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ABSTRACT

We study continued training and supervised-fine-tuning (SFT) of a language model
(LM) to make effective use of long-context information. We first establish a reliable
evaluation protocol to guide model development—instead of perplexity, we use a
broad set of long-context tasks, and we evaluate models after supervised fine-tuning
(SFT) with instruction data as this better reveals long-context abilities. Supported
by our robust evaluations, we run thorough experiments to decide the data mix
for continued pre-training, the instruction tuning dataset, and other design choices
such as position extrapolation. We find that (1) code repositories and books are
excellent sources of long data, but it is crucial to combine them with high-quality
short data; (2) training with a sequence length beyond the evaluation length boosts
long-context performance; (3) for SFT, using only short instruction datasets yields
strong performance on long-context tasks. Our final model, ProLong-8B, which
is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-
art long-context performance among similarly sized models at a length of 128K,
outperforming Llama-3.1-8B on the majority of long-context tasks despite having
seen 5% as many tokens during long-context training. Additionally, ProLong can
effectively process up to 512K tokens, one of the longest context windows of
publicly available LMs.1

Takeaways for continued training of long-context models

• Evaluation (§2): We target a range of long-context downstream tasks instead of perplexity
or needle-in-a-haystack, while checking if the short-context performance is preserved. We
evaluate models after SFT, which produces a clearer signal on long-context tasks.

• Data engineering (§3): We conduct a series of ablations at a 5B-token scale. We find
that using code repositories and long books as long-context data and mixing them with
high-quality short-context data is crucial for both long-context performance and retaining
the short-context capabilities of the pre-trained model.

• Scaling the data and the length (§4): We scale up the training to 20B tokens at a 64K
training length and 20B tokens at a 512K training length. Surprisingly, training on contexts
longer than the evaluation length yields additional benefits.

• Supervised fine-tuning (§5): We find that SFT with standard, short-context instruction
datasets is sufficient for achieving good performance. Contrary to previous study, long
synthetic instruction data does not boost the result in our setting.

• ProLong models (§6): We present our final recipe and evaluation results here. All our
code, data, and models will be made publically available.

1 INTRODUCTION

The ability of language models (LMs) to process extremely long inputs (for example, 128K tokens)
has enabled new applications, such as book summarization or learning new tasks on the fly from many

1All our code, data, and models will be made publically available.
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examples. However, adapting LMs to process long contexts is challenging from an infrastructure and
data perspective, and many design decisions are not well understood by open-source practitioners.

While many works have focused on extending the context length of pre-trained LMs with minimal
training (Chen et al., 2023; Peng et al., 2024), Fu et al. (2024) find that the above methods cannot
even perform the simple needle-in-a-haystack (NIAH; Kamradt, 2024) task and it is necessary to
continually train the LM on long documents for billions of tokens. Frontier open-source models,
such as Llama-3.1 (Dubey et al., 2024) and Jamba (Lenz et al., 2024), also adopts a long-context
continued training stage, followed by supervised fine-tuning (SFT) on instruction data. We adopt the
same setting and study continued training and SFT of a pre-trained LM for effective long-context use.

We first establish a reliable evaluation protocol to provide meaningful signal for model development.
Most existing work relies on either perplexity or NIAH for ablating training recipes. We demonstrate
that neither is robust for guiding the development and opt for a broad range of downstream applica-
tions, such as retrieval-augmented generation (RAG), long-document summarization, and many-shot
in-context learning (ICL). We also conduct our evaluations after performing SFT, as we observe that,
on some long-context tasks, performance gains only emerge after SFT.

Guided by our evaluation protocol, we run comprehensive experiments with Llama-3-8B (8K original
context window; Dubey et al., 2024) to study each component of long-context continued training,
including data mixture, data and length scaling, supervised fine-tuning, and many other design choices
such as position extrapolation. Many of our findings are surprising or contradictory to existing claims,
for example, (1) training only on long data hurts long-context performance, (2) training on longer
sequences than the evaluation length helps, and (3) SFT on only short instruction data is sufficient for
good long-context performance. We outline our main takeaways and the structure of the paper in the
takeaway box at the beginning of this section.

Our final model, ProLong, achieves the best performance at a 128K context length among 10B-
parameter models, while taking only 5% of the data budget compared to Llama-3.1’s long-context
training (Dubey et al., 2024). ProLong has a maximum context length of 512K tokens, making it one
of the longest-context LMs available.2

2 GUIDE MODEL DEVELOPMENT WITH MEANINGFUL EVALUATIONS

A pre-requisite for training a strong LM is having a robust evaluation suite that can guide model
development while tracking its utility in real-world applications. While synthetic benchmarks like
needle-in-a-haystack (NIAH; Kamradt, 2024) and RULER (Hsieh et al., 2024) have gained much
popularity due to their simplicity and controllability, we are interested in a wider range of tasks that
reflect practical usage, such as the ability to reason over the whole document. In the following, we
describe our evaluation protocols and showcase why they are critical to our model development.

2.1 EVALUATE ON DIVERSE AND REALISTIC TASKS

We first make the decision to use HELMET (Yen et al., 2024b) as our main evaluation suite, as it is
one of the most comprehensive long-context benchmarks, covering the following task categories:

• Recall: Given a JSON file with random key-values pairs, retrieve the value for a specific key.
• RAG: Answer a question given many retrieved Wikipedia documents (NQ, HotPotQA, PopQA).
• Re-rank: Produce a top 10 ranking from a long and shuffled list of documents (MSMARCO).
• ICL: Learn classification tasks from many in-context examples, where the number of classes

ranges from 6 to 151; average of 5 datasets (TREC coarse/fine, NLU, Banking77, Clinc-150).
• QA: Answer a question given a full-length book (NarrativeQA).
• Summarization: Summarize long legal documents (Multi-LexSum).

Overall, these diverse tasks reflect a range of long-context abilities including recall, reasoning,
learning from context, and robustness to noisy inputs. Yen et al. (2024b) also show that HELMET
produces model performance trends that are more consistent with human perceptions unlike other
long-context benchmarks.

2Throughout the paper, we use binary prefixes K= 210, M=220, and B=230.
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We showcase the importance of a robust evaluation suite
in Table 1. As a predecessor of our work, Fu et al. (2024)
only consider needle-in-a-haystack (NIAH) and perplex-
ity during model development; evaluations on 3 tasks
from HELMET reveal major short-comings of their
model. We also see how NIAH and even the HELMET
recall task become saturated for strong models (Llama-
3.1-8B vs. 70B) while other task categories continue to
detect differences in their long-context abilities.

Table 1: HELMET tasks offer a more holistic
view of long-context abilities.

HELMET

Models NIAH Recall RAG Re-rank

Fu et al. (2024) 86.0 33.0 46.6 7.7

Llama-3.1-8B 100 98.7 62.8 26.6
Llama-3.1-70B 99.7 98.5 65.9 39.4

We offer more details about the HELMET evaluation, including its careful choice of metrics, in §B.1.
If not otherwise specified, we average the performance for each category over all datasets and over
evaluation lengths of 32K and 64K; for the final long-context score, we macro-average all categories.

Why not perplexity? Besides synthetic recall tasks, many
previous works rely on perplexity (PPL) for evaluating long-
context extensions of LMs (Chen et al., 2023; Fu et al., 2024;
Lu et al., 2024), which is commonly measured on the PG19
books dataset (Rae et al., 2020). We use the ablation experi-
ment from §3.2 to showcase why perplexity is not an indicative
metric for developing long-context models. The experiment
studies how the ratio of long documents affects the perfor-
mance. We report both our evaluation and the perplexity mea-
sured on the last 32K tokens of 64K-length documents from
PG19. As shown in Figure 1, while using more long data con-
tinues to improve PPL, it is clear that using 100% long data
significantly hurts downstream long-context performance.

20 40 60 80100
7.5

8.2
PPL on PG19↓

20 40 60 80100
48

56
Long Task Avg.↑

Long-Context Data (%)

Figure 1: Making design deci-
sions based on perplexity (PPL)
is not optimal for long-context
downstream tasks.

2.2 EVALUATE AFTER SUPERVISED FINE-TUNING

Supervised fine-tuning (SFT; Ouyang et al., 2022) is an additional training stage that fine-tunes the
model on a small amount of natural-language instructions and corresponding responses; it enables
a base LM to address user queries in a chat format and has become a standard step for producing
frontier LMs. Here, we consider the difference between evaluating a model before or after SFT.

In preliminary experiments, we continue training Llama-3-8B-Base on 5B-token subsets from the
data mix by Fu et al. (2024). The mix is based on SlimPajama (Soboleva et al., 2023) and upsamples
long documents to constitute roughly 70% of tokens, while retaining the original domain proportions.
Then we conduct SFT on several intermediate checkpoints with UltraChat (Ding et al., 2023).

We show the benchmarking results before and after SFT in Figure 2. Long-context evaluation shows
clearer signals when it is conducted after SFT: (1) SFT shows that the model continues to improve
with more training tokens on RAG and re-ranking, while the improvement is less clear or does not
exist when evaluated before SFT. (2) SFT enables evaluation on realistic applications like QA and
summarization, which require instruction following and have low performance before SFT. We also
note that the variance from two random training runs is not substantially higher after the additional
SFT phase. Therefore, unless otherwise specified, we report the long-context performance after SFT.
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Recall
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45

53
RAG

1 2 3 4 5
15

26
Re-rank

1 2 3 4 5
64

87
ICL

1 2 3 4 5
16

37
QA

1 2 3 4 5
0

41
Summarization

#Training Tokens (B)

Before SFT After SFT

Figure 2: Improvements on RAG and re-ranking tasks are only observed when evaluating models after
a supervised fine-tuning (SFT) phase on instruction data. The models are trained on the pre-training
data mix by Fu et al. (2024). We report the mean and standard deviations over two training runs.
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We dive deeper into supervised fine-tuning in §5 and explore different training datasets, as well as the
use of synthetic long instruction data. However, we find that simply fine-tuning on UltraChat remains
a surprisingly competitive choice.

2.3 CHECK THAT SHORT-CONTEXT PERFORMANCE IS PRESERVED

Long-context abilities should not come at the expense of short-context performance, particularly since
short-context evaluations cover a wider range of capabilities, e.g., world knowledge, commonsense,
and mathematical reasoning. However, short-context evaluation has largely been neglected by
previous long-context research. We report on 5 tasks from the the Open LLM Leaderboard (Beeching
et al., 2023): HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al., 2021), ARC-challenge
(Clark et al., 2018), WinoGrande (Sakaguchi et al., 2021), and GSM8K (Cobbe et al., 2021). We
evaluate short-context performance before SFT, since this allows for a direct comparison to the base
model which was used as initialization for the long-context training.

Previous techniques deteriorate
short-context performance. We
show in Table 2 that both training-free
position extrapolation, as well as fine-
tuning with an existing long data mix-
ture (Fu et al., 2024) do not preserve
the strong performance of Llama-3-
8B on standard short-context tasks.
This motivates us to find data sources
which retain the initial model’s strong
short-context performance.

Table 2: Applying position extrapolation (PE) to Llama-3-
8B by changing the RoPE frequency base (§C.1) or fine-
tuning it on a long-context SlimPajama mixture (Fu et al.,
2024; Soboleva et al., 2023) deteriorates the performance
of this top-shelf pre-trained LM on short-context tasks.

HSwag MMLU ARC-c WG GSM8K

Llama-3-8B 82.1 66.5 59.4 77.1 44.7
+ PE 81.5 64.7 58.1 75.5 40.1
+ SlimPajama 81.0 63.1 57.8 75.1 40.6

3 LONG-CONTEXT DATA CURATION

The quality and composition of training data has been found to be the most important factor for LM
pre-training (Penedo et al., 2023; Wettig et al., 2024; Li et al., 2024a) and is therefore a primary
focus of our study. To make data decisions, we perform ablation experiments: we continue to train
Llama-3-8B-Base for 5B tokens with a maximum length of 64K tokens and evaluate according to §2.
See §B.4 for more details of our ablation setting.

We aim to boost the long-context task performance while preserving the short-context performance
of the original model. Starting from the intuition that the data should be a mixture of long and
short documents, we study these choices separately. In our ablations, the long data is comprised of
single-document chunks of 64K tokens, whereas for the short data, we construct batches by packing
documents until we reach 64K tokens per sequence.

3.1 CODE REPOSITORIES AND BOOKS ARE GOOD SOURCES OF LONG-CONTEXT DATA

SlimPajama. We analyze the quantity of long data in SlimPajama
(SP; Soboleva et al., 2023). Table 3 shows that books account for
the majority of long-context tokens. When inspecting the long
data in CommonCrawl (CC), we observe that though varied in
quality, it also contains some book-like content, which future work
could identify via data selection methods.

Code repositories. While only few files from GitHub reach a
very long length (which also tend to be lower quality as sug-
gested by Singh et al., 2024), we construct an abundant source
of long-context data from the Stack (Kocetkov et al., 2023) by
concatenating all files from a repository to form a single document.
Unlike Guo et al. (2024), we do not order the files based on depen-
dencies, which should increase the distance between dependent
files and reduce recency bias.

Table 3: Long text docu-
ments (≥64K tokens) by
data sources.

Data #Long
tokens

Code Repos 98.8B
SP/Books 33.2B
SP/CC 15.3B
SP/Arxiv 5.2B
SP/GitHub 2.8B
SP/Wiki 0.1B
SP/StackEx <0.1B
SP/C4 <0.1B
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Table 4: Impact of different long data sources, while keeping the 40% short data component fixed.
Code repositories particularly helps long-context recall, while books are more effective on re-ranking,
ICL, and summarization. Mixing the two sources achieves the overall best performance.

Long Data (60%)
Long-Context Short-Context

Recall RAG Re-rank ICL QA Summ. Avg. Avg.

CommonCrawl 84.1 53.3 28.1 67.5 35.2 37.0 50.9 66.5
Books 94.9 53.9 30.7 72.2 33.2 37.7 53.8 65.5
Code Repos 99.2 53.8 29.0 61.2 34.7 36.2 52.3 65.9
Books/Repos 1:1 96.0 54.9 29.4 73.9 35.7 37.9 54.6 65.5

Data mixture. We train models with 60% of long-context data and 40% of our ShortMix (§3.3).
Table 4 shows that using code repositories alone performs best on stress-test recall tasks. Meanwhile,
books are more broadly beneficial for in-context learning, summarization and re-ranking. An equal
mix of books and code repositories achieves the best overall performance. Note that short-context
task performance remains consistent due to our high-quality short data mix.

3.2 TRAINING ONLY ON LONG DATA HURTS LONG-CONTEXT PERFORMANCE

The ratio between short/long data is another crucial factor for downstream performance. Prior work
either trains only on long data (Peng et al., 2024) or adds some short training data (Yen et al., 2024a;
Fu et al., 2024). However, we are the first to systematically study the impact of short/long ratio.

Figure 3 shows that short task performance monotonically decreases as the long data increases. The
trends for long-context vary by tasks and are further complicated by SFT: On tasks like recall and
RAG, the performance before SFT prefers high proportions of long data, while the performance after
SFT drastically deteriorates with more long data. We hypothesize that specializing the model only on
long data makes it a poor initialization for generic SFT—highlighting the importance of evaluating
checkpoints after SFT (§2.2). While some long-context tasks benefit from more long data consistently
(ICL) or show no clear pattern (re-ranking), the best average performance is achieved at 60% long
data and 40% short data, which we adopt for our final ProLong model.
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Long-Context Data (%)
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Figure 3: Impact of short/long data ratio. All models are trained on books/repos long data and
our ShortMix for 5B tokens. More long data initially improves long-context performance, but then
becomes impairing. More long data also consistently degrades the short-context performance.

3.3 CHOOSING A HIGH-QUALITY SHORT-CONTEXT MIX IS IMPORTANT

We saw in §2.3 that it is difficult to preserve the strong performance of
Llama-3-8B on short-context tasks during long-context fine-tuning. We
adopt our best long-context settings (Book/repo data and 60% long/40%
short) and study the impact of different short-context training mixes.
We experiment with SlimPajama (Soboleva et al., 2023), FineWeb-Edu
(Penedo et al., 2024), DCLM-Baseline (Li et al., 2024a), and our own
ProLong ShortMix. Our ShortMix is inspired by the “stage 2 training”
in MiniCPM (Hu et al., 2024a) and Dolma-1.7 (Soldaini et al., 2024),
which use more knowledge-intensive, downstream-related data at the
end of pre-training. Table 5 shows the composition of our ShortMix.3

Table 5: Our ShortMix.

Components %

FineWeb 25
FineWeb-Edu 25
Wikipedia 10
Tulu-v2 10
StackExchange 10
ArXiv 10
OpenWebMath 10

3Since we do not truncate documents in the short data component unnecessarily, it includes a small percentage
of documents longer than 8K tokens. See Table 14 in the appendix for the dataset length statistics.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 6: Impact of different short data sources. The long-context performance is the average of 6
categories at the lengths of 32K and 64K.

Short Data (40%)
Long-Context Short-Context

Avg. HellaS. MMLU ARC-c WG GSM8K Avg.

Original model (Llama-3-8B) - 82.1 66.5 59.4 77.1 44.7 66.0

SlimPajama 52.9 81.2 63.0 58.5 76.2 41.9 64.2
FineWeb-Edu 53.0 81.0 62.6 57.7 74.4 39.4 63.0
DCLM-Baseline 52.0 82.0 65.6 59.6 77.4 39.4 64.8
ProLong ShortMix 54.6 81.6 65.3 58.0 76.2 46.6 65.5

Table 6 demonstrates that the short data component has a substantial impact on both short-context and
long-context downstream performance. Our curated ShortMix outperforms other short data sources
on both short and long-context tasks and our data domains are particularly important for retaining
Llama-3-8B’s performance on mathematical reasoning. Surprisingly, we find that fine-tuning only
using FineWeb-Edu—a dataset that is curated to help with knowledge-intensive tasks like MMLU—
performs poorly as a short-context component, and we combine it with more diverse data sources in
our ShortMix. DCLM-Baseline performs well on all short-context tasks except for GSM8K. This can
likely be improved by combining with math-related datasets, but as we added the DCLM-baseline
ablation at the conclusion of the project, we leave this exploration to future work.

4 SCALING THE SIZE AND LENGTH OF THE TRAINING DATA

Training for more steps is well-known to improve downstream tasks in regular pre-training, but little
analysis has been done in the context of long-context continual training. We incorporate the lessons
from our ablation experiments and arrive at the ProLong recipe, which we describe in detail in §6.
Notably, we scale up the training budget to longer sequences (up to 512K) and more tokens (20B
tokens at a maximum sequence length of 64K and an additional 20B tokens at 512K). We reset the
learning rate schedule and increase the RoPE frequency base when switching from 64K to 512K
context lengths. In this section, we analyze the impact of these decisions.

Increasing the number of steps helps. In Figure 4, we plot the downstream performance of
intermediate checkpoints of our 40B-token runs. While the long-context performance fluctuates
throughout training, we observe positive trends on recall, RAG, re-ranking, and summarization. For
short-context tasks, we observe the average performance initially drops from the initialization, but
gradually recovers. Performance again drops when switching from 64K to 512K sequence length, but
also recovers with additional training.
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Stage 1: 64K Stage 2: 512K Before SFT After SFT

Figure 4: Performance of our final ProLong model throughout training.

Increasing the training length beyond the evaluation length helps. One might assume that we
should train long-context models on the maximum sequence length that we want the model to support.
Many works even emphasize the ability to extrapolate to even longer sequences at inference time
(Press et al., 2022; Xiao et al., 2024b;a; Yen et al., 2024a; Chen et al., 2023). In contrast, we observe
that training a model on an even longer sequence length (512K tokens) substantially improves the
long-context performance at a shorter evaluation length (64K tokens).
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Table 7: Impact of training models on different sequence lengths. All the results are evaluated at a
sequence length of 64K. We see that training at a maximum length beyond the evaluation context
window consistently improves the long-context performance.

Max Seq. Length Recall RAG Re-rank ICL

ProLong 64K training (20B) 96.5 52.7 22.8 70.6
+4B 64K training 95.0 56.4 28.0 78.8
+4B 512K training 98.5 56.9 32.9 79.2

We establish this by initializing with a model that was trained for 20B tokens at 64K and either (1)
continuing training at 64K, or (2) switching to the 512K training. We use the same hyperparameters
and data mixtures in either experiment. We evaluate a checkpoint after 4B training tokens on the
recall, RAG, re-ranking, and ICL tasks at a evaluation length of 64K. Comparing the two runs in
Table 7, we see consistent gains from switching to the 512K training length.4

5 SUPERVISED FINE-TUNING FOR LONG-CONTEXT LMS

In this section, we study how to best enable long-context language models to follow instructions. We
focus on supervised fine-tuning on instruction datasets (Ouyang et al., 2022) and leave reinforcement
learning and preference optimization for future work.

All our experiments in this section use the ProLong base model, which was trained for 40B tokens at
a maximum sequence length of 512K. In comparison, open-source instruction data are very short, e.g.,
UltraChat (Ding et al., 2023) conversations have 1.2K tokens on average and 4.1K tokens maximum.
To bridge this gap, several works (Xiong et al., 2023; Dubey et al., 2024; Xiong et al., 2024) have
proposed to generate long-context instruction tuning data synthetically.

We consider three popular SFT datasets—UltraChat (Ding et al., 2023), Tulu-v2 (Ivison et al., 2023),
ShareGPT5—and three sources of synthetic data: For synthetic QA, we prompt Llama-3-8B-Instruct
to generate a question-and-answer pair given a random chunk from a long document; we reuse the
QA pairs for synthetic RAG but we present a random list of chunks from the document to mimic
retrieved passages; for synthetic summarization, we generate summaries for long books via recursive
summarization (Wu et al., 2021). For all synthetic data, we write several templates, which we sample
at random to increase diversity. More details can be found in §B.5. We always use a combination of
40% synthetic QA, 30% synthetic RAG, and 30% synthetic summarization in our synthetic instruction
dataset. The hyperparameters for the instruction tuning experiments can be found in Table 9.

Short-context instruction data yields strong long-context results. We first establish that UltraChat
outperforms Tulu-v2 and ShareGPT in Table 22. We therefore use it when studying the ratio of
synthetic long-context instruction data in Table 8. Surprisingly, we find that adding synthetic data
does not improve the performance on these very long-context tasks, and adding even as little as 1%
synthetic data hurts the performance in our setting. Therefore, we use only short-context UltraChat
data for the instruction tuning of our final ProLong model.

Table 8: Effect of different ratios of synthetic SFT data (mixed with UltraChat). We report the
32K-and-64K-averaged performance except tasks marked with †, which are evaluated at 512K for
stress testing. The number of percentage is based on #tokens, not #samples.

% Synthetic Data JsonKV† RAG Re-rank ICL QA† Summ.† Avg.

0% 65.7 58.1 38.5 80.3 49.7 42.1 55.7
1% 61.5 57.0 38.3 80.8 45.3 41.5 54.1
3% 62.0 56.4 37.9 80.6 44.8 39.5 53.5

10% 70.3 55.5 36.1 80.6 41.7 39.4 53.9
50% 45.8 48.8 18.8 70.5 42.3 33.3 43.3

4While we demonstrate the benefit of longer data, we note that training with longer sequences is more
expensive, and may therefore not be the computationally optimal choice.

5https://huggingface.co/datasets/RyokoAI/ShareGPT52K.
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Table 9: The training recipe for ProLong. Note that compared to our data ablations in §3, we decide
to add textbooks data, which slightly changes the proportions of ShortMix.

Continued Long-context Training

Data 30% code repos, 30% books, 3% textbooks, 37% ShortMix

ShortMix: 27% FineWeb-Edu, 27% FineWeb,
11% Tulu-v2, 11% StackExchange,
8% Wikipedia, 8% OpenWebMath, 8% ArXiv,

Length
Curriculum

Stage 1 (64K): Code repos, books, and textbooks at length 64K

Stage 2 (512K): Code repos: 50% at length 512K, 50% at length 64K
Books: 17% at length 512K, 83% at length 64K
Textbooks at length 512K

Steps Stage 1: 20B tokens (2.2K H100 hours), Stage 2: 20B tokens (12.2K H100 hours)

Model Initialization: Llama-3-8B-Instruct (original RoPE base freq. 5× 105)
RoPE: Stage 1: 8× 106, Stage 2: 1.28× 108

Attention: Full attention with cross-document attention masking

Optim. AdamW (weight decay = 0.1, β1 = 0.9, β2 = 0.95)
LR: 1e− 5 with 10% warmup and cosine decay to 1e− 6, each stage
Batch size: 4M tokens for stage 1, 8M tokens for stage 2

Supervised Fine-tuning (SFT)

Data UltraChat

Steps 1B tokens

Optim. AdamW (weight decay = 0.1, β1 = 0.9, β2 = 0.95)
LR = 2e− 5 (cosine decay to 2e− 6), warmup = 5%
Batch size = 4M tokens

Why do our conclusions about synthetic data differ from previous work? We offer the following
hypotheses: (1) Previous work like Xiong et al. (2024); Bai et al. (2024a) may have insufficient
long-context training and the synthetic data acts as additional long-context training data. (2) Our
instruction dataset is much smaller compared to the private instruction data used for Llama-3.1
(Dubey et al., 2024)—it is possible that when using an extensive short instruction dataset, mixing in
synthetic long data avoids the model from degenerating on long-context tasks.

6 THE PROLONG MODEL: RECIPE AND RESULTS

6.1 FINAL RECIPE

We summarize the training recipe for ProLong in Table 9. Our final model starts from the Llama-3-
8B-Instruct model and is trained on 64K sequence length for 20B tokens. It is then further trained on
512K sequence length for 20B tokens (ProLong base), which we achieve using sequence parallelism
(Li et al., 2023). We obtain the final ProLong model via SFT of the base model on UltraChat. One
small difference on the data mixture between our ablations and the final model is that we mix in
3% high-quality textbooks (Chevalier et al., 2024), as book-like data are shown to be beneficial for
long-context (§3.1) and textbooks are also highly educational. You can find more details about our
data processing (§B.2) and the training stack (§B.3) in the appendix.

In the following, we elaborate on several carefully ablated design choices in our recipe.

RoPE frequency base tuning. We find that changing the RoPE (Su et al., 2021) frequency base
to achieve position extrapolation (Xiong et al., 2023; emozilla, 2023) significantly improves long-
context performance, even with a significant amount of training. §C.1 shows our ablation on the
best RoPE base to use. While the original Llama models use a RoPE base of 105, we use a base of
8× 106 for the 64K setting and 1.28× 108 for the 512K setting.

Disabling cross-document attention. Ding et al. (2024a) show that masking out attention across
document boundaries improve model performance and this was also used during Llama-3 pre-training

8
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Table 10: Our main evaluation results on HELMET (Yen et al., 2024b; details in §B.1). All results
are averaged over sequence lengths of 32K, 64K, and 128K. For all models, we use the corresponding
instruction version. ProLong is one of the best performing 10B-scale LMs while achieving a
maximum context window of 512K tokens. The complete set of results can be found in §D.

Model Max Len. Recall RAG ICL Re-rank QA Summ. Avg.

ProLong (8B) 512K 99.4 66.0 81.1 33.2 40.8 40.5 60.2
MegaBeam-Mistral (7B) 512K 99.4 58.1 82.1 22.1 33.7 43.6 56.5
Meta-Llama-3.1 (8B) 128K 98.7 62.8 79.7 26.6 40.4 46.1 59.0
Qwen2 (7B) 128K 34.4 43.4 54.8 4.6 23.3 38.5 33.2
Phi-3-small (7B) 128K 74.8 60.6 82.0 18.5 34.1 42.4 52.1
Mistral-Nemo (12B) 128K 24.9 48.1 82.0 4.7 37.7 37.0 39.1

Jamba-1.5-Mini (12B/52B) 256K 87.7 61.3 88.4 25.9 42.0 38.6 57.3
Meta-Llama-3.1 (70B) 128K 98.5 65.9 80.0 39.4 47.2 51.1 63.7
Claude-3.5-Sonnet 200K 99.4 44.0 79.3 19.9 38.1 49.2 55.0
Gemini-1.5-Pro 2M 94.2 71.4 78.9 65.3 44.4 56.2 68.4
GPT-4o 128K 99.9 71.5 86.7 59.6 47.0 55.7 70.1

(Dubey et al., 2024). In §C.2, we show that disabling cross-document attention in continual training
benefits both the short and long-context performance. Disabling cross-document attention can also
result in higher training throughput, which we describe in more detail in §B.3.

Starting from Llama-3-8B-Instruct. While we conduct all our long-context training ablations with
the base model of Llama-3-8B, we use Llama-3-8B-Instruct as the initialization for the final ProLong
model. §C.3 shows that while slightly improving the long-context performance, Llama-3-8B-Instruct
significantly enhances the short-context performance.

6.2 PROLONG PERFORMANCE

We present the final HELMET evaluation results of ProLong in Table 10. We compare to a number
of frontier long-context LMs, namely MegaBeam6, Llama-3.1 (Dubey et al., 2024), Qwen2 (Yang
et al., 2024a), Phi-3 (Abdin et al., 2024), Mistral-Nemo7, Jamba-1.5 (Lenz et al., 2024), Claude-3.5-
Sonnet (Anthropic, 2024), Gemini-1.5 (Reid et al., 2024), and GPT-4o (Achiam et al., 2023).

ProLong outperforms all 10B-scale models on our long-context evaluation. Notably, ProLong
outperforms Llama-3.1-8B-Instruct on all long-context categories except summarization. ProLong
achieves this with only 5% of Llama-3.1’s long-context training data budget (40B vs. 800B tokens).

Since most existing models do not support more than 128K tokens,
to showcase ProLong’s 512K context length, we stress test ProLong
on the QA and summarization tasks from 32K to 512K8. Table 11
shows that the performance of ProLong continues to improve at
longer lengths, suggesting an effective longer context window.

Table 11: ProLong at 512K.
32K 64K 128K 512K

QA 31.7 43.7 46.7 49.7
Summ 40.4 39.8 41.5 42.1

Besides HELMET, we also evaluate our models on NoCha (Karpinska et al., 2024)—a claim
verification dataset on 67 recently published English fictional books. We chose this dataset because
(1) it minimizes the data contamination problem as all the books are unlikely to exist in the model
pre-training data; (2) all the claims are written by human readers and require global reasoning. Each
test instance contains two contradictory claims, and the models must correctly judge both to pass.

Table 12 demonstrates the NoCha evaluation results. Among 10B-scale models, ProLong achieves the
best accuracy on the extremely long test instances (>180K); on test instances <75K tokens, ProLong
significantly outperforms other models and is the only model that is better than random guessing
(25%). This further showcases the strength of our training recipe and the ProLong model.

6https://huggingface.co/aws-prototyping/MegaBeam-Mistral-7B-512k.
7https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407.
8In QA and summarization, we truncate the documents at the evaluation length; hence an effective long-

context model should demonstrate better performance on longer lengths.
9https://github.com/marzenakrp/nocha. NoCha has a private test set and all evaluation is done

by the NoCha authors. Hence, we report models from Table 10 that are also evaluated by the NoCha leaderboard.
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Table 12: Results on the NoCha benchmark (Karpinska et al., 2024).9 ProLong is the only model
that achieves above-random performance in the <75K category and we consistently beat Llama-3.1.
Different from the original NoCha leaderboard, we report the average accuracy over all test instances
without filtering the test examples based on the model’s context window lengths.

Model Max Len. <75K 75K-127K 127K-180K >180K

ProLong (8B) 512K 28.4 17.0 13.1 20.3
MegaBeam-Mistral (7B) 512K 19.8 18.3 17.5 15.6
Meta-Llama-3.1 (8B) 128K 17.3 16.4 0.0 0.0
Mistral-Nemo (12B) 128K 13.6 0.4 0.0 0.0

Jamba-1.5-Mini (12B/52B) 256K 27.2 28.0 24.4 6.2
Meta-Llama-3.1 (70B) 128K 42.0 25.0 0.0 0.0
Gemini-1.5-Pro 2M 24.7 38.8 35.3 46.9
GPT-4o 128K 55.6 58.4 0.0 0.0

7 RELATED WORK

Adapting existing LMs for long contexts. Many works explore extending the LM context windows
with minimal training, either by position extrapolation (Chen et al., 2023; Peng et al., 2024; Chen
et al., 2024; Ding et al., 2024b; Liu et al., 2024a; Zhang et al., 2024b; Zhu et al., 2024; Zhao et al.,
2024; Wu et al., 2024; Hu et al., 2024b) or manipulating the attention patterns (Chen et al., 2024;
Xiao et al., 2024b;a; Bertsch et al., 2023; Jin et al., 2024). Yoshida et al. (2020); Choromanski et al.
(2021); Chevalier et al. (2023) instead explore the idea of compressing the long contexts into shorter
forms. However, Fu et al. (2024); Lu et al. (2024) show that using full attention, applying simple
position extrapolation, and fine-tuning the model on long documents reach much stronger results.

Llama 3.1 (Dubey et al., 2024) and Jamba (Lieber et al., 2024) achieve long-context capabilities
by adding a long-context continued training stage between standard pre-training and supervised
fine-tuning, which is the setting we follow. Fu et al. (2024) study the data engineering for this setting
and argue that 0.5B tokens of domain-balanced, length-upsampled data is sufficient for acquiring the
long-context recall ability—which we show is not sufficient if a more holistic evaluation is taken.
Xiong et al. (2023); Dubey et al. (2024); Lieber et al. (2024); Xiong et al. (2024); An et al. (2024b);
Bai et al. (2024a) also adopt synthetically-generated long data in the SFT stage; however, we find that
using standard, short-context instruction data achieves the best long-context results in our setting.

Efficient long-context architectures. There have been many efforts in designing more efficient
architectures, for example, linear attention/RNNs (Gu & Dao, 2023; Dao & Gu, 2024; Ma et al., 2022;
Sun et al., 2023; Peng et al., 2023; Yang et al., 2024b), and alternative attention architectures (Rubin
& Berant, 2023; Sun et al., 2024; Yen et al., 2024a). However, they often require training from scratch
and many have the inherent limitations in terms of long-context recall (Jelassi et al., 2024; Arora
et al., 2024). Recent works explore hybrid models (Waleffe et al., 2024; Lieber et al., 2024)) or
distilling existing LMs into hybrid models (Wang et al., 2024) and show promising results.

Long-context evaluation. Many benchmarks have been proposed for long-context evaluation
(Shaham et al., 2023; Hsieh et al., 2024; Krishna et al., 2023; Zhang et al., 2024a; An et al., 2024a;
Bai et al., 2024b) There are works studying particular aspects of long-context LMs as well, such as
positional bias (Liu et al., 2024b), in-context learning (Bertsch et al., 2024; Li et al., 2024b), and
book-length summarization (Kim et al., 2024). In this work, we follow Yen et al. (2024b) for its
diverse application coverage and reliable evaluations.

8 CONCLUSION

We study the problem of given a short-context pre-trained LM, how to most effectively continually
pre-train and SFT the model to be long-context. We conduct thorough ablations on each component
and many of our findings contradict existing practices or beliefs. We use all the findings to produce
ProLong, a new state-of-the-art long-context LM. We release all our code, data, and models publicly
and hope that our findings will boost research and applications of long-context LMs.
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A LIMITATIONS

Although we try to ablate the major components of our training recipe, due to resource limitations,
we cannot exhaust all aspects, such as the optimization hyperparameters and additional data mixtures.
We also limit ourselves to the 10B-scale regime and the Llama-3 base models, which may limit
the generalizability of our recipe to our base models. Another concern is that we are overfitting to
the tasks chosen for model development—however, we do not directly train on those datasets and
guiding model development with benchmark tasks has become a common practice in pre-trained LM
development. We also show that our final recipe and model perform well on an additional evaluation
dataset, NoCha.

B EXPERIMENT DETAILS

B.1 EVALUATION

Table 13: The details for our long-context evaluation following HELMET (Yen et al., 2024b).

Category Metrics Tasks and Datasets

Recall SubEM Given a randomly-generated long JSON file and a key, retrieve the corre-
sponding value (Liu et al., 2024b).

RAG SubEM Given a question and many retrieved Wikipedia documents (shuffled),
answer the question (Liu et al., 2024b). Datasets: NaturalQues-
tion (Kwiatkowski et al., 2019), HotpotQA (Yang et al., 2018), and
PopQA (Mallen et al., 2023).

Re-rank nDCG@10 Given a query and many retrieved documents (shuffled), re-rank the top-
10 documents. Datasets: MSMARCO (Bajaj et al., 2016).

ICL Accuracy Datasets selected from Bertsch et al. (2024): TREC coarse, TREC
fine (Hovy et al., 2001), NLU (Liu et al., 2021), Banking77 (Casanueva
et al., 2020), and Clinc-150 (Larson et al., 2019).

QA GPT-4o score Given a book, answer the question. Datasets (# tokens): NarrativeQA
(medium: 73K; max: 518K; Kočiský et al., 2018).

Summ. GPT-4o score Summarize a given legal document. Datasets (# tokens): Multi-LexSum
(medium: 90K; max: 5M; Shen et al., 2022)

Table 13 shows all the datasets we used for the long-context evaluation from HELMET (Yen et al.,
2024b). We highlight some of the evaluation protocol improvements that HELMET implemented
compared to previous benchmarks here:

• Sufficient context lengths and fine-grained control. HELMET can evaluate models at a context
length of 128K tokens and beyond. The evaluation protocol also allows for reporting results at
different lengths, giving developers fine-trained controls for different needs of long contexts.

• Better synthetic recall tasks. As shown in HELMET, needle-in-a-haystack (Kamradt, 2024)
is mostly saturated because of its simplicity—the model only needs to find a needle in some
irrelevant context. We instead use the more challenging JSON KV task, first proposed in Liu et al.
(2024b) and included in HELMET, where the model is required to find the corresponding value
to a given key among a large JSON file.

• Using class-balanced demonstrations and abstract labels for ICL. To disentangle models’
ability of learning from demonstrations from their pre-training bias of the task or the dataset
label distribution (Pan et al., 2023), HELMET samples the same number of demonstrations for
each class and uses number labels (1, 2, ...) instead of natural-language labels (e.g., location,
description, ...).

• Model-based evaluation for long-context QA and summarization. Instead of using traditional
metrics like ROUGE (which has shown to be poorly indicative of the real model performance:
Deutsch & Roth, 2021; Deutsch et al., 2022; Goyal et al., 2023; Chang et al., 2024), HELMET
uses model-based evaluations to compare the reference answer and the model output. For QA,
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HELMET uses GPT-4o to score the model output given the question and the reference answer at a
0-3 scale. For summarization, HELMET takes a similar approach as Zhang & Bansal (2021); Gao
et al. (2023): it first uses GPT-4o to decompose the reference summary and the model summary
into atomic claims; then it uses GPT-4o to check whether each reference atomic claim is covered
by the model output (recall) and whether each model atomic claim is covered by the reference
summary (precision). Yen et al. (2024b) show that the model-based evaluation correlates with
human perceptions significantly better than traditional metrics.

B.2 DATA PROCESSING

Data sources. We list all the data sources we have explored in our ablations and main experiments
here: the Stack (Kocetkov et al., 2023), SlimPajama (Together, 2023; Soboleva et al., 2023), FineWeb
(we use the 2023-50 snapshot), FineWeb-Edu (we use a random sample) (Penedo et al., 2024),
Tulu-v2 (Ivison et al., 2023), OpenWebMath (Paster et al., 2024), textbooks (Chevalier et al., 2024),
and Dolma (Soldaini et al., 2024). The Books, StackExchange, and ArXiv data are from SlimPajama.
The Wikipedia data are from Dolma.

Data filtering and packing. For the short training data and the SFT data, we randomly sample and
concatenate the documents or conversations into 64K chunks. The last document for each chunk is
truncated. The truncated part is used as the beginning for the next chunk for the short training data
but is discarded for the SFT data. For the long-context training data, we filter out the documents that
are shorter than 64K; we do the same for the 512K setting.

Final data mixture. We use a slightly different long data mixture in our ablations (Table 5) and our
main ProLong experiment (Table 9). For the final model, we mix 3% textbooks into the long-context
training data. The textbooks are open-source resources from libretexts.org, collected and made
available by Chevalier et al. (2024). We pre-process the data by concatenating chapters from the same
text books, as well as books from the same subject areas. This results in extremely long sequences
which we pack into contexts of either 64K or 512K tokens. Though we do not have an ablation for
adding this data due to limited resources, we believe that it should have a slight positive effect to the
final model performance as textbooks are highly educational long-context data.

Table 14: % Proportion of long documents for the short data components used in Table 6. These
statistics are computed after packing and truncation and therefore correspond to the document lengths
as seen by the model. We highlight that the proportion of documents beyond 32K is below 1% for
ShortMix.

>4K >8K >16K >32K

FineWeb 1.4 0.3 0.1 0.0
FineWeb-Edu 2.8 0.8 0.2 0.0
Wikipedia 1.6 0.4 0.0 0.0
Tulu-v2 0.0 0.0 0.0 0.0
StackExchange 0.6 0.1 0.0 0.0
ArXiv 85.7 64.0 30.3 7.6
OpenWebMath 11.1 4.3 1.2 0.3

ShortMix 10.9 7.2 3.2 0.8

SlimPajama 11.3 7.4 4.9 3.2
FineWeb-Edu 2.8 0.8 0.2 0.0
DCLM-Baseline 4.9 1.7 0.4 0.1

B.3 IMPLEMENTATION DETAILS

Technical stack. We use various open-source packages and tools for the ProLong training and
evaluation. We use PyTorch (Paszke et al., 2019) and Hugging Face transformers (Wolf et al., 2020)
for the model training. We use mosaic-streaming (Mosaic ML, 2022) for loading and mixing the data
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and FlashAttention 2 (Dao, 2024) for efficient attention implementation. We implement sequence
parallelism based on DeepSpeed-Ulysses (Jacobs et al., 2023). For long-context evaluation, we use
HELMET (Yen et al., 2024b) and for short-context evaluation, we use lm-eval-harness (Gao et al.,
2021).

Attention and batching. Since we do document masking in attention §6, we use the variable-length
attention implementation from FlashAttention 2 (Dao, 2024) to speed up long-context training: for
sequences that are concatenations of multiple short documents, instead of computing the full attention
with masking, we instead compute the attention for each individual document. Since the complexity
of attention is quadratic to the sequence length, this improves the training speed. However, the
improvement is negligible in a distributed training setting with FSDP, since GPUs processing short
sequence batches have to wait on other GPUs processing long sequences. We therefore implement
a smart batching algorithm: In our setting, a gradient step usually consists of multiple gradient
accumulation steps, where each device processes a smaller minibatch. We sort all the minibatches
per training step by the sum of the squared lengths of documents in the sequence. This leads to
more balanced sequence lengths across the GPUs and effective speedups, as can be seen in Table 15,
without affecting the gradient updates or loss during training. However, the efficiency gains are
diminished when training with more GPUs, as this reduces the number of gradient accumulation
steps.

Table 15: Throughput per device of our ablation runs from Table 20, when training with 8 Nvidia
H100 GPUs with FSDP. Our strategy of reordering minibatches is important for realizing the speed
benefits from variable-length attention.

Throughput
(tokens/s/GPU)

64K full attention 2770

Variable-length attention 2780(+0.4%)

+ Minibatch reordering 3095(+11.7%)

Token-averaged loss. We found that in the SFT stage, the distribution of the training tokens (in SFT,
the tokens from the instructions are masked out and the models are only trained on the responses) on
each GPU device can be extremely imbalanced, especially when there is synthetic data (most tokens
in a synthetic data instance are from the instruction). Conventional all-reduce loss in distributed
training averages over the sequences instead of valid tokens, which skews the optimization and also
our control over the domain proportions. Instead, we change the all-reduce loss to be the average
over all valid training tokens. Bai et al. (2024a) implements their SFT loss in a similar way.

B.4 THE ABLATION SETTING

For all our ablations, unless specified, we train the base model of Llama-3-8B (instead of Instruct)
on a 64K sequence length for 5B tokens, with the same hyperparameters as specified in Table 9.
We choose this context length, as it is the highest power of 2 value for which we can train without
sequence parallelism. By default, we use the same training data as the 64K ProLong setting, except
that we remove the textbooks and use the ShortMix proportions in Table 5. For SFT, we use the same
settings as specified in Table 9.

B.5 GENERATING SYNTHETIC SFT DATA

We prompt Llama-3-8B-Instruct to generate the synthetic data and Table 16 shows the prompt we used
for generating the synthetic QA data for books. We also write predefined templates and randomly
sample one for each synthetic instance to increase the diversity, and Table 17 provides some examples.
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Table 16: Prompts for generating synthetic QA data.

Given the following snippet of a book, ask a relevant question and
provide the answer. The question and the answer should follow the
following rules:

(1) The question should be specific enough that it can only be
answered with the snippet. The question should also be interesting
and intellectual enough that a curious reader of the book would ask
about it.
(2) The question and the answer should be comprehensible given just
the whole book without highlighting the snippet. With that being
said, the question should NOT refer to the snippet directly (e.g., do
NOT say things like "Question: given the conversation in the snippet,
what ..."). The answer also should not mention "the snippet ..."
explicitly (assuming that the snippet is never provided), but it can
copy the snippet content as a reference when answering the question.
(3) The answer should be concise but also should provide references
to the book when needed. For example, \Wellington Yueh betrayed the
Atreides, as the book mentioned, ’...’".

*** Start of the snippet ***

{sampled snippet}

*** End of the snippet ***

Before generating the question and the answer, first reason about
what this snippet is about. In your generation, stick to the
following format:

Reasoning: this snippet is about ...
Question: ...
Answer: ...

Table 17: Examples for question prompts and templates used for generating diverse synthetic QA data.
We sample one question prompt and one template each time and combine them with the documents
and the generated QA pairs to form a synthetic training example.

Example question prompts for synthetic QA data

Given the document, please answer the question.
Here is a piece of text; answer the following question based on it.
Please answer the question using the provided content.
Based on the given passage, respond to the question.
Read the snippet and answer the question that follows.
Using the provided text, answer the following question.

Example templates for combining questions, answers, and contexts for synthetic QA data

{prompt}\n\n{documents}\n\nQuestion: {question}
{prompt}\n\n==== document starts ====\n{documents}\n==== document ends
====\n\nQuestion: {question}
{prompt}\n\n{documents}\n\n{question}
{prompt} Question: {question}\n\n{documents}
{prompt} {question}\n\n{documents}
{prompt}\n\n{question}\n\n{documents}
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C MORE ABLATIONS

C.1 POSITION EXTRAPOLATION

Xiong et al. (2023); emozilla (2023) show that changing the RoPE frequency base to a larger value in
continual long-context pre-training or in inference time can improve the long-context performance.
emozilla (2023) suggests that one should scale the frequency base by a factor of t

d
d−2 , where t is

the ratio between the target sequence length and the original LM length, and d is the attention head
dimension.

We conduct ablation studies, at both 64K (same as our standard ablation setting as specified in
§B.4) and 512K (starting from ProLong-64K and training with the 512K data mixture for 5B tokens)
sequence lengths, on what frequency bases we should use. Table 18 and Table 19 show the results. We
first see that using the original 500,000 frequency base from Llama-3 leads to significant performance
degradation. While dynamic NTK suggests 4× 106, we find that further scaling it to 8× 106 leads to
better performance. Similar, we see that when scaling the 64K model to 512K, while dynamic NTK
suggests a 64× 106 frequency base, much larger frequency bases (128× 106 and 256× 106) lead to
better performance. We use 8× 106 for 64K and 128× 106 for 512K for our final ProLong models.

Table 18: Ablation study on RoPE frequency base at a maximum training length of 64K. Dynamic
NTK (emozilla, 2023) roughly suggests to use 4m as the frequency base.

RoPE Base
(×106)

Long-Context Short-Context

Recall RAG Re-rank ICL QA Summ. Avg. Avg.

0.5 25.8 37.0 4.4 73.8 17.5 16.3 29.1 65.0
4.0 81.3 47.8 18.2 76.5 31.8 36.3 48.7 65.3
8.0 96.0 54.9 29.4 73.9 35.7 37.9 54.6 65.5

Table 19: Ablation study on RoPE frequency base at a maximum training length of 512K. Dynamic
NTK (emozilla, 2023) roughly suggests to use 64× 106 as the frequency base.

RoPE Base
(×106)

Long-Context Short-Context

Recall RAG Re-rank ICL QA Summ. Avg. Avg.

64 98.8 57.8 30.4 82.2 38.2 38.3 57.6 68.3
128 98.8 57.4 30.7 80.0 40.4 38.8 57.7 68.6
256 98.8 56.8 33.8 79.8 37.9 39.7 57.8 68.4

C.2 DOCUMENT MASKS

We experiment whether to use document masks in attention in Table 20. Standard training con-
catenates multiple short documents into a single sequence (in our case, a 64K sequence), uses a
special token to separate documents, and performs full attention over the whole sequence. When
the document masks are used, we do not allow the attention to cross the document boundaries. We
find that using document masks in continual long-context training leads to both better long-context
results and short-context performance. For all our other ablations and the main experiment, we use
document masks.

Table 20: Impact of using document masks in attention.

Attention
Long-Context Short-Context

Recall RAG Re-rank ICL QA Summ. Avg. Avg.

No doc masks 97.4 53.6 20.4 76.6 37.2 36.3 53.6 64.9
Document masks 96.0 54.9 29.4 73.9 35.7 37.9 54.6 65.5
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C.3 INITIALIZATION

We use the base model for Llama-3-8B as the initialization for all our ablations to make sure the
findings are generalizable and are not confounded by the Llama instruction tuning. However, for our
final ProLong model, we use Llama-3-8B-Instruct as the initialization to achieve the best performance.
We see in Table 21 (using the ablation setting from §B.4) that using Llama-3-8B-Instruct as the
initialization achieves slightly better long-context performance and much stronger short-context
performance.

Table 21: Differences of using the base Llama-3-8B model vs. Llama-3-8B-Instruct.

Base Model
Long-Context Short-Context

Avg. HellaS. MMLU ARC-c WG GSM8K Avg.

Llama-3-8B-Base 54.6 81.6 65.3 58.0 76.2 46.6 65.5
Llama-3-8B-Instruct 55.0 80.8 66.1 58.5 75.6 57.7 67.7

C.4 INSTRUCTION-TUNING DATASETS

Initialized from the ProLong base model, we experiment with different public, short-context SFT
datasets. All runs use the same SFT hyperparameters as specified in Table 9. Table 22 shows that
using UltraChat leads to the best overall results. Note that this does not necessarily mean that
UltraChat is the best SFT dataset for all base models or applications.

Table 22: Ablations on using different short-context SFT datasets. We report the 32K-and-64K-
averaged performance except tasks marked with †, which are evaluated at 512K for stress testing.

SFT Data
Long-Context

Recall† RAG Re-rank ICL QA† Summ.† Avg.

UltraChat 65.7 58.1 38.5 80.3 49.7 42.1 55.7
Tulu v2 61.5 45.4 25.1 81.8 40.4 40.3 49.1

ShareGPT 40.5 47.5 26.7 79.6 42.7 34.4 45.2

D FULL EVALUATION RESULTS

We provide all the evaluation results, including specific numbers for each dataset and evaluation
length, at https://shorturl.at/pULbx.

E EXPERIMENTS FOR REBUTTAL

We show additional results in Table 23, 24, 25, 26, 27 to address the concerns raised by the reviewers.
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Table 23: An example of our synthetic data. The generated question and answer are fluent and faithful
to the original book. One can refer to the content of the letter here to check the answer’s correctness.

Prompt

Using the provided passage, answer the following question. What kind
of job application did Eudora Welty submit to The New Yorker in 1933?

{Letters of Note: Correspondence Deserving of a Wider Audience}
Response

Eudora Welty submitted a job application to The New Yorker in 1933,
offering to write reviews of picture galleries and 15¢ movies, and
expressing her ability to drum up an opinion after voracious reading,
with a willingness to work from daylight to dark and even draw like
Mr. Thurber if needed.

Table 24: Effect of different ratios of synthetic SFT data (mixed with UltraChat). We report the
32K-and-64K-averaged performance except tasks marked with †, which are evaluated at 512K for
stress testing. The number of percentage is based on #tokens, not #samples. “(8B)” and “(70B)”
indicate that the synthetic data are generated by Llama-3-8B-Instruct or Llama-3-70B-Instruct. Even
though using synthetic data from a stronger model leads to slightly better performance than using a
weaker model, only using short-context SFT data still achieves the best result in our setting.

% Synthetic Data JsonKV† RAG Re-rank ICL QA† Summ.† Avg.

0% 65.7 58.1 38.5 80.3 49.7 42.1 55.7
1% (from 8B) 61.5 57.0 38.3 80.8 45.3 41.5 54.1
1% (from 70B) 64.7 57.3 37.4 78.4 47.0 40.8 54.2
3% (from 8B) 62.0 56.4 37.9 80.6 44.8 39.5 53.5
3% (from 70B) 65.7 57.4 38.0 80.1 48.7 42.5 55.4
10% (from 8B) 70.3 55.5 36.1 80.6 41.7 39.4 53.9
10% (from 70B) 66.3 57.0 33.4 81.2 45.3 38.4 53.6
50% (from 8B) 45.8 48.8 18.8 70.5 42.3 33.3 43.3
50% (from 70B) 55.8 53.9 23.5 74.1 50.7 39.9 49.7

Table 25: Comparison between Fu et al. (2024) and our model. For a fair comparison, we use the
same initialization (Llama-3-8B), same amount of data (5B), and same hyperparameters (§B.4). The
ProLong data mix significantly outperforms Fu et al. (2024) on both short and long-context tasks.

Data
Long-Context (After SFT) Short-Context (Avg.)

Recall RAG Re-rank ICL QA Summ. Avg. Before SFT After SFT

Fu et al. (2024) 95.8 52.1 23.1 72.0 31.0 37.0 51.8 64.1 65.4
Our data mix 96.0 54.9 29.4 73.9 35.7 37.9 54.6 65.5 67.5
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Table 26: Short-context performance of our model after SFT. We also report a baseline using Llama-
3-8B as the initialization and data from Fu et al. (2024), trained with 5B tokens. ProLong is initialized
from Llama-3-8B-Instruct. “Llama-3-8B-Instruct + UltraChat”: for a more fair comparison to
ProLong, we conduct SFT on top of Llama-3-8B-Instruct with UltraChat. ProLong largely retraines
the short-context performance of Llama-3-8B-Instruct except MMLU and GSM8K. We hypothesize
that the close-source instruction tuning data of Llama-3-8B-Instruct is heavily engineered to improve
math and knowledge-intensive tasks, which we do not have access to. ProLong achieves comparable
results to “Llama-3-8B-Instruct + UltraChat”, which further demonstrates that our data mix effective
retains short-context performance.

Model HellaSwag MMLU ARC-c WinoGrande GSM8K Avg.

Llama-3-8B + Fu et al. (2024) 82.5 63.9 63.6 75.1 42.2 65.4
Llama-3-8B 82.1 66.5 59.4 77.1 44.7 66.0
Llama-3-8B-Instruct + UltraChat 82.1 65.1 64.3 75.5 60.7 69.5
ProLong 82.8 64.6 64.7 76.2 58.9 69.4

Llama-3-8B-Instruct 78.5 67.0 60.8 74.2 68.5 69.8

Table 27: Evaluation on additional benchmarks. Here we report the results on RULER (Hsieh et al.,
2024) and ∞Bench (Zhang et al., 2024a) at 128K. As pointed out by Yen et al. (2024b), RULER and
∞Bench cannot reliably reflect long-context performance as their domain coverage is narrow and
their evaluation metrics are noisy—as a result, we see unintuitive trends such as Gemini-1.5-Pro and
Llama-3.1 (70B) perform worse than Llama-3.1 (8B). Regardless, our model still achieves the best
performance on ∞Bench among all 10B-scale models.

Model
RULER ∞Bench

Avg. MC QA Sum Diag Calc Find Number PassKey KV Avg.

ProLong (8B) 71.9 65.1 22.0 19.8 4.5 0.0 27.4 100.0 100.0 92.8 48.0
MegaBeam-Mistral 78.9 53.7 18.5 24.8 12.0 0.0 24.3 99.7 100.0 36.4 41.0
Meta-Llama-3.1 (8B) 81.3 67.2 15.5 26.7 23.0 0.0 33.1 99.5 100.0 55.0 46.7
Qwen2 26.7 39.7 5.2 15.5 8.5 0.0 24.9 76.3 94.6 0.0 29.4
Phi-3-small 72.6 71.6 8.4 24.0 20.0 0.0 31.7 100.0 100.0 19.6 41.7
Mistral-Nemo 22.7 31.9 16.8 14.3 5.5 0.0 1.4 36.6 62.7 0.0 18.8

Jamba-1.5-Mini 87.8 76.0 17.9 0.0 3.5 0.0 31.1 100.0 100.0 45.6 41.6
Meta-Llama-3.1 (70B) 75.8 75.5 23.3 31.3 18.0 0.0 43.1 99.7 100.0 2.6 43.7
GPT-4o-mini 80.8 78.2 19.1 24.8 21.5 0.0 69.7 100.0 100.0 80.4 54.9
GPT-4o 93.3 86.5 26.0 21.5 51.0 0.0 58.9 100.0 100.0 99.8 60.4
Gemini-1.5-Pro 65.3 77.5 27.7 29.0 97.5 0.0 58.0 100.0 100.0 70.4 62.2
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