
OF96; BS97]. More precisely, we generate data (X, Y ) for supervised training according to

X | Y = y ∼ p(X; Σy) , (1)

where p is to be defined, Σy are distinct covariance matrices for each y, and we sample Y uniformly
among a set of increasing lengthscale correlation classes y ∈ {0, 1, . . .}, which correspond to the
strength of correlation between distant positions. For instance, in the case of two classes (y = 0, 1),
we take Σ0 to be closer to σ2IN than Σ1, where IN is the N ×N identity matrix and σ is a fixed
value. This construction isolates, via distinct covariance matrices per class, the second-order statistics,
which we will see below enter into the learning dynamics separately from other properties of p(X),
including, most critically, the implied marginal distributions, p(Xi).

Ising. The first distribution we consider is the one-dimensional Ising model. It is of interest as a
distribution that satisfies S1 to S3 with marginals p(Xi) with extreme support on {±1}, making it
the distribution that promotes localization most strongly, as we will see in Section 3. In the absence
of an external field, the Ising distribution is

pIsing(X = x) = pIsing(X1 = x1, . . . , XN = xN ) = e−
∑N

i=1 Jxixi+1/Z, (2)

where J is a chosen pairwise interaction strength, Z is the normalizing constant, and we enforce a
periodic boundary constraint via xN+1 ≡ x1. As J increases, the lengthscale of the correlations in X
also increases. For simulations, we sample from pIsing using a Gibbs sampler [GG84]. Discrimination
tasks in the simulations in Section 4 use J1 = 0.7 (for y = 1) and J0 = 0.3 (for y = 0).

NLGP(g). We also consider the data model used in Ingrosso and Goldt [IG22], the nonlinear
Gaussian process (NLGP), which enables one to interpolate between distributions that do and do not
yield localization via a single parameter, g. A sample X | Y = y from the NLGP is constructed by
first sampling a Gaussian Z | Y = y ∼ N (0, Σ̃y) and then transforming it via

Xi ≜ erf(gZi)/Z(g) 1 ≤ i ≤ N, (3)

where erf is the Gauss error function, Z is a normalization constant to ensure that the variances of Xi

and Zi are the same, and Σ̃y is a covariance matrix for Z, where we use (Σ̃y)ij = exp(−(i− j)2/ξ2)
for a lengthscale parameter ξ [IG22]. If g ≈ 0 (where localization is not observed), gZi will tend to
lie in the linear regime of erf , so Zi will be untransformed, i.e., X is Gaussian. However, as g → ∞
(where localization is observed), gZi will tend to saturate erf , so Xi will have support on {±1}.
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Kur(k). The final family we consider is chosen to give us flexibility over the kurtosis κ of the
marginals p(Xi). In the Ising model, the excess kurtosis (κ− 3) of the marginals is fixed at −2, while
in NLGP(g), it varies from −2 to 0. This family allows us to vary the excess kurtosis from negative
through positive values. We sample X | Y = y from this family via inverse transform sampling to
vary the marginals while enforcing dependence via Gaussian copulas. More concretely, we sample
Z | Y = y ∼ N (0, Σ̃y) and then transform it via

Xi ≜ f−1(Φ(Zi/σ̃))/Z, 1 ≤ i ≤ N, (4)

where σ̃ is the standard deviation of Zi, Φ is the standard Gaussian cumulative distribution function
(CDF), f is the CDF of the desired marginal distribution for Xi, and Z is a normalization constant,
which we compute numerically. We define Σ̃y as for NLGP. We choose f to be the generalized
algebraic sigmoid function (see Appendix A.2) for k > 0 to make use of its tractable inverse,
simplifying the procedure in Eq. (4). We denote the corresponding distribution by Kur(k). Though
we are able to continuously vary excess kurtosis, we lack an explicit form; however, numerical
computation shows that for k ⪅ 5.8, excess kurtosis is positive, while for k ⪆ 5.9, it is negative.

3 Theoretical results

We derive an analytical model for the localization dynamics of the single-neuron architecture in M2.
This result establishes necessary and sufficient conditions for localization under Properties S1 to S3
for the minimal case of a binary response, i.e., y = 0, 1. The conditions for localization in the single-
neuron architecture in M2 are demonstrated in Section 4 to also hold empirically for the many-neuron
architecture in M1. Further, we use this model to derive a negative prediction about localization, that
the architectures in M1 and M2 fail to learn a localized receptive field on elliptical distributions despite
their non-Gaussian—in particular, significantly positive kurtosis—statistics [cf. positive kurtosis as
an objective or diagnostic for localization, HO00; IG22].

3.1 An analytical model for the dynamics of localization in a single neuron

Previous approaches to obtain analytical dynamics in the architectures in M1 and M2 have studied the
gradient flow under the assumption that the preactivation ⟨w,X⟩ is approximately Gaussian [Gol+20;
Ger+20; Gol+22], but this assumption fails to capture the propagation of higher-order statistics
through a neural network that promotes localization [IG22]. Happily, the idealized visual input setting
set out in S1 to S3 permits us some simplification. In particular, the translation-invariance of the data
X under S2 and the architecture of M2 allow us to work with the marginal distributions of each input
dimension, Xi rather than the full joint distribution of X.

We now give the analytical simplifications that allow us to derive an analytical model for the
localization dynamics of the single neuron architecture in M2, namely two assumptions on X | Xi

for all i ∈ {1, . . . , N} as a well as a mild condition on the weights that is satisfied at initialization.
These are, where σy

i to denotes the i-th row of Σy:

Analytical simplifications 1–3 (early-time, limiting dynamics).

(A1) E[X | Xi = xi, Y = y] = xiσ
y
i , i.e., the conditional mean scales linearly with xi.

(A2) Cov[X | Xi = xi, Y = y] = Σy − σy
i σ

y⊤
i , i.e., the conditional covariance is smaller

near i, but independent of the exact value of xi.
(A3) Lindeberg’s condition holds for the sequence w1X1, . . . , wNXN | Xi = xi as N → ∞

for all xi.

Our motivation for Assumptions A1 to A3 is that they replicate the kurtosis of the marginal distribu-
tions Xi (discussed further below) of two important and distinct limiting cases where localization
does and does not appear, respectively: when X has support on the vertices of the hypercube {±1}N
(satisfied by Ising for any J), and when X is Gaussian (satisfied by NLGP with g ≈ 0).

The gradient flow in Lemma 3.1 also relies on Assumption A3 that Lindeberg’s condition holds for the
sequence wiXi, which ensures that no single term wiXi in the sequence can dominate. If this holds,
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then we can conclude that ⟨w,X⟩ | Xi is approximately Gaussian. As we discuss in Appendix C.2,
this is almost always satisfied for a Gaussian initialization of w, and for slight deviations therefrom,
and is satisfied by the settings of Ingrosso and Goldt [IG22]. Using this fact, we obtain an explicit
form for the gradient flow early in training, stated in Lemma 3.1.
Lemma 3.1. Under Assumptions A1 and A2, the gradient flow for the single ReLU neuron in M2
early in training with y = 0, 1 trained using MSE loss is

2

τ

dw

dt
= φ

(
Σ1w√

⟨Σ1w,w⟩

)
− (Σ0 +Σ1)w + oN (1), (5)

where oN (1) vanishes as N → ∞, and where φ : (−1, 1) → R is defined as

φ(a) = EX1|Y=1

[
X1 erf

(
X1 alg

−1(a)/
√
2
)]

(6)

and alg−1(x) = x/
√

1− x2, the inverse of the algebraic sigmoid function alg(x) = x/
√

1 + x2.

Lemma 3.1 reduces the study of higher-order statistics to the marginal distributions, X1, where, by
translation invariance, all marginals have the same distribution, so we refer to X1 without loss of
generality. While Lemma 3.1 technically only holds early in training and breaks down if w becomes
localized due to violation of A3, the gradient flow in Eq. (5) holds sufficiently long to detect the
emergence of localization in the weights w. In particular, numerically integrating Eq. (5) yields
localized weights w as t → ∞. Moreover, the location of the peak of final weights from Eq. (5)
corresponds closely to the actual peak of the weight, when we observe localization; see Section 4.2
for empirical validation of this fact. The primary difference observed is that the localized bump
from Eq. (5) is less peaked than when computed exactly; see Fig. 3 for a comparison between
experimentally observed localized receptive fields and theoretical predictions.

3.2 Necessary and sufficient conditions for emergent localization

To establish an exact threshold at which localization emerges requires solving Eq. (5), which is
not possible exactly for general nonlinear differential equations.3 Nevertheless, the form of Eq. (5)
reveals that localization is driven solely by the first term. Indeed, the second term depends only on
the second-order statistics of the data, and so can be held fixed as X is varied from a distribution that
induces localization to one that does not. Secondly, one can see that the first term in Eq. (5) does not
change as w is scaled, in contrast to the second term. As such, the second term in Eq. (5) serves to
constrain the scale of w, distinct from localization, while the first is primarily concerned with the
shape of w, and thus localization. This further motivates the first term, and thus φ, which we will
refer to as the amplifier and which itself depends on properties of the data distribution p(X), as a
focus of study for understanding localization.

We present an analysis of φ in Appendix B.1 that reveals the role of the marginal distribution of the
data in driving localization. For each marginal, φ(a) ≈ (

√
2/π)a for a ≈ 0. For larger a, φ depends

more strongly on the data distribution and can be super-linear (sub-linear), i.e., greater (smaller)
than (

√
2/π)a. Super-linear φ encourage entries in w that are large in some neighborhood to grow

faster than those that are smaller, yielding localization. Linear and sub-linear φ are the opposite,
encouraging oscillatory or flat weights by suppressing neighborhoods in w. However, super- and
sub-linearity may not hold uniformly, as φ can be both over its domain (see Fig. 3, bottom row,
black line). As an approximation, we consider a third-order Taylor expansion (red lines in Fig. 3,
second column), which reveals that for the canonical setting of σ2 = 1, negative excess kurtosis of the
marginals yields super-linearity, while positive excess kurtosis yields sub-linearity; see Appendix B.1.
This leads us to the following claim, which is validated by our simulations in Section 4:

Claim 3.2. For sufficiently large N , if the data X ∈ RN satisfies conditions S1 to S3 and has
marginal distributions with sufficiently negative excess kurtosis, then Model M2 will learn localized
receptive fields. Conversely, if the excess kurtosis is sufficiently positive, it will not.

As a minimal positive example, the distribution with the most negative excess kurtosis is the symmetric
Bernoulli, with a value of −2. In our setting, this corresponds to a data vector X with support on

3We discuss a partial differential equation limit that faces similar intractabilities in Appendix B.3.
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Figure 3: From left and for the same Ising, NLGP, and Kur data models as in Fig. 2: the marginals p(Xi),
the amplifier φ defined in Theorem 3.1 and kurtosis κ, and the evolution of simulated receptive fields for the
single-neuron model (M2) trained on its data, and lastly the receptive field given by numerically integrating
Eq. (5) with φ expanded to a third-order Taylor approximation for the same data; training or evolution time is
indicated by line color (blue for early-time; red for late-time). See Section 4.1 for exposition.

the vertices of the hypercube, {±1}N . As mentioned above, it can be seen from the law of total
covariance combined with sign-symmetry that A1 and A2 hold exactly. Note that φ is the same
for all such distributions, which leads us to Claim 3.2 that any distribution satisfying conditions S1
to S3 whose marginals are maximally concentrated will induce a localized receptive field in M2.
Importantly, this claim includes the limiting case of Ingrosso and Goldt [IG22], g → ∞ in NLGP.
It also includes the Ising model as another example, corroborating an observation for restricted
Boltzmann machines [Har+20] that Ising data induces localization in a learning model. These claims
are validated for the single-neuron model in Fig. 3 and in Section 4 for the many-neuron model.

3.3 Case study: Elliptical distributions fail to produce localization

Above, we assume weak dependence (S1) as it enables a focus on how the marginals control
localization. As a first investigation into departures from this regime, we consider data X sampled
from an elliptical distribution, where weak dependence may not hold. We specialize the definition of
an elliptical distribution [Fra04] to our setting of multiple class labels and sign-symmetry:

Def 1. Samples X ∈ RN satisfy an elliptical distribution if we can write X | Y = y
(d)
= RyΛyUy

where Ry is a nonnegative random variable, Λy ∈ RN×D is such that ΛyΛ
⊤
y = Σy, and Uy is

independent of Ry and uniformly distributed on the D-dimensional sphere.

The class of elliptical distributions is broad, imposing only the constraint that the contours of the
density be ellipses; the multivariate Gaussian and Student-t distributions are examples. As such,
they can vary greatly in measures of non-Gaussianity, including kurtosis, while maintaining enough
structure for analytical convenience. Proposition 3.3 states that training on elliptical data prevents
localization in the single ReLU neuron model.

Proposition 3.3. Assume the data X are sign-symmetric (S3), translation-invariant (S2), and follow
an elliptical distribution such that the MSE on the task in Section 2.3 is always finite. If Σ0,Σ1 are
such that the ratio of their i-th eigenvalues, λi(Σ0)/λi(Σ1), assumes a particular value for at most
two distinct i, then the steady states of the weight of M2 are sinusoids, i.e., not localized.

The condition on the number i such that the ratio of the i-th eigenvalues are the same constrains the
number of Fourier components that can be non-zero in the steady state of w. While opaque, this
requirement seems to always hold in practice, as even slight increases in length-scale correlation can
dramatically change the spectrum of Σy .
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Figure 4: Evolution of receptive fields learned by the single-neuron model (M2), along with sinusoids fit to final
states (red dashes) when trained on data from three elliptical distributions: t40(ν = 3) (left), the surface of an
ellipse (middle), and a custom elliptical distribution that places its mass near the outside of an ellipse (right). In
all cases, the learned receptive field is oscillatory (a sinusoid), as predicted by Proposition 3.3. The ℓ2 distances
between the fitted oscillatory weights and empirical RFs, as a ratio of the ℓ2 norm of the empirical RFs, are (left)
9.77%, (center) 3.75%, and (right) 4.14%. See Section 4.3 for exposition.

The proposition is surprising because it reveals that the kurtosis of the preactivation is not an
appropriate metric for explaining localization. Consider the example of the N -dimensional Student-t
distribution with ν degrees of freedom, tN (ν). If X ∼ tN (ν), then ⟨w,X⟩ ∼ t1(ν). Note the
kurtosis of t1(ν) is non-zero, and can be very large or even infinite for small ν. This prediction is
validated in Section 4.3. The condition also reveals that not all symmetries in the data (here, elliptical
symmetry) induce structure in the trained model weights, if localization is to be seen as a sparsity
more structured than oscillatory weights [cf. God+23]; indeed, translational symmetry (S2) is more
relevant for localization than elliptical symmetry.

4 Experimental results

We describe experiments to validate the generalizability of the analytical results from Section 3. We
run all experiments on a single CPU machine locally or on a compute cluster. Since all datasets
are procedurally generated, training depends on both the model architecture and the complexity of
sampling the data, but is between 10 and 60 minutes for any single simulation run.

4.1 Validating Claim 3.2 with positive and negative predictions

In Fig. 5, we validate Claim 3.2 first via the single-neuron model (M2) with 30 initial conditions
trained across a range of excess kurtoses for the NLGP(g) and Kur(k) data models. We use the inverse
participation ratio (IPR), defined in Appendix A.3. This measure, also used by Ingrosso and Goldt
[IG22], is large when proportionally few weight dimensions “participate” (have large magnitude), and
small when weight dimension magnitudes are more uniform. We see that when g and k assume values
that yield a negative excess kurtosis, IPR is close to its maximum of 1.0, suggesting the weights
are localized; if the excess kurtosis is positive, IPR is nearly zero, suggesting the weights are not
localized. The IPR is extremely consistent across random initializations, suggesting that localization is
determined by data statistics and not initialization. The trend in IPR vs. excess kurtosis is very similar
between the NLGP(g) and Kur(k) data models, demonstrating that excess kurtosis is a primary driver
of localization and localization is largely independent from other properties of the data distribution.

2 0 2 4
Excess kurtosis

0.00

0.25

0.50

0.75

1.00

IP
R

NLGP
Kur

Figure 5: IPR vs. excess kurtosis for NLGP and
Kur data models, with mean and std. dev. across
30 re-initializations for the single-neuron model
(M2); error bars are small and may not be visible.

Figure 3 further validates Claim 3.2 with specific ex-
amples. We maintain constant initial conditions for
our model and train on the Ising, NLGP(g = 0.01),
and Kur(k = 5) data models. The marginals of
the Ising model have an excess kurtosis of −2, the
smallest possible value for any distribution. As a re-
sult, we see that the amplifier φ for Ising (top left)
is super-linear (the dark line exceeds the dashed light
line for larger a), which drives localization via its role
in Eq. (5). Integrating Eq. (5) with φ expanded via
a third-order Taylor approximation (red line) yields
a similar localized receptive field to that from simula-
tion (two right panels), validating this approximation.
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Figure 6: (Left, Center) Receptive fields learned by many-neuron (M1) soft committee machines (second-layer
weights fixed at 1

K
) trained on the Kur(10) and Kur(4) datasets, respectively. The models had N = 40 input

units, K = 10 hidden units, and an initialization variance of 0.1. (Right) A random subset of 10 components
from the 40 learned by the FastICA algorithm from scikit-learn [Hyv99; Ped+11] on the Kur(3) dataset with
length-scale correlation values of ξ0 = 1 and ξ1 = 3. See Section 4.4 for exposition.

For the remaining distributions (middle and bottom rows) that elicit oscillatory (sinusoidal) weights,
Claim 3.2 is validated due to their positive excess kurtosis. The dynamical steady state (far right)
assumes a more negative value than in the simulation (to the left), a difference that is the result
of deviations of our early-time gradient flow in Eq. (5), but these deviations remain mild enough
nevertheless to recover the qualitative structure of the learned receptive field.

4.2 Validating Eq. (5) with localization position prediction

The simulated and integrated receptive fields in Fig. 3 demonstrate that our analytical model is able
to meaningfully reproduce localization in receptive fields from neural network training. For the Ising
model, we see that the integration even has a peak in the exact same position as the simulation (at
index i = 6), suggesting precision in our approximation. Indeed, we simulated the condition in Fig. 3
for the Ising model under 28 different initial conditions (weight initializations), and found that in 26
of them (93%), the peaks of the integrated and simulated receptive fields matched exactly. In the two
cases where the peaks differed, they did so substantially (see Fig. 8 for an example).

4.3 Validating Proposition 3.3: Elliptical distributions fail to localize

Proposition 3.3 claims that the single-neuron model (M2) trained on elliptical data will yield sinusoidal
receptive fields, subject to a condition on the spectra of Σ0 and Σ1. We verify this claim in Fig. 4
with three distinct elliptical distributions. The first, t40(ν = 3), gives preactivations ⟨w,X⟩ that have
infinite kurtosis, yet our theory predicts the final receptive field will be sinusoidal. This is confirmed
in Fig. 4, where the learned receptive field is indeed a sinusoid with period 1 and intercept at zero.

We also consider data sampled from the surface of an ellipse, which is done by fixing Ry ≡ 1 in
Definition 1. Here, we observe that the learned receptive field is a near-constant function at −0.04
(note that cos(2π · 0 · x) ≡ 1 is a sinusoid, allowing nonzero intercepts and constant functions).
Finally, we consider an unconventional elliptical distribution where the density of R is given by
pR(r) = (4e2r+4)/(e2r + e4)2 ·1(r ≥ 2). This particular density places most of its mass near r = 2
before rapidly falling off, imposing a minimum norm on X and pushing support near the surface of
an ellipse. This distribution, too, yields an oscillatory steady state, as shown in Fig. 4 (right). We
confirm our visual observations by fitting sinusoids to the final receptive fields and see the relative
errors are quite low.

4.4 Extensions to many-neuron model and ICA

All of our analysis thus far has concerned single-neuron models with ReLU activation and without
hidden-to-output or bias terms, assumptions which were made to make our analysis tractable. Here,
we depart from that regime by considering the SCM and the full two-layer network (Model M1). In
Fig. 6 (left) and (center), we train a SCM with 10 hidden units and sigmoid activation on the Kur(10)
and Kur(4) datasets, which have excess kurtoses of −0.93 and 3.28, respectively. So, based on our
single-neuron analysis, we do and do not expect to see localization for these distributions. Indeed,
this is precisely what we observe in Fig. 6, where the receptive fields are sharply localized for the
former distribution, while they look like low-frequency oscillations for the latter.
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Figure 7: Receptive fields learned by the many-
neuron model (M1) with learnable second-layer
weights, N = 40, K = 10. (Top) A random
subset of 4 receptive fields from a model with sig-
moid activation, trained on Kur(4) (positive ex-
cess kurtosis of 3.28). As predicted by Claim 3.2,
the receptive fields are not localized, and appear
as high-frequency oscillations. (Bottom) A ran-
dom subset of 4 receptive fields from a model with
ReLU activation, trained on Kur(30) (negative
excess kurtosis of −1.17). Receptive fields are
localized (left three) or exhibit low-frequency os-
cillations (right). See Section 4.4 for exposition.

In Fig. 7, we train many-neuron models with N =
40 input units and K = 10 hidden units, where all
weights are learnable. In general, adding flexibility
in the second layer leads to more varied structure in
the first layer. We train on Kur(4) (top), which has an
excess kurtosis of 3.28, and Kur(30) (bottom), which
has an excess kurtosis of −1.17. The receptive fields
from the former are not localized, as in the single-
neuron model; however, they appear more like high-
frequency oscillations than low-frequency sinusoids.
For Kur(30), where we expect localization, we see
that the first three receptive fields exhibit localization,
but less so than for a single neuron. Importantly, not
all receptive fields are localized, a result of a variable
second-layer weight effectively changing the variance
σ2 in the third-derivative term in Lemma B.1.

We further compare these predictions against ICA,
another framework that has been used to model re-
ceptive fields in visual cortex. We train on the Kur(3)
dataset, which has marginals with excess kurtosis
7.66, fitting 10 components using the FastICA imple-

mentation from scikit-learn [sc; HO00]. We observe in Fig. 6 (right) that we learn localized receptive
fields; this contrasts our neural network models, which require negative excess kurtosis. This stems
from ICA’s objective to maximize non-Gaussianity, regardless of how specifically it is done. The sign
of the excess kurtosis is irrelevant, so long as it is nonzero. This deviation between our analytical
model and ICA is an interesting avenue for future study, perhaps by validation with natural images.

5 Conclusions

We derive effective learning dynamics for the minimal example of emergent localization in a neural
receptive field given by Ingrosso and Goldt [IG22]. The analytical approach we take relies on the
assumption that the conditional preactivation is Gaussian, a refinement of previous work that assumes
Gaussianity of the unconditioned preactivation as asserted by the Gaussian equivalence property
targeted by Ingrosso and Goldt [IG22]. This approach may prove extensible beyond our specialized
setting and may enable further analysis of how statistics of an input task drive emergent structure in
neural network learning.

Emergence as an alternative mechanism to top-down constraints like sparsity is in line with recent
work that reformulates data-distributional properties as a driver for complex behavior [Cha+22].
Via these analytical effective dynamics, we observe that specific data properties—the covariance
structure and the marginals—shape localization in neural receptive fields. Though we cannot capture
dynamical interactions between neurons that may shape receptive fields in other settings with the
single-neuron analytical model, our empirical validations with many neurons suggest that these
interactions do not, in fact, play a significant role in shaping localization [cf. Har+20].

The data model we consider is a simplified abstraction of the task faced by early sensory systems,
and, as a consequence, we do not yet capture certain features of receptive fields that are observed in
early sensory systems. In particular, we do not observe orientation nor phase selectivity, features of
simple-cell receptive fields in early sensory cortices and in artificial neural networks that can be seen
in a subset of receptive fields in Fig. 1 (left and center, respectively). To capture orientation selectivity,
it may be fruitful to follow the approach of Karklin and Simoncelli [KS11], who tie orientation
selectivity in a population-based efficient-coding framework to the presence of noise. Furthermore,
on-center-off-surround-filtering input data, including the idealized data, gives receptive fields with
subfields in our simulations, but is difficult to analyze. Lastly, we do not yet look at the distribution
of receptive field shapes and do not validate against other models of receptive field learning beyond a
brief comparison with ICA [cf. Sax+11], but these are exciting avenues for future work.
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A Definitions and Notation

A.1 Notation

We use [n] to refer to the set {i ∈ N : 1 ≤ i ≤ n}.

A.2 Algebraic sigmoid

For k > 0, the generalized algebraic sigmoid function is defined as

algk(x) ≜
1

2

(
1 +

x

(1 + |x|k)1/k

)
. (7)

Following the main text, we drop the subscript when k = 2.

A.3 Inverse participation ratio (IPR)

The IPR is defined as:

IPR(w) ≜

(
D∑
i=1

w4
i

)
/

(
D∑
i=1

w2
i

)2

,

where wi is the magnitude of dimension i of weight w.

B Extensions beyond the scope of the main text

B.1 Analytical properties of the amplifier φ

We present several properties of the amplifying function φ defined in Lemma B.1.
Lemma B.1. The localization amplifier φ in Eq. (6) satisfies φ(−a) = −φ(a), for all a ∈ (−1, 1).
Moreover, its derivatives satisfy, where σ2 and κ denote the variance and kurtosis of X1, respectively:

φ′(0) =

√
2

π
σ2 , and φ′′′(0) = −

√
2

π
(κ4σ4 − 3σ2) .

To gain some understanding of how the marginal distributions of X impact localization, we use
the derivatives in Lemma B.1 to construct a third-order Taylor approximation of φ about 0. The
derivatives in Lemma B.1 reveal that every distribution for X1 with constant variance will look like
the same linear function near 0. φ only looks nonlinear once we move sufficiently far away from zero
when the third-order term becomes relevant. For the case of σ2 = 1 (where the variance of X1 is
equal to the value of the larger target y = 1) the third order term suggests that φ is super-linear when
κ < 3, i.e., the excess kurtosis is positive, and sub-linear otherwise.

A super-linear φ will encourage entries where Σ1w is large to grow at a faster rate than other entries,
which are all subject to the same linear norm constraint through the second term in Eq. (5). The
covariance Σ1, as a circulant matrix, acts as the convolution operator between some vector and σ1

1 (the
first row in Σ1). Since y = 1 corresponds to the class with a larger length-scale correlation, σ1

1 will
decay relatively slowly and act like a weight local average. Thus, Σ1w is the weighted local average
for each entry in w. So, entries where w is large within some neighborhood will be encouraged to
grow faster than those which are smaller, an effect that compounds as Eq. (5) is integrated. Thus,
super-linearity encourages localization.

As we will see in Theorem 3.3 for the setting of elliptical data, if φ is linear, w learns to be sinusoidal,
and thus not localized. In the case of sub-linearity, we expect suppression of larger values, rather
than promotion, as in the super-linear setting. Thus, to a first approximation, the sign of the excess
kurtosis, κ− 3 (for σ2 = 1), indicates whether w localizes.

However, simply studying φ′′′(0) is not sufficient to fully characterize how the marginals impact
localization. A function can be sub-linear for small a and super-linear for larger a, making it unclear
whether it will yield localization. For marginal distributions where κ ≈ 3 that do not exhibit strict
super- or sub-linearity, this condition is no longer precise enough to determine whether we see
localization.
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B.2 PDE limit of Eq. (5)

By taking N to be large and treating w as a continuous function with respect to position, i.e., w ≡
w(x, t), one can treat Eq. (5) as a partial differential equation (PDE). Finding its steady state then
amounts to solving

φ

 σ1 ⋆ w√
⟨σ1 ⋆ w,w⟩

− 1

2
(σ0 + σ1) ⋆ w ≡ 0 , (8)

where w : [0, 1] → R is periodic and σy is the convolution corresponding to the limiting case of the
matrix Σy . This equation does not appear to have an explicit solution for non-identity Σ1, and thus, it
may not be possible to solve the steady states of Eq. (5) exactly in this PDE limit or for finite N .

B.3 Assumptions A1 and A2 vs. Gaussian equivalence

Assumptions A1 and A2 are equivalent to approximating ⟨w,X⟩ | Xi as Gaussian early in training.
Similar ideas have been used to derive gradient flow dynamics for neural networks, including in
developing the Gaussian equivalence property of [Gol+20; Ger+20; Gol+22]. However, these works
model the unconditional preactivation ⟨w,X⟩ as a Gaussian, rather than first conditioning on Xi.
How this arises is that these previous works assert the Gaussian approximation prior to differentiating
the loss function for the gradient flow dynamics. However, an approximation at that stage neglects
the presence of a multiplicative factor X that appears as a result of the chain rule applied to ⟨w,X⟩.
Abstractly, this approach assumes that Lexact → LGauss implies ∇w Lexact → ∇w LGauss, but, in
general, this does not follow, and here in particular this assumption does not capture the interplay
of learning and higher-order input statistics. This contributes to the failure of Gaussian equivalence
in [IG22]. In contrast, we can account for the additional X term in the derivation of Lemma 3.1
by assuming that ⟨w,X⟩ | Xi rather than ⟨w,X⟩ is Gaussian. This conditioning approach, along
with the translation invariance of the data (Property S2), also motivates considering the marginal
distributions Xi as the object of study to obtain gradient flows for neural networks trained on
non-Gaussian inputs.

C Proofs of theoretical results

C.1 Gradient flow for mean-squared error (MSE) loss

The loss is given by:

L = EX,Y

[
(Y − ReLU(⟨w,X⟩))2

]
= EX,Y

[
Y 2
]
− 2EX,Y [Y ReLU(⟨w,X⟩)]︸ ︷︷ ︸

≜(I)

+EX,Y

[
ReLU2(⟨w,X⟩)

]
︸ ︷︷ ︸

≜(II)

. (9)

The assumption of sign symmetry (S3) gives that ⟨w,X⟩ is also sign-symmetric. First, this implies
that P(⟨w,X⟩ > 0) = 1

2 , so:

(II) =
1

2
EX,Y |⟨w,X⟩≥0

[
ReLU2(⟨w,X⟩)

]
=

1

2
EX,Y |⟨w,X⟩≥0

[
(⟨w,X⟩)2

]
.

Second, sign-symmetry of ⟨w,X⟩ implies that we can drop the conditioning on ⟨w,X⟩ ≥ 0, since
⟨w,X⟩ d

= −⟨w,X⟩. Thus,

(II) =
1

2
EX,Y

[
(⟨w,X⟩)2

]
=

1

2
w⊤ EX,Y

[
XX⊤

]
w

=
1

2
w⊤

(
1

K

K−1∑
y=0

Σy

)
w

=
1

2K

K−1∑
y=0

w⊤Σyw ,
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where K is the number of values (classes) of discrete y. Finally, we differentiate L with respect to w:

∇w L = 2EX,Y [Y 1(⟨w,X⟩ ≥ 0)X] +
1

K

K−1∑
y=0

Σyw .

The gradient flow [EC24] is given by dw
dt = −τ∇w L, where τ is the learning rate. Thus,

1

τ

dw

dt
= 2EX,Y [Y 1(⟨w,X⟩ ≥ 0)X]− 1

K

K∑
y=1

Σyw . (10)

C.2 Proof of lemma 3.1

Setting K = 2 in equation (10), we have

1

τ

dw

dt
= EX|Y=1[1(⟨w,X⟩ ≥ 0)X]− 1

2
(Σ0 +Σ1)w .

We wish to express the first term explicitly. Note that the first term is a vector in RN . We consider
each of its entries separately by using the law of total expectation to write the i-th entry as:

EX|Y=1[1(⟨w,X⟩ ≥ 0)Xi] = EXi|Y=1

[
XiPX|Xi=xi,Y=1 [⟨w,X⟩ ≥ 0]

]
.

By Assumption A3, {wiXi | 1 ≤ i ≤ N} satisfies Lindeberg’s condition as N → ∞. This is
also known as a uniform integrability requirement. Before formally stating it, let us introduce two
variables: SN ≜

∑N
j=1 wj(Xj − µj|xi

), the partial sums, and their variance, σ2
N ≜ E[S2

N ], where
µj|xi

≜ E[Xj | Xi = xi] is the conditional mean of the j-entry given that i-th entry has value xi.
Then, Lindeberg’s condition is formally stated as

sup
N

ESN |Xi=xi

[∣∣∣S2
N

σ
2
N

∣∣∣1(∣∣∣S2
N

σ
2
N

∣∣∣ > x
)]

→ 0 as x → ∞ .

This condition effectively states that no term in the partial sum wiXi will dominate. Under this
condition, along with weak dependence (Property S1), we conclude from [Bra07, Theorems 1.19,
10.2] that SN/σN

d→ N (0, 1). Note that

SN = ⟨w,X⟩ − ⟨w, µ|xi
⟩ and σN =

√
w⊤Σ1

|xi
w ,

where w,X are N -dimensional vectors, µ|xi
= E[X | Xi = xi] is the vector of conditional means,

and Σ1
|xi

≜ Cov[X | Xi = xi, Y = 1] = Σ1 −σ1
i σ

1⊤
i . Since σN and µ|xi

are constant, we can write

PX|Xi=xi,Y=1 [⟨w,X⟩ ≥ 0] = PX|Xi,Y=1

[ ⟨w,X⟩ − ⟨w, µj|xi
⟩

σN

≥ −
⟨w, µj|xi

⟩
σN

]
= PZ∼N (0,1)

[
Z ≥ −

⟨w, µj|xi
⟩

σN

]
+ oN (1)

= 1− 1

2

[
1 + erf

(
−
⟨w, µj|xi

⟩
√
2σN

)]
+ oN (1)

=
1

2
+

1

2
erf

( ⟨w, µj|xi
⟩

√
2σN

)
+ oN (1) ,

where the second step, in which we acquire oN (1), follows from the definition of convergence in
distribution. Under Assumptions A1 and A2, we may express this as

PX|Xi=xi,Y=1 [⟨w,X⟩ ≥ 0] =
1

2
+

1

2
erf

 ⟨w, xiσ
y
i ⟩

√
2

√
w⊤Σ1w − (⟨w, σy

i ⟩)
2

+ oN (1) .
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Therefore,

EX|Y=1[1(⟨w,X⟩ ≥ 0)Xi]

= EXi|Y=1

Xi

1

2
+

1

2
erf

Xi√
2
· ⟨w, σy

i ⟩√
w⊤Σ1w − (⟨w, σy

i ⟩)
2

+ oN (1)



=
1

2
EXi|Y=1

Xi erf

Xi√
2
·

⟨w, σy
i ⟩/
√
w⊤Σ1w√

1− (⟨w, σy
i ⟩/
√
w⊤Σ1w)2


+ EXi

[|Xi|]oN (1)

=
1

2
EXi|Y=1

Xi erf

Xi√
2
· alg−1

 ⟨w, σy
i ⟩√

w⊤Σ1w

+ EXi
[|Xi|]oN (1) .

Defining φi(a) ≜ EXi|Y=1[Xi erf(Xi alg
−1(a)/

√
2)] we can write

EX|Y=1[1(⟨w,X⟩ ≥ 0)Xi] =
1

2
φi

 ⟨w, σy
i ⟩√

w⊤Σ1w

+ EXi
[|Xi|]oN (1) .

Note that EXi
[|Xi|] ≤

√
EXi

[X2
i ] = σ by Cauchy-Schwarz. So, EXi

[|Xi|]oN (1) = oN (1).

Moreover, by translation-invariance, all Xi have the same marginal, so φi ≡ φ1 ≜ φ. Thus,

EX|Y=1[1(⟨w,X⟩ ≥ 0)Xi] =
1

2
φ

 ⟨w, σy
i ⟩√

w⊤Σ1w

+ oN (1) .

This form holds for all entries i. Concatenating them, we obtain

EX|Y=1[1(⟨w,X⟩ ≥ 0)X] =
1

2
φ

 Σ1w√
w⊤Σ1w

+ oN (1) ,

which gives the desired result.

C.3 Proof of lemma B.1

Property 1 follows from the fact that alg and erf are odd functions. This implies Property 4 since an
odd function must have zero for even Taylor coefficients.

Properties 2 and 3 follow from differentiating Eq. (6). The first derivative is given by

φ′(a) =

√
2

√
π(1− a2)

3
2

EX1

[
X2

1e
− X

2
1a

2

2(1−a
2
)

]
.

Setting a = 0, we get

φ′(0) =

√
2

π
E
[
X2

1

]
=

√
2

π
σ2.

The third derivative is given by

φ′′′(a) =

√
2

√
π(1− a2)

7
2 (a2 − 1)2

EX1

[
X2

1 (12a
6 + (9X2

1 − 21)a4 + (X4
1 − 8X2

1 + 6)a2 −X2
1 + 3)e

− X
2
1a

2

2(1−a
2
)

]
.

Again setting a = 0 gives

φ′′′(0) =

√
2

π
EX1

[
X2

1 (−X2
1 + 3)

]
=

√
2

π

(
3EX1

[X2
1 ]− EX1

[X4
1 ]
)
= −

√
2

π
(κ4σ4 − 3σ2) .
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C.4 Proof of Proposition 3.3

The pdf of X ∼ EN (µ,Σ, ϕ) is

pX(x) =
1√

det(Σ)
g((x− µ)⊤Σ−1(x− µ)) ,

for some function g : R≥0 → R≥0 [Fra04]. A key property of elliptical distributions is that if
X ∼ EN (µ,Σ, ϕ), then its affine transformation is also elliptical: ⟨w,X⟩ ∼ E1(⟨w, µ⟩,w⊤Σw, ϕ)

for any w ∈ RN . Thus,

p⟨w,X⟩(s) =
1√

w⊤Σw
g̃

(
(s− ⟨w, µ⟩)2

w⊤Σw

)
,

for some other function g̃ : R≥0 → R≥0.

From our assumption of sign-symmetry, we have µ = 0. For brevity, we define σ2 ≜ w⊤Σw and
S ≜ ⟨w,X⟩. We begin by computing (I) in Eq. (9). Recall that we have y = 0, 1 (i.e., K = 2). So,

2× (I) = ES|Y=1[ReLU(S)] =

∫ ∞

0

1

σ
g̃

(
s2

σ2

)
s ds.

At this point, we apply a u-substitution with u = s2/σ2, and thus du = 2s ds/σ2 ⇐⇒ σdu/2 =
s ds/σ. This yields

2× (I) =
σ

2

∫ ∞

0

g̃(u) du︸ ︷︷ ︸
≜C

=
C

2

√
w⊤Σ1w.

Recall that we assume the MSE loss L is finite. The first term in Eq. (9) is clearly finite for y = 0, 1.
The term (II) is also easily seen to be finite, since it evaluates to w⊤(Σ0 +Σ1)w/4. Thus, L being
finite implies (I) in Eq. (9) is finite, which implies C < ∞. We computed (II) from Eq. (9) above as

1

4
w⊤ (Σ0 +Σ1)w

for K = 2. Plugging in (I) and (II) and differentiating with respect to w, we get

1

τ

dw

dt
=

Σ1w√
w⊤Σ1w

− 1

2
(Σ0 +Σ1)w . (11)

The steady states of Eq. (11) thus satisfy

C
Σ1w√
w⊤Σ1w

=
1

2
(Σ0 +Σ1)w .

Recall that translation-invariance implies that Σ0 and Σ1 are circulant, and since they are covariance
matrices, they are symmetric. Then, they diagonalize in the basis given by the real and imaginary
parts of the first n/2 Fourier components in the discrete Fourier transform, which we denote by the
n× n real matrix F . Note that F is orthogonal. Define v = F⊤ w and Λy = F⊤ Σy F for y = 0, 1.
Thus, the steady states satisfy

C
Λ1v√
v⊤Λ1v

=
1

2
(Λ0 + Λ1)v .

This holds iff for all i ∈ [n],

C(Λ1)ii(v
⊤Λ1v)

− 1
2 vi =

1

2
((Λ0)ii + (Λ1)ii)vi .
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Thus, if vi ̸= 0, we must have that

(Λ0)ii
(Λ1)ii

= 2C(v⊤Λ1v)
− 1

2 − 1 .

That is, the ratio of the i-th eigenvalues of Σ0 and Σ1 must be constant for all i s.t. vi ̸= 0. The
eigenvalues of these matrices always come in pairs because of how we defined F using both the real
and imaginary parts of the discrete Fourier transform. In general, we observe that each pair assumes
a unique value. So, since C is finite, the condition above can hold for at most two distinct values of
i. Therefore, vi = 0 for all but at most two i ∈ [n], implying that the steady state w is of the form
a cos(2πkx) + b sin(2πkx), i.e., it is oscillatory. As such, it is not localized.

D Additional experiments

D.1 Visualizing breakdown of Assumption A3

Fig. 8 demonstrates that our analytical model holds for long enough during training to capture the
emergence of localization in the single ReLU neuron (M2). In the first three columns, we visualize
the IPR of the weights from our empirical and analytical models, as well as the ℓ2 difference between
these two weights. In the first four rows, we visualize these metrics for four random initializations
of the model, training each on NLGP(g = 100) with ξ0 = 0.3 and ξ1 = 0.7, where we expect
from Theorem 3.2 to see localization. We see the error rapidly increase shortly after IPR increases,
indicating the formation of localized receptive fields. The last three columns confirm this, as they
show snapshots from before, during, and after the divergence between the empirical and analytical
weights. We observe the weights are nearly identical before, differ only slightly at the most localized
point during, and are both localized after, but possibly with different magnitudes and positions.
The difference that emerges during is due to a breakdown of Assumption A3 used to create our
analytical model, which is violated when the norm of w is dominated by just a few entries, i.e., it is
localized. While [IG22] also observe a breakdown in their analytical model as localization emerges,
ours, crucially, holds for long enough to characterize the emergence of localization.

We discuss the individual subplots in more detail. In all but the third row of Fig. 8, the analytical
predictions are near-exact; in the third row, we predict localization, but at the wrong position.
Focusing again on the first row, we see that at t = 20, the weights have not yet become localized
(from IPR, left, first, and visually) and analytical and empirical weights match nearlt exactly, as
confirmed by the small distance in left, center above. At t = 30, a localized peak around i = 21
begins to emerge, violating Assumption A3 and weakening analytical precision. The analytical model
then underestimates the degree to which the main peak at i = 21 dominates, while it overestimates
the size of competing peaks at i = 30, 37, and 90. Despite this, at t = 50, we see that predictions
from the analytical model retain a match to the empirical model.

In the last row of Fig. 8, we use the same initialization and setting as in the first row, except that we
train on NLGP(g = 0.01) data instead. From Theorem 3.2, we do not expect to see localization. The
evolution of IPR confirms this, as it stays low in magnitude. We also see that, because localization
never emerges, Assumption A3 is never violated, and so our analytical model accounts for the
empirical model nearly perfectly.
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Figure 8: (Top) Four initializations trained on NLGP(g = 100) with ξ0 = 0.3 and ξ1 = 0.7. As expected,
weights always localize. In (Left, First) we plot IPR for empirical and analytical receptive fields (RFs) across
time (defined as (# of gradient steps) × τ , the learning rate). In (Left, Second) we plot the time-evolution of ℓ2
distance between the empirical and analytical RFs. In (Left, Third) we zoom in on (Left, First), restricting the
range to [0, 0.1] to more closely see divergence in IPR early in training. In (Right, First) and (Right, Second),
we snapshot the empirical and analytical RFs at a time before and just after, respectively, the analytical model
breaks down (according to IPR and ℓ2 distance) due to localization. Finally, in (Right, Third), we snapshot at the
end of the training period. (Bottom) Same initialization as first row in top, but trained on NLGP(g = 0.01) data,
again with ξ0 = 0.3 and ξ1 = 0.7. As expected, weights do not localize. We plot the same quantities as above,
but here the predictions of our analytical model hold throughout the entire training process as localization never
emerges and so assumption (A3) is not violated as above.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, in the abstract and introduction we claim to derive an analytical model for
the effective dynamics of localization (Section 3) in the setting described in Section 2 and
validate this model with experiments (Section 4).

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, in the conclusion we note that our exact analysis is retricted to the single-
neuron architecture M2 in the data setting described in Section 2, and that validations beyond
that scope (like in Section 4) remain empirical even if they show promise.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, our assumptions are rigourously stated in Section 3 and the proofs are
provided in Appendix C.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our setup (Section 4) and experiments (Section 4) provides full details on the
data, hyperparameters, and training procedures used to obtain the figures. We also provide
code (referenced on the first page).

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we provide a link to the code repository in the first page of the paper, and
the repository contains all the code and data needed to reproduce the experiments.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we provide primary details in Section 4 and all the details in the code.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, for our prediction experiment in Section 4.2 we report a measure of
variation over multiple runs.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, we provide this information at the beginning of Section 4.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we have reviewed the NeurIPS Code of Ethics and believe that our work
conforms to it.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Since our work is primarily theoretical analysis of an existing phenomenon,
we do not consider it to have direct societal impacts.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve the release of data or models that have a significant
risk for misuse.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We wrote our own code for all experiments to procedurally generate data and
train and analyze models. Visualizations from prior work in Fig. 1 are properly credited.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We document our code (the only asset we release) in the accompanying
repository.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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