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Abstract001

Healthcare misinformation poses a critical002
threat to public well-being, necessitating de-003
tection systems that are both accurate and com-004
putationally efficient. While large language005
models (LLMs) have demonstrated strong per-006
formance in misinformation detection, their007
deployment is often constrained by high re-008
source requirements. In this work, we in-009
vestigate the effectiveness of smaller LLMs010
(360M–3.8B parameters) using a three-stage011
framework comprising standardized prompt-012
ing, supervised fine-tuning (SFT), and re-013
inforcement learning from human feedback014
(RLHF). We evaluate seven LLMs across two015
benchmark datasets—FakeHealth and ReCOV-016
ery—and compare them against four larger017
LLMs (14B–72B) and five transformer-based018
baselines. For the RLHF stage, we study three019
policy optimization methods: Binary Classifier020
Optimization (BCO), Contrastive Preference021
Optimization (CPO), and our enhanced vari-022
ant, CPO∗∗. Empirical results demonstrate that023
while SFT improves domain adaptation, CPO∗∗024
consistently achieves the best F1 performance,025
enabling small LLMs to rival or even outper-026
form significantly larger counterparts. Our find-027
ings highlight the potential of RLHF techniques028
to close the performance gap, offering a scal-029
able and cost-effective solution for real-world030
healthcare misinformation detection.031

1 Introduction032

Misinformation has become a pervasive chal-033

lenge in the digital age, influencing public opin-034

ion (Cacciatore, 2021), threatening political sta-035

bility (Jerit and Zhao, 2020), and undermining036

decision-making across various domains (Fernan-037

dez and Alani, 2018). The rapid spread of false038

or misleading content—particularly via social me-039

dia— has made robust misinformation detection a040

critical research priority (Aïmeur et al., 2023). The041

urgency of this research was underscored especially042
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Language
Model

Standard Prompting

News Title: An Apple a Day May Help Keep Heart Disease Away
News Body Eating apples every day may be good for your cardiovascular
health, new research suggests.\n\nWomen who ate dried apples every day for
a year lowered their total cholesterol by 14 percent and their levels of ""bad""
LDL cholesterol by 23 percent ""I never expected apple ....

News Article [Label: Fake]

Supervised Fine-tuning (SFT)

Tuned
LLM It is a Real news

Reinforcement Learning with Human Feedback (RLHF)

         SFT + RLHF It is a Fake news

It is a Real news

Figure 1: Role of RLHF with LLMs in misinformation
detection. In this case, standard prompting the LLM
fails to output a correct judgment of news veracity, and
also a finetuned LLM; however, RLHF judges correctly.

during the COVID pandemic, when the widespread 043

dissemination of false and misleading information 044

undermined public trust, fueled vaccine skepticism, 045

and in certain instances, pushed individuals toward 046

extremist ideologies (Agbasiere, 2024). 047

Recent advances in natural language process- 048

ing (NLP) have opened new avenues for combat- 049

ing misinformation using large language models 050

(LLMs). These models, with their impressive 051

linguistic capabilities, are increasingly being ex- 052

plored for their potential to judge the veracity of 053

claims (Lucas et al., 2023; Huang and Sun, 2023; 054

Wang et al., 2023; Irnawan et al., 2025). However, 055

most prior research has focused on LLMs ranging 056

from 70B to 340B parameters, overlooking smaller 057

models (e.g., 1B to 3.5B) that are more practical 058

for real-world deployment. 059

The challenge arises from the evolving, context- 060

dependent nature of misinformation (Chen and 061

Shu, 2024), especially in high-stakes fields like 062

healthcare (Han et al., 2024), where claims often 063
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require domain knowledge and cultural understand-064

ing. This requires healthcare domain LLMs to065

be capable of understanding complex terminology066

and the cultural context of claims. This directs067

the research toward larger LLMs that can model068

language and capture intricate linguistic phenom-069

ena; they are also prone to hallucinations (Chen070

et al., 2024), or reflect training data biases (Chen071

and Shu, 2023), and more importantly, they are072

computationally expensive for deployment in sen-073

sitive settings (Wang et al., 2024). By contrast,074

smaller LLMs offer a path toward building reliable,075

cost-effective models that can scale in resource-076

constrained environments.077

Healthcare systems are vulnerable to misinfor-078

mation, especially during crises like pandemics,079

where healthcare practitioners may rely on online080

content to guide urgent decisions. If these sources081

are inaccurate, it can lead to harmful consequences082

in both clinical care and medical research. LLMs,083

with their ability to consume large volumes of084

knowledge, have the potential to act as an interme-085

diate decision-support to help practitioners identify086

and navigate misleading content. Yet, this raises087

important questions: How effective are LLMs at088

detecting misinformation? And if they are effec-089

tive, how can we scale them down for practical use090

in real-world healthcare applications, given the091

computational costs of large models?092

While large-scale LLMs have gained signifi-093

cant attention for their performance, their practi-094

cal deployment remains limited by resource de-095

mands (Prather et al., 2025). Our study takes a096

pragmatic approach: we explore the potential of097

smaller, more efficient LLMs and enhance them098

using reinforcement learning with human feedback099

(RLHF) (Ouyang et al., 2022). In particular, we100

contribute a refined variant of Contrastive Prefer-101

ence Optimization (CPO) (Xu et al., 2024), denoted102

CPO**, which introduces a log-based weighting103

mechanism to improve alignment with human pref-104

erences and factual accuracy. As illustrated in Fig-105

ure 1, RLHF can yield more accurate judgments106

of news veracity than both standard prompting and107

SFT. To systematically investigate these challenges,108

we define three core research questions (RQs):109

RQ1: How effective are smaller LLMs in de-110

tecting misinformation in healthcare? We evalu-111

ate seven small and four large LLMs (360M–72B112

parameters; see Table 1) on healthcare misinfor-113

mation using a standardized prompting method.114

Our findings show that although small LLMs per-115

LLM Size
Qwen2.5 (Yang et al., 2024) 0.5B, 14B, 32B, 72B
Qwen3 (Yang et al., 2025) 0.6B
LLaMA-3 (Touvron et al., 2023) 1B, 70B
SmolLM2 (Allal et al., 2025) 360M, 1.7B
Falcon3 (Team, 2024) 3B
Phi-3.5-Mini (Abdin et al., 2024) 3.8B

Table 1: Summary of LLMs used.

form modestly under standardized prompting (e.g., 116

Qwen2.5-0.5 achieves 45.8% F1 on FakeHealth), 117

some models like LLaMA-3.2-1B outperform even 118

larger models. This indicates that parameter count 119

alone does not determine base performance. 120

RQ2: To what extent does supervised fine- 121

tuning (SFT) enhance task-specific adaptation 122

for misinformation detection? Building on the 123

baseline, we apply SFT using a QLoRA-based 124

parameter-efficient finetuning approach (Dettmers 125

et al., 2023) to adapt the smaller models for domain- 126

specific misinformation detection. Our findings 127

show that while SFT boosts performance across 128

most models (e.g., Falcon3 improves from 41.7% 129

to 63.4% F1 on FakeHealth), gains vary widely. 130

Some small models like Phi-3.5-Mini benefit sig- 131

nificantly, while others like Qwen3 see limited im- 132

provement. Larger models, such as Qwen2.5-14B, 133

show minimal gains, suggesting that architecture 134

and pretraining (not just size) govern fine-tuning 135

effectiveness. 136

RQ3: How does RLHF influence the perfor- 137

mance of LLMs in detecting misinformation 138

compared to SFT? Beyond SFT, we explore three 139

RLHF strategies—Binary Classifier Optimization 140

(BCO) (Jung et al., 2024), Contrastive Preference 141

Optimization (CPO), and our novel refinement, 142

CPO**—to investigate their comparative and cu- 143

mulative impact on misinformation detection. Our 144

proposed CPO** introduces a log-based weight- 145

ing mechanism that stabilizes learning and better 146

aligns model outputs with human preferences and 147

factual correctness. Our findings show that RLHF 148

significantly outperforms SFT across models and 149

datasets (e.g., Qwen2.5-0.5 sees a +46% F1 gain 150

on ReCOVery), with CPO∗∗ achieving the highest 151

improvements. Notably, smaller models fine-tuned 152

with RLHF often match or exceed the performance 153

of much larger models, indicating that alignment 154

strategy (not scale) is key to strong performance. 155

This study bridges the gap between resource- 156

intensive large-scale LLMs and the practical needs 157

of real-world applications by systematically com- 158

2



paring small and large models for healthcare mis-159

information detection. We evaluate SFT for task160

adaptation and explore RLHF to boost reliability,161

aiming to develop effective, scalable NLP solutions162

for high-stakes domains like healthcare.163

2 Related Work164

Recent advancements in misinformation detection165

have leveraged LLMs to develop more refined166

techniques for identifying misinformation. One167

such approach involves fine-tuning models like168

BERT (Kaliyar et al., 2021; Qin and Zhang, 2024;169

Farokhian et al., 2024; Yu et al., 2025; Kumari170

et al., 2021) with additional deep learning layers.171

However, model performance may be hindered by172

its inability to adapt to evolving misinformation173

patterns (Allcott et al., 2019). A growing body of174

work has explored more sophisticated strategies to175

address these limitations, such as domain adapta-176

tion (Mao et al., 2024) and leveraging uncertainty177

resolution techniques (Orlovskiy et al., 2024) to178

mitigate the challenges posed by ambiguous or in-179

complete health-related misinformation.180

An alternative line of research explores direct181

LLM-based misinformation detection, using mod-182

els such as BART (Lewis et al., 2020), GPT-183

3.5 (Achiam et al., 2023), LLaMA-2 (Touvron184

et al., 2023), LLaMA-3 (AI@Meta, 2024), Palm-185

2 (Anil et al., 2023), and Dolly-2 (Conover et al.,186

2023) for fact-checking, claim verification, and187

misinformation generation (Pavlyshenko, 2023;188

Huang and Sun, 2023; Wang et al., 2023; Lucas189

et al., 2023; Lai et al., 2024; Li et al., 2025; Ir-190

nawan et al., 2025; Leite et al., 2025). Pavlyshenko191

(2023) found that larger LLaMA-2 models (13B or192

70B) improved detection performance when trained193

on extensive datasets. Similarly, Huang and Sun194

(2023) demonstrated that GPT-3.5 achieved strong195

performance, though its effectiveness could be fur-196

ther enhanced by incorporating richer contextual197

information. However, reliance on LLMs for mis-198

information detection introduces biases inherent199

in model training, raising concerns about fairness200

and reliability (Li et al., 2025). Wang et al. (2023)201

showed that GPT-3.5 struggled with COVID-19202

misinformation detection due to a lack of special-203

ized domain knowledge, underscoring the impor-204

tance of domain adaptation. Additionally, Lucas205

et al. (2023) explored LLMs as both disinforma-206

tion generators and detectors, achieving promis-207

ing results but facing challenges in hallucination208

control. To mitigate these limitations, Hu et al. 209

(2024) compared fine-tuned smaller models like 210

BERT against GPT-3.5 and introduced an Adap- 211

tive Rationale Guidance network that integrates 212

LLM-generated rationales to assist BERT in detect- 213

ing misinformation. Yet, hallucinations persist, as 214

model-generated rationales sometimes introduce 215

misleading patterns, increasing false positives and 216

negatives (Li et al., 2025). 217

There is growing interest in enhancing trans- 218

parency and explainability in health misinforma- 219

tion detection, with studies leveraging crowd intel- 220

ligence (Yang et al., 2023) and interpretable frame- 221

works to refine predictions (Liu et al., 2024; Baner- 222

jee et al., 2024). Despite these advances, a key 223

research gap remains in aligning models with hu- 224

man judgment while ensuring efficiency (Upad- 225

hyay et al., 2024), particularly in health misin- 226

formation detection, where domain knowledge is 227

crucial. Kamali et al. (2024) investigated persua- 228

sive writing strategies to improve classification us- 229

ing fine-tuned BERT-family models and leveraged 230

GPT-based models for prompt engineering. While 231

Zarharan et al. (2024) explored explainability in 232

public health misinformation detection and con- 233

cluded that despite GPT-4 excels, open-source mod- 234

els (e.g., Falcon-180B (Almazrouei et al., 2023), 235

LLaMA-70B) can match or even surpass it in few- 236

shot and parameter-efficient fine-tuning settings. 237

Unlike prior methods that primarily depend on 238

fine-tuning or prompting, our approach leverages 239

RLHF to systematically align smaller LLMs with 240

human judgment. This strategy addresses key lim- 241

itations identified in existing research, such as 242

model hallucinations, domain knowledge gaps, and 243

biases inherent in large pretrained models. By in- 244

tegrating RLHF, we enhance the adaptability, reli- 245

ability, and factual accuracy of smaller, computa- 246

tionally efficient LLMs, thereby overcoming chal- 247

lenges that fine-tuning and zero-shot prompting 248

alone struggle to resolve. 249

3 Methodology 250

In this study, we evaluate the effectiveness of 251

smaller LLMs for detecting healthcare misinfor- 252

mation through a three-stage methodology: stan- 253

dardized prompting (SP), supervised fine-tuning 254

(SFT) (Pareja et al., 2024), and reinforcement 255

learning from human feedback (RLHF) (Kaelbling 256

et al., 1996; Christiano et al., 2017). As shown 257

in Figure 2, we begin with SP, where models as- 258
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Reinforcement Learning with Human Feedback (RLHF)

Policy Optimizers

Supervised Fine-Tuning (SFT)Dataset Standardized Prompting (SP)

Fake Real

Chosen Rejected

News Article: [Label is Fake]

Preference Data

Preference Data CreationQLoRA

 News Title

 News Body

 News Title

 News Body

Given the title and content of a healthcare news
article, analyze whether the claims align with

plausible scenarios and whether the article maintains
internal consistency. Check for misleading or unclear
statements, and conclude whether the news is real
or fake. 
News Title: {News Title} 
News Content: {News Body} 
Conclusion:

FakeHealth

ReCOVery

Reward Modeling Loss Construction Probability Weighting

Binary Classifier Optimization (BCO)

Contrastive Preference Optimization (CPO)

Contrastive LossPolicy Modeling Likelihood Maximization

Weighted Contrastive Preference Optimization (CPO**)

Weighted Contrastive Loss ......

Figure 2: Illustration of the misinformation detection framework for healthcare.

sess healthcare news articles using both the title259

and full content to identify internal inconsistencies260

and flag potentially misleading claims. This step261

establishes a baseline for each model’s zero-shot262

performance using two well-known datasets. In the263

second stage, we apply SFT to adapt models using264

labeled real and fake news articles. To prepare for265

reinforcement learning, we organize the training266

outputs into preference pairs—distinguishing be-267

tween preferred (chosen) and undesirable (rejected)268

responses. Finally, we apply RLHF to align mod-269

els more closely with human judgment, enhancing270

both factual accuracy and adherence to domain-271

specific values through policy optimization. To-272

gether, this pipeline enables a systematic evalua-273

tion of how prompting, fine-tuning, and RLHF can274

enhance misinformation detection in smaller, more275

efficient LLMs.276

3.1 Standardized Prompting277

For Standardized Prompting (SP), we designed278

a structured prompt to evaluate the plausibility,279

internal consistency, and clarity of healthcare280

news articles. As shown in Figure 2, each input281

x = [xtitle, xbody] is passed to the model using282

SP (x) := Prompt(xtitle, xbody), instructing the283

LLM to analyze whether the claims are realistic,284

coherent, and unambiguous. The prompt guides285

the model to flag misleading or vague statements286

and ultimately classify the article as real or fake.287

The prompt explicitly guides the model to check288

for misleading or unclear statements before con-289

cluding whether the news is real or fake. This290

process hinges on four key aspects: (1) plausibility,291

by assessing alignment with known healthcare nar-292

ratives (Tan et al., 2024); (2) internal consistency,293

by detecting contradictions or logical gaps (Dus-294

manu et al., 2017); (3) clarity, by identifying vague295

or ambiguous language (Guigon et al., 2024); and296

(4) decisiveness, requiring an explicit final judg-297

ment. This structured setup ensures consistent, in-298

terpretable assessments of model performance in 299

misinformation detection. 300

3.2 Supervised Fine-Tuning 301

Supervised Fine-Tuning (SFT) with Quantized 302

Low-Rank Adaptation (QLoRA) (Dettmers et al., 303

2023) was used to efficiently fine-tune LLMs 304

while reducing memory and computational costs. 305

QLoRA applies Parameter Efficient Fine-Tuning 306

(PEFT) (Xu et al., 2023), using low-rank ap- 307

proximations of weight matrices, where W ≈ 308

A · BT , reducing the number of parameters 309

while maintaining performance. The fine-tuning 310

process is guided by a standardized prompt 311

(SP (x), y) : SP (x) → y, and optimized us- 312

ing the L loss function, defined as L(θ) = 313
1
N

∑N
i=1 [ŷi log(yi) + (1− ŷi) log(1− yi)] where 314

ŷi are the predictions, yi are the true labels, and N 315

is the total number of samples. This method en- 316

sures computational efficiency while maintaining 317

model effectiveness in tasks like claim verification. 318

3.3 Reinforcement Learning 319

Preference Data Creation. To fine-tune the model 320

using RLHF, we constructed a preference dataset 321

designed to guide the policy optimization pro- 322

cess. The dataset consists of structured interac- 323

tions where the model receives prompts based on 324

standardized templates and generates responses 325

that are explicitly ranked for preference learn- 326

ing. We employed two formats for preference 327

data collection, one for Binary Classifier Optimiza- 328

tion (BCO) (Jung et al., 2024) and the other for 329

Contrastive Preference Optimization (CPO) (Xu 330

et al., 2024). In the BCO format, we constructed 331

both positive and negative completions for each 332

instance. Given a news x, the standardized prompt 333

SP (x) was structured. The model’s response y 334

was labeled as preferred (True) when aligned with 335

the original ground-truth label and non-preferred 336

(False) when intentionally flipped to the oppo- 337

site class. The BCO formated data defined as: 338
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DBCO = {(SP, y+, L+), (SP, y−, L−)}, where339

y+ and y− represent the correct and incorrect com-340

pletions, and L+ = 1, L− = 0 denote preference341

labels. In contrast, the CPO format explicitly pairs342

the correct and incorrect completions under a cho-343

sen vs. rejected paradigm. Each sample contains a344

preferred response y+ and a rejected response y−,345

structured as DCPO = {(SP, y+, y−)}. This for-346

mat allows the model to directly learn to differenti-347

ate between correct and incorrect outputs, refining348

its response ranking capabilities. The structured349

preference data thus enables fine-tuning through350

RLHF by optimizing the policy to maximize re-351

ward based human-aligned feedback signals.352

Binary Classifier Optimization (BCO). The BCO353

framework (Jung et al., 2024) provides an efficient354

method for aligning LLMs using binary feedback355

signals rather than comparative preference-based356

ranking. In the context of healthcare misinfor-357

mation detection, BCO enables models to learn358

directly from binary evaluations of content accu-359

racy. Given a news data DBCO, the binary feedback360

enables the model to iteratively refine its classi-361

fication function fθ(x) by minimizing the binary362

cross-entropy loss LBCO(θ).363

LBCO(θ) = − E
(x,y)∼D+ [log σ(rθ(x, y) − δ)]364

− E
(x,y)∼D−

[
pψ(f = 1|x)
pψ(f = 0|x)

log σ(−(rθ(x, y) − δ))

]
365

Where σ is the sigmoid function, rθ(x, y) repre-366

sents the reward function parameterized by θ, δ is367

a margin term, and pψ(f = 1|x) and pψ(f = 0|x)368

denote the probabilities of correct and incorrect369

classifications, respectively. By leveraging bi-370

nary supervision, BCO enables efficient preference-371

based optimization, making it particularly useful372

for mitigating misinformation in healthcare.373

Contrastive Preference Optimization (CPO).374

The CPO (Xu et al., 2024) directly optimizes375

policy preference rankings by leveraging con-376

trastive learning. The model aims to distinguish377

between preferred (chosen) and less preferred378

(rejected) outputs, refining its response generation379

toward more accurate and reliable completions.380

This is particularly critical in misinformation381

detection, where incorrect classifications can382

lead to harmful consequences. Given a news383

data DCPO(θ), CPO objective is: LCPO(θ) =384

minθ L(πθ, U)︸ ︷︷ ︸
Lprefer

−E(x,y+)∼D
[
log πθ(y

+ | x)
]︸ ︷︷ ︸

LNLL

,385

where, LNLL is the negative log-likelihood386

(NLL) (Rafailov et al., 2023) loss term that387

maximizes the likelihood of preferred outputs, 388

and πθ is the model’s policy. Moreover, L(πθ, U) 389

represents the behavior cloning (BC) regular- 390

izer (Hejna et al., 2024) using Kullback–Leibler 391

(KL) divergence and is defined as: L(πθ;U) = 392

−E(x,y+,y−)∼D [log σ (β log πθ(y
+|x)− β log πθ(y

−|x))], 393

where σ(·) is the sigmoid function, ensuring the 394

preference ranking is learned in a probabilistic 395

manner, πθ(y
+|x) and πθ(y

−|x) represent the 396

model’s probability distribution over responses 397

given the input x := SP (x), and β is a scaling 398

factor controlling the contrastive margin. 399

Weighted Contrastive Preference Optimization 400

(CPO**). In the CPO, behavior cloning (BC) 401

aligns a model’s predictions with reference behav- 402

ior, minimizing the divergence between the model’s 403

policy and the expert’s demonstrations. The KL 404

divergence measures this dissimilarity, guiding the 405

model to emulate the expert’s actions closely. The 406

objective is to ensure that the model’s policy ap- 407

proximates the expert’s policy, promoting accu- 408

rate and reliable outputs. To stabilize the optimiza- 409

tion process and prevent overfitting, we introduce 410

a log-based weight term W = − log(exp(L) + ϵ), 411

where L = log(πθ(y
+|x))− log(πθ(y

−|x)) is the 412

difference between the log-probabilities of cho- 413

sen and rejected responses, and ϵ is a small con- 414

stant to avoid numerical issues. This term encour- 415

ages the model to favor chosen responses over re- 416

jected ones by penalizing large deviations, akin to 417

the behavior enforced by KL divergence. Addi- 418

tionally, the exponential function within the term 419

serves as an unnormalized probability ratio, and 420

applying the logarithm helps mitigate abrupt gra- 421

dient fluctuations, leading to more stable training. 422

By applying W to L(πθ;U) KL-based behavior 423

cloning, we enhance preference learning through 424

L(πθ;U) = L(πθ;U) × W . This formulation 425

combines the strengths of preference optimization 426

and behavior cloning regularization, effectively ad- 427

dressing challenges related to biased outputs and 428

sampling inefficiencies (Xu et al., 2024), promoting 429

robustness in preference learning, while ensuring 430

the model generates high-quality responses. 431

4 The Framework Evaluation 432

4.1 Experimental Setup 433

Experimental Datasets. We use two publicly 434

available healthcare misinformation datasets in this 435

study: FakeHealth(Dai et al., 2020) and ReCOV- 436

ery(Zhou et al., 2020), both of which contain la- 437
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FakeHealth ReCOVery
Real Fake Total Real Fake Total

Train 1,040 529 1,569 1,022 499 1,521
Test 346 177 523 342 166 508

Table 2: Details of datasets.

FakeHealth ReCOVery
Prec Rec F1 Prec Rec F1

BERT 65.8 64.6 65.0 91.2 87.0 88.7
FakeNews 59.7 59.8 59.8 83.1 82.6 82.8
ALBERT 62.1 60.3 60.7 90.1 90.1 90.1
Flan-T5 33.0 50.0 39.8 84.6 54.5 49.2
ELECTRA 33.0 50.0 39.8 88.8 82.2 84.4

Table 3: Results of transformer-based models. The
FakeNews model is refers to a domain-specific fine-
tuned BERT (https://huggingface.co/dhruvpal/
fake-news-bert).

beled real and fake health-related news articles438

and claims. The ReCOVery dataset focuses on439

COVID-19 misinformation, including 1,364 real440

and 665 fake claims sourced from fact-checking441

platforms and authoritative health agencies. It was442

constructed by analyzing content from 2,000 news443

publishers and selecting 60 with extreme credibility444

scores to ensure accurate labeling. The FakeHealth445

dataset contains two subsets: Story (1,078 real /446

420 fake) and Review (308 real / 286 fake). We447

combine these subsets to form a more diverse and448

challenging benchmark. Articles no longer acces-449

sible online were excluded to maintain data con-450

sistency. For both datasets, we apply a 75%-25%451

train-test split. Detailed statistics are presented in452

Table 2.453

Experimental Models. We evaluated five model454

variants to compare the effectiveness of prompting,455

SFT, and RL strategies: (1) SP, a prompting-only456

baseline using the base model without task-specific457

adaptation. (2) SFT, a supervised fine-tuning vari-458

ant trained using QLoRA. (3) + BCO, an SFT459

model further trained with RLHF using BCO. (4) +460

CPO, an SFT model enhanced with RLHF using461

CPO. (5) + CPO**, an SFT model fine-tuned with462

RLHF using an improved CPO algorithm that in-463

corporates a log-based weighted loss to better align464

with human preferences.465

4.2 Results466

RQ1: How effective are smaller LLMs in de-467

tecting misinformation in healthcare? Baseline468

evaluation using SP is represented in Table 4 for469

seven small LLMs and Table 5 for different larger470

LLMs, revealed considerable variability in the abil-471

FakeHealth ReCOVery
Acc Prec Rec F1 Acc Prec Rec F1

Qwen2.5 (0.5B)
SP 46.4 48.1 47.9 45.8 49.4 51.6 51.8 48.8
SFT 59.0 55.9 56.3 55.9 51.9 48.7 48.6 48.3

+ BCO 72.2 69.3 64.6 65.4 96.6 97.0 95.3 96.1
+ CPO 71.7 68.4 68.6 68.5 92.7 93.4 89.9 91.3
+ CPO∗∗ 73.0 69.9 69.9 69.9 95.0 94.7 94.0 94.3

Falcon3 (3B)
SP 43.0 43.4 42.7 41.7 39.3 58.5 53.5 36.1
SFT 69.5 65.3 62.9 63.4 94.0 93.6 92.8 93.2

+ BCO 72.4 69.1 66.4 67.2 98.0 98.3 97.1 97.7
+ CPO 74.1 71.1 68.9 69.6 94.6 94.7 93.1 93.8
+ CPO∗∗ 74.9 72.1 69.7 70.5 95.6 95.0 95.0 95.0

LLaMA-3.2 (1B)
SP 63.2 44.8 48.7 41.9 64.9 53.9 51.8 49.0
SFT 65.9 60.0 57.5 57.5 85.2 84.1 81.4 82.5

+ BCO 72.8 70.5 64.7 65.5 96.0 95.6 95.3 95.5
+ CPO 71.8 70.2 62.1 62.4 95.4 96.2 93.5 94.7
+ CPO∗∗ 74.1 72.0 66.9 67.9 96.0 95.5 95.5 95.5

Phi-3.5-Mini (3.8B)
SP 64.8 42.0 49.2 40.3 70.0 73.3 55.1 51.1
SFT 71.3 67.6 66.3 66.7 93.5 92.2 93.1 92.6

+ BCO 70.1 66.1 64.0 64.6 97.8 98.0 96.9 97.5
+ CPO 76.0 73.3 73.3 73.3 95.4 95.6 94.0 94.7
+ CPO∗∗ 76.8 74.1 73.4 73.7 97.0 97.5 95.7 96.5

Qwen3 (0.6B)
SP 66.1 58.1 50.1 40.3 68.1 83.9 55.2 42.7
SFT 65.9 33.0 49.8 39.7 67.1 33.6 49.8 40.1

+ BCO 66.5 83.2 50.5 41.0 85.4 88.0 78.9 81.5
+ CPO 74.7 71.7 69.6 70.3 95.6 95.4 94.6 95.0
+ CPO∗∗ 72.4 69.1 68.7 68.9 96.2 95.6 95.8 95.7

SmolLM2 (1.7B)
SP 65.7 33.0 49.7 39.6 66.7 33.5 49.5 40.0
SFT 52.7 49.1 49.1 49.0 66.7 43.5 49.7 40.5

+ BCO 74.1 73.4 65.4 66.3 96.0 95.6 95.3 95.5
+ CPO 75.7 73.2 70.3 71.2 95.6 95.4 94.6 95.0
+ CPO∗∗ 76.4 74.1 71.1 72.1 96.8 96.7 96.1 96.3

SmolLM2 (360M)
SP 60.8 44.0 47.6 42.6 66.3 58.2 54.6 53.4
SFT 65.2 54.5 51.2 45.7 67.3 58.8 50.6 42.4

+ BCO 67.4 62.2 55.9 54.3 95.0 95.5 93.2 94.2
+ CPO 72.0 68.5 66.6 67.2 94.4 93.9 93.4 93.6
+ CPO∗∗ 73.9 71.1 67.9 68.8 95.1 94.3 94.4 94.4

Table 4: Experimental results of LLMs. The blue color
represents the best performance, while orange repre-
sents the second-best performance.

ity of smaller LLMs to detect misinformation. 472

Overall Effectiveness of Small LLMs. According 473

to the Table 4, while smaller models demonstrated 474

some capacity to distinguish between factual and 475

misleading content, their raw performance was lim- 476

ited. For example, Qwen2.5 (0.5B) achieved an 477

F1 of 45.8 on FakeHealth and 48.8 on ReCOV- 478

ery—comparable to or better than some larger mod- 479

els (see Table 5). Interestingly, LLaMA-3.2 (1B) 480

showed competitive performance despite its mod- 481

est size, with F1 scores of 41.9% (FakeHealth) 482

and 49.0% (ReCOVery), respectively. This may 483

be attributed to its extended larger context window, 484

which enables better comprehension of long-form 485

content. Performance did not scale linearly with 486

model size. For instance, Falcon3 (3B) lagged 487

significantly in both datasets, suggesting that archi- 488

tectural differences and pretraining quality are just 489

as important as parameter count. 490

Domain-Specific Precision Analysis. According to 491
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FakeHealth ReCOVery
Acc Prec Rec F1 Acc Prec Rec F1

Previous Works
GPT-3.5 - - - - - 96.4 93.9 95.0
LLaMA-3 (8B) - - - - - 96.1 94.5 95.2
Standardized Prompting of Larger LLMs
Qwen2.5 (32B) 66.3 61.8 50.6 41.9 77.1 77.9 67.8 69.3
LLaMA-3.3 (70B) 66.3 63.2 50.5 41.4 75.9 78.6 65.1 66.1
Qwen2.5 (72B) 65.9 49.7 49.9 40.2 76.5 77.0 67.1 68.5
Qwen2.5 (14B)
SP 66.1 58.1 50.4 41.3 75.1 72.0 68.7 69.7
SFT 66.1 33.0 50.0 39.8 72.8 75.1 60.1 59.4

+ BCO 76.4 74.0 71.4 72.6 98.0 98.2 97.2 97.7
+ CPO 76.0 73.5 74.6 73.9 97.8 98.2 96.8 97.5
+ CPO∗∗ 78.3 75.9 75.1 75.4 97.8 97.9 97.1 97.5

Table 5: Larger LLMs experimental results. The GPT-
3.5 LLM has been explored by Wang et al. (2023), and
LLaMA-3 (8B) by Irnawan et al. (2025).

the precision scores in the medical domain, small492

LLMs generally underperform compared to larger493

LLMs. For instance, the best precision obtained by494

Qwen3 (0.6B) on FakeHealth was 58.1%, whereas495

LLaMA-3.3 (70B) achieved 63.2%. In contrast, on496

ReCOVery, Qwen3 (0.6B) outperformed LLaMA-497

3.3 by approximately 3.5%, achieving 83.9%.498

These findings suggest that while smaller LLMs499

can detect misinformation, they struggle with500

context-dependent claims. This highlights the im-501

portance of domain adaptation strategies to im-502

prove their effectiveness, even for larger LLMs.503

RQ2: To what extent does SFT enhance task-504

specific adaptation for misinformation detec-505

tion? To assess SFT’s impact, we analyze how506

different models adapt to domain-specific misinfor-507

mation detection after fine-tuning.508

Smaller LLMs. As we can see in Table 4, Falcon3,509

which performed poorly in SP (F1 of 41.7% on510

FakeHealth and 36.1% on ReCOVery), shows the511

most dramatic improvement with SFT, reaching F1512

of 63.4% on FakeHealth and 93.2% on ReCOV-513

ery. Moreover, LLaMA-3.2, Phi-3.5-Mini, and514

SmolLM2, which already exhibited moderate per-515

formance in SP, also see notable improvements.516

Phi-3.5-Mini achieves F1 of 66.7% on FakeHealth517

and 92.6% on ReCOVery after fine-tuning, indi-518

cating that SFT helps these models leverage their519

parameter size and context length more effectively.520

However, Qwen3 (0.6B) struggles in terms of pre-521

cision and F1-scores in both datasets, showing522

that even with SFT, some models may not benefit523

substantially. Similarly, SmolLM2 (360M)—the524

smallest model—improves from 42.6% to 45.7%525

on FakeHealth, but fails to gain on ReCOVery.526

Larger LLMs. Unfortunately, a similar improve-527

ment pattern was not observed with the larger LLM528

Qwen2.5 (14B) after SFT (see Table 5). This sug-529

gests that SFT may provide diminishing returns 530

for some large models, potentially due to their pre- 531

training objectives, parameter saturation, or opti- 532

mization difficulties during fine-tuning. However, 533

alternative fine-tuning strategies, such as those pro- 534

posed by Wang et al. (2023) for GPT-3.5 and by Ir- 535

nawan et al. (2025) for LLaMA-3-8B, substantially 536

outperform both SP and standard SFT approaches. 537

This suggests that conventional SFT alone may not 538

fully unlock the potential of LLMs, and size alone 539

is not the main driver of model performances. 540

Transformer-Based Models. When comparing 541

across architectures, transformer-based models gen- 542

erally benefited from SFT (see Table 3). However, 543

even these models did not surpass Phi-3.5-Mini 544

(3.8B), indicating that fine-tuning effectiveness de- 545

pends not just on architecture or scale, but also on 546

pretraining quality and task alignment. Notably, 547

traditional transformers like BERT struggled with 548

longer inputs, often exceeding their token limits. 549

In contrast, LLMs with extended context windows 550

handled such content more effectively, underscor- 551

ing key limitations of earlier transformer models in 552

real-world misinformation detection. 553

In summary, SFT proves to be a valuable adapta- 554

tion method, especially for smaller and underper- 555

forming models, though its effectiveness is highly 556

dependent on model architecture, pretraining strat- 557

egy, and task alignment. This hinders the need for 558

more advanced fine-tuning approaches to further 559

boost performance across models. 560

RQ3: How does RLHF influence the perfor- 561

mance of LLMs in detecting misinformation 562

compared to SFT? To answer this RQ, the 563

empirical evaluation of small LLMs presented in 564

Table 4 and larger LLMs shown in Table 5 for 565

+BCO, +CPO, and +CPO** strategies. 566

Overall RLHF Benefits Across LLMs. RLHF con- 567

sistently outperforms SFT across both FakeHealth 568

and ReCOVery datasets. According to Table 4, 569

for all tested models, adding RLHF led to notable 570

F1 gains. For instance, with the Qwen2.5 (0.5B) 571

model, the CPO∗∗ approach achieved a +14% F1 572

increase (from 55.9% to 69.9%) on FakeHealth, 573

and an impressive +46% gain (from 48.3% to 574

94.3%) on ReCOVery compared to SFT. As 575

an another example, the most smallest LLM, 576

the SmolLM2 (360M) model, using the CPO∗∗ 577

achieved a +23% F1 increase (from 45.7% to 578

68.8%) on Fakehealth, and 52% gain (42.4% to 579

94.4%) on ReCOVery compared to SFT. These 580

improvements evident that RLHF enhances LLM 581
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performances, especially for underperforming SFT582

models. A similar pattern was also observed in583

larger LLMs. As shown in Table 5, Qwen2.5 (14B)584

improves from 39.8% (SFT) to 75.4% (CPO∗∗)585

on FakeHealth. It also reaches 97.5% F1 on586

ReCOVery, outperforming GPT-3.5 (95.0%) and587

LLaMA-3-8B (95.2%) from previous works.588

Superiority of CPO∗∗. Among the RLHF methods,589

CPO∗∗ outperformed both BCO and CPO across590

nearly all models and datasets. In small LLMs, as591

we can see in Table 4, the Phi-3.5-Mini (3.8B),592

the CPO∗∗ attained the highest F1 score of 73.7%593

for FakeHealth and 96.5% for ReCOVery datasets.594

The next LLM that stood out in the small LLM595

category is SmolLM2 (1.7B), with F1-score of596

72.1% with CPO∗∗ on FakeHealth and 96.3%597

on ReCOVery. Across 8 LLMs evaluated on 2598

datasets each (yielding a total of 16 experiments),599

the CPO∗∗ method achieved the highest F1 score600

in 10 out of the 16 cases, showcasing that the601

log-based weighting mechanism can facilitate602

more stable training and better alignment.603

Performance Convergence Across Model Sizes.604

RLHF—particularly CPO—dramatically narrows605

the performance gap between small and large606

models. For example, SmolLM2 (1.7B) with CPO607

achieves 96.3% F1 on ReCOVery, surpassing608

LLaMA-3 (8B) (95.2%) and even Qwen2.5 (14B)609

(97.5), which is just a 1.2% difference despite an 8x610

size gap. Likewise, smaller models such as Qwen3611

(0.6B) and LLaMA-3.2 (1B), when fine-tuned612

with CPO∗∗, outperform standard prompting of613

LLaMA-3 (70B) on FakeHealth and ReCOVery.614

These results show that model scale alone no615

longer guarantees superior performance. With616

high-quality alignment strategies like BCO, CPO,617

or CPO∗∗, smaller models become competitive618

alternatives—offering strong task performance619

with significantly lower computational cost and620

better deployment feasibility.621

Our findings highlight RLHF as a powerful622

tool for improving misinformation detection across623

LLM scales. It not only boosts individual perfor-624

mance but also bridges the capability divide be-625

tween small and large models, making small LLMs626

viable alternatives for real-world deployment.627

5 Discussions628

5-Fold Cross-Validation. Table 6 summarizes the629

5-fold cross-validation results for Phi-3.5-Mini fine-630

tuned with CPO∗∗. The model demonstrates strong631

SP SFT BCO CPO CPO**
0

20

40

60

80

100

Qwen2.5 Falcon3 Phi-3.5 LLaMA-3.2

Figure 3: F1fake for ReCOVery and FakeHealth datasets.

Acc Prec Rec F1
FakeHealth 75.0 72.0 71.4 71.6
ReCOVery 97.4 97.5 96.5 97.0

Table 6: 5-Fold Cross Validations using SFT + CPO**
for Phi-3.5-Mini LLM.

and consistent performance, particularly on the Re- 632

COVery dataset, achieving 97.0% F1 score, with 633

an F1fake of 96.0%. While performance on Fake- 634

Health is comparatively lower (F1: 71.6, F1fake: 635

61.9), the results still reflect meaningful gains from 636

CPO∗∗. Overall, these findings highlight the relia- 637

bility and robustness of our RL-based fine-tuning 638

approach for enhancing misinformation detection 639

in smaller LLMs. 640

RLHF Impact on Fake Claims. The Figure 3 641

shows the F1 scores for the "fake" class across 642

LLMs and setups on both datasets. CPO∗∗ consis- 643

tently outperforms other methods, especially on Re- 644

COVery, highlighting its strength in fake news de- 645

tection. While BCO performs stably across models, 646

CPO shows more variance. The log-based weight- 647

ing in CPO∗∗ helps stabilize RLHF fine-tuning, 648

enhancing both performance and robustness over 649

BCO. Although SFT improves over SP, it remains 650

highly variable in detecting "fake" claims. 651

6 Conclusion 652

We showed that smaller LLMs, when enhanced 653

with RL can effectively detect healthcare misinfor- 654

mation. Evaluated on FakeHealth and ReCOVery, 655

these models outperformed SFT and approached 656

larger-model performance with lower computa- 657

tional cost. This suggests a promising path for 658

efficient, real-world misinformation detection. 659
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Limitations660

While our study demonstrates that small and mid-661

sized LLMs, enhanced through RLHF, can achieve662

competitive performance in healthcare misinfor-663

mation detection, it is not without limitations.664

First, our evaluation is restricted to two healthcare-665

specific datasets—FakeHealth and ReCOVery. Al-666

though these benchmarks are well-established, they667

do not reflect the full diversity of misinformation668

found in broader domains such as finance, politics,669

or climate science. Future work should incorporate670

additional datasets to assess cross-domain general-671

izability. Second, while we applied a standardized672

prompting strategy across models, we did not con-673

duct extensive prompt engineering or instruction674

tuning. This may have limited the performance675

ceiling, particularly for models in the SP stage. As676

prompt sensitivity can significantly impact LLM be-677

havior—especially in smaller architectures—more678

systematic prompt optimization could yield further679

improvements. Third, due to the computational de-680

mands of large-scale experimentation, we focused681

on three RLHF strategies—BCO, CPO, and our682

proposed CPO∗∗—that are well-suited for factual683

alignment. However, other RLHF variants such684

as DPO (Rafailov et al., 2023), PPO (Schulman685

et al., 2017), or reward modeling could offer addi-686

tional insights and performance gains if explored687

in future work. Finally, our study is limited to a688

binary misinformation classification setting. While689

this is a practical and common formulation, fine-690

grained misinformation detection—e.g., categoriz-691

ing claims by severity, intent, or harm—could pro-692

vide richer insights and more actionable outputs.693

We hope this empirical study lays the groundwork694

for such future directions by demonstrating the via-695

bility of small LLMs in high-stakes domains like696

healthcare.697
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