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Abstract— Co-optimizing safety and performance in large-
scale multi-agent systems remains a fundamental challenge. Ex-
isting approaches based on multi-agent reinforcement learning
(MARL), safety filtering, or Model Predictive Control (MPC)
either lack strict safety guarantees, suffer from conservatism, or
fail to scale effectively. We propose MAD-PINN, a decentralized
physics-informed machine learning framework for solving the
multi-agent state-constrained optimal control problem (MASC-
OCP). Our method leverages an epigraph-based reformulation
of SC-OCP to simultaneously capture performance and safety,
and approximates its solution via a physics-informed neural
network. Scalability is achieved by training the SC-OCP value
function on reduced-agent systems and deploying them in a
decentralized fashion, where each agent relies only on local
observations of its neighbours for decision-making. To further
enhance safety and efficiency, we introduce an Hamilton-
Jacobi (HJ) reachability-based neighbour selection strategy to
prioritize safety-critical interactions, and a receding-horizon
policy execution scheme that adapts to dynamic interactions
while reducing computational burden. Experiments on multi-
agent navigation tasks demonstrate that MAD-PINN achieves
superior safety—performance trade-offs, maintains scalability as
the number of agents grows, and consistently outperforms state-
of-the-art baselines. Videos results can be viewed on the project
webpage.

I. INTRODUCTION

The deployment of autonomous systems in safety-critical
domains such as aerial swarms [1], intelligent transporta-
tion [2] networks, and automated warehouses [3] has made
multi-agent coordination a central problem in robotics and
control. In these environments, multiple agents must operate
in shared spaces and achieve collective objectives — such as
routing, formation control, or exploration — while adhering to
strict safety constraints. The joint requirement of balancing
task performance with safety makes the synthesis of control
policies in multi-agent systems a challenging problem.

Multi-agent reinforcement learning (MARL) [4]-[6] has
emerged as a popular paradigm for policy learning in such
settings. While MARL demonstrates strong performance in
complex tasks, its safety treatment is insufficient. Safety
is typically introduced via reward shaping, treating safety
constraints as soft penalties. Constrained Markov Decision
Process (CMDP) formulations [7], [8] provide a more princi-
pled approach, but they only ensure that constraint violations
remain bounded on average, which is insufficient for safety-
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critical robotic applications where violations must be avoided
at all times.

Control-theoretic methods such as Control Barrier Func-
tion (CBF) [9] and Hamilton-Jacobi (HJ) Reachability [10],
[11] provide formal safety guarantees. These methods can act
as safety filters [12] on top of existing nominal controllers, to
minimally modify them to enforce safety. However, they suf-
fer from scalability and conservatism in multi-agent settings.
A popular approach is to compute pairwise safety filters
and extend them to many agents; however, this approach
remains ineffective, as the intersection of individual safe sets
does not necessarily represent the true joint safe set [13].
Moreover, the myopic nature of safety filters often degrades
task performance. Optimal control methods such as Model
Predictive Control (MPC) [15], [16] and Model Predictive
Path Integral control (MPPI) [17], [18] provide another line
of solutions. These methods incorporate predictive look-
ahead with explicit handling of hard constraints, and can
flexibly handle nonlinear dynamics and diverse cost func-
tions. These approaches have also been extended to multi-
agent collision avoidance through the inclusion of modified
cost terms or additional constraints [19]. Yet, despite their
flexibility, MPC and MPPI do not offer formal safety guaran-
tees. In interactive multi-agent scenarios, they may still yield
unsafe trajectories, limiting their reliability in safety-critical
domains.

A principled framework for unifying performance and
safety is the state-constrained optimal control problem (SC-
OCP), which formulates performance as cost minimization
and safety as a strict state constraint. In the multi-agent
setting, SC-OCP is particularly appealing because it directly
encodes the dual objectives of collision-free coordination
and task performance. However, solving SC-OCPs at scale
is computationally formidable [22]. Epigraph-based refor-
mulations recast the problem as a Hamilton-Jacobi-Bellman
partial differential equation (HIB-PDE) [23], but the added
dimensionality exacerbates the computational complexity.
More critically, in centralized multi-agent scenarios, the joint
state—action space grows exponentially with the number of
agents, rendering classical numerical solvers impractical even
for modest system sizes. Thus, while SC-OCP provides a the-
oretically sound foundation for safe multi-agent control, its
direct application to large-scale systems remains infeasible
without new strategies for decentralization and scalability.

To address these challenges, we propose MAD-PINN, a
decentralized physics-informed machine learning framework
for solving the multi-agent SC-OCP. At its core, MAD-PINN
combines control-theoretic structure with neural approxima-
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Fig. 1: We propose MAD-PINN - a framework for safe and optimal multi-agent control. MAD-PINN is divided into two
phases: (1) Centralized training, where we learn the auxiliary epigraph-based value function Vo using a boundary-aware
PINN, and the pairwise safety value function V; via DeepReach; (2) Decentralized deployment, where each agent selects
its safety-critical neighbours using V; and executes the policy in a receding-horizon manner using Vp. This design enables
tractable training, adaptive neighbour selection, and scalable execution in large multi-agent systems.

tion to achieve both formal safety guarantees and scalability.
Specifically, MAD-PINN uses a physics-informed neural
network (PINN) to approximate the epigraph-based value
function of the SC-OCP, with boundary conditions encoded
to ensure strict satisfaction of terminal safety constraints.
Scalability is achieved by training these value functions on
reduced-agent systems and deploying them in a decentral-
ized fashion, where each agent makes decisions using only
local observations of its most safety-critical neighbours. To
support reliable real-world execution, MAD-PINN integrates
two additional components: an HJ reachability-based neigh-
bour selection strategy to identify critical interactions, and a
receding-horizon policy execution scheme to adapt online to
dynamic agent interactions. Our core contributions are:

o« MAD-PINN framework: We propose a decentralized,
boundary-aware physics-informed learning framework
for multi-agent state-constrained optimal control (SC-
OCP), which integrates performance optimization with
strict safety guarantees.

o Safety-aware neighbour selection: We introduce a
reachability-based neighbour selection strategy that pri-
oritizes the most safety-critical interactions, thereby pre-
serving safety while avoiding unnecessary conservatism
in decentralized execution.

o Empirical validation: We evaluate MAD-PINN on
multi-agent navigation tasks at varying scales, showing
that it achieves superior safety—performance trade-offs,
maintains high scalability as the number of agents
grows, and outperforms state-of-the-art baselines.

II. PROBLEM SETUP

Consider a homogeneous multi-agent system comprising
N agents. The state and control input for each agent ¢
are defined as z; € X; C RP and w; € U; C RM,

respectively. Each agent’s motion is governed by nonlinear
dynamics expressed as: @;(t) = f;(x;(t), u;(t)), where f; :
RP x RM — RP is a locally Lipschitz continuous function.
Although our framework assumes f; is known, we note that
this function could also be learned from data if a model is
not available.

Using this premise, we define the joint state and control
input vectors for the entire system as = := [x1,...,ZN] €
X C R¥P and u = [uy,...,uy] € U C RVN*M,
Consequently, the collective system dynamics are described
by the concatenated function f = [f1, fa,..., fn], yielding
the global dynamics model: &(t) = f(x(¢), u(t)).

The primary safety objective is to ensure collision avoid-
ance between all agents. We formalize this by defining a
failure set 7 C X of unsafe configurations:

F={zxeX: H;éln dij(z) <r}. (D)
i#j

Here, d;; is the Euclidean distance between agents ¢ and
7, and r is a predefined minimum safe separation distance.
To integrate this safety requirement into the optimal control
framework, we define a constraint function g(z) such that
F = {x € X | g(x) > 0}. The system’s performance is
quantified by a cost functional C(t, z(t), u(-)) that accumu-
lates a running cost and a terminal cost over a time horizon:

T
Cltalt).u() = [ Uale)ds +0a(D). @
5=
where [ X — Ryp and ¢ : X — Rs¢ are non-
negative, Lipschitz continuous functions. The control input is
u(+) : [t,T) — U. C could represent the time taken to reach
the goal or fuel consumption, for instance. Furthermore, we
assume the cost functions are separable and identical across
the homogeneous agents.



Our goal is to synthesize an optimal control policy 7* :
[t,T) x X — U that minimizes this cost while guaranteeing
that the state trajectory never enters the failure set F. This
leads to the following State-Constrained Optimal Control
Problem (SC-OCP) with the value function V (¢, z):

T
Vita(t) =min [ ia(s))ds + o(a()
st &(s) = f(z(s),u(s), g(z(s)) <0 Vselt,T)

Thus, the policy, 7*, derived from the solution of this SC-
OCP co-optimizes safety and performance.

3)

A. Decentralized Multi-Agent SC-OCP

As a direct consequence of its formulation, the centralized
SC-OCP in (3) suffers from the curse of dimensionality; its
computational complexity grows intractably with the number
of agents N [24]. To address this scalability challenge, we
introduce a decentralized reformulation of the problem.

In the decentralized framework, agents are constrained by
a limited observation field. Rather than observing the global
state x, each agent ¢+ must rely on a local observation o;.
This observation is constructed from the agent’s own state
and the states of a fixed number n of neighbouring agents
within its observation radius 7o, where n < N. Formally,
the observation is constructed by an operator O; that selects
and concatenates these relevant states, i.e., 0; = O;(z) C
RDP*(+1) " where: o; = [v;, {z;}jen;] and N; denotes the
set of indices corresponding to the neighbors of agent .

A key enabling factor for this approach is the homogeneity
of the agent dynamics and objectives. This property ensures
that the decentralized value function is identical for all
agents, irrespective of their specific identity. We can therefore
drop the agent subscript ¢ and represent a generic local
observation simply as o. This allows us to define a single,
shared decentralized optimal control problem (Decentralized
SC-OCP):

uq

s.t. 0(s) = fa(o(s),ua(s)), galo(s)) <0 Vs e [t,T]

T
Va(t, o(t)) = min /t la(o(s)) ds + 9ao(T))

Here, l4 and ¢4 represent the running and terminal cost
functions, respectively, aggregated over the subset of agents
within o. The control sequence ug is the joint input for these
agents. The dynamics function f, is derived by concatenating
the individual agent dynamics, and the constraint function g4
enforces safety (e.g., collision avoidance) among the agents
in the local observation.

This reformulation directly addresses the scalability issue
by fixing the observation size to m + 1, rendering the
problem dimension independent of the total agent count N.
Consequently, a single value function Vy and its associated
policy, computed once, can be used across agents. This
provides a computationally tractable and globally consistent
solution to the original, large-scale SC-OCP in (3).

B. Epigraph Reformulation

Directly solving the State-Constrained Optimal Control
Problem (SC-OCP) in (4) is challenging due to the presence
of hard state constraints. To circumvent this challenge, we
adopt an epigraph reformulation [25] that transforms the
original constrained problem into a more tractable, equiv-
alent two-stage optimization formulation. The core of this
reformulation is the introduction of a non-negative auxiliary
variable z € R, representing a bound on the cost-to-go.
The original SC-OCP is then equivalently expressed as:

Va(t,o(t)) = min z st Vy(t,0,2) <0, %)

z€ER*
where V; denotes a newly defined auxiliary value function.
Following the framework of [23], this function is given by:

Va(t,o(t), z) = Hlllinmax {C(t7 o(t),uq) — z, Ien[?)l{“] gd(o(s))} .
(6)

This formulation captures the problem’s dual objectives:
minimizing cost and ensuring safety. Crucially, the condition
Va(t, 0, z) < 0 guarantees that g4(o(s)) < 0 forall s € [t,T],
meaning the system’s trajectory remains within the safe set.

The optimal solution z* to (5) represents the minimum
admissible cost achievable without violating the state con-
straints. This interpretation provides an intuitive safety-
performance trade-off: a choice of z > z* results in an overly
conservative policy, while z < z* prioritizes performance at
the potential expense of safety.

To further enable the application of dynamic programming
principles, we treat the auxiliary variable 2 as a state variable
with the simple dynamics 2(t) = —I(o(t)). This signifies that
the admissible cost bound z is depleted by the stage cost
I(0) along the system’s trajectory. This yields the following
augmented system dynamics:

A f 5 — fd(t’()?u)
0= fd(tO,U/) L |: 71(0) 9 (7)
where 6 := [0,2]T € X x R is the augmented state.

Under standard assumptions A1-A4 from [23], the aux-
iliary value function Vd(t, 0) is the unique continuous vis-
cosity solution to the Hamilton-Jacobi-Bellman (HIB) partial
differential equation:

min (—&Vd — Hlll}in <Va‘7d, fd(é, U)> ) Vd - gd(0)> =0,
3

forallt € [0,T) and 6 € X xR, with the terminal condition:

Va(T, 6) = max (¢4(0) — 2, ga(0)). 9)

This HIB characterization provides a formal basis for com-
puting the value function and the resulting optimal safe
control policy. For notational brevity, we have dropped the
subscript d and will hereafter use V(£,6) to denote this
decentralized auxiliary value function.



III. METHODOLOGY

The solution to the SC-OCP formulated in Equation (3)
hinges on the computation of the optimal value function V,
that minimizes cost under safety constraints. Our approach
to obtaining this function proceeds in two primary stages
as illustrated in Figure 1: an offline learning phase and
an online deployment phase. First, we learn the auxiliary
value function V' using a physics-informed machine learning
framework. Then, V,; is obtained from Vv using (5). For
online decentralized deployment, a safety-aware clustering
strategy is employed to determine the appropriate neighbours
for each agent. The control policy for each agent is then
derived based on V,;. We now discuss each step in detail.

A. Training the Auxiliary Value Function V)

The auxiliary value function V is characterized by the

HIB-PDE in (8) (Section II-B). Traditional numerical meth-
ods for solving such PDEs rely on discretizing the state
space over a grid [26], [27]. While accurate for low-
dimensional systems, these methods are susceptible to the
curse of dimensionality, as their computational cost scales
exponentially with the number of states. To overcome this
limitation, we leverage a physics-informed neural network
(PINN) framework that uses PDE residuals to learn the value
function and has shown promising results in solving high-
dimensional HIB PDEs [28].
Auxiliary Value Function Parameterization: We approximate
the auxiliary value function V(t, 0) using a neural network,
with parameters . A critical requirement is that the solution
must satisfy the terminal boundary condition to adhere to
the problem’s safety constraints. To enforce this exactly, we
structure our network output as:

‘79(1’" 6) = max ((bd(o) -z gd(o)) + (T - t) ' R@(t76)a

where the first term encodes the terminal condition in
(9), and the neural network, denoted Ry(¢,0), learns the
residual evolution of the value function over time. This
formulation, inspired by [29], guarantees that V,(T,6) =
max (¢q4(0) — z, ga(0)) for any state o, irrespective of the
network’s output Ry. There are two key advantages to
the proposed structure of Vg: (a) it eliminates the need
to explicitly learn a complex boundary condition by hard-
coding it into the network’s forward pass, and (b) it reduces
the learning problem to minimizing a single HIB-derived loss
function (as we discuss next), thereby removing the necessity
for a manually-tuned loss weighting scheme.

Loss Function and Training Scheme: The parameters 6 of
the network Ry are learned by minimizing a loss function
that penalizes the HIB PDE residual errors. Specifically, the
loss function to learn the NN parameters is:

L (t;c7 6“9) = Epde (tk7 5“9)
= || min {*atf/e (thy o) — H(tr, 08), Vo (tr, o) — ga (6k)} Il,
= || min {(tx — T)0:Ro (6k,tr) + Ro (0x,tr) — H (6, tr),

Vo (0k,tk) — ga (0x)} 5
(10)

where, H(t, ) = mingey (VVy(6i,t), fa(6i,u)). Typically,
PINNs incorporate an additional loss term to enforce bound-
ary conditions. In contrast, due to the structure of our for-
mulation of Vy, the boundary conditions are satisfied exactly.
Consequently, the optimization reduces to minimizing a
single loss term L4, eliminating the need for auxiliary loss
terms and the hyperparameters required for their weighting.

Curriculum Training: A key challenge in solving the HIB-
PDE is its backward-in-time evolution; the solution at time ¢
depends on the future time ¢+ At. To manage this complexity
during training, we employ a curriculum learning strategy
similar to DeepReach [28]. Training begins by sampling time
points near the terminal time 7" and progressively expanding
the interval backward until it covers the entire horizon [0, T,
whereas the states are sampled uniformly across the state
space at each training iteration. This allows the network
to first learn the well-defined terminal condition accurately
before learning to propagate the solution backward in time,
governed by the PDE dynamics, yielding the auxiliary value
function Vg. We refer interested readers to [28], [29] for more
details on the curriculum training scheme.

B. Neighbour Selection Strategy

During online deployment, each agent must efficiently
identify the subset of neighbours most relevant for main-
taining safety. Rather than treating all nearby agents equally,
we group agents into clusters defined by their potential
for safety-critical interactions. The cluster size is chosen to
match the neighbourhood dimension used when training the
decentralized auxiliary value function, ensuring consistency
between training and deployment.

To determine which neighbours pose the greatest risk, we
employ a principled criterion derived from Hamilton—Jacobi
(HJ) reachability analysis. HJ reachability provides a rig-
orous way to quantify the likelihood of safety conflicts,
enabling each agent to prioritize interactions that most
directly impact safe operation. Specifically, while V and
V4 encode cost and safety constraints in the SC-OCP, we
additionally compute a pairwise safety value function Vj
using HJ reachability to guide neighbour selection.

HJ Reachability [30], [31] characterizes the set of states
from which the system can be driven into a failure set. Let
1 : R™ — R be a Lipschitz-continuous function whose sub-
zero level set ¥ = {x : ¢(x) < 0} represents pairwise
collision states between the two agents. The corresponding
safety value function is given by:

Vi(w,t) =sup min (&, (7)),
u(-) TERT]

Y

where £¥,(-) is the system trajectory. Intuitively, V;(z,1)
measures how close the two agents are to a collision,
even under optimal control. The unsafe set is precisely the
sub-zero level set of V,. The value function satisfies the
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Fig. 2: Comparison of cumulative costs and safety rates across testing environments with 3, 8, 12, and 16 agents. Our
method consistently appears in the bottom-right region, indicating superior safety-performance co-optimization relative
to all baselines. Moreover, its degradation in performance and safety with increasing agent count is minimal, demonstrating

better scalability compared to the baselines.

Hamilton-Jacobi-Bellman Variational Inequality (HIB-VI):

min{at‘/s(xat) + Hs(x7t)a fo(x) - ‘/;B(xvt)} =0,
VS(I7T) = w(gj)v
Hy(z,t) = max(VVs(x,t), fs(z,u)),

X
ueU

(12)

where H, is the Hamiltonian corresponding to the safety
value function and f,; encodes the pairwise dynamics be-
tween agents.

Learning the Pairwise Safety Value Function (V): We ap-
proximate V; using DeepReach [28], [29]. To characterize
pairwise safety interactions, we consider each agent ¢ in
relation to another agent j. The target function is defined
as 1 = d;; — r, where d;; denotes the distance between
the two agents and r is the prescribed collision radius. By
design, ¢ < 0 corresponds to states in which agents ¢ and
7 are in collision, thereby providing a natural safety signal.
Training in this manner yields a value function that quantifies
the relative safety risk posed by one agent to another.

Neighbour Selection: For agent 4, the value (Vj);; repre-
sents the degree of risk posed by agent j. Smaller values
correspond to higher collision likelihoods. Specifically, if
(Vi)ij < (Vs)ix, then agent j poses a higher safety risk
to agent ¢ compared to agent k, and thus should be priori-
tized in ¢’s decision-making process. Hence, to select its n
neighbours, agent ¢ computes (Vs);; for all agents j within
its observation radius 7., ranks them, and selects the n
agents with the lowest values. This process ensures that each
agent focuses its decision-making on the most safety-critical
interactions, while still keeping the neighbourhood size fixed
for computational tractability.

C. Policy Synthesis

Once the neighbour set is determined, each agent syn-
thesizes its policy by solving the optimization problem in
(5). To enforce safety, we set Vy(t,x) = +oo whenever
Vg(t, x,z) > 0, since such states are unsafe and violate the
safety constraint. For the remaining states, the optimization is
solved via binary search over z. The resulting state-feedback
policy for agent 4, ) : X x [t,T) — U, is given by

Wé(t,l‘) = argmin(VVg(t,é*), fd(é*,ud)>,
ug

where 6* = [0, 2*]T is the augmented state corresponding to
the optimal z*.

Since interaction structures in multi-agent navigation
evolve dynamically, the neighbour set ; is updated online,
motivating a receding-horizon execution of the policy. This
ensures that policy continuously adapts by incorporating
updated interaction information and anticipating future con-
flicts. In addition, frequent re-planning further enhances
robustness to model mismatch, sensor noise, and external
disturbances, enabling reliable decentralized navigation. Fi-
nally, this framework naturally extends to long-horizon tasks
by repeatedly solving the SC-OCP over shorter horizons,
allowing the proposed framework to co-optimize safety and
performance in a practical and computationally efficient
manner for real-world autonomous systems.

IV. EXPERIMENTS

The goal of our experiments is to assess the effectiveness
of the proposed framework in (i) co-optimizing safety and
performance in multi-agent systems, (ii) scaling to larger en-
vironments with higher numbers of agents, and (iii) validat-
ing the proposed safety-aware neighbour selection strategy.

A. Baselines

To thoroughly assess our method, we benchmark it against
baselines that represent the spectrum of safety integra-
tion techniques: 1) Constrained Policy Synthesis: DEF-
MARL ([32], which leverages multi-agent RL. (MARL) to
solve the discrete-time epigraph reformulation of the SC-
OCP to synthesize safe and optimal policies; 2) Safety Fil-
tering: SafeMARL [13], which uses a control barrier value
function (CBVF)-based safety filter to provide safety for a
nominal MARL policy; and 3) Soft-Constrained Optimiza-
tion: MPPI [17], a sampling-based MPC method to solve
(4) that penalizes constraint violations in its cost function
using a Lagrangian approach.

B. Evaluation Metrics

To evaluate the trade-off between performance and safety,
we use the following metrics: (1) Cumulative Cost: The
total cost fOT l(z(s))ds + ¢(z(T)) accumulated along safe
trajectories. (2) Safety Rate: The fraction of agents that
remain collision-free for the entire horizon, quantifying per-
agent safety. (3) Safe Scenarios: The fraction of scenarios in
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Fig. 3: Snapshots of multi-agent navigation trajectories at different times using MAD-PINN and baselines. Agents are
represented as circles with radius R, indicating the minimum safe distance they must maintain from each other. Smaller
dots mark their respective goals. MAD-PINN trajectories show that agents proactively maintain long-horizon safety by
adjusting their paths to avoid close encounters, rather than enforcing safety reactively (SafeMARL), which could lead to

suboptimal behaviours.

3 Agents 8 Agents 12 Agents 16 Agents
Method Safety Safe Sc. Safety Safe Sc. Safety Safe Sc. Safety Safe Sc.
Ours 100% £+ 0.0% 100% £ 0.0% 99.5% + 04% 98% £ 1.2% 99.3% £+ 0.6% 96% £ 1.8% 98.3% + 08% 86% £ 2.7%
DEF-MARL (3)  94% + 2.8% 91% + 34%  89.8% £+ 25% 63% + 4.2% 71% =+ 3.8% 31% £ 48% 443% +34% 7% + 1.5%
DEF-MARL (8) 100% + 0.0% 100% + 0.0% 95.4% + 21% 82% + 32% 752% +35% 37% £ 45% 509% +29% 13% + 2.1%
SafeMARL 100% + 0.0%  100% £ 0.0% 99.8% + 02% 99% =+ 0.8% 99% =+ 0.5% 96% + 1.7% 97.5% + 1.0% 90% + 2.2%
MPPI 98% + 1.1% 97% + 14%  89.5% £ 28% T2% £ 35% 729% £ 37% 35% £ 49% 488% £ 3.6% 9% + 2.4%

TABLE I: Average safety rates and safe-scenario percentages across varying numbers of agents. Our method maintains
consistently high values, indicating collision-free execution of every agent for nearly all initial configurations and
demonstrating effective safety-performance co-optimization at the agent and system level.
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Fig. 4: Heatmap of the learned value function with respect
to the ego agent’s position coordinates. The other two
agents are at [—0.3, 0.4] and [—0.3, —0.4], both moving with
velocity [—1, 0], while the ego agent moves with velocity
[1, 0] toward its goal at [—0.5, 0].

which all agents remain collision-free for the entire horizon,
reflecting collective safety guarantees.
C. Experimental Setup

We study a multi-agent Drone Navigation problem where
each agent follows double-integrator dynamics with state

si = [,y,vz,vy]", constrained to (z,y) € [-1,1]* and
(v, vy) € [—4,4]2. The control input is w; = [ag,a,]" €
[—4,4]2, representing acceleration. Each agent is assigned a
parameterized goal (xg4,y,), and its dynamics are given by
T = Vg, Y = Uy, Uy = Gy, Uy = Gy. Agents must reach
their goals while maintaining a safety distance » = 0.1. The
running cost for training the decentralized value function is:

[N

o=@ . 7E)T = @l a3

where N; denotes the neighbor set. We train the auxiliary
value function with 3 agents (so |[A;| = 2), a time horizon
of 0.2s, and an observation radius r,,s = 0.5, and deploy the
same value function for all agents across all environments.
The residual component of the auxiliary value function Ry is
approximated as a multi-layer perceptron (MLP) with three
hidden layers of 256 neurons each, using sine activation
functions. The network is trained with the Adam optimizer
at a learning rate of 2 x 1075, We evaluate all algorithms
over 100 distinct initial conditions across 5 seeds.

Figure 4 illustrates the heatmap of the learned value
function as a function of the ego agent’s position coordinates.
Regions of high value (yellow) correspond to unsafe states
overlapping with the positions of other agents, thus encoding



Number of Agents  Cumulative Cost ~ Safety Rate  Safe Scenarios Method Cumulative Cost ~ Safety Rate  Safe Scenarios
64 1.09 100% 100% Value-based (Ours) 0.51 99.33% 96%
128 1.68 98.75% 95% Nearest 0.82 83% 45%
256 2.73 96.25% 85% Random 1.55 33% 4%

TABLE II: Effect of increasing agent count and environment
size. Our method co-optimizes safety and performance
even in large multi-agent environments, despite training
on smaller environments with fewer agents.

safety constraints. Conversely, regions of low value (dark
purple) are concentrated around the goal, reflecting the task
objective. This demonstrates that the value function inte-
grates both safety and performance considerations, enabling
the derived policy to effectively co-optimize these objectives.

D. Results

1) Effectiveness in Co-optimizing Safety and Perfor-
mance: To gauge the ability of our method in co-optimizing
safety and performance, we compare it with the baselines on
3, 8, 12, and 16 agents, with environment size fixed so that
density increases as the number of agents grows. As shown
in Figure 2, our method consistently achieves the best trade-
off, attaining the lowest cumulative cost while maintaining
near-perfect safety rates, thereby validating its ability to co-
optimize both objectives. In contrast, DEF-MARL, trained
with 3 and 8 agents, performs competitively when evaluated
on the same agent counts but suffers pronounced degradation
in both safety and performance as agent density increases,
highlighting the limited generalization of RL-based co-
optimization approaches. Safety-filtering baselines such as
SafeMARL effectively prevent collisions, but their overly
conservative behavior results in substantially higher costs.
Penalty-based methods such as MPPI fare even worse, ex-
hibiting both high costs and poor safety rates due to the soft
enforcement of safety constraints. Table I further illustrates
these differences through the stringent safe scenarios metric,
which requires collision-free execution across all agents for
the entire horizon. Our method consistently achieves a very
high percentage of safe scenarios, indicating not only strong
safety rates but also collision-free execution in nearly all
cases. This highlights the effectiveness of decentralization,
where each agent can co-optimize safety and performance
individually. By contrast, non-safety filtering baselines such
as DEF-MARL and MPPI, while achieving moderate safety
rates, perform poorly on the safe scenarios metric as the num-
ber of agents grows, suggesting their inability to co-optimize
safety and performance at the agent level. SafeMARL, while
maintaining high safe-scenario rates, does so at the cost of
severely degraded performance. Taken together, these results
show that our approach inherits the strengths of safety-
filtering methods (high safety) and performance-driven meth-
ods (low cost), while avoiding their drawbacks. Moreover,
the performance degradation of our approach remains min-
imal when scaling from 3 to 16 agents despite the increase
in density, demonstrating that it can effectively co-optimize
safety and performance using only local observations; a

TABLE III: Ablation study on the impact of the proposed
neighbor selection strategy. By effectively capturing safety-
critical inter-agent interactions among neighbors, it en-
ables improved safety—performance co-optimization.

property that makes it well-suited for real-world autonomous
systems, where agents typically have access only to local
state information. Figure 3 further substantiates our claims
by demonstrating that the proposed method guarantees long-
horizon safety while allowing all agents to successfully reach
their respective goals without collisions. In contrast, baseline
approaches either adopt reactive safety strategies (leading
to over-conservatism) or fail to preserve safety, highlighting
their limitations in co-optimizing safety and performance.
2) Scalability with Agent Count and Environment Size:
To evaluate the scalability of our approach, we conduct
experiments with 20 distinct initial conditions and a substan-
tially larger number of agents, namely 64, 128, and 256. In
addition, the environment size is increased from [—1,1]? to
[—4,4]? to test the method in a more extensive and populated
setting compared to the training environment. From Table II,
it can be observed that our approach consistently achieves
very high safety rates even in large environments with
up to 256 agents, while maintaining a high safe-scenario
percentage. This indicates that each agent is able to co-
optimize safety and performance effectively, even as the
number of agents increases. It is also important to note
that the safety rates and safe-scenario percentages remain
comparable across Tables I and II because the increased
environment size in this study results in a similar agent
density in both setups. The cumulative costs are higher in
this setting, as agents must travel longer distances to reach
their respective goals due to the environment being scaled by
a factor of 4 in each dimension. However, the increase in cost
is approximately proportional to the increase in environment
dimensions, suggesting that our method preserves the same
level of performance as in Table I. These findings further
confirm that, within a decentralized setting, our method
can effectively address extremely large-scale multi-agent
problems by training policies using only local information
in a smaller environment and subsequently applying the
same policy independently to each agent. This highlights the
practicality of our framework for deployment in large-scale
multi-agent systems.

3) Effectiveness of Neighbour Selection: Finally, we con-
duct an ablation study to evaluate the effect of the pro-
posed HJ Reachability-based neighbour selection strategy.
We compare it against two alternative strategies: (1) a
distance-based strategy, where each agent selects its two
nearest neighbours, and (2) a random strategy, where each
agent selects two neighbours uniformly at random within its
observation radius. All strategies are evaluated on the same



12-agent environment used in Table I. As shown in Table III,
our method consistently achieves higher safety rates and
lower costs, indicating that prioritizing neighbours based on
the pairwise safety value functions V effectively captures
the most critical interactions. In contrast, the distance-based
strategy leads to a myopic neighbour selection, as it ignores
safety-critical information (e.g., agents’ relative velocities),
thereby reducing safety rates and drastically lowering the
safe scenario fraction. The random selection strategy per-
forms the worst, as it fails to incorporate any information
about the surrounding agents. These results highlight the
necessity of a principled neighbour selection framework that
accounts for critical inter-agent interaction information to
ensure reliable decentralized multi-agent navigation.

V. CONCLUSION AND FUTURE WORK

We presented a physics-informed machine learning frame-
work for scalable multi-agent safe and optimal control.
The key contribution lies in the reformulation of the large-
scale SC-OCP into a decentralized formulation with fixed
observation size, enabling tractability while preserving global
consistency. To address the curse of dimensionality in solv-
ing the associated HJB-PDE, we introduced a principled
neighbour selection strategy based on reachability analysis,
ensuring that agents account for the most safety-critical
interactions. Extensive experiments demonstrated that our
approach effectively co-optimizes safety and performance,
scales favourably with the number of agents, and signifi-
cantly outperforms existing performance-driven and safety-
driven baselines.

Future work will focus on extending the framework to
heterogeneous agent systems, incorporating dynamics and
model uncertainty, and evaluating performance on real-world
robotic platforms. We believe this work represents a step
toward practical, safe, and scalable multi-agent autonomy.
In addition, we plan to quantify the approximation error of
the auxiliary value function [21], [24], [33] and investigate
its impact on both safety and performance.
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