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Abstract
Multi-source Domain Generalization (DG) mea-
sures a classifier’s ability to generalize to new
distributions of data it was not trained on, given
several training domains. While several multi-
source DG methods have been proposed, they
incur additional complexity during training by
using domain labels. Recent work has shown
that a well-tuned Empirical Risk Minimization
(ERM) training procedure, that is simply mini-
mizing the empirical risk on the source domains,
can outperform most existing DG methods. We
identify several key candidate techniques to fur-
ther improve ERM performance, such as better
utilization of training data, model parameter se-
lection, and weight-space regularization. We call
the resulting method ERM++, and show it signif-
icantly improves the performance of DG on five
multi-source datasets by over 5% compared to
standard ERM, and beats state-of-the-art despite
being less computationally expensive. We hope
that ERM++ becomes a default baseline for DG.
Code is released at https://github.com/
piotr-teterwak/erm_plusplus.

1. Introduction
Domain Generalization (DG) is a crucial problem in the
field of machine learning, as it addresses the challenge
of building models that perform well on unseen (target)
data distributions, without using target data to update the
model (Blanchard et al., 2011; Muandet et al., 2013; Zhou
et al., 2021). This is important in many real-world appli-
cations, where the distribution of data may vary between
settings, and it is not always feasible to collect and label a
large amount of data for each new domain. Similarly, it is
not always known a-priori how the distribution on which
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Figure 1. ERM++: We tackle the task of Multi-Source Domain
Generalization, where a model is trained on several source domains
and evaluated on a different target domain. We do this by improv-
ing the classic, and already strong, ERM (Gulrajani & Lopez-Paz,
2020) algorithm with known methodologies. We verify our method
on a diverse set of domain shifts, and show that it improves over
the best reported numbers in the literature.

the model is deployed differs from the training distribu-
tion. In multi-source domain generalization, each training
sample is labelled as being part of one of several domains.
Many advanced methods leverage domain membership ex-
plicitly. For example, DANN (Ganin et al., 2016) uses an
adversarial loss to match feature distributions across source
domains. Adaptive Risk Minimization (Zhang et al., 2021)
meta-learns parameters which adapt a model to newly seen
distribution shift. Yet, recently DomainBed (Gulrajani &
Lopez-Paz, 2020) holistically evaluated methods and found
that ERM (Empirical Risk Minimization), outperforms most
prior work for DG in a setting where hyper-parameters are
tuned. This is all the more impressive since ERM only lever-
ages domain labels in a very weak way; by oversampling
minority domains to balance domain sizes in the training
data. Advanced techniques do not beat ERM (Gulrajani
& Lopez-Paz, 2020) despite strong inductive biases and
additional complexities (and hyper-parameters to tune).

Our goal is to revisit the framework used to benchmark mul-
tisource domain generalization problems to ensure that we
maximize the performance of baseline methods. As illus-
trated in Figure 1, our new baseline, ERM++, outperforms
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the state-of-the-art without the need for domain labels, archi-
tecture changes or complex training strategies. Instead, we
critically evaluate the components of the training pipeline.

2. Revisiting training procedures to create
ERM++ for Domain Generalization

We study the problem of Multi-Source Domain General-
ization for classification. We train a model on training
data consisting of multiple domains and evaluate it on data
from unseen domains. More formally, let us consider train-
ing domains d ∈ {d1, ..., dn}. A training dataset is con-
structed using all sample, label pairs in all training domains
D = {(Xd1 , Y d1)...(Xdn , Y dn)}. After training classifier
f on D, it is tested on a held-out testing domain dtest. As
stated in previous sections, approaches utilizing invariance
of the domain or regularization of features can complicate
the training. Instead we perform simple empirical risk min-
imization (ERM), formalized as minimizing the average
loss over all samples 1

n

∑
i∈D ℓ(xi, yi), and shown to be

successful on diverse tasks (Rame et al., 2022).

Our goal is to investigate the general training components
that go into creating an ERM model to help ensure we have
maximized its performance. These components include
how to effectively use the source data (Section 2.1), con-
siderations when selecting and using pretrained weights
(Section 2.2), and weight-space regularization methods that
help prevent overfitting to the source domains (Section 2.3).
We refer to our new stronger baseline as ERM++.

2.1. Improved Data Utilization

A key component of training any neural network is utilizing
the (often limited) training data effectively. A common prac-
tice in the domain generalization literature is to split source
datasets into (often 80%/20%) train/validation sets under a
fixed number of iterations for each dataset (e.g., (Gulrajani
& Lopez-Paz, 2020; Cha et al., 2021; Rame et al., 2022;
Arpit et al., 2021)). The validation data is used to set hy-
perparameters and perform checkpoint (no. training steps)
selection. This approach has two major drawbacks. First, by
creating a separate validation set we are sacrificing a signifi-
cant portion of our labeled data. Second, by training under
a fixed (relatively small) number of iterations we ignore the
varying convergence rates of different models, which may
result in a model underperforming its true ability.

To counteract these issues, when setting hyperparameters
in the first stage, we include a new parameter ϕ that sets
the training length (Early Stopping, Table 2 Experiment 6).
Once we have set all the hyperparameters (including ϕ), we
train our deployment model using the full dataset as noted
earlier, selecting the final checkpoint as our model. More
concretely, we continue training until we no longer observe

significant performance gains, which we refer to as Long
Training (LT, Table 2, Experiment 4). This uses training
labels more efficiently by training on the Full-Dataset (FD,
Table 2 Experiment 3). The full ERM++ baseline enables
Early Stopping, LT and Full Data.

2.2. Leveraging Pretrained Model Weights

Most domain generalization methods do not train a model
from scratch, but rather transfer the weights of an existing
model, typically pretrained on ImageNet (Deng et al., 2009).
There are three decisions that we explore further: selecting
what model weights to transfer, determining what weights to
fine-tune or keep frozen, and how to initialize new weights .

Model Weight Selection: Recent work has shown that
better ImageNet models have better domain generalization
properties for both single-source and multi-source DG (Kim
et al., 2022; Angarano et al., 2022). However, this has
been explored in the context of varying model size. There-
fore, performance gains can be either from a.) improved
pre-training dataset (upstream) performance resulting in im-
proved DG or b.) larger models resulting in improved DG
performance, regardless of upstream performance. We ex-
plore the effect of different initializations for the same model
architecture, specifically a ResNet-50 (He et al., 2016).
We test standard TorchVision model weights, AugMix-
trained weights (Hendrycks et al., 2020), ResNet A1 weights
(Wightman et al., 2021), and finally a distilled ensemble
((Shen & Savvides, 2020)). Results are shown in Table
4 and more details are present in the Appendix. We find
Augmix weights the strongest, and call AugMix inititializa-
tion Strong Init. (Table 2, Experiment 7). The full ERM++
baseline uses Strong Init.

Finetuning or freezing model weights: It has been shown
that what parameters to update during fine-tuning a pre-
trained model, and when, can have substantial effects on
downstream performance. Surgical fine-tuning (Lee et al.,
2022) shows that only updating some blocks results in im-
proved performance, but that different datasets require the
unfreezing of different blocks. Most domain generaliza-
tion methods will fine-tune most layer weights, with the
exception of BatchNorm parameters, which are sometimes
kept frozen. We compare the effect freezing or finetuning
the BatchNorm parameters on performance, and refer to
unfreezing them as UBN (Table 2, Experiment 9). The full
ERM++ baseline uses UBN.

Initializaing new layer weights: Initializing new layer
weights is typically accomplished by giving the new layer
weights a random initialization and then training them on
the target datasets. However, a recurring observation made
by many researchers over the years is that your model may
suffer from catastrophic forgetting of the pre-trained fea-
tures due to the noisy gradients from the newly initialized
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OfficeHome PACS DomainNet TerraIncognita VLCS Avg.

ERM (Vapnik, 1999) 67.6±0.2 84.2±0.1 44.0±0.1 47.8±0.6 77.3±0.1 64.2
CORAL (Sun & Saenko, 2016) 68.7±0.3 86.2±0.3 41.5±0.1 47.6±1.0 78.8±0.6 64.5
ERM + MIRO (Cha et al., 2022) 70.5±0.4 85.4±0.4 44.3±0.2 50.4±1.1 79.0±0.0 65.9
ERM + SWAD (Cha et al., 2021) 70.6±0.2 88.1±0.1 46.5±0.1 50.0±0.3 79.1±0.1 66.9
CORAL + SWAD (Sun & Saenko, 2016) 71.3±0.1 88.3±0.1 46.8±0.0 51.0±0.1 78.9±0.1 67.3
DIWA (Rame et al., 2022) 72.8 89.0 47.7 51.9 78.6 68.0
ERM + MIRO + SWAD (Cha et al., 2022) 72.4±0.1 88.4±0.1 47.0±0.0 52.9±0.2 79.6±0.2 68.1
ERM++ (Ours) 74.7±0.0 89.8±0.3 50.8±0.0 51.2±0.3 78.0±0.1 68.9

Table 1. Comparison to recent methods: Performance of recent methods as reported by (Cha et al., 2022). ERM outperforms almost all
prior work, especially when combined with techniques such as SWAD and MIRO. ERM++ outperforms all prior work on average.

ERM++ Components (#7 represents full ERM++)
OfficeHome PACS VLCS DomainNet TerraInc Avg.

# MPA FD LT WS ES S. Init UBN 15K 10K 11K 590K 25K

1 ✗ ✗ ✗ ✗ ✗ ✗ ✓ 67.1±0.2 85.1±0.3 76.9±0.6 44.1±0.15 45.2±0.6 63.7
2 ✓ ✗ ✗ ✗ ✗ ✗ ✓ 70.2±0.3 85.7±0.2 78.5±0.3 46.4±0.0 49.4±0.4 66.0
3 ✓ ✓ ✗ ✗ ✗ ✗ ✓ 71.5±0.1 87.3±0.2 77.4±0.1 46.8±0.0 49.8±0.5 66.5
4 ✓ ✓ ✓ ✗ ✗ ✗ ✓ 71.7±0.1 88.7±0.2 76.9±0.1 48.3±0.0 49.6±0.4 67.0
5 ✓ ✓ ✓ ✓ ✗ ✗ ✓ 72.6±0.1 88.8±0.1 77.0±0.1 48.6±0.0 49.3±0.3 67.3
6 ✓ ✓ ✓ ✓ ✓ ✗ ✓ 72.6±0.1 88.8±0.1 78.7±0.0 48.6±0.0 49.2±0.3 67.6
7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 74.7±0.0 89.8±0.3 78.0±0.1 50.8±0.0 51.2±0.3 68.9
8 ✓ ✓ ✗ ✓ ✓ ✓ ✓ 74.6±0.1 87.9±0.2 78.6±0.1 49.8±0.0 51.1±0.8 68.4
9 ✓ ✓ ✓ ✓ ✓ ✓ ✗ 74.7±0.2 90.1±0.0 78.6±0.1 49.9±0.0 49.0±0.4 68.3

Table 2. We present the overall ablation for ERM++, with standard errors. ERM++ corresponds to experiment 7. (1) ERM (Gulrajani &
Lopez-Paz, 2020) baseline with unfrozen BN. (2) MPA: Model parameter averaging, which uniformly improves results. (3) FD: training
on the full data. (4) LT: Training for 4x longer, which ensures convergence improves. (5) WS: Warm-starting the classification layer. (6)
ES: Splitting off validation data to find a training length yields substantial gains. (7) S.Init: Initializing the initial parameters to those
trained with AugMix brings performance to state of the art. (8) Removing LT from (7) still results in state-of-the-art performance with
half of the training cost of MIRO. (9) UBN: When we freeze the BN parameters, we see that performance substantially degrades.

OH PA VL DN TI Avg

MIRO + SWAD 72.4 88.4 79.6 47.0 52.9 68.1
DIWA 72.8 89.0 78.6 47.7 52.9 68.0

ERM++ 74.7 89.8 78.0 50.8 51.2 68.9
DIWA + ERM++ 75.1 90.0 78.6 51.5 51.4 69.3
MIRO + ERM++ 76.3 88.8 77.9 50.4 53.4 69.4

Table 3. We combine ERM++ with MIRO (Cha et al., 2022) and
DIWA(Rame et al., 2022) Both DIWA and MIRO improve per-
formance, validating that DIWA and MIRO are effective methods
even when built on top of a stronger baseline.

layer (Goyal et al., 2017; He et al., 2016; Kumar et al., 2022;
Rame et al., 2022). To address this, researchers would begin
training by Warmstart (WS, Table 2, Experiment 5) (Kana-
vati & Tsuneki, 2021; Zhai & Wu, 2018) (also commonly
referred to as warmup), where the new layer weights are
trained with all pretrained weights kept frozen for a few
epochs. After this short training cycle, new and old layer

weights are finetuned together (sometimes except for BN).
The full ERM++ baseline uses WS.

2.3. Weight-Space Regularization

Averaging model parameter iterates has a long history within
machine learning (Arpit et al., 2021; Cha et al., 2021; Iz-
mailov et al., 2018; Ruppert, 1988; Wortsman et al., 2022a;b;
Rame et al., 2022; Li et al., 2022), and improves generaliza-
tion by converging to flatter minima (Izmailov et al., 2018).
Methods can roughly be divided into those which average
within a single trajectory (Arpit et al., 2021; Izmailov et al.,
2018; Cha et al., 2021), or those between different trajecto-
ries originating from a single parent (Li et al., 2022; Worts-
man et al., 2022a; Rame et al., 2022). Because the model
parameters averaged can be interpreted as independent mem-
bers of an ensemble (Wortsman et al., 2022a), most prior
work takes care to ensure the averaged models are suffi-
ciently diverse and each member has strong performance.
This is accomplished by cyclic learning rates (Izmailov et al.,
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OfficeHome PACS VLCS DomainNet TerraIncognita Average ImageNet Accuracy

TorchVision Weights 72.2 85.9 78.5 46.9 49.7 66.6 76.1
AugMix Trained Weights 74.6 87.9 78.6 49.8 51.0 68.4 79.0
Meal V2 75.5 86.7 79.1 49.5 50.9 68.3 80.7
ResNet A1 70.8 82.8 77.7 43.0 37.3 62.3 80.4

Table 4. Top-1 Accuracy with different ResNet-50 initialization: We investigate initialization weights from different pre-training
procedures. The differences between different initializations are very substantial, up to about 6%. Interestingly, improved ImageNet
accuracy does not strongly correlate with improved performance. The very strong ResNet A1(Wightman et al., 2021) performs a full 6%
worse than the AugMix weights on DG tasks.

P C I R Q S Av

Aug 57.3 68.8 25.6 70.2 17.1 59.8 49.8

MV2 57.3 68.5 25.4 70.9 16.1 59.0 49.5

Table 5. Model distillation’s effect on domain generalization:
We look at the per-domain accuracy on DomainNet, comparing
Augmix training (Aug) and MealV2 (MV2).

2018) or searching ranges over which to average (Cha et al.,
2021). Most recently, Arpit et al. (Arpit et al., 2021) revisit
a simple method for parameter averaging where simply all
iterates are averaged (MPA). We verify that this works in
combination with other techniques present in ERM++ in
Table 2, Experiment 2. Therefore MPA is part of ERM++.

2.4. ERM++ Computational Cost

ERM++ induces less training cost overhead compared to
competing methods. ERM (Gulrajani & Lopez-Paz, 2020),
DIWA (Rame et al., 2022), and MIRO (Cha et al., 2022) all
use expensive hyper-parameter searches, while we simply
use reasonable default ones. For example, MIRO (Cha et al.,
2022) searches over 4 λ regularization weight parameters to
obtain SOTA results, and DIWA (Rame et al., 2022) aver-
ages 20-60 independent runs. Overall, without long training,
ERM++ achieves SOTA accuracy with 50% of the training
compute of MIRO and 5% of the compute of DIWA (Rame
et al., 2022), while retaining the same inference overhead.
This is even accounting for the two training passes needed
for Early Stopping with the full data; we do two passes
over the data instead of the 4 used to obtain MIRO’s result.
Further hyper-parameter tuning would likely improve any
method, but for a given training budget, ERM++ outper-
forms prior work.

3. Experiments
Experimental Setup. We follow the DomainBed training
procedure and add additional components from ERM++. In
particular, we use the default hyper-parameters from Do-
mainBed (Gulrajani & Lopez-Paz, 2020), e.g., a batch size
of 32 (per-domain), a learning rate of 5e-5, a ResNet dropout

value of 0, and a weight decay of 0. Unless we specify that
the “Long Training” component is added, we train models
for 15000 steps on DomainNet (following SWAD(Cha et al.,
2021)) and 5000 steps for other datasets, which corresponds
to a variable number of epochs dependent on dataset size. If
Long Training is used, we extend training by 4x. We train
on all source domains except for one, validate the model on
held-out data from the sources every 300 steps (1000 for
DomainNet), and evaluate on the held-out domain.

Results. Table 1 compares ERM++ to prior work, where
we outperform the state-of-the-art across five DomainBed
datasets by an average of 1%. The single largest gain was
on DomainNet (3% gain), with OfficeHome and PACS ob-
taining still substantial gains of 1.5-2%. Table 2 ablates the
importance of each piece, and show that each component of
ERM++ is important to achieve the best final performance.
Strong Init (1.3%) and Model Parameter Averaging(2.3%)
contribute the most to improved performance, though all
pieces are important.

Table 3 demonstrates our training procedure’s ability to
generalize, where we combine our approach with the two
highest performing methods in prior work (DIWA (Rame
et al., 2022) and MIRO (Cha et al., 2022)). We find that
our approach is able to boost the performance of both meth-
ods by over 1%. This validaties that DIWA and MIRO
are effective methods even when built on top of a stronger
baseline.

Finally, Table 4 show the impact of different initialization.
Surprisingly, it is clear that the most generalizable model is
not necessarily the one which achieves the best ImageNet
performance. Model Distillation, which strongly improves
source accuracy, does not increase overall DG performance.
Meal-V2 is a distillation of the ensemble if two very strong
ImageNet models into a ResNet-50. Interestingly, the stu-
dent in Meal-V2 is initialized with the same AugMix trained
network as we do in our experiments. Therefore, the dif-
ferences in performance can be strictly attributed to the
effects of model distillation. In Table 5, we can see that
performance on ImageNet-like domains improves while per-
formance on other domains suffers. This suggests that the
distillation process effectively matches the student to the
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teacher over the data used in the distillation process, at the
price of function smoothness away from the distillation data.

We provide additional analysis and results of ERM++ com-
ponents in the Appendix.

4. Conclusion
This paper develops a strong baseline, ERM++, that is crit-
ically missing from the literature. By identifying easy-to-
implement techniques, ERM++ achieves significant gains in
DG performance, reporting a 5% average boost over ERM
on the challenging DomainBed evaluation datasets. We rec-
ommend that future works compare new methods to ERM++
instead of ERM as a baseline, and that they extend ERM++
instead of ERM when relevant. When we replace ERM with
ERM++ for DIWA(Rame et al., 2022) and MIRO(Cha et al.,
2022), we find that performance improves for both. Our
results highlight the importance of improving the training
procedure for better DG performance.
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R0 R1 R2 R3 R4 Av.

ERM 34.9 47.1 38.6 43.8 53.8 43.6
ERM++ 41.5 50.3 40.5 50.4 57.7 48.1
- Strong Init 39.2 50.1 39.5 49.5 58.7 47.4
- WS 41.3 50.4 41.0 50.6 59.3 48.5
- UBN 39.6 49.1 38.9 49.1 58.1 47.0

Table 6. WILDS-FMOW Top-1 Accuracy: We show that ERM++
outperforms ERM on this on the challenging WILDS-FMOW clas-
sification dataset. We also ablate several components of ERM++.
UBN (Unfrozen Batch Norm) and Strong Init (from Augmix) im-
prove performance, while surprisingly WS (warmstart) decreases
performance in this particular scenario. We emphasize that ERM++
overall improves over ERM(Gulrajani & Lopez-Paz, 2020).

A. Additional Results
A.1. Generalizing Beyond Web-scraped Datasets

We have demonstrated that ERM++ is a highly effective
recipe for DG on several datasets: OfficeHome, PACS, Do-
mainNet, and TerraIncognita. These datasets are diverse
and represent a strong evaluation of ERM++. However,
(Fang et al., 2023) show that on datasets not consisting of
web-scraped data, the correlation between ImageNet perfor-
mance and transfer performance is quite weak. To verify
that this is not the case for ERM++, we perform an ablation
study on WILDS-FMOW, a land-use classification dataset,
and see that the ERM++ substantially improves over ERM
(Table 6).

A.2. Per-dataset details

In Tables 7 (OfficeHome), 9 (DomainNet), 10 (VLCS),
11 (TerraIncognita), 12 (PACS), we expand results for the
datasets and report accuracies for each held-out domain.
We compare ERM++ with reported performances of ERM
(Gulrajani & Lopez-Paz, 2020), DIWA (Rame et al., 2022),
SWAD, (Cha et al., 2021), and MIRO (Cha et al., 2022).
ERM + SWAD + MIRO and DIWA are the current SOTA
for ResNet-50 models for this set of datasets. Overall trends
include ERM++ being especially effective at sketch-like
domains, indicating a lowered texture bias. On the sketch
and clipart domains in DomainNet, ERM++ outperforms
prior best performance by over 4%. When we additionally
combine MIRO with ERM++, we see much improved per-
formance on OfficeHome and TerraIncognita without much
affecting the performance on the other datasets.

A.3. Additional Analysis: Data Utilization

Using the full data (FD): The most common ERM (Gul-
rajani & Lopez-Paz, 2020) implementation splits off 80%
of the source domains for training, and keeps the remaining

Figure 2. Unfreezing Batchnorm: Here we show the test curves
of the fine-tuning on the held-out painting domain of DomainNet.
With frozen BatchNorm, the initial training is faster but it overfits.

20% for hyper-parameter validation and checkpoint selec-
tion. By comparing Table 2 in experiments 2 and 3, we
show that training on the full data improves over check-
point selection on a validation set on all datasets except for
VLCS. Early Stopping (ES) below helps us recover VLCS
performance.

Long training (LT): Prior work has shown that training
to proper convergence can have large impacts on transfer
learning performance (Chen et al., 2020). To explore this
setting for DG, we extended training by 4x for each dataset.
In other words, DomainNet models are trained for 60K
steps while the other datasets are trained for 20K steps. This
training length is one where we observe source validation
accuracies start to saturate for most datasets (Section A.6).
We present the results in Table 2, experiment 4. We find that
training for longer, on average, increases performance by
0.5%.

Early Stopping (ES): Although the training pieces pre-
sented so far improve DG performance on the datasets con-
sidered on average, one consistent pattern is that VLCS
performance degrades in experiments number 3 (Full-Data),
4 (Long training). This suggests that VLCS is a dataset
which is prone to overfitting. We observe that this is true
even on a validation set constructed from the source do-
mains. Therefore, we propose an additional step where we
use a random 20% of the training data as validation data in
order to search for the proper number of training steps, and
then retrain using the full data. In Table 2, Experiment 6,
we see this dramatically improves performance on VLCS
without affecting other datasets.
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art clipart product real avg

ERM (Gulrajani & Lopez-Paz, 2020) 63.1 51.9 77.2 78.1 67.6
ERM + SWAD (Cha et al., 2021) 66.1 57.7 78.4 80.2 70.6
DIWA (Rame et al., 2022) 69.2 59 81.7 82.2 72.8
ERM + MIRO + SWAD (Cha et al., 2022) - - - - 72.4
ERM++ 70.7 62.2 81.8 84.0 74.7
ERM++ + MIRO 74.0 61.5 83.8 85.7 76.3

Table 7. OfficeHome: Per-domain top-1 accuracy against reported results of recent top-performing methods SWAD, DIWA, and MIRO.
(Cha et al., 2022) does not report per-domain performance for MIRO, so we only show average for that case. DIWA doesn’t report
standard errors. ERM++ not only greatly increases performance relative to SWAD, DIWA, and MIRO but also reduce variance between
runs. The largest gains are on the held-out domain with the largest domain shift(clipart), illustrating the ability of ERM++ to improve
performance on difficult DG tasks.

Figure 3. Oracle test performances : We plot the top-1 accuracy on held-out test domains of TerraIncognita as a function of fine-tuning
epochs with and without warmstart. Warmstart substantially decreases overfitting to the source domains.

A.4. Additional Analysis: Pretrained Model Weight
Usage

Warmstart (WS): In Table 2, we compare to training us-
ing a random initialization for the new classification layer
(Experiment 4) or by using Warmstart (Experiment 5). We
find WS provides a small but consistent boost on average
across datasets. We find this is likely due to a decrease in
overfitting to the source domains. For example, in Figure
3, we show accuracies plotted across fine-tuning steps for
models with and without warm-start for several domains of
TerraIncognita. Without Warmstart, performance quickly
plateaus and in some cases, e.g., location 100 and location
43, performance even decreases. This kind of performance
decrease is not benign; it is impossible to detect without
access to the test data. Therefore, for reliable deployments
of systems which generalize well, training procedures which
do not overfit to source domains are important. We verify
that WS has a regularization effect by measuring the L2 dis-
tance of the final model from initialization (the pre-trained
model) and find that the trained weights were more than
twice as far without using WS (58.1 with and 122.5 w/o).

Unfreezing the Batchnorm (UBN): BatchNorm is com-
monly frozen in current DG recipes for reasons not well
justified. However, we find that frozen batch normalization

leads to quick over-fitting in the long-training regime. In
Figure 2 we can see that frozen batch normalization results
in overfitting. In contrast, without frozen batch normaliza-
tion this is not an issue. As seen in Table 2, Experiment 9,
this freezing BN also results in lower performance. It can
therefore be concluded that unfrozen BatchNorm, gives an
effective regularization effect by randomizing shifting and
scaling of features.

Stronger initializations (S. Init): One of the key compo-
nents of the standard DG training scheme is initializing the
model parameters with a pre-trained model. The effect of
the strong initialization for our model is shown in Table
2, experiment 7, where we achieve a 1% boost an average.
However, selecting a model takes care. Table 4 compares
ResNet-50 models of varying ImageNet performance. We
summarize our findings below:

• Stronger ImageNet performance does not necessarily cor-
respond to better DG performance. In particular, both the
ResNet-50 A1 and Meal V2 weights achieves much better
ImageNet Top-1 Accuracy than the standard TorchVision
weights, but achieve worse DG performance. However,
the overall consistency of the AugMix weights across all
5 datasets makes it a reasonable choice.

• Model Distillation, which strongly improves source accu-
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P C I R Q S Av

Aug 57.3 68.8 25.6 70.2 17.1 59.8 49.8

MV2 57.3 68.5 25.4 70.9 16.1 59.0 49.5

Table 8. Model distillation’s effect on domain generalization:
We look at the per-domain accuracy on DomainNet, comparing
Augmix training (Aug) and MealV2 (MV2). MealV2 is a method
used to distill a large ensemble into a student ResNet-50, where the
student is initialized to AugMix weights. The held-out domains
considered are (P)ainting, (C)lipart, (I)nfo, (R)eal, (Q)uickdraw,
and (S)ketch. We can see that the distillation process, while dramat-
ically improving ImageNet performance, only slightly changes gen-
eralization performance. In particular, generalization gets slightly
worse for all domains except for (R)eal, which is the most similar
to ImageNet. This is surprising, since it has been shown that both
ensembles (Arpit et al., 2021) and larger model (Angarano et al.,
2022) improve domain generalization performance. The distilla-
tion process seems to match the teacher function poorly on OOD
data.

racy, does not increase overall DG performance. Meal-V2
is a distillation of the ensemble if two very strong Ima-
geNet models into a ResNet-50. Interestingly, the student
in Meal-V2 is initialized with the same AugMix trained
network as we do in our experiments. Therefore, the dif-
ferences in performance can be strictly attributed to the
effects of model distillation. Looking at the results in
more detail, as in Table 8, we can see that performance on
ImageNet-like domains improves while performance on
other domains suffers. This suggests that the distillation
process effectively matches the student to the teacher over
the data used in the distillation process, at the price of
function smoothness away from the distillation data.

• AugMix is a model trained with generalization to syn-
thetic corruptions as a goal and results in a very strong DG
performance. Therefore, while ImageNet Top-1 accuracy
is not a good indicator for DG performance, investigating
the correlation between synthetic corruption performance
and DG performance is promising.

A.5. Additional Analysis: Weight Space Regularization

Generalist Model Parameter Averaging (MPA): We con-
firm that regularizing model parameters by averaging iter-
ates is an important tool in improving domain generalization
performance; in Table 2 (Experiments 1 and 2) we compare
models trained with and without parameter averaging across
timesteps. Specifically, we average the parameters of all
training steps after an initial burn-in period of 100 steps. We
confirm that such model parameter averaging consistently
and substantially improves domain generalization.
Specialist Model Parameter Averaging (SMPA): We also
explored a setting where instead of averaging model weights,
we attempt to include diversity between the models being av-

Figure 4. Sample from LabelMe Domain in VLCS: Is this a dog,
person, or chair? Many samples in the LabelMe domain of VLCS
are ambigrous but assigned a label (in this case, dog). This raises
questions about the usefulness of training on this domain.

eraged as this has been shown to boost performance (Rame
et al., 2022). Following (Li et al., 2022), we first train a gen-
eralist model on all source domains for 5 epochs, then train
specialist models for 5 epochs, before averaging parameters.
Results on the DomainNet dataset are reported in Table 13.
Although averaging specialists improves over ERM, it does
not improve over averaging model iterates of a generalist.

A.6. Validation-Set Accuracy Curves

In Figures 5,6,7,8, and 9, we provide source-validation ac-
curacies for each of the 5 datasets, for the number of steps
corresponding to long training, which is 20000 steps for
most datasets except for the larger DomainNet, which is
60000 steps. As one can see, at this point, validation ac-
curacy is saturated for most domains in most datasets, so
this training length is reasonable. Prior training lengths are
denoted as red vertical lines in these figures, and one can
see that for many datasets this is not a sufficient training
length. As we describe in Section 5.1 of the main paper, this
improves performance by 0.5% on average.

B. Dataset Visualizations
In Figures 10 (OfficeHome), 11 (DomainNet), 12 (VLCS),
13 (TerraIncognita), 14 (PACS), 15 (FMoW) we show sam-
ples of a few classes from each of the datasets, and each
domain. As one can see, both the datasets and distribution
shifts are quite diverse, highlighting the flexibility of our
method. We present some key attributes of the datasets
below.

OfficeHome (Venkateswara et al., 2017) Figure 10. This
dataset focuses on household objects. The domain shifts are
in low-level style mostly, and there is little spatial bias.
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painting clipart info real quickdraw sketch avg

ERM (Gulrajani & Lopez-Paz, 2020) 50.1 63.0 21.2 63.7 13.9 52.9 44.0
ERM + SWAD (Cha et al., 2021) 53.5 66.0 22.4 65.8 16.1 55.5 46.5
DIWA (Rame et al., 2022) 55.4 66.2 23.3 68.7 16.5 56 47.7
ERM + MIRO + SWAD (Cha et al., 2022) - - - - - - 47.0
ERM++ 58.4 71.5 26.2 70.7 17.3 60.5 50.8
ERM++ + MIRO 58.5 71.0 26.5 71.1 15.9 59.5 50.4

Table 9. DomainNet: Per-domain top-1 accuracy against reported results of recent top-performing methods SWAD, DIWA, and MIRO.
(Cha et al., 2022) does not per-domain performance for MIRO, so we only show average for that case. DIWA doesn’t report standard
errors. ERM++ not only greatly increases performance relative to SWAD, DIWA, and MIRO but also reduce variance between runs.
Similar to results on OfficeHome (Table 7), the largest performance gains(of larger than 4%) are on domains very different from the
source domain(clipart and sketch). This suggests ERM++ is less sensitive to texture bias than ERM (Gulrajani & Lopez-Paz, 2020). The
bias of MIRO to the pre-trained weights manifests in slightly higher performance on close to ImageNet domains like real when combined
with ERM++, at the slight expense of performance on other domains.

caltech101 labelme sun09 voc2007 avg

ERM (Gulrajani & Lopez-Paz, 2020) 97.7 64.3 73.4 74.6 77.3
ERM + SWAD (Cha et al., 2021) 98.8 63.3 75.3 79.2 79.1
DIWA (Rame et al., 2022) 98.9 62.4 73.9 78.9 78.6
ERM + MIRO + SWAD (Cha et al., 2021) - - - - 79.6
ERM++ 98.7 63.2 71.6 78.7 78.0
ERM++ + MIRO 99.0 62.4 71.8 78.3 77.9

d

Table 10. VLCS: Per-domain top-1 accuracy against reported results of recent top-performing methods SWAD, DIWA, and MIRO.
(Cha et al., 2022) does not per-domain performance for MIRO, so we only show average for that case. DIWA doesn’t report standard
errors. Although overall performance on VLCS is lower than competing methods, we can see that this drop primarily comes from lower
performance on sun09. Furthermore, there are many ambiguous images in the LabelMe domain (see Figure 4), raising questions about the
usefulness of trying to train on this domain.

DomainNet (Peng et al., 2019) Figure 11. While the real
domain is quite similar to what one might expect in Ima-
geNet, the distribution shifts are quite substantial in other
domains. Quickdraw and Infograph are particularly chal-
lenging, so the 1-3% gains of ERM++ on these domains is
meaningful (Table 9).

VLCS (Fang et al., 2013): Figure 12. Low-level statistics
are quite similar between domains in this dataset, however
spatial biases differ between domains. For example, Cal-
tetch objects are quite centered, while other domains do not
have this trait. For example the LabelMe domain has cars
along the side of the image, and there are many chairs in
the VOC2007 domain. Furthermore, in some cases the size
of the objects differs dramatically. Lastly, there are many
ambiguous images in the LabelMe domain (see Figure 4),
raising questions about the validity of trying to improve
performance on this dataset.

TerraIncognita (Beery et al., 2018): Figure 13 The back-
ground stays consistent, and the animal object frequently
takes up a small portion of the frame. At night the images

are black-and-white. This is a very realistic dataset, on
which is good to test.

PACS (Li et al., 2017) Figure 14. The subjects tend to
be centered, and the sketches are more realistic than the
quickdraw setting in DomainNet. Though the domains are
similar to that of DomainNet, PACS has fewer than 10000
samples compared to 586000 of DomainNet. Therefore
PACS tests the capabilities of ERM++ on smaller data.

FMoW: Figure 15. The images differ in region but also in
resolution and scale. The distribution shift between FMoW
and the pretraining data is large, therefore FmoW represents
the ability of ERM++ to perform on non web-scraped data
(see Section 5.4 of the main paper).

C. Runtime Comparisons
As discussed in the main paper Section 3.4; ERM++
achieves higher predictive performance than competing
methods MIRO (Cha et al., 2022) and DIWA (Rame et al.,
2022) despite lower computational cost for training. The rea-
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Location 100 Location 38 Location 43 Location 46 Average

ERM (Gulrajani & Lopez-Paz, 2020) 54.3 42.5 55.6 38.8 47.8
ERM + SWAD (Cha et al., 2021) 55.4 44.9 59.7 39.9 50.0
DIWA (Rame et al., 2022) 57.2 50.1 60.3 39.8 51.9
ERM + MIRO + SWAD (Cha et al., 2022) - - - - 52.9
ERM++ 48.3 50.7 61.8 43.9 51.2
ERM++ + MIRO 60.81 48.8 61.1 42.7 53.4

Table 11. TerraIncognita: Per-domain top-1 accuracy against reported results of recent top-performing methods SWAD, DIWA, and
MIRO. (Cha et al., 2022) does not per-domain performance for MIRO, so we only show average for that case. DIWA doesn’t report
standard errors. ERM++ outperforms other methods on 3 out of 4 held out domains despite slighly underperforming on average. However,
we point out that ERM++ w/MIRO outperforms both DIWA and MIRO, and improves ERM++ by a further 2%.

art painting cartoon photo sketch avg

ERM (Gulrajani & Lopez-Paz, 2020) 84.7 80.8 97.2 79.3 84.2
ERM + SWAD (Cha et al., 2021) 89.3 83.4 97.3 82.5 88.1
DIWA (Rame et al., 2022) 90.6 83.4 98.2 83.8 89
ERM + MIRO + SWAD (Cha et al., 2022) - - - - 88.4
ERM++ 90.6 83.7 98.1 86.6 89.8
ERM++ + MIRO 90.2 83.8 98.6 82.4 88.8

Table 12. PACS: Per-domain top-1 accuracy against reported results of recent top-performing methods SWAD, DIWA, and MIRO. (Cha
et al., 2022) does not per-domain performance for MIRO, so we only show average for that case. DIWA doesn’t report standard errors.
ERM++ leads to substantial improvement over prior work. As in other dataset (OfficeHome, DomainNet), large performance gains are
made on the sketch domain.

P I Q S R C Av

ERM 51.1 21.2 13.9 52.0 63.7 63.0 44.1
SMPA 52.9 27.2 14.3 51.3 65.6 65.2 46.1
MPA 55.2 24.0 16.7 57.4 67.0 67.49 48.0

Table 13. Weight Space Regularization: We show experiments
different types of parameter averaging for weight regularization on
DomainNet. SMPA is a specialized model parameter averaging,
where we average parameters of domain specialists, while MPA
averages parameters within a single training trajectory. While both
MPA and SMPA outperform ERM, MPA outperforms SMPA.

son is reduced cost of hyper-parameter search; we use fixed
hyper-parameters, borrowed from the DomainBed frame-
work, (see Section D.2 for more details ) while DIWA aver-
ages 20-60 models and MIRO search for 4 λ weight regular-
ization values in each experiment. Assuming the worst case
scenario of training two full passes (one on validation data
for number of training steps for Early Stopping, and one on
full training data with validation data folded in Full Data),
and the same number of training steps as MIRO; ERM++
costs 1

2 that of MIRO while obtaining better performance.
In particular, this configuration represents Experiment 8 in
Table 3 of the main paper.

For each forward step MIRO there is an additional for-

ward pass of the data through the model which is absent in
ERM++. On the other hand, ERM++ does take a forward
pass through the running average model to update batch nor-
malization statistics, which is not done in former methods.
This means that each forward pass is compute-equivalent
for ERM++ and MIRO, for a given architecture.

D. Reproducibility
D.1. Infrastructure

We train on a heterogeneous cluster, primarily on NVIDIA
A6000 GPU’s. Each experiment is conducted on a single
GPU with 4 CPUs. A single run could range from 12-48
hours, depending on number of steps trained.

D.2. Training details

We follow the DomainBed (Gulrajani & Lopez-Paz, 2020)
training procedure and add additional components from
ERM++. In particular, we use the default hyper-parameters
from DomainBed (Gulrajani & Lopez-Paz, 2020), e.g., a
batch size of 32 (per-domain), a learning rate of 5e-5, a
ResNet dropout value of 0, and a weight decay of 0. We
use the ADAM optimizer (Kingma & Ba, 2014) optimizer
with β and ϵ values set default values from Pytorch 1.12.
Unless we specify that the “Long Training” component
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Figure 5. OfficeHome: Source validation accuracies. The validation accuracy saturates by 20000 steps, which corresponds to number of
steps in Long Training(Section 5.1 of the main paper). Training length used in prior works is denoted as a red line, and the training is not
yet converged.

Figure 6. PACS: Source validation accuracies. The validation accuracy saturates by 20000 steps, which corresponds to number of steps
in Long Training(Section 5.1 of the main paper).Training length used in prior works is denoted as a red line, and the training is not yet
converged.

is added, we train models for 15000 steps on DomainNet
(following SWAD(Cha et al., 2021)) and 5000 steps for other
datasets, which corresponds to a variable number of epochs
dependent on dataset size. If Long Training is used, we
extend training by 4x. We train on all source domains except
for one, validate the model on held-out data from the sources
every 300 steps(20% of the source data), and evaluate on
the held-out domain. If using Full Data we retrain using the
full data. We use the same data augmentation techniques as
ERM (Gulrajani & Lopez-Paz, 2020). We use the ResNet-
50 architechture in all experiments.

Model Parameter Averaging details: If we use Model
Parameter Averaging( MPA), we begin to keep a running
average at the 100th step. If we additionally use warm-start,
we only optimize the classification head for the first 500
steps, and start MPA 100 steps after that. For the Specialist
Model Parameter Averaging(SMPA) experiments (Table 6
of main paper), we first train a generalist model for 15000
steps , then train an independent model for each domain for
another 1500 steps. At the end, we average parameters and
re-compute batch norm running statistics. This recomputing
of BN stats makes sure the averaged model has accurately
computed batch norm statistics which may not be a simple
average of experts, due to the non-linearity of neural nets.

Batch Normalization details: With unfrozen batch normal-

ization( UBN), we update the evaluation model BN statistics
by averaging the model iterates first (from MPA), then then
forward propagating the current batch at each step through
the evaluation model. In this way, the BN running statistics
and model used for inference match.

Sources of pre-trained weights: We use torchvision 0.13.1
for vanilla ResNet-50 initialization. For augmix and ResNet-
A1 initialized weights, we leverage TIMM (Wightman,
2019) 1 2 .

A note on hyper-parameter search: In this work, we focus
on methodological improvements that do not depend on
expensive hyper-parameter tuning, and as a result we use
default learning rate, weight decay, etc. We demonstrate
state-of-the-art performance despite this, and greatly reduce
the computational cost of training as a result. However, we
believe there is substantial headroom for improvement with
further hyper-parameter tuning.

MIRO Implementation: We directly follow the MIRO

1Augmix Weights :https://github.com/rwightman/
pytorch-image-models/releases/download/v0.
1-weights/resnet50_ram-a26f946b.pth

2ResNet-A1 Weights :https://github.com/
rwightman/pytorch-image-models/releases/
download/v0.1-rsb-weights/resnet50_a1_
0-14fe96d1.pth

https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth
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Figure 7. DomainNet: Source validation accuracies. The validation accuracy saturates by 60000 steps, which corresponds to number of
steps in Long Training(Section 5.1 of the main paper). Training length used in prior works is denoted as a red line, and the training is not
yet converged.

Figure 8. VLCS: Source validation accuracies. The validation accuracy saturates by 20000 steps, which corresponds to number of steps
in Long Training(Section 5.1 of the main paper).Training length used in prior works is denoted as a red line. In the case of VLCS, it
seems like longer training is not so helpful, and this is reflected in our ablations (Table 2)
.

implementation and borrow the lambda weights values
from (Cha et al., 2022) when we combine MIRO with
ERM++ in Table 2 of the main paper. ERM++ substan-
tially improves the performance of MIRO.

DIWA Implementation: We follow a simplified version of
the DIWA (Rame et al., 2022) algorithm due to computa-
tional reasons; we average the parameters of the three seeds
of ERM++. The authors of DIWA show that about half
of the performance boost comes from the first few models
averaged (Figure 4 of (Rame et al., 2022)), therefore this
is a reasonable approximation of the method. It is interest-
ing that DIWA reduces performance of ERM++, but that
ERM++ w/DIWA is still improved over DIWA as reported
in (Rame et al., 2022).
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Figure 9. TerraIncognita: Source validation accuracies. The validation accuracy saturates by 20000 steps, which corresponds to number
of steps in Long Training(Section 5.1 of the main paper). Training length used in prior works is denoted as a red line, and the training is
not yet converged.
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Figure 10. OfficeHome:Samples from the OfficeHome dataset, from each domain and selected classes. The dataset focuses on household
objects. The domain shifts are in low-level style mostly, and there is little spatial bias.
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Figure 11. DomainNet: Samples from the DomainNet dataset. While the real domain is quite similar to what one might expect in
ImageNet, the distribution shifts are quite substantial in other domains. Quickdraw and Infograph are particularly challenging, so the
1-3% gains of ERM++ on these domains is meaningful (Table 9). While most domains contain primarily shifts in low level statistics (for
example, real to painting), Infograph also has many non-centered objects.
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Figure 12. VLCS: The low-level statistics are quite similar between domains, however spatial biases differ between domains. Caltetch
objects are quite centered, while other domains do not have this trait. For example the LabelMe domain has cars along the side of the
image, and there are many chairs in the VOC2007 domain. Furthermore, in some cases the size of the objects differs dramatically. Finally,
there are many ambiguous images in the LabelMe domain (see Figure 4), raising questions about the usefulness of trying to train on this
domain.
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Figure 13. TerraIncognita: Samples from the TerraIncognita dataset, from each domain and selected classes. The background stays
consistent, and the animal object frequently takes up a small portion of the frame. At night the images are black-and-white. This dataset
matches realistic deployment scenarios well.
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Figure 14. PACS: Samples from the PACS dataset, from each domain and selected classes. The subjects tend to be centered, and the
sketches are more realistic than the quickdraw setting in DomainNet. Though the domians are similar to that of DomainNet, PACS has
fewer than 10000 samples compared to 586000 of DomainNet. Therefore PACS tests the capabilities of ERM++ on smaller data.
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Figure 15. FMoW:Samples from the TerraIncognita dataset, from each domain and selected classes. The images differ in region but also
in resolution and scale. The distribution shift between FMoW and the pretraining data is large, therefore FmoW represents the ability of
ERM++ to perform on non web-scraped data (see Section 5.4 of the main paper).


