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Abstract

Detecting out-of-distribution (OOD) instances is
crucial for the reliable deployment of machine
learning models in real-world scenarios. OOD in-
puts are commonly expected to cause a more un-
certain prediction in the primary task; however,
there are OOD cases for which the model returns a
highly confident prediction. This phenomenon, de-
noted as "overconfidence", presents a challenge to
OOD detection. Specifically, theoretical evidence
indicates that overconfidence is an intrinsic prop-
erty of certain neural network architectures, lead-
ing to poor OOD detection. In this work, we ad-
dress this issue by measuring extreme activation
values in the penultimate layer of neural networks
and then leverage this proxy of overconfidence to
improve on several OOD detection baselines. We
test our method on a wide array of experiments
spanning synthetic data and real-world data, tabu-
lar and image datasets, multiple architectures such
as ResNet and Transformer, different training loss
functions, and include the scenarios examined in
previous theoretical work. Compared to the base-
lines, our method often grants substantial improve-
ments, with double-digit increases in OOD detec-
tion AUC, and it does not damage performance in
any scenario.

1 INTRODUCTION

Post-deployment, neural networks may encounter out-of-
distribution (OOD) samples coming from a distribution dif-
ferent than that of the training set. This may be due to rea-
sons such as data shift, variations in data collection protocol,
and input noise, among others [Bandi et al., 2018, Koh et al.,
2021, Zadorozhny et al., 2022]. The predictions on such
samples can be unreliable, which causes major concerns for

deployment in high-stakes applications. A solution to this
problem is OOD detection, which is intended to identify
OOD inputs in real time before serving any prediction [Yang
et al., 2021, Zimmerer et al., 2022].

A common assumption in OOD detection is that machine
learning (ML) models are more uncertain about OOD inputs
compared to in-distribution (ID) data. This rationale under-
pins different metrics to identify OOD inputs such as max-
imum softmax probability (MSP) or entropy [Hendrycks
and Gimpel, 2017], which in turn relate to different ways
in which one can measure uncertainty. However, for several
metrics of uncertainty, it has been demonstrated that ML
models can return overconfident predictions on some kinds
of OOD inputs, e.g., abnormally high softmax confidences
[Nguyen et al., 2015]. This can drastically reduce OOD
detection performance.

This phenomenon has been theoretically investigated for
feed-forward models with ReLU activation function in the
studies by Hein et al. [2019], Ulmer and Cinà [2021]. For
OOD instances generated from ID data by scaling a single
variable, they prove that the output probability vector can
converge to a one-hot vector. As a result, a model employing
uncertainty measures like MSP or entropy would be highly
overconfident in classifying such OOD cases as ID.

In this work, we address the overconfidence problem in
OOD detection methods. For this purpose, we propose to
adjust the novelty score—the score assigned to each input to
classify it as OOD or ID—by adding a second term respon-
sible for capturing overconfidence. Inspired by the obser-
vation that OOD inputs cause outsized activation values in
the neural networks [Sun et al., 2021], we suggest defining
this term by capturing extreme activation values (CEA). In
practice, this involves taking the ℓ2-norm of extreme activa-
tion values (defined as surpassing a specified threshold) at
the penultimate layer of models. If the threshold is chosen
appropriately over a validation set, ID activations remain
below the cutoff, and the term only captures overconfidence
caused by OOD samples. Our method is displayed in Fig. 1.
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Figure 1: Visual representation of the proposed method. We measure the ℓ2-norm of extreme activation values larger than
the threshold τ (CEA) as an indicator of overconfidence caused by OOD samples and add it to the original novelty score
computed based on the probabilities and activation values to generate the final novelty scores.

To assess the effectiveness of the proposed method, we adopt
the experimental settings outlined in Ulmer and Cinà [2021],
as the authors define the context stated earlier involving
piece-wise linear models and synthetic OOD, where the im-
pact of overconfidence on OOD detection becomes evident.
In addition, we experiment with alternative architectures and
OOD data such as tabular ResNet and Transformer and real-
world OOD sets, where overconfidence may not occur. Our
experiments also include models trained with LogitNorm
[Wei et al., 2022], a custom loss mitigating overconfidence.
Furthermore, we conduct experiments with image data to
evaluate how the results extend to other modalities.

Results demonstrate that many baseline OOD detection
methods can benefit from CEA as it remarkably enhances
the OOD detection performance of several baselines across
different settings. For example, averaged results over 5 dif-
ferent tabular datasets indicate a 45.6% improvement in
the AUC of detecting synthesized OODs by MSP. More-
over, MSP performance on average increases by 41.1% in
the experiments with a real-world tabular OOD set. Our
findings also shed light on the different factors influencing
overconfidence such as network architecture and ID data
heterogeneity. The advantage of our proposal is that it can be
incorporated into any method without requiring any change
to the original technique or adding much computational
overhead. Consequently, this method can potentially be ap-
plied to a variety of settings, improving the reliability of
OOD detection methods across the board. All experiments
are fully reproducible and the code is provided open access1.

2 PRELIMINARIES AND RELATED
WORK

OOD detection: For identifying OOD instances, we require
a function f assigning larger novelty scores to OOD inputs

1https://github.com/mazizmalayeri/CEA.

compared to ID ones and a threshold β such that:

G(x, f, β) =

{
OOD f(x) ≥ β

ID f(x) < β
. (1)

Common choices for f are methods that train a new model to
estimate the distribution of ID data such as approaches based
on an auto-encoder [Zhou, 2022], and post-hoc detection
methods, which are elaborated on below. In this study, the
latter are of particular interest since they suffer from the
impact of overconfidence in the generated novelty score.

Post-hoc OOD detection: Assuming that a model is trained
for a certain task (which could be anything, from sentiment
classification to mortality prediction), post-hoc methods
can be employed to identify OOD inputs without retraining
a new model, which makes them an appealing choice in
many applications [Yang et al., 2021]. The novelty score
is often generated based on the class probabilities or the
internal representations of the pre-trained neural network.
For example, EBO [Liu et al., 2020] utilizes an energy score
instead of a softmax score since it aligns with the probability
density of inputs and suffers less from overconfidence, or
MDS [Lee et al., 2018] measures the distance of each input
from class-conditional Gaussian distributions in the feature
space. More examples can be found in Appendix A.

Overconfidence in OOD detection: For the remainder of
this paper, we take the maximum softmax probability of
the predicted classes as the measure of confidence of the
model (we employ certainty and confidence as synonyms).
With overconfidence we refer to the phenomenon of having
a level of confidence in the predicted class that increases
as we move away from ID data in the feature space. This
in turn engenders a decrease in OOD detection AUC as we
transition away from ID data, contrary to what we would
want. In addition to the softmax scores, this phenomenon
can extend to the intermediate layers as demonstrated in
Sun et al. [2021]: activation values in the internal layers of a

https://github.com/mazizmalayeri/CEA


neural network have a different pattern for OOD data. This
can reduce the performance of post-hoc detection methods.
Among the methods provided for OOD detection, ReAct
[Sun et al., 2021] and LogitNorm [Wei et al., 2022] are
specifically designed to mitigate this problem.

ReAct addresses this issue by capping the activation values
in the intermediate layers of neural networks at an upper
limit, thereby the overconfident values will not affect the
final prediction and novelty score. Despite the advantages
of this method, we argue that it may lose useful information.
Accordingly, in contrast to ReAct, we suggest retaining
those values when generating the novelty score, but ad-
justing the novelty score based on the ℓ2-norm of extreme
activation values (CEA).

LogitNorm is not an OOD detection method, but a loss
function designed to alleviate the overconfidence of neural
networks. For this purpose, motivated by the insight that
increased logit norm during training with softmax cross-
entropy loss induces overconfidence, the authors train the
model by enforcing a constant norm on the logit vector.
Note that this method requires training a new model with
a constrained loss that may impact the optimization of the
model for the original task.

Theoretical vulnerability of OOD detection: The study
by Ulmer and Cinà [2021] gives a theoretical explanation of
why OOD detection fails under overconfidence. To achieve
this, they utilize a known result that feed-forward neural net-
works with piece-wise linear activation functions partition
the input space into polytopes [Arora et al., 2018]. They
then use the fact that these networks are component-wise
strictly monotonic on each of their polytopes [Croce and
Hein, 2018, Hein et al., 2019]. They also prove that if we
scale a single variable in an input with a factor α, there
exists a value δ such that ∀ α > δ, the output always lies in
a specific polytope.

Keeping in mind that we stay within a single polytope for
any large α and acknowledging the monotonic nature of
the polytopes, it is proved under certain conditions that if
we scale a variable from the input by α → ∞, the softmax
output of the defined neural network converges to a one-
hot vector. Using this finding, in their Theorem 1, they
conclude that OOD detection fails if we measure uncertainty
with metrics like MSP and entropy, as these methods assign
smaller novelty scores to such OOD instances compared to
ID ones. Furthermore, it has been empirically observed that
this phenomenon occurs at a limited α as well [Azizmalayeri
et al., 2023].

3 METHOD

In this section, we introduce CEA, a method that addresses
the problem of overconfidence by modifying the novelty
scores based on the outsized activation values. For this pur-

pose, we describe below how the confidence level can be
integrated into the OOD detection setup.

3.1 CONSIDERING OVERCONFIDENCE IN
NOVELTY SCORE

In order to deal with overconfidence in OOD detection, we
suggest directly taking it into account as part of the novelty
score generation. We propose adding a new term to the
novelty score which is non-zero only when an OOD input
causes overly confident prediction; otherwise, the new term
remains close to zero and the original novelty score would
be retained. In summary, we propose to change Eq. 1 to:

G(x, f, g, β) =

{
OOD (f(x) + λ g(x)) ≥ β

ID (f(x) + λ g(x)) < β
, (2)

where β is a threshold for classifying a sample as OOD,
f(x) returns the novelty score, g(x) is the new term re-
sponsible for indicating overconfidence, and λ controls the
tradeoff between f and g. The function g(x) should have
the following characteristics:

• The value returned by g(x) for ID data should be smaller
or equal to the value returned by g(x) for OOD data.

• The value returned by g(x) should monotonically in-
crease as the overconfidence level rises, e.g., when am-
plifying the scaling factor α for synthesizing the OOD
instances.

The first condition guarantees that the addition of g(x) will
not adversely impact the performance of the original nov-
elty score f(x) for OOD detection, and the second one is
directed towards the primary objective of introducing g(x),
namely highlighting the existence of overconfidence. Note
that g(x) alone may not be sufficient for OOD detection
as OOD instances without overconfidence will not be spot-
ted. One may also think of using g(x) as a trigger for f(x),
meaning that the latter is used only when the former does
not trigger. This approach however requires an additional
hyperparameter to decide when g would raise a flag.

3.2 OVERCONFIDENCE MEASURE

In this section, we present a choice for g(x) that meets the
specified conditions and can be applied to any architecture.
It has been observed that OOD data can lead to activation
patterns in neural networks that are significantly different
from ID data, i.e., activation units with extremely large
values, which results in overconfident predictions [Sun et al.,
2021]. We demonstrate in the subsequent theorem that one
kind of overconfident behavior on the side of the model
entails the presence of extreme activations in the penultimate
layer.

Theorem 1. Let x ∈ RD and suppose α is a scaling vector.
Now x′ = α⊙ x can be considered as an OOD example if



Algorithm 1 Simple code for the proposed method.

Input: Prediction model kθ, sample x, OOD detection
method f .
Parameters: Coefficient λ, Threshold τ .

xactivations, xlogits = kθ(x) ▷ Activations in penultimate layer.

NS = f(xactivations, xlogits) ▷ Original novelty score (f(x)).

CEA = max(xactivation − τ, 0) ▷ Capturing extreme activations.

CEA = ∥CEA∥2 ▷ ℓ2-norm of extreme values (g(x)).

NS = NS + λ CEA ▷ Modifying NS based on CEA.

Output: Modified novelty score NS.

α is large enough. Let hθ be any neural network whose last
layer is linear, generating an overconfident prediction for
class c on x′ as:

lim
αd→∞

σ(hθ(x
′))c = 1, (3)

where σ is the Softmax function. Then, we infer that there
exists at least a dimension in which the output of the penul-
timate layer goes to infinity in the limit.

Proof. The proof is available in Appendix C.

This finding suggests that extreme activations in the penul-
timate layer can be an indicator of overconfidence in the
prediction. Hence, we can measure the magnitude of ex-
treme activations, denoted as CEA, as a proxy for g(x). To
this end, we use the ℓ2 norm of node activation values at the
penultimate layer of the neural network that are higher than
a specified threshold. Accordingly, assuming that kθ(x) is
the activation vector before the classification layer generated
by the prediction model k with parameters θ for the input x,
we define CEA as:

CEA(x, kθ, τ) = ∥max(kθ(x)− τ, 0)∥2 , (4)

where τ is the specified threshold. We utilize ℓ2-norm in
our method, but it can potentially be substituted with other
norms as well. The pseudocode for computing CEA as a
proxy of g(x) and adding it to the original novelty score is
provided in Algorithm 1. This selection for g(x) intuitively
yields larger values for the overconfident OOD inputs than
other OODs as they lead to more outsized activation nodes.
Also, with a suitable choice of τ , the values returned for ID
data would be comparatively smaller. Therefore, by appro-
priately selecting hyperparameters, the CEA algorithm can
fulfill the specified conditions.

Hyper-parameter selection: τ and λ play an important role
in the proposed method. We select threshold τ such that it
remains above the feature values of ID data. Hence, g(x) is
close to zero for ID data, while it can capture outsized fea-
ture values in OOD instances. To tune these values, we use
a validation set from ID data Dval to extract their activation

values at the penultimate layer of the prediction model. τ
can be set to the maximum activation value extracted from
the validation data; however, in presence of outliers, such a
choice might lead to a very large τ that does not let g(x) cap-
ture the overconfidence even in OOD cases. Alternatively,
we use the activation value at the p-th percentile to avoid
noisy activation values. In our study, we set p = 99.9 for
tabular datasets and p = 99.999 for images. Furthermore,
we also scale this value by a factor of ρ = 1.1 to ensure that
most ID feature values remain below the threshold.

The coefficient λ is determined based on the average f(x)
and g(x) over Dval. More specifically, λ is computed as:

λ = γ |
∑

x∈Dval
f(x)∑

x∈Dval
g(x)

| , (5)

where γ lets us control the tradeoff between f(x) and g(x).
In our study, we set γ = 1. We conduct an ablation study on
the parameters p and γ in the experiments.

It should be noted that we only use a validation from ID
data to find the hyper-parameters. Still, we could tune τ
and λ further using a diverse set of OOD examples. This
involves assessing the OOD detection performance across
different ranges of these parameters. However, this requires
a set of diverse OOD data which covers different kinds of
OOD examples that model may face in practice, which is
not available in many cases.

3.3 EXPERIMENTAL SETUP

To investigate the effectiveness of our proposed method
in contrast to baseline OOD detection methods, we follow
the theoretical findings described earlier, where the neural
network has a provably higher level of confidence for some
kinds of OOD cases compared to IDs. Accordingly, we
incorporate the assumptions used in Theorem 1 of Ulmer
and Cinà [2021] as follows:

• A ReLU classifier constituted of fully connected layers
with ReLU activation function is considered as the basic
architecture of the prediction model. This architecture is
a piece-wise affine function that leads to overconfident
predictions as discussed.

• OOD instances are generated by scaling a single input
variable from the ID data by an α factor. We repeat syn-
thesizing OOD versions 50 times with different variables
and average the results over them to minimize the effect
of the selected variable. If a dataset has a smaller number
of variables, we use each of them once. Moreover, we use
different values of α to see how that affects the results.
We are interested in such OODs since for large α they
lead to overconfident predictions according to the theory.

The experiments proceed as follows. First, a prediction
model is trained on a specific dataset. Then, post-hoc OOD
detection methods with and without our method are applied



Figure 2: OOD detection performance with and without CEA using the eICU (top) or Diabetics (bottom) datasets as ID
and synthesized OOD data obtained by scaling. The blue bars are positioned in front of the red ones and cross markers are
employed to emphasize the top of the red bars. The scaling factors α and baselines are presented under each bar.

to the prediction model to examine whether they can dis-
criminate OOD instances from IDs and the extent to which
they suffer from overconfident predictions. AUC is used
as the discrimination criterion and the results are averaged
over three repetitions of experiments with different random-
ization seeds to increase reliability. We investigate more
complicated architectures and some other OOD groups in
the experiments as well, to see how the results extend to
those scenarios. In the following, we provide details about
these architectures and OODs along with the datasets and
OOD detection baselines used in the experiments.

Tabular datasets: We consider 5 different tabular datasets
consisting of eICU [Pollard et al., 2018], MIMIC-IV [John-
son et al., 2023], Diabetic Retinopathy Debrecen [Antal
and Hajdu, 2014], Dry Bean [Koklu and Ozkan, 2020],
and Wine Quality [Cortez et al., 2009]. These datasets are
drawn from different domains and aim at diverse prediction
tasks such as mortality prediction or wine type. In addi-
tion, they include large-scale and unbalanced (e.g., eICU)
datasets. Detailed information about the datasets can be
found in Appendix B. For the first three datasets, we use
α ∈ [10, 100, 1000] in synthesizing the OOD instances,
while opting for α ∈ [2, 3, 4] for the remaining ones as they
exhibit overconfident behavior at a smaller scale.

Real-world tabular data as OOD: Besides synthesized
OOD groups, it is valuable to examine real-world OOD
instances as well. Among the tabular datasets mentioned
above, eICU and MIMIC-IV datasets share a lot of similar
variables. Consequently, we can employ each of them as the
OOD data for the other one. For this purpose, we only use
the shared variables in these two datasets. This experiment
is also interesting in that it explores the effect of data ho-
mogeneity on overconfidence: as opposed to eICU, which
comprises the data of several hospitals, MIMIC-IV is more
homogeneous since it sources data from a single center.

Architectures: In addition to the ReLU classifier, we also
employ tabular ResNet and Transformer [Gorishniy et al.,
2021] in the experiments. It has been empirically observed
that tabular Transformers can mitigate the overconfidence
phenomenon [Azizmalayeri et al., 2023], which allows us
to evaluate our method in combination with a prediction
model that suffers from this issue only marginally.

Image datasets: In addition to tabular datasets, we also
consider three widely used image datasets MNIST [Deng,
2012], CIFAR-10, CIFAR-100 [Krizhevsky et al., 2009].
We train a ReLU classifier and a ResNet-32 model on each
of these datasets. Within images, we only set α = 10 for
the synthesized OODs since it is enough to show overcon-



Figure 3: OOD detection performance with and without CEA using MIMIC-IV as ID and eICU as OOD (left) and the other
way around (right). The blue bars are positioned in front of the red ones and cross markers are employed to emphasize the
top of the red bars.

fidence, and also use adversarial examples generated by
maximizing the cross-entropy loss of the model itself via
a PGD-20 attack with ϵ = 32/255 as another way of gen-
erating overconfident OOD instances [Nguyen et al., 2015,
Madry et al., 2018]. Furthermore, we also report the average
detection performance on real-world OOD datasets, namely
Fashion MNIST [Xiao et al., 2017], MNIST, SVHN [Netzer
et al., 2011], CIFAR-10, and CIFAR-100 (the one used as
ID is excluded in the averaging).

Baseline OOD detection methods: A wide range of post-
hoc OOD detection baselines are considered in this study
following recent benchmarks in OOD detection [Yang et al.,
2022, Zhang et al., 2023, Azizmalayeri et al., 2023]. These
baselines include both commonly used and top-performing
post-hoc OOD detection methods. More information about
these methods can be found in Appendix A. In addition,
we also consider the same baselines applied to an MLP
architecture with LogitNorm [Wei et al., 2022].

4 RESULTS

Evaluation with synthetic OOD The results of the ex-
periments on tabular datasets are displayed in Fig. 2 for
eICU and Diabetics datasets, and in Appendix D for the
rest. Based on the results, our method gives a net positive
improvement on most baselines, with two exceptions that
are not affected, MDS and SHE. Furthermore, the improve-
ments are more notable in detection methods such as MSP
and EBO which rely on the probabilities to generate the
novelty scores.

In addition, it is expected that OOD data generated with a
larger scaling factor are detected better as they are farther

away from the ID data. However, certain baselines present a
different behavior, and their performance is decreased by in-
creasing the scaling factor. This is a sign of overconfidence
in the prediction model as the detection method assigns a
lower novelty score to the OOD instances farther from the
ID data. As hoped, our method addresses this issue: com-
bining the baselines with our method leads to consistently
better performance for larger scaling factors.

Real-world tabular data as OOD To assess the perfor-
mance on real-world tabular OOD datasets, we consider
MIMIC-IV as OOD set for eICU and vice versa. Results of
this experiment are illustrated in Fig. 3. Similarly to synthe-
sized OODs, our method significantly improves the OOD
detection performance across several baselines without neg-
atively affecting any of them.

The results also indicate that our method grants more im-
provement when the model is trained on MIMIC-IV as ID.
This shows that the prediction model trained on MIMIC-IV
suffers more from overconfidence compared to the eICU
dataset (see Discussion). Finally, it is worth noting that the
addition of our methods improves all OOD detection perfor-
mances above the chance threshold of 0.5 AUC (often far
better) ‘reversing’ the effect of overconfidence.

Other architectures The architecture of the prediction
model plays an important role in its overconfidence. Thus,
we employ tabular ResNet and Transformer [Gorishniy et al.,
2021] to evaluate our approach. Table 1 displays the results,
demonstrating that the addition of CEA outperforms nu-
merous baseline detection methods when applied to ResNet
(due to space limitation, we show only some baselines and
put the rest in Appendix D). However, the improvements



Table 1: AUC of OOD detection with and without CEA using tabular ResNet and Transformer as the prediction model. We
use eICU and Diabetics as ID and synthesize the OOD data by scaling factor α. Superior results are emphasized in bold
unless the two are equal.

ResNet Transformer

α = 10 α = 100 α = 1000 α = 10 α = 100 α = 1000

ID Method Baseline / Baseline&CEA

eICU

MDS 77.8 / 77.6 91.7 / 91.8 93.6 / 93.6 63.3 / 63.3 83.6 / 83.6 90.7 / 90.7
KNN 72.0 / 74.7 86.8 / 90.5 89.5 / 93.3 59.9 / 59.9 79.5 / 79.5 90.1 / 90.1
ViM 75.4 / 75.4 91.4 / 91.4 93.7 / 93.7 60.0 / 60.0 80.5 / 80.5 90.3 / 90.3
MSP 47.9 / 69.5 30.6 / 87.3 13.2 / 93.6 51.7 / 52.5 56.1 / 58.3 71.7 / 73.5
EBO 46.4 / 69.2 28.6 / 87.1 13.2 / 93.6 51.6 / 52.3 56.1 / 57.9 71.4 / 73.0
ReAct 61.6 / 70.3 71.8 / 88.0 76.1 /93.6 51.9 / 52.5 56.6 / 58.3 72.0 / 73.7
Gram 35.4 / 55.0 16.0 / 44.8 6.8 / 24.0 50.8 / 51.7 54.4 / 57.0 68.3 / 69.9

Diabetics

MDS 85.9 / 85.8 90.2 / 90.3 91.8 / 91.8 84.3 / 84.3 89.5 / 89.5 91.3 / 91.3
KNN 80.0 / 83.9 85.0 / 89.7 87.0 / 91.9 80.3 / 80.3 88.3 / 88.3 90.8 / 90.8
ViM 79.2 / 84.9 83.9 /90.8 85.5 / 92.5 84.2 / 84.2 90.6 / 90.6 92.2 / 92.2
MSP 25.6 / 67.4 15.5 / 86.3 10.5 / 90.3 38.4 / 39.9 47.3 / 48.2 61.8 / 62.7
EBO 35.1 / 68.4 23.0 / 86.1 18.5 / 90.2 43.0 / 44.0 50.8 / 51.4 66.8 / 68.1
ReAct 44.3 / 69.9 43.4 / 86.6 42.8 / 90.4 45.8 / 46.9 52.2 / 52.9 66.6 / 68.1
Gram 21.5 / 65.2 11.9 / 74.8 6.7 / 38.8 50.6 / 52.1 54.2 / 54.7 64.3 / 65.1

Table 2: AUC of OOD detection with and without CEA on the model trained with the LogitNorm loss. We use eICU and
Diabetics as ID and synthesize the OOD data by scaling factor α. Superior results are emphasized in bold unless the two are
equal.

ID α
MDS KNN ViM MSP EBO ReAct Gram

Baseline / Baseline&CEA

eICU
10 72.8 / 72.6 57.7 / 68.2 45.9 / 59.2 55.0 / 67.3 55.0 / 67.3 53.5 / 65.8 37.1 / 60.1

100 85.6 / 85.7 63.9 / 82.4 43.6 / 75.4 61.7 / 82.7 61.7 / 82.7 55.1 / 80.4 21.7 / 62.6
1000 90.5 / 90.5 66.1 / 89.2 42.6 / 87.2 64.6 / 89.9 64.7 / 90.0 54.2 / 89.2 11.3 / 42.7

Diabetics
10 84.7 / 84.7 82.9 / 83.4 84.2 / 84.2 35.2 / 65.0 35.2 / 65.0 20.3 / 61.0 23.4 / 51.6

100 89.6 / 89.6 88.3 / 89.1 89.7 / 89.7 32.6 / 85.7 32.6 / 85.7 11.9 / 84.2 12.5 / 55.0
1000 91.7 / 91.7 90.5 / 91.3 91.9 / 91.9 31.7 / 90.0 31.9 / 90.1 9.1 / 89.1 9.4 / 29.2

with the Transformer are marginal. This aligns with prior
observations that Transformer as an architecture mitigates
the effect of overconfidence [Azizmalayeri et al., 2023].

It is noteworthy that the OOD detection performance of the
pure baseline methods is better on average on the Trans-
former model as it internally addresses the overconfidence.
However, results on ResNet plus CEA often get better than
Transformer with the same advantage (especially for MSP,
EBO, and React). Hence, while changing the architecture
of the prediction model itself can be a solution to over-
confidence, its capability for OOD detection is still highly
dependent on the way OODs are singled out.

LogitNorm training To assess the impact of LogitNorm
training, we also train prediction models with this loss in-
stead of softmax cross-entropy loss. Results are provided in

Table 2. According to this table, our method still manages
to improve on the models trained with this dedicated loss
across different datasets and baselines.

Comparing the results from this table and Figure 2 indicates
that LogitNorm itself leads to better OOD detection as ex-
pected. Nevertheless, it does not eliminate overconfidence in
the prediction model, e.g., OOD detection using LogitNorm
plus MSP (or EBO, or ReAct, or Gram) on Diabetics results
in worse performance than a random binary classifier.

Extension to images In this section, we evaluate the OOD
detection performance within the image domain. Results for
MNIST and CIFAR-10 datasets are presented in Table 3 and
additional results for CIFAR-100 can be found in Appendix
D. For synthesized OOD sets, our method significantly im-
proves the performance of many baselines regardless of the



Table 3: AUC of OOD detection with and without CEA in image datasets. MNIST and CIFAR-10 serve as ID, and OOD
sets are synthesized by i) scaling or ii) an adversarial attack, or iii) selected from other datasets. ResNet-32 and ReLU MLP
classifiers are used as the prediction model. Superior results are in bold unless the two are equal.

ReLU MLP ResNet-32

Scale Attack Other Scale Attack Other

ID Method Baseline / Baseline&CEA

MNIST

MDS 64.2 / 64.3 98.5 / 98.1 88.7 / 90.2 59.5 / 59.5 99.9 / 99.9 99.9 / 99.9
KNN 62.1 / 62.4 73.1 / 84.6 97.6 / 98.2 54.6 / 54.6 99.2 / 99.7 99.9 / 99.9
ViM 60.2 / 60.2 67.4 / 68.0 98.0 / 98.0 58.3 / 58.3 99.9 / 99.9 99.9 / 99.9
MSP 46.3 / 63.2 26.1 / 73.1 77.5 / 89.9 52.5 / 54.3 59.7 / 97.3 98.3 / 98.7
EBO 41.3 / 61.3 7.0 / 44.2 74.7 / 92.3 47.5 / 67.7 11.7 / 92.8 95.5 / 97.0
ReAct 56.4 / 60.3 28.7 / 67.7 88.8 / 93.6 60.9 / 61.0 86.7 / 97.8 98.6 / 98.8
Gram 34.1 / 48.9 2.8 / 12.8 26.8 / 36.4 43.8 / 44.8 1.6 / 71.2 53.0 / 62.0

CIFAR-10

MDS 97.9 / 97.9 95.4 / 95.5 61.8 / 61.7 99.8 / 99.8 98.0 / 99.1 31.1 / 31.0
KNN 77.7 / 97.4 65.3 / 80.4 54.5 / 56.4 99.5 / 99.6 10.0 / 71.1 86.9 / 87.0
ViM 71.2 / 95.2 43.3 / 50.5 63.5 / 64.3 70.6 / 95.6 0.0 / 58.6 90.4 / 90.4
MSP 14.3 / 90.0 11.0 / 39.0 57.3 / 59.1 88.0 / 99.3 0.2 / 74.4 88.4 / 88.7
EBO 3.9 / 4.4 5.9 / 6.3 50.0 / 50.0 78.0 / 96.7 0.0 / 59.0 90.4 / 90.4
ReAct 71.6 / 94.4 72.2 / 81.3 55.5 / 57.7 97.5 / 99.0 13.0 / 73.4 81.8 / 82.0
Gram 22.3 / 94.1 8.2 / 25.9 61.6 / 63.1 13.8 / 13.8 0.0 / 1.6 70.4 / 70.4

choice of prediction model and dataset. Furthermore, it is
similarly effective with real-world OOD sets when applied
to the ReLU MLP. Nevertheless, the improvements become
marginal with the ResNet architecture, to the extent that on
heterogeneous ID data such as CIFAR-100 results with and
without CEA are the same for real-world OOD sets.

Ablation study on hyperparameters τ and λ are the
main hyperparameters in our method, regulated via p and γ,
respectively. In this section, we examine the effects of these
parameters. To achieve this goal, we evaluate the OOD de-
tection performance on the Diabetics dataset across various
values of p and γ in Fig. 4. This figure demonstrates that
the proposed method can improve the OOD detection for a
wide range of choices for these parameters. Nevertheless, it
is advisable to fine-tune these parameters to achieve optimal
results. Note that we have used the fixed set of parameters
described in section 3.2. Therefore, the outcomes of our
method could potentially be enhanced by identifying the
optimal hyperparameters for each detection method and
dataset.

Based on Fig. 4, a higher value of p guarantees that CEA
only positively influences the performance of baseline OOD
detection methods. However, it might reduce the capabil-
ity to detect overconfident OOD instances, as it raises the
threshold τ .

For investigating γ, we have set p such that it results in a
threshold that remains above node activation values of ID
data. Consequently, our method only captures the overconfi-
dence in OOD instances, and increasing γ results in a better

performance. However, we do not recommend using a large
γ if the threshold has not been set carefully. In addition,
note that a small γ can also result in neglecting the effect of
CEA on the final novelty score.

5 DISCUSSION

As a solution to the overconfidence issue in OOD detection,
we proposed CEA, a way to adjust the novelty scores of the
post-hoc OOD detection methods by adding a new term to
the original novelty score. CEA is only activated when an
OOD input results in an outsized activation compared to the
corresponding values over the ID validation set.

To demonstrate the effectiveness of CEA, we conducted ex-
periments on 16 different baseline OOD detection methods
across 5 different tabular datasets spanning a wide range of
domains in a context where it has been theoretically verified
that overconfidence hurts OOD detection. We also explored
alternative settings with real-world OOD sets, other archi-
tectures like tabular ResNet and Transformer, and image
datasets. There was a significant improvement in the perfor-
mance of numerous baselines across these settings; however,
there were also methods and settings that were not affected
much, which are discussed below.

Our method enhances baseline detection methods relying
on the class probabilities to generate novelty scores such
as MSP, EBO, and DICE more than those that measure a
distance in the feature space such as MDS, SHE, and KLM.
This is because distance-based methods inherently handle



Figure 4: Impact of parameters on the performance of CEA applied on different baseline OOD detection methods within the
Diabetics dataset. (a) γ = 10 and p is changed. (b) p = 99.9 and γ is changed. The dashed lines indicate the performance of
OOD detection methods without CEA (γ = 0).

overconfidence by relying on distance (measured among in-
ternal representations) instead of confidence. Consequently,
CEA may not improve much the performance of these kinds
of detection methods, as can be observed for MDS in the
results. One may be tempted to resort to these approaches
instead, but it should be noted that we cannot solely rely on
distance-based detection methods as they may not perform
well in general, see e.g. MDS applied on the ResNet-32
model trained on the CIFAR-10 dataset. More specifically,
another baseline combined with CEA may perform better
than methods like MDS. Hence, CEA allows us to replace
methods like MDS with other baselines while keeping the
benefits of those methods.

Within the architectures evaluated in our study, the Trans-
former seems to be more robust against overconfidence. This
behavior can be explained based on the theoretical under-
standing of the problem. The proofs provided on overconfi-
dence assume that the model is a piece-wise affine classifier
[Hein et al., 2019]. Nevertheless, the Transformer utilizes ac-
tivation functions and attention mechanism [Vaswani et al.,
2017] which are non-linear, violating this assumption. This
property results in better OOD detection performance within
detection methods such as MSP and EBO; still, when over-
confidence is addressed by our proposed method or methods
such as MDS, we see that the non-linearity of Transformer
is not so beneficial for OOD detection anymore.

The results also showcase that more heterogeneous ID data
reduces overconfidence. For example, models trained on
eICU and CIFAR-100 are not overconfident in real-world
OOD sets as much as models trained on MIMIC-IV and
CIFAR-10, respectively. This may explain the observation
in the OpenOOD and other benchmarks [Yang et al., 2022,
Azizmalayeri et al., 2023] that OOD detection performance
is better in some models trained on complex datasets. We
also note that model calibration may be another way to

mitigate overconfidence; however, our results in Appendix
E demonstrate that calibration improves the OOD detection
AUC only marginally.

Lastly, note that the proposed method can be seamlessly
incorporated as an extension to any post-hoc OOD detection
method, without much computational overhead but with
potentially big gains in real-time OOD detection perfor-
mance. Additionally, it is compatible with other methods
proposed for overconfidence such as LogitNorm and Re-
Act. This property makes this method suitable for many
applications, especially those with a high risk of data shift
and safety-critical consequences. Even though the applica-
bility of our method may seem impaired by the need to
choose hyperparameters, the ablation study demonstrates
that the conclusions about CEA are robust within reasonable
hyperparameter ranges.

In summary, we believe that the proposed method can in-
crease the reliability of OOD detection methods and benefit
a wide range of domains that currently use ML models and
OOD detection such as healthcare (e.g., disease recogni-
tion or mortality prediction), financial services (e.g., fraud
detection), transportation (e.g., autonomous vehicles), and
cybersecurity (e.g., identification of OOD network patterns).
Our study not only offers a practical solution but also pro-
vides insights that open the door to research exploring al-
ternative solutions to overconfidence in OOD detection. On
the experimental side, future work can also consider the
application of CEA within alternative domains, including
but not limited to time-series and text data, to enrich the
understanding of the problem. On the theoretical realm, it
might be worth investigating which properties of CEA (or
the term g more generally) are sufficient to guarantee the
absence of overconfidence in OOD detection.
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A BASELINE POST-HOC OOD DETECTION METHODS

In this section, we provide a summary of baseline OOD detection methods included in our experiments. We have selected
these methods following the recent related benchmarks [Yang et al., 2022, Zhang et al., 2023, Azizmalayeri et al., 2023],
and detailed information about them can be found in the code and original studies.

MDS [Lee et al., 2018]: This method fits a class-conditional Gaussian distribution N (µk,Σ) to the feature vector before
the logits. The covariance matrix Σ is shared between the classes, but the mean µk is computed separately for each class
k ∈ {1, 2, ...,K}. The novelty score for an input x with pre-logit features lx is computed as:

min
k

(hx − µk)
TΣ(hx − µk). (6)

RMDS [Ren et al., 2021]: Motivated by the observation that MDS does not work well on near-OOD data, they suggest
fitting a single distribution N (µ,Σ) to the feature vector before the logits and normalizing the distances measured by MDS
as:

MDS(hx)− (hx − µ)TΣ(hx − µ). (7)

They believe that this fix to MDS makes it more robust on near-OOD sets.

KNN [Sun et al., 2022]: They suggest non-parametric nearest-neighbor distance for OOD detection. More specifically,
they compute the distance to the kth nearest neighbor distance from the training set as the novelty score. The distance is
computed based on the embedding extracted from each input.

ViM [Wang et al., 2022]: This study suggests that softmax probability and features should be used simultaneously to be
capable of detecting different types of OOD. Accordingly, they combine a class-agnostic score from the feature space with
the class-dependent scores from logits. More specifically, their method is based on the idea that some information from
feature space is not carried to the logits. They recover this information from the principal subspace of features and add it to
the score from logits.

SHE [Zhang et al., 2022]: This method shares similarities with MDS regarding the intuition behind the method. SHE stores a
single class-dependent pattern from the penultimate layer of the neural network over the training set. Afterward, it leverages
an energy function defined in Modern Hopfield Network [Ramsauer et al., 2020] to measure the distance between a new
input pattern and stored patterns.

KLM [Hendrycks et al., 2022]: For each class of data, they average the probability vector extracted from the validation
samples classified in the corresponding class by the prediction model. The novelty score for an input is then computed based
on the minimum KL distance of its probability vector from the class-dependent probabilities computed earlier.

OpenMax [Bendale and Boult, 2016]: On a dataset with k classes, they propose to change the softmax probability such that
it generates a probability vector for k + 1 classes, where the last class corresponds to the open-set class. To achieve this,
they reweight the original probability vector by fitting a Weibull distribution to the class-dependent probabilities.
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MSP [Hendrycks and Gimpel, 2017]: It is a simple but effective baseline proposed for OOD detection. It is motivated by the
intuition that the maximum softmax value for an OOD input should not be as large as ID data. So, it utilizes maximum
softmax probability to compute to novelty score.

MLS [Hendrycks et al., 2022]: As an alternative to maximum softmax probability, MLS suggest to use maximum logit.
Experiments on MLS have demonstrated that it performs better than MSP in large-scale multi-class, multi-label, and
segmentation tasks.

TempScaling [Guo et al., 2017]: This method calibrates the softmax temperature over a validation before applying MSP for
OOD detection.

EBO [Liu et al., 2020]: The intuition behind EBO is that p(y|x) used in methods such as MSP should be replaced with p(x),
which shows better whether an input x comes from the training distribution. For this purpose, they propose an energy-based
framework for OOD detection that computes novelty scores based on the energy score.

GRAM [Sastry and Oore, 2020]: They characterize the intermediate representations of the neural network by GRAM
matrices. OOD inputs are identified by comparing the values in the GRAM matrices to their respective range computed over
the training set.

GradNorm [Huang et al., 2021]: The key idea in GradNorm is that the magnitude of gradient back-propagated from the KL
distance between the softmax vector and a uniform probability vector would be larger for ID data than that of OOD data.
This makes sense as OOD data are generally expected to yield a uniform probability vector for OOD data.

ReAct [Sun et al., 2021]: This method rectifies activation units at the penultimate layer of the neural network at an upper
limit computed over a validation set. This helps to reduce the impact of overconfidence in the generated novelty score. They
suggest applying EBO after rectification, but it can be combined with other detection methods as well.

DICE [Sun and Li, 2022]: The idea of DICE is that reliance of neural networks on unimportant weights and units can reduce
the OOD detection performance. Accordingly, DICE proposes to rank weights based on a contribution measure and only use
the more contributing ones in OOD detection. A simple example of the contribution measure is averaging the output of each
weight over a validation set.

ASH [Djurisic et al., 2023]: This study extends the neural network sparsification idea and proposes to remove a large
proportion of an input’s activations and lightly adjust the rest. The change in the weights is case-specific and does not require
any statistic from the training set.

B DATASET AND TASK DETAILS

In this section, we present information about the datasets and the associated prediction tasks for which they are employed.
These datasets are publicly available (some need access authorization).

B.1 TABULAR

eICU: The eICU Collaborative Research Database is a dataset containing health data from the patients admitted to the
United States ICUs in 2014-2015. This dataset can be accessed through PhysioNet 1 but requires to be a credentialed user on
the website. For pre-processing this dataset, we followed the guidelines in prior works [Ulmer et al., 2020, Azizmalayeri
et al., 2023]. More specifically, we employed the pipeline provided in Sheikhalishahi et al. [2020]2 to keep patients with a
length of stay of at least 48 hours, age greater than 18, and known discharge status. Since some of the variables are not
available for some patients, they have suggested a list of more frequent variables provided in Table 4 to be used in the
analysis. Patients lacking data for any of these variables are excluded from the dataset, which resulted in 54826 unique
patients. Moreover, they aggregate the time-dependent variables through 6 different statistics including minimum, maximum,
mean, standard deviation, skewness, and number of observations computed over windows consisting of the full time-series
and its first and last 10%, 25%, and 50%. This dataset is then used for the mortality prediction task, where the data collected
in the first 48 hours from patients is used to predict in-hospital mortality. The mortality rate in this dataset is 6.77%.

MIMIC-IV: The Medical Information Mart for Intensive Care (MIMIC) dataset provided critical care data for patients

1https://physionet.org/content/eicu-crd/2.0/
2https://github.com/mostafaalishahi/eICU_Benchmark_updated
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Description eICU MIMIC-IV

• Time-dependent

Blood pH value pH pH
Body temperature Temperature (c) Temperature
Respiratory rate Respiratory Rate Respiratory rate
Blood oxygen saturation O2 Saturation Oxygen saturation
Mean arterial pressure MAP (mmHg) Mean blood pressure
Heart rate Heart Rate Heart Rate
Blood glucose level glucose Glucose
Glasgow coma scale (total) GCS Total -
Glasgow coma scale (motor functions) Motor -
Glasgow coma scale (eyes) Eyes -
Glasgow coma scale (verbal) Verbal -
Fraction of inspired oxygen FiO2 -
Diastolic Blood Pressure Invasive BP Diastolic Diastolic blood pressure
Systolic Blood Pressure Invasive BP Systolic Systolic blood pressure

• Time-independent

Gender gender gender
Age age age
Ethnicity ethnicity -
Height at admission time admissionheight -
Weight at admission time admissionweight -
Admission type - admission_type
First care unit - first_careunit

Table 4: Clinical variables used for each of eICU and MIMIC-IV datasets. Dash means that the variable is not included in
the dataset.

admitted to ICU at the Beth Deaconess Medical Center. This dataset is accessible via credentializing on the PhysioNet
website 3. This dataset is pre-processed mainly similar to the eICU dataset. Initially, the data undergoes the pre-processing
pipeline presented in Gupta et al. [2022]4, followed by filtering procedures similar to those employed in eICU. This resulted
in 18180 unique patients in this dataset. This dataset is used for mortality prediction as in eICU and has a mortality rate of
12.57%.

Diabetic Retinopathy Debrecen: Diabetic retinopathy is a kind of diabetes that affect eyes by by damaging the blood
vessels of the light-sensitive tissue. To facilitate the research studies on diabetic retinopathy, Messidor [Decencière et al.,
2014], a collection of Diabetic Retinopathy examinations consisting of two macula-centered eye fundus images, is provided.
Diabetic Retinopathy Debrecen is a dataset containing features extracted from the Messidor images to predict whether an
image has signs of diabetic retinopathy. This dataset contains 1151 instances and can be accessed through the UCI machine
learning repository 5. This dataset is a balanced data and the proportion of positive labels is 53.1%.

Dry Bean: This dataset contains features from 7 different registered varieties of dry beans. It can be accessed through the
UCI machine learning repository 6 and contains 13611 instances. The task in this dataset involves distinguishing various
types of dry beans.

Wine Quality: This dataset combines data from the red and white vinho verde wine samples from the north of Portugal. It
is publicly available through the UCI machine learning repository 7 and contains 4898 instances in total. This dataset is
designed to predict the quality of wine based on physicochemical tests but can be used for color classification as well. In this
study, we leverage it for the latter purpose.

3https://physionet.org/content/mimiciv/2.2/
4https://github.com/healthylaife/MIMIC-IV-Data-Pipeline
5https://archive.ics.uci.edu/dataset/329/diabetic+retinopathy+debrecen
6https://archive.ics.uci.edu/dataset/602/dry+bean+dataset
7https://archive.ics.uci.edu/dataset/186/wine+quality

https://physionet.org/content/mimiciv/2.2/
https://github.com/healthylaife/MIMIC-IV-Data-Pipeline
https://archive.ics.uci.edu/dataset/329/diabetic+retinopathy+debrecen
https://archive.ics.uci.edu/dataset/602/dry+bean+dataset
https://archive.ics.uci.edu/dataset/186/wine+quality


B.2 IMAGES

MNIST: The MNIST dataset is a collection of handwritten digits. The images in this dataset are grayscale and have a shape
of 28×28. It has a training and test set including 60,000 and 10,000 instances, respectively. The prediction task in this
dataset involves classifying the digits.

Fashion-MNIST: This dataset contains images from Zalando’s articles, consisting of 60,000 images in the training set and
10,000 in the test set. The images size are 28×28.

SVHN: This dataset contains 600,000 images of digits used in house numbers. The images are 32×32 and colored.

CIFAR-10: The CIFAR-10 dataset consists of 10 classes of colored 32×32 images. The training and test contain 50,000
and 10,000 instances, respectively.

CIFAR-100: The CIFAR-100 dataset consists of 100 classes of colored 32×32 images. Each class in the training and test
set contains 500 and 100 images, respectively, which makes it as large as the CIFAR-10 dataset.

C PROOF OF THEOREM 1

Before we come to Theorem 1, we first present a lemma needed in the proof.

Lemma 1. Let x ∈ RD such that, for a given class c in the output of the softmax function σ, the following limit holds:

lim
xd→∞

σ(f(x))c = 1, (8)

where f denotes an arbitrary function. Then, we can infer that:

∃ c′, lim
xd→∞

f(x)c′ = ∞. (9)

Proof. Given the continuity of the softmax, we can rewrite the limit of the composition of the two functions as

σ[ lim
xd→∞

f(x)]c = 1, (10)

Unfolding the definition of the softmax and moving the denominator across the equality we can conclude that

elimxd→∞[f(x)]c =

|C|∑
c′=1

elimxd→∞[f(x)]c′ , (11)

Since the output of the exponential is always a positive number larger than 0, the previous equation cannot hold if for all
class indexes c′, limxd→∞[f(x)]c′ is a finite number. Hence, for at least one index said limit must equal (plus or minus)
infinity.

Theorem 1. Let x ∈ RD and suppose α is a scaling vector. Now x′ = α⊙ x can be considered as an OOD example if α is
large enough. Let hθ be any neural network whose last layer is linear, genearting an overconfident prediction for class c on
x′ in a C-class classification as:

lim
αd→∞

σ(hθ(x
′))c = 1, (12)

where σ is the Softmax function. Then, we infer that there exists at least a dimension in which the output of the penultimate
layer goes to infinity in the limit:

∃ k, lim
αd→∞

(x′
R−1)k = ∞, (13)

where x′
R−1 ∈ RD′

is the output of the penultimate layer.

Proof. Let wR ∈ RC×D′
and bR ∈ RC denote the weights and biases at the last linear layer of the neural network hθ. Then,

hθ(x
′) can be formulated as:

hθ(x
′) = wRx

′
R−1 + bR. (14)



Furthermore, by Lemma 1, Equation 12 implies that:

∃ c′, lim
αd→∞

hθ(x
′)c′ = ∞. (15)

Now, substituting Equation 14 into Equation 15, we have:

∃ c′, lim
αd→∞

(wRx
′
R−1 + bR)c′ = ∞, (16)

where bR is just a vector of scalar values, which can be disregarded in this limit. So, we rewrite the matrix multiplication for
index c′ in Equation 16 as:

∃ c′, lim
αd→∞

D′∑
k=1

(wR)c′,k (x′
R−1)k = ∞, (17)

where D′ is the set of indices of the output of the penultimate layer. This entails that at least one of the members of the sum
must tend to infinity. Since (wR)c′,k is just a scalar value, we deduce that:

∃ k, lim
αd→∞

(x′
R−1)k = ∞. (18)

This means that the feature vector at the penultimate layer consists of at least one value that goes to infinity in the limit,
completing the proof.

D ADDITIONAL RESULTS

This section includes some extra results for the experiments discussed in the main text.

D.1 TABULAR DATA

Results for three other tabular datasets are illustrated in Fig. 5, which aligns with the other tabular datasets discussed in the
main text.

D.2 ARCHITECTURES AND LOGITNORM

In the results presented for other types of architectures and LogitNorm training, we only included some of the baseline
detection methods to keep the page limit. Results for other detection methods are displayed in tables 5 and 6. Conclusions
on the baselines included in these tables are the same as the others discussed in the results section.

D.3 EXTENSION TO IMAGES

Results for the CIFAR-100 dataset are displayed in Table 7. According to this table, when CIFAR-100 is the ID set, our
method can improve results significantly within synthesized OOD sets, but not on real-world OOD sets. For instance, results
on real-world OOD sets are the same with and without our method in the ResNet-32 model. This table also provides results
for detection methods not included in the main text for the MNIST and CIFAR-10 datasets due to page limits, which follow
the same trend as those in the main text.

E MODEL CALIBRATION

Overconfidence and calibration on ID sets are not the same, since whether a model is calibrated on ID data may not influence
how its confidence changes on OOD points, because by definition OOD instances come from a different distribution.
Moreover, theoretical results demonstrate that some architectures are always overconfident, regardless of their level of
calibration on ID data [Hein et al., 2019, Ulmer and Cinà, 2021].

This said, there may indeed be architectures for which an improved calibration enhances OOD detection, but as far as
we know this remains to be proven in general. To assess the impact of calibration on our outcomes, we have included



Table 5: AUC of OOD detection with and without CEA using tabular ResNet and Transformer as the prediction model. We
use eICU and Diabetics as ID and synthesize the OOD data by scaling factor α. Superior results are emphasized in bold
unless the two are equal. This table is similar to Table 1, but includes different baseline detection methods.

ResNet Transformer

α = 10 α = 100 α = 1000 α = 10 α = 100 α = 1000

ID Method Baseline / Baseline&CEA

eICU

RMDS 52.6 / 66.4 64.7 / 85.5 79.4 / 93.4 52.2 / 52.4 60.8 / 61.0 72.9 / 73.2
SHE 72.9 / 72.9 89.9 / 89.8 93.8 / 93.9 57.7 / 57.7 73.2 / 73.2 81.5 / 81.6
KLM 58.7 / 66.8 73.0 / 85.6 82.9 / 93.3 56.0 / 56.2 65.1 / 66.1 72.8 / 73.2
OpenMax 58.6 / 69.2 69.6 / 87.1 79.6 / 93.6 51.1 / 51.7 54.2 / 56.1 71.2 / 72.6
MLS 46.5 / 69.2 28.8 / 87.1 13.3 / 93.6 51.7 / 52.4 56.3 / 58.0 71.8 / 73.4
TempScale 47.9 / 69.5 30.6 / 87.3 13.2 / 93.6 51.7 / 52.5 56.1 / 58.3 71.7 / 73.5
GradNorm 37.1 / 66.5 17.3 / 84.9 7.2 / 93.4 53.5 / 54.1 63.1 / 64.2 76.3 / 77.1
DICE 42.2 / 67.0 24.3 / 85.6 10.0 / 93.4 53.3 / 53.8 62.8 / 63.6 76.0 / 76.8
ASH 47.2 / 69.5 30.8 / 87.2 14.4 / 93.5 51.7 / 52.4 56.0 / 57.8 70.5 / 72.1

Diabetics

RMDS 74.8 / 77.4 85.8 / 87.5 90.1 / 91.0 65.3 / 65.4 80.2 / 80.3 86.3 / 86.3
SHE 81.9 / 81.9 88.7 / 88.7 91.5 / 91.5 69.2 / 69.3 85.3 / 85.3 90.0 / 90.0
KLM 74.0 / 77.2 84.9 / 87.0 89.8 / 90.4 55.9 / 56.2 57.8 / 57.9 56.4 / 57.3
OpenMax 55.8 / 73.7 66.2 / 86.6 68.8 / 90.2 42.7 / 43.9 50.0 / 50.6 64.2 / 65.6
MLS 33.6 / 67.8 22.7 / 86.2 18.4 / 90.2 41.0 / 41.9 50.3 / 50.7 66.3 / 67.4
TempScale 25.6 / 67.4 15.5 / 86.3 10.5 / 90.3 38.4 / 39.9 47.3 / 48.2 61.8 / 62.7
GradNorm 21.4 / 65.2 13.2 / 85.7 9.7 / 90.0 38.7 / 39.7 47.6 / 48.2 62.2 / 63.0
DICE 22.5 / 66.1 12.9 / 85.4 9.5 / 89.8 63.1 / 64.0 82.6 / 82.8 88.9 / 89.0
ASH 35.0 / 68.9 23.3 / 86.1 17.8 / 90.2 43.1 / 44.0 51.5 / 52.0 65.2 / 65.6

temperature scaling [Guo et al., 2017] combined with MSP among our baselines (called TempScale). Table 8 presents the
expected calibration error (ECE) with and without temperature scaling for the ResNet model trained on our datasets, which
quantifies the improvement in ID calibration of models after Temp Scaling. Also, the OOD detection results stated before
indicate that temperature scaling improves the AUC of OOD detection over MSP only marginally: at most 1% across all the
experiments (e.g., see Figures 2 and 3). This suggests that ID calibration might be beneficial for OOD detection, although it
is not enough to make such a claim.

F ALL LAYERS INSTEAD OF PENULTIMATE LAYER

In the proposed method, we utilize the activation values at the penultimate layer of the neural network. Here, we examine the
impact of using all intermediate layers of neural networks rather than just one. To this end, we repeat the experiment from
section 4.1 using α = 1000 to consider all the layers. The same algorithm that was applied to the penultimate layer is now
applied to all layers and the outputs (normalized by the number of nodes in their respective layers) are summed together. Fig.
6 displays the comparison between only one or all layers, for eICU and Diabetics datasets.

According to this figure, both settings are effective in improving the OOD detection performance. However, the performance
of all the detection methods is better with only one layer with the eICU dataset, while with the Diabetics dataset, many
baselines get better results when all the layers are employed. Accordingly, while both setups are effective, the best option
depends on the dataset and detection method. Still, note that the average performance on these two datasets is better using
only the penultimate layer.

G OTHER NORMS IN CEA

CEA measures the ℓ2 norm of activations exceeding a specified threshold. As stated in the main text, the choice of ℓ2 norm
can potentially be substituted with other ℓp norms. Here, we evaluate how the utilization of ℓ0 and ℓ1 norms influences the
outcomes. According to the results in Table 9, these norms result in similar results to the ℓ2 norm. This means that CEA can



Table 6: AUC of OOD detection with and without CEA on the model trained with the LogitNorm loss. We use eICU and
Diabetics as ID and synthesize the OOD data by scaling factor α. Superior results are emphasized in bold unless the two are
equal. This table is similar to Table 2, but includes different baseline detection methods.

ID α
RMDS SHE KLM OpenMax MLS TempScale GradNorm DICE ASH

Baseline / Baseline&CEA

eICU
10 61.3 / 64.9 65.3 / 65.3 51.5 / 63.9 52.6 / 65.7 55.1 / 67.3 55.1 / 67.3 33.9 / 60.5 38.6 / 63.0 57.3 / 65.4
100 74.8 / 80.1 80.9 / 80.9 52.0 / 78.6 53.6 / 80.0 61.8 / 82.7 61.8 / 82.7 18.9 / 76.1 25.3 / 77.8 62.4 / 80.1

1000 85.2 / 89.1 89.9 / 90.0 52.4 / 89.0 54.3 / 89.2 64.6 / 90.0 64.6 / 90.0 10.3 / 87.9 14.0 / 88.3 63.2 / 89.3

Diabetics
10 68.9 / 73.3 78.8 / 78.8 56.7 / 73.8 60.8 / 74.9 35.2 / 65.1 35.2 / 65.1 21.4 / 60.9 19.1 / 60.1 19.2 / 60.2
100 84.2 / 86.8 88.4 / 88.4 59.3 / 86.0 63.8 / 86.7 32.6 / 85.7 32.6 / 85.7 12.6 / 84.6 11.5 / 83.9 11.6 / 84.1

1000 89.7 / 90.8 91.5 / 91.5 62.1 / 90.0 65.6 / 90.6 31.8 / 90.1 31.8 / 90.1 9.5 / 89.6 8.7 / 89.0 8.8 / 89.1

be used with other reasonable norms as well.



Figure 5: OOD detection performance with and without CEA using the MIMIC-IV (top), Dry Bean (middle), and Wine
Quality (bottom) datasets as ID and synthesized data by scaling. The blue bars are positioned in front of the red ones and
cross markers are employed to emphasize the top of the red bars. The scaling factors and baseline names are presented under
each bar.



Table 7: AUC of OOD detection with and without CEA in image datasets. MNIST, CIFAR-10, and CIFAR-100 serve as ID,
and OOD sets are synthesized by i) scaling or ii) an adversarial attack, or iii) selected from other datasets. ResNet-32 and
ReLU MLP classifiers are used as the prediction model. Superior results are in bold unless the two are equal. This table is
similar to Table 3, but includes CIFAR-100 as an ID dataset and different baseline detection methods.

ReLU MLP ResNet-32

Scale Attack Other Scale Attack Other

ID Method Baseline / Baseline&CEA

MNIST

RMDS 62.6 / 62.7 83.6 / 84.1 96.7 / 96.9 68.0 / 68.0 99.7 / 99.7 99.6 / 99.6
SHE 63.3 / 63.3 92.1 / 93.2 86.3 / 85.9 61.0 / 61.0 99.9/99.9 99.7 / 99.7
KLM 57.9 / 64.9 69.5 / 80.8 79.5 / 85.8 56.5 / 59.2 45.3 / 98.7 85.5 / 96.6
OpenMax 62.7 / 62.8 85.8 / 88.5 90.4 / 92.0 57.2 / 57.4 99.2 / 99.6 99.4 / 99.5
MLS 45.9 / 56.5 7.4 / 42.5 81.2 / 92.7 50.6 / 56.5 2.7 / 98.8 76.5 / 99.0
TempScale 49.8 / 50.8 15.3 / 65.6 80.3 / 89.2 53.4 / 55.9 6.0 / 99.4 94.8 / 98.4
GradNorm 43.4 / 57.2 5.9 / 41.3 39.0 / 61.6 37.4 / 64.4 1.3 / 98.9 62.8 / 98.3
DICE 42.1 / 59.1 5.9 / 43.1 59.3 / 81.9 38.0 / 63.9 3.2 / 99.5 57.5 / 95.1
ASH 42.2 / 60.1 7.5 / 42.5 81.2 / 92.7 51.4 / 55.3 2.7 / 98.8 76.1 / 98.9

CIFAR-10

RMDS 89.8 / 95.4 53.6 / 68.7 58.5 / 61.3 98.0 / 98.0 99.9 / 99.9 87.4 / 87.4
SHE 98.0 / 98.0 95.1 / 94.9 60.6 / 60.4 96.8 / 96.8 99.9 / 99.9 85.8 / 85.8
KLM 88.8 / 96.1 90.9 / 93.9 57.7 / 59.0 78.9 / 94.1 68.4 / 92.2 80.5 / 80.5
OpenMax 87.0 / 95.9 75.1 / 85.3 71.4 / 71.7 96.2 / 96.7 99.9 / 99.9 86.7 / 87.1
MLS 20.2 / 94.0 8.4 / 35.5 67.7 / 72.5 64.3 / 97.6 0.0 / 83.8 90.1 / 90.2
TempScale 19.3 / 92.2 9.6 / 53.9 58.2 / 64.2 93.1 / 98.5 0.0 / 99.6 88.3 / 88.9
GradNorm 3.7 / 86.9 4.0 / 20.9 49.4 / 55.4 11.9 / 71.5 0.0 / 91.9 66.3 / 67.3
DICE 4.8 / 92.5 4.8 / 55.1 58.9 / 68.0 52.4 / 93.1 0.0 / 88.6 90.1 / 90.1
ASH 22.5 / 95.1 9.1 / 50.3 68.5 / 72.6 68.7 / 97.1 0.0 / 84.4 90.3 / 90.3

CIFAR-100

MDS 96.7 / 97.0 94.5 / 94.4 57.7 / 57.7 98.7 / 98.7 99.9 / 99.9 53.1 / 53.1
KNN 76.5 / 96.3 56.5 / 86.2 63.4 / 66.3 99.1 / 99.1 64.8 / 97.3 76.0 / 76.0
ViM 65.2 / 96.1 72.3 / 79.2 60.0 / 61.6 5.6 / 95.2 0.1 / 83.7 82.1 / 82.1
MSP 8.0 / 84.7 11.1 / 31.7 49.7 / 50.9 29.0 / 97.6 2.0 / 91.5 75.0 / 75.1
EBO 55.0 / 94.7 64.6 / 75.6 60.2 / 61.6 5.6 / 95.2 0.1 / 83.3 82.1 / 82.1
ReAct 89.0 / 95.4 86.7 / 89.8 59.7 / 61.7 93.2 / 98.4 12.8 / 91.7 77.7 / 77.7
Gram 4.9 / 11.4 9.4 / 19.5 54.4 / 55.5 1.2 / 79.6 0.0 / 62.9 72.3 / 72.3
RMDS 89.0 / 90.5 45.0 / 52.6 53.4 / 53.5 99.2 / 99.2 99.8 / 99.9 71.7 / 71.8
SHE 97.6 / 97.4 94.3 / 94.5 58.0 / 58.6 98.5 / 98.5 99.9 / 99.9 57.1 / 56.9
KLM 93.8 / 95.5 84.5 / 93.3 59.5 / 60.4 55.4 / 98.1 42.6 / 98.4 75.5 / 75.5
OpenMax 78.5 / 82.3 79.9 / 86.0 55.1 / 55.9 62.7 / 84.7 60.3 / 93.5 70.0 / 70.1
MLS 46.9 / 67.7 36.0 / 49.2 64.8 / 64.9 4.4 / 97.9 0.0 / 98.7 81.0 / 81.5
TempScale 8.2 / 75.8 9.2 / 31.1 48.5 / 49.0 34.1 / 98.1 1.7 / 99.6 75.5 / 75.8
GradNorm 3.4 / 78.3 5.2 / 14.4 46.7 / 47.6 1.5 / 96.7 0.0 / 99.5 80.9 / 80.9
DICE 5.0 / 87.6 5.6 / 57.5 51.8 / 55.5 3.8 / 96.7 0.1 / 99.4 82.5 / 82.5
ASH 56.8 / 93.6 55.4 / 76.8 62.1 / 62.8 2.9 / 98.4 0.0 / 98.9 82.1 / 82.1

Table 8: The ECE (%) using M = 15 bins with and without temperature scaling for the ResNet model trained on our datasets.

Temp Scaling MNIST CIFAR10 CIFAR100 eICU MIMIC-IV

✗ 0.38 4.47 13.33 1.81 5.43
✓ 0.31 1.28 4.39 1.17 2.63



Figure 6: OOD detection performance with capturing extreme values in only the penultimate layer (y-axis) and in all the
intermediate layers (x-axis). The eICU and Diabetics datasets serve as ID, and the OOD set is generated using α = 1000.

Table 9: AUC of OOD detection with CEA using ℓ0, ℓ1, or ℓ2 norms to calculate size of extreme activations. Datasets include
eICU and Diabetics, OODs are synthesized by α = 1000, and baseline detection methods are MSP and EBO.

Method eICU Diabetics
ℓ0 ℓ1 ℓ2 ℓ0 ℓ1 ℓ2

MSP 88.2 88.3 88.4 88.1 88.2 88.2
EBO 88.4 88.4 88.4 88.2 88.2 88.3
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