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ABSTRACT

Generating humorous memes is a challenging multimodal task that moves be-
yond direct image-to-caption supervision. It requires a nuanced reasoning over
visual content, contextual cues, and subjective humor. To bridge this gap be-
tween visual perception and humorous punchline creation, we propose HUMOR,
a novel framework that guides VLMs through hierarchical reasoning and aligns
them with group-wise human-like preferences. First, HUMOR employs a hier-
archical, multi-path Chain-of-Thought (CoT): the model begins by identifying a
template-level intent, then explores diverse reasoning paths under different con-
texts, and finally anchors onto a high-quality, context-specific path. This CoT
supervision, which traces back from ground-truth captions, enhances reasoning
diversity. We further analyze that this multi-path exploration with anchoring main-
tains a high expected humor quality, under the practical condition that high-quality
paths retain significant probability mass. Second, to capture subjective humor, we
train a pairwise reward model that operates within groups of memes sharing the
same template. Following established theory, this approach ensures a consistent
and robust proxy for human preference, even with noisy labels. The reward model
then enables a group-wise reinforcement learning optimization, guaranteeing that
the model’s humor quality does not degrade beyond a bounded amount. Experi-
ments show that HUMOR empowers various base VLMs with superior reasoning
diversity, more reliable preference alignment, and higher overall meme quality
compared to strong baselines. Beyond memes, our work presents a general train-
ing paradigm for open-ended, human-aligned multimodal generation, where suc-
cess is guided by comparative judgment within coherent output groups.

1 INTRODUCTION

Creativity in multimodal generation increasingly moves beyond literal description to subjective and
context-dependent outputs, such as humor, aesthetics, style, and social alignment, where quality is
not defined by a single ground-truth but instead guided by human preference (Yadav et al., 2025;
Burn & Kress, 2018). While recent vision–language models (VLMs) achieve strong results on
captioning and visual question answering (Kuang et al., 2025; Ghandi et al., 2023), these tasks still
admit relatively objective targets (Yan et al., 2023), leaving open how to train systems for goals that
are open-ended and preference-driven (Bhatia et al., 2024). Current approaches often model meme
generation as a direct image-to-caption task optimized with a fixed loss. This collapses the reasoning
process into the decoder, suppresses intermediate interpretation, and tends to produce captions that
are fluent yet shallow or not humorous (Yadav et al., 2025).

Meme generation provides a demanding testbed for this challenge. To succeed, a model must iden-
tify a template’s latent intent, ground it in context-specific details of the image (objects, expressions,
layout), and produce a caption that completes a metaphor or subverts expectation in a way humans
find funny. This requires both hierarchical reasoning and alignment with subjective humor. Prior
work typically uses text-only humor cues or global regression-style funniness scores (Baluja, 2024;
Kalloniatis & Adamidis, 2024; Zhu et al., 2025a), assuming humor is directly comparable across
templates. In practice, however, human judgments are more reliable within a group of memes that
share the same template or theme, and far less stable across groups with different conventions. Ig-
noring this structure introduces noise, harms generalization, and encourages shortcuts that reward
superficial overlap instead of genuine humor fit.
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Figure 1: Overview of the HUMOR framework. Given a template image, it first performs hierarchi-
cal reasoning with a multi-path CoT: a template-level stage infers latent intent, and a context-level
stage explores multiple paths grounded in visual content. One high-quality path is anchored by
tracing back from ground-truth captions, supporting diversity while ensuring a conditional humor
lower bound. A pairwise reward model then compares memes only within groups sharing the same
template, maintaining rank consistency and providing a proxy signal of human-like preference. This
reward enables group-wise RL to update the generation model in a stable way, ensuring expected
humor does not degrade. Together, these components show how HUMOR combines structured rea-
soning, group-wise preference modeling, and stable optimization for meme generation.

A second limitation is the lack of an explicit reasoning-then-realization view. Directly sampling
captions from images removes control over the interpretive process and makes it difficult to steer
generation. Recent evidence shows that chain-of-thought (CoT) intermediates improve reasoning in
VLMs. We argue that meme generation requires not just a single trace but a hierarchical, multi-
path reasoning process: a template-level stage that infers canonical intent, followed by a context-
level stage that grounds the intent in specific visual details. Different reasoning paths may lead
to distinct metaphor bindings or punchlines. Exploring multiple paths and then anchoring one path
with ground-truth data ensures diversity while, as our analysis shows, preserving a conditional lower
bound on expected humor whenever high-quality paths keep a meaningful share of probability and
the remaining paths are not much worse. Meeting these conditions requires optimizing generation
toward human-preferred humor. Since humor cannot be directly measured, we design a pairwise
reward model that maintains rank consistency within groups and prove that it inherits theoretical
guarantees. This model provides a stable proxy signal of human-like preference, and further enables
group-wise RL to ensure that expected humor cannot degrade beyond a bounded amount.

Figure 1 provides a high-level overview of HUMOR. It illustrates the main challenges in meme gen-
eration and how our framework addresses them: hierarchical reasoning with multi-path CoT, group-
wise preference modeling, and stable optimization via RL. Taken together, these insights motivate
our framework HUMOR: Hierarchical Understanding and Meme Optimization via Reinforcement
learning. HUMOR separates reasoning from realization, respects group-wise comparability, and
turns preference signals into stable policy updates. In summary, our contributions are:

1. A new formulation of meme generation as an open-ended, group-wise reasoning problem,
together with a hierarchical multi-path CoT supervision scheme that separates template-level
intent from context-level grounding. This framing exposes interpretable reasoning traces and
lays the foundation for preference optimization.

2. Theoretical analysis showing that multi-path CoT supervision preserves a conditional humor
lower bound and preference learning ensures consistent within-group ordering with provable sta-
bility. These results not only explain why our approach remains robust under noisy and subjective
labels, also provide transferable insights for other open-ended, human-aligned generation tasks.

3. Comprehensive experiments across multiple base models showing that HUMOR improves rea-
soning diversity, preference alignment, and overall meme quality.

2 RELATED WORK

2.1 EVOLUTION OF VISION-LANGUAGE MODELS FOR MULTI-MODAL PROCESS

The pursuit of unified vision-language modeling has progressed through three distinct phases of
architectural innovation. Early foundational work established bidirectional frameworks for cross-
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modal understanding: ERNIE-ViLG Zhang et al. (2021) and the Unifying Multi-modal Trans-
former Huang et al. (2021) pioneered transformer-based architectures that jointly optimized text-
to-image and image-to-text generation through multi-modal tokenization and autoregressive objec-
tives. Concurrently, Ramesh et al. Ramesh et al. (2021) demonstrated the scalability potential of
such approaches through their zero-shot text-to-image generation framework, establishing critical
baselines for large-scale multi-modal pretraining. Subsequent advancements focused on enhanc-
ing output quality and semantic alignment. Discrete diffusion architectures like Unified Discrete
Diffusion Hu et al. (2022) and ERNIE-ViLG 2.0 Feng et al. (2023) introduced specialized de-
noising experts and semantic regularization techniques, significantly improving image fidelity and
text-image correspondence. Contemporary breakthroughs have redefined architectural paradigms
through multimodal unification. Models like Show-o Xie et al. (2024) and MonoFormer Zhao et al.
(2024) successfully fused autoregressive and diffusion mechanisms within singular architectures via
shared attention layers, achieving synergistic improvements in both generation quality and train-
ing efficiency. Building upon these advancements, our work leverages multi-modal comprehension
capabilities to address the unique challenges of meme generation - particularly its requirement an
understanding of metaphor, and subjective humor.

2.2 MEME ANALYSIS AND GENERATION

Internet memes have emerged as a vital component of digital culture, prompting substantial schol-
arly attention to their multi-modal communications. Extensive research has focused on analyzing
topics Du et al. (2020) , semantics Xu et al. (2022) , and emotions Sharma et al. (2020) conveyed in
memes. The evolution of meme generation techniques has progressed through distinct technologi-
cal phases. Initial systems employed rule-based architectures, exemplified by Oliveira et al. Oliveira
et al. (2016)’s template-driven approach using standardized structures like ”One does not simply X”,
and Wang et al. Wang & Wen (2015)’s dual-channel model integrating textual and visual features.
The advent of deep learning catalyzed more sophisticated generation paradigms. Peirson and Tol-
unay pioneered this transition with Dank Learning Peirson V & Tolunay (2018), combining Incep-
tion V3 image encoders with attention-enhanced LSTM decoders to produce contextually humorous
captions. Subsequent innovations introduced transformer architectures: Sadasivam et al.’s Meme-
Bot Sadasivam et al. (2020) and Vyalla et al.’s Memeify Vyalla & Udandarao (2020) demonstrated
enhanced text-image alignment through multi-modal fusion techniques. Recent breakthroughs lever-
age large language models (LLMs) and vision-language models (VLMs) to achieve unprecedented
scale and specificity. Wang et al.’s Memecraft Wang & Lee (2024) enables targeted meme creation
for social advocacy through cross-modal prompting. Addressing multi-image complexity, Chen et
al. proposed XMeCap Chen et al. (2024b), introducing a two-stage framework with supervised
fine-tuning and reinforcement learning guided by novel similarity metrics that evaluate both global
contexts and localized visual-textual interactions. Concurrently, benchmark datasets have emerged
to evaluate multi-modal understanding capabilities. The MemeCap Hwang & Shwartz (2023) pro-
vides 6.3K annotated memes with metaphor annotations, while the New Yorker benchmarks Hessel
et al. (2022) assess humor comprehension through caption matching and explanation tasks. Ex-
panding contextual understanding, the MCC dataset (MEMEX) Sharma et al. (2023) incorporates
external knowledge sources to facilitate abstraction analysis and semantic dependency mining.

3 PROBLEM FORMULATION

In this section, we specify the objects, signals, and assumptions used throughout the paper. We first
define the meme space and its group structure, then describe local pairwise preference data and the
latent humor within a group. We introduce a generic observation model for pairwise labels , followed
by the generator-level objective and evaluation quantities. The goal is a self-contained problem for-
mulation that highlights group-wise comparability without assuming any particular training method.

Meme Space and Group-wise Comparability: Let M denote the set of memes under consid-
eration. A meme is a multimodal pair m = (I, c), where I ∈ I is an image and c is a textual
caption rendered at designated positions. Many memes are created from widely shared templates
and interpreted through context-dependent associations. Absolute, cross-template comparisons of
humor are often ill-posed. Therefore, we assume a collection of disjoint groups

G = {G1, . . . , GK}, Gk ⊂ M, Gk ∩Gℓ = ∅ (k ̸= ℓ),

3
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such that memes within the same group share a comparable structure (e.g., the same template, topic,
or punchline schema). We assume human judgments of humor are meaningful and more reliable
within a fixed group G ∈ G, while making no claim of comparability across groups.

Local Preference Data: For a given groupG, human annotators provide pairwise labels indicating
which of two memes is funnier. For mi,mj ∈ G, define yGij = I[mi ≻ mj ] ∈ {0, 1} where
mi ≻ mj denotes a local preference thatmi is judged funnier thanmj . The dataset comprises triples
(G, (mi,mj), y

G
ij) sampled from a pairing distribution overG. We allow for incompleteness (not all

pairs are labeled) and noise (annotators may disagree). We adopt two weak but standard assumptions
from preference learning : (i) local comparability: preferences are elicited and interpreted only
within a fixed group G; (ii) weak stochastic transitivity: in expectation, if mi ≻ mj and mj ≻ mℓ,
then mi ≻ mℓ is more likely than its reversal, without requiring a strict total order.

Latent Humor within a Group: Within each group G, we posit an unobserved latent humor
functional hG : G → [0, 1], which maps each meme m ∈ G to a scalar reflecting its relative
likelihood of being judged funny by humans in that group. We do not assume that hG is calibrated
across groups, nor that hG and hG′ are directly comparable when G ̸= G′.

Observation Model for Pairwise Labels: Pairwise labels are treated as noisy observations of
differences in latent humor. We assume

Pr
[
mi ≻ mj | G

]
= Λ

(
hG(mi)− hG(mj)

)
, (1)

where Λ : R→(0, 1) is a strictly increasing link (e.g., logistic or probit) . Intuitively, Eq. equation 1
states that the probability of preferring mi to mj depends only on their latent humor gap within the
same group: when hG(mi)≈ hG(mj), the choice is essentially ambiguous (probability ≈ 1/2); as
the gap grows, the probability moves smoothly toward 1 (if hG(mi)> hG(mj)) or 0 (otherwise),
capturing that larger humor gaps yield more confident comparisons.

Generative Goal and Evaluation Quantities: A generation model produces captions conditioned
on an image: πθ(· | I) : I ∈ X 7→ distribution over captions c. When combined with I , a
sample c ∼ πθ(· | I) instantiates a meme m = (I, c). For any target group G containing I-based
candidates, the expected within-group humor of πθ is HG(θ) = E c∼πθ(·|I)

[
hG

(
(I, c)

) ]
, ,and the

population objective aggregates over groups according to a task-specific distribution over (I,G):

H(θ) = E (I,G)

[
HG(θ)

]
. (2)

4 HUMOR FRAMEWORK

We propose HUMOR: Hierarchical Understanding and Meme Optimization with group-wise re-
inforcement learning. The framework integrates three components: hierarchical chain-of-thought
(CoT) supervision, reward modeling from pairwise preferences, and group-wise policy optimiza-
tion. Together, these stages ensure that reasoning remains diverse, preferences are consistently
captured, and optimization improves expected humor in a stable manner.

4.1 HIERARCHICAL CHAIN-OF-THOUGHT SUPERVISION

Meme generation requires reasoning over both a template’s latent intent and its context-specific re-
alization. Training a direct mapping Pθ(c | I) collapses this process into a single decoder, often
leading to superficial captions. We instead represent reasoning as a hierarchical chain-of-thought
r = (rtmpl, rscene), which separates template-level interpretation from context-level grounding. Cap-
tions are then realized by sampling from Pϕ(c | r, I).
To approximate human authorship, we supervise CoT in two stages. In Stage 1, the model explores
multiple reasoning paths conditioned only on I , while implicitly hypothesizing a multiple potential
user contexts Û (e.g., emotions, intentions, or scenarios a user might want to express). Concretely,
the model generates reasoning candidates {r(i)} ∼ Pϕ(r | I, Û), encouraging coverage of di-
verse interpretations similar to how humans brainstorm several possible jokes before committing. In
Stage 2, we anchor one path r̃ consistent with annotated captions, by incorporating the actual user

4
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context U that is inferred from ground-truth captions (e.g., their sentiment, intention). Formally, we
select r̃ = argmaxr Pϕ(c | r, I, U), which ensures stability while preserving the diversity gained in
Stage 1. The hierarchical CoT framework and its details are provided in Appendix A.

Original Tag

VLM

VLM

Anchor to real data

Meme Templete

Bounding Box

Compeleted Tags

OCR

Inpainting

Meme Dataset
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Preprocessed Dataset
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Stage-2 Prompt

Stage-2 OutputStage-1 Output
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but look, but she can't help but
notice"...

Possible reasoning paths

Figure 2: Hierarchical CoT supervision. Stage 1 explores multiple reasoning paths that bind a
template intent to different context-specific details. Stage 2 anchors one high-quality path traced
from ground-truth captions, preserving diversity while preventing collapse.
The benefit of this design can be formalized. Let h̃G : R → [0, 1] denote group-relative humor
defined over reasoning traces. Suppose there exists a set of “star” paths R⋆ with probability mass
α > 0, and that the average humor gap between non-star paths and the best paths is at most δ. Then:

Proposition 1 (Conditional humor lower bound). Normalizing max h̃G = 1, the expected humor
after CoT supervision satisfies

Er∼Pθ
[h̃G(r)] ≥ 1− (1− α)δ.

Intuitively, as long as promising reasoning paths retain nontrivial probability (α not too small) and
the remaining paths are only mildly worse (small δ), exploration and anchoring preserve a nontrivial
lower bound on expected humor. CoT thus broadens the breadth of interpretations without sacri-
ficing quality. However, while α is naturally ensured by anchoring toward ground-truth paths, δ
remains uncontrolled: some paths may still be substantially less funny. To minimize δ, we need a
mechanism that reflects human humor preferences and can guide optimization beyond imitation.

4.2 REWARD MODELING FROM PAIRWISE PREFERENCES

The ideal objective would be to recover the latent humor hG(m) for each meme m. Since humor is
subjective and lacks a global scale, this is infeasible. We therefore adopt an order-consistent view
of reward modeling (following established theory (Sun et al., 2025)) and instantiate it in our group-
wise meme setting: the reward acts as a within-group surrogate of hG, trained only from relative
judgments, avoiding ill-posed cross-group calibration. Intuitively, hierarchical CoT has ensured that
high-quality paths keep a meaningful probability mass (the α condition via Stage 2 anchoring), while
the reward model supplies the preference signal needed to shrink the average gap among plausible
paths (the δ condition), turning open-ended exploration into learnable selection.

Each meme m = (I, c) is encoded to a feature vector Ψ(m) ∈ Rd using a vision–language encoder.
A scoring head fϕ : Rd → R outputs sϕ(m), and for a pair (mi,mj) from group G we define

p̂G
ij = σ

(
sϕ(mi)− sϕ(mj)

)
, (3)

with a logistic link σ(·); training minimizes the binary cross-entropy over labeled pairs.

Order consistency and stability in our setting. We make two statements precise for the within-
group meme space (full proofs in Appendix B).
Proposition 2 (Rank consistency (following established theory)). Under the observation model of
Eq. 1 with any strictly increasing link, minimizing Lpair recovers the same within-group ordering as
the latent humor hG.
Proposition 3 (Robustness to label noise (margin-aware)). Let ∆G

ij = hG(mi) − hG(mj) be the
true humor gap, and suppose the classifier has pairwise error rate ε. Then for pairs with |∆G

ij | ≥ δ,
the probability of reversal is bounded above by a function decreasing in δ and increasing in ε; large
humor gaps are therefore preserved even under noisy labels.
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The two propositions above follow the order-consistent analysis of Sun et al. (2025) but are instan-
tiated under our group-wise comparability and used as drivers to reduce δ after CoT has secured
α. Since pairwise data can be sparse, we aggregate p̂G

ij into a coherent within-group ranking via
Expected Borda Count (EBC) (Appendix F): for a candidate set SG, each meme’s score equals its
expected number of wins against others under Eq. 3. This provides a stable target for training, and
inherits expected order consistency when the pairwise model is consistent (Appendix B).

4.3 GROUP-WISE POLICY OPTIMIZATION

We fine-tune the generator to increase the probability of higher-ranked captions within each group
while penalizing deviations from a reference policy, balancing preference alignment with stabil-
ity. Concretely, we adopt a Group-wise Relative Policy Optimization (GRPO) objective. For a
candidate set SG with ranking qG from EBC, the reinforcement fine-tuning loss is:

LGRPO(θ) = E(I,G)

[
−

∑
mk∈SG

qG(mk) log πθ(ck | I)
]
+ β EI

[
KL(πθ(· | I) ∥πref(· | I))

]
, (4)

where πref is the SFT policy. The listwise term aligns πθ with the group-local preference distribution
qG (rank-consistent with hG), and the KL term limits drift, matching our comparability assumptions.

While prior analyses often state optimistic lower bounds for preference-optimized policies, we adopt
a corrected, KL-controlled guarantee that holds under our setting and noise model; it is more con-
servative but faithful to the actual constraints (proof in Appendix C).
Proposition 4 (Bounded change of expected humor under GRPO). Assume Proposition 2 and hG ∈
[0, 1]. Let ∆KL = EI [KL(πθ(· | I) ∥πref(· | I))]. Then

E(I,G)

[
Ec∼πθ(·|I) hG((I, c))

]
≥ E(I,G)

[
Ec∼πref(·|I) hG((I, c))

]
−

√
1
2 ∆KL.

Hence, if GRPO enforces ∆KL ≤ τ , the expected humor cannot drop by more than
√
τ/2; with the

listwise pull toward qG, this yields non-decreasing behavior within a bounded KL neighborhood.

This bound (via Pinsker’s inequality) formalizes the stability we rely on in practice: CoT supplies
support (α), the reward model and EBC induce a group-local order that reduces δ, and GRPO turns
this order into controlled policy updates. In sum, our use of order-consistent surrogates follows es-
tablished theory where appropriate, but the group-wise instantiation, the corrected KL-based bound,
and the integration with multi-path CoT for open-ended generation are key ingredients that make
the approach effective and verifiable for meme generation.

Doubao-1.5-

Vision-Pro

A
Enhanced 

Borda Count

aggregate pairwise probabilities 
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Figure 3: Training Pipeline of HUMOR. Multi-path CoT expands reasoning coverage and anchors
a canonical path; the reward model translates pair data into a rank-consistent group-level signal (via
EBC); GRPO then updates the generator toward higher-ranked captions.

4.4 SUMMARY

CoT supervision establishes a conditional lower bound on expected humor (Proposition 1) by ex-
ploring multiple reasoning paths for coverage and anchoring a canonical path to prevent collapse.
The reward model then supplies a rank-consistent and noise-robust surrogate for the (group-local)
humor function (Proposition 2, Proposition B.3), and aggregates sparse pairwise labels into coher-
ent within-group rankings. Finally, GRPO turns these rankings into stable policy updates with KL
control and improvement guarantees (Proposition 4). Together, these components form HUMOR.
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5 EXPERIMENT

Our experiments evaluate whether HUMOR performs as intended: (i) fine-tuning with hierarchical
CoT can improve generation quality compared to direct mapping and naive CoT approaches; and
(ii) learning within-group preferences and translating them into a consistent group ranking can be
effectively utilized for further optimization. We present our findings by addressing the following
research questions: RQ1: Does HUMOR enhance meme quality and diversity compared to strong
baseline methods? RQ2: Can VLMs serve as reliable judges for meme, and how should they be
appropriately applied to train reward models? RQ3: Does the proposed reward model align with
human rankings within a group, and how effective is subsequent RL training using this model? RQ4:
What does the reward model learn, and what insights can be gained through further visualizations?

5.1 MEME QUALITY AND DIVERSITY WITH HUMOR

Settings: we compare models trained under the HUMOR framework against several strong base-
lines and variants. Concretely, our evaluation covers multiple open-source and closed-source VLMs,
as well as our HUMOR-CoT model, which is fine-tuned using only the hierarchical CoT design.
Given the highly open-ended and human-aligned nature of meme generation, we prioritize human
evaluation. Human raters assign scores to generated memes across four predefined axes. In addition,
we adopt the conventional metric of text-level similarity between generated captions and their orig-
inal reference texts. To further characterize diversity, we introduce a novel metric called Distance
under Context Swap. This measure replaces the training-set context with a randomly selected
one—kept consistent across models—and computes the textual distance from the original caption.
A larger distance suggests reduced overfitting to SFT labels and better adaptability to new contexts.
Due to observed instability in VLM-based rubric scores for meme evaluation, we incorporate only
a single VLM-based metric: a human-likeness score. This is formulated as a binary classification
estimate of the probability that a meme was created by a human, with higher values indicating better.

Table 1: Evaluation results across open-source models, closed-source models, and Qwen2.5-
7B-Instruct fine-tuned with different CoT generation methods. Metrics include context-swap
distance (diversity), text-level similarity (sim. to original meme text), human evaluation (Humor,
Readability, Relevance, Originality), and Human Rates. Note that Human Rate for Gemini-2.5-
flash is omitted since this metric is evaluated with itself, making it unavailable for this variant.

Category / Model Human Evaluation (0-5) ↑
Sim. ↑ Distance ↑ Human Rate (%)↑

Humor Readability Relevance Originality

Open-source Models
Qwen2.5-7B-Instruct (Bai et al., 2025) 2.39 3.35 2.91 2.57 0.549 0.564 75.7
Qwen2.5-32B-Instruct (Bai et al., 2025) 2.54 3.52 3.09 2.76 0.532 0.566 82.2
InternVL3-8B (Zhu et al., 2025b) 2.39 2.79 3.04 2.79 0.507 0.564 62.7
GLM-4.1V-9B-Thinking (Hong et al., 2025) 1.73 2.62 2.75 2.71 0.556 0.572 45.1
Keye-VL-8B-preview (Team et al., 2025) 2.35 3.19 2.99 2.71 0.526 0.580 69.0

Closed-source Models
GPT-4o (OpenAI, 2024) 2.70 2.99 3.21 2.97 0.578 0.552 91.3
Gemini-2.5-flash (Comanici et al., 2025) 2.81 3.29 3.25 2.88 0.565 0.561 -

Fine-tuned Model
HUMOR-CoT 2.68 3.70 3.50 2.90 0.591 0.590 91.5

CoT with Single Path (Kim et al., 2023) 1.87 2.79 2.68 2.45 0.583 0.570 86.0
CoT with Self-Improve (Chen et al., 2024a) 2.38 3.68 3.00 2.65 0.579 0.578 89.1
CoT with Subquestion (Wei et al., 2022) 1.85 3.32 2.58 2.47 0.579 0.597 87.2

HUMOR-RL (preview) 2.83 3.67 3.55 2.79 0.582 0.588 92.3

Results and Discussion: Table 1 summarizes the overall performance of meme generation across
various models The results indicate that our HUMOR framework achieve substantial improvements
across multiple dimensions, which demonstrates the effectiveness of the HUMOR framework for
humor-oriented meme generation. Specifically, in terms of Humor, HUMOR-CoT attains a score of
2.68, substantially surpassing the base model Qwen2.5-7B-Instruct, which scores only 2.39. Quali-
tative analysis suggests that HUMOR-improved models better capture nuanced humor mechanisms
such as sarcasm and self-mockery, with HUMOR-RL further enhancing this capability. For Read-
ability, HUMOR-CoT achieves a score of 3.70, outperforming all compared variants—including
powerful closed-source models. It can generate captions with appropriate length and engaging struc-
ture, avoiding the verbosity common in many VLMs while maintaining humor expressivity, thereby
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better aligning with human writing conventions. In Theme Relevance and Originality, HUMOR-
CoT also performs strongly, demonstrating an ability to align with deeper user intent and keywords
rather than merely referencing superficial visual elements. Although semantic similarity is less in-
dicative for meme captions—which often consist of short phrases, HUMOR-CoT still achieves the
closest alignment to reference captions among all models. For our proposed Context-Swap Dis-
tance metric, HUMOR-CoT scores 0.590, compared to 0.564 for the baseline, indicating a stronger
capacity to produce diverse and context-sensitive outputs when user inputs are altered. This result
supports the hypothesis that HUMOR reduces overfitting to concrete training labels. Finally, in the
Human-Likeness Score, HUMOR-CoT exceeds 91%, significantly outperforming the base model
(75.7%) and even surpassing the closed-source GPT-4o (91.3%).

5.2 VLM RELIABILITY EVALUATION
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Figure 4: (left) VLM-based absolute scoring fails to distinguish meme quality. (right) Group-wise
ranking produces more reliable distinctions, better aligned with human.

Figure 4 compares evaluation strategies for assessing meme-generation quality. When a VLM is
used to assign absolute scores to individual memes (Fig. 4a), it fails to meaningfully distinguish be-
tween methods of clearly different quality levels. For instance, In-the-wild Memes (human-created
and high-quality) and Text-Free Memes (text removed) receive similar scores across most dimen-
sions, despite their evident disparity. This result underscores a key limitation of absolute scoring:
since humor and cultural resonance are inherently relative and context-sensitive, evaluating memes
in isolation proves unreliable. To overcome this issue, we introduce a group-wise ranking strategy,
in which memes generated from the same base image are compared and ranked collectively across
methods. As shown in Fig. 4b, this relative assessment successfully separates high- and low-quality
examples, yielding a ranking that aligns more closely with human judgment. Further supported by
the radar chart in Fig. 5, the relative evaluation reveals that our method performs second only to
In-the-wild Memes, consistently surpassing all other generation strategies across every metric.

5.3 REWARD MODEL RANK CONSISTENCY AND RL TRAINING

In Table 2, we evaluate how reward models fine-tuned on different base models align with human
rankings. Image1–Image5 are five templates (10–15 candidates each; Figure 8). For each template,
we obtain a group-level human ranking via MaxDiff (Appendix H.1). Model rankings are produced
by (i) collecting within-group pairwise probabilities from either the base model or the fine-tuned
reward model (HUMOR-RM), and (ii) aggregating them with Expected Borda Count (EBC). We
report Kendall’s τ and its p-value to test the rank consistency objective (Section 4.2). HUMOR-
RM on Keye-VL achieves consistently high τ with significant p-values (often p ≤ 10−3) across
Image1–Image5, indicating strong within-group agreement with human preferences. On Qwen2.5-
VL-7B, results are mixed (some moderate, some near-chance, significance not always reached).
Qwen2.5-VL-32B and other backbones show limited or unstable gains. Overall, under the same
fine-tuning and rank-only supervision, stronger, semantically aligned backbones yield reliable rank
consistency, whereas weaker or less aligned ones align less steadily. We also validate the effective-
ness of the combination between newly-designed content reward (Appendix E) and our pairwise
reward model for RL training, where the preview version (HUMOR-RL) is shown in Table 1.

5.4 BASE MODEL COMPARISON AND VISUALIZATION

Across all evaluated templates (Image 1–5), the Keye-VL base model achieves higher within-group
ranking consistency with human preferences than Qwen-VL. This performance gap is not attributable
to the reward model—which is rank-based and group-local—but rather reflects inherent differences
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Emotional Resonance

Spread Potential

Theme Relevance

Image-Caption Relevance

Cultural Fit

Context Robustness

Humor Effectiveness

Punchline Strength

Multi-dimensional Performance Analysis

In-the-wild Memes
Our Method
CoT with Self-Improve
CoT with Subquestion
CoT with Single Path
Text-Free Memes

Figure 5: Radar chart comparing methods across
multiple dimensions. Our method approaches the
quality of human-created memes.

Prefer captions anchor to salient objects

Puzzled

Prefer captions that capture human-like internal states

v

Grandma

Coffee

Tired office worker

Qwen ranked 3
Human ranked 8

Keye ranked 1
Human ranked 1

Qwen ranked 1
Human ranked 6

Keye ranked 1
Human ranked 1

Figure 6: Qwen prefers captions that mention
direct objects, whereas Keye prefers captions
reflecting the human-like state.

Table 2: Ranking results of different baselines among distinct template images. It indicates the
change after fine-tuning relative to the baseline: an increase in Kendall tau τ and a decrease in p-
value p represent improvements (highlighted in green), while the opposite indicates deterioration
(shown in red). Significance levels: * p < 0.05; ** p < 0.01; *** p < 0.001.

Model Image 1 Image 2 Image 3 Image 4 Image 5

τ ↑ p ↓ τ ↑ p ↓ τ ↑ p ↓ τ ↑ p ↓ τ ↑ p ↓

Qwen2.5-VL-7B (Base) 0.16 0.60 0.28 0.17 0.47 0.07 -0.10 0.63 0.29 0.29
Qwen2.5-VL-7B (Finetuned) 0.47 0.07 0.56 0.03* 0.42 0.11 0.14 0.50 0.47 0.07
∆ vs Base +0.31 −0.53 +0.28 −0.14 −0.04 +0.04 +0.25 −0.13 +0.18 −0.22

Qwen2.5-VL-32B (Base) 0.16 0.61 0.16 0.44 -0.02 1.00 0.14 0.50 0.29 0.29
Qwen2.5-VL-32B (Finetuned) 0.29 0.29 0.47 0.02* 0.07 0.86 0.30 0.14 0.42 0.11
∆ vs Base +0.13 −0.32 +0.30 −0.42 +0.09 −0.14 +0.15 −0.36 +0.13 −0.18

Keye-VL-8B (Base) 0.05 0.85 0.09 0.70 0.16 0.60 0.29 0.29 0.16 0.60
Keye-VL-8B (Finetuned) 0.78 0.00*** 0.77 0.00*** 0.78 0.00*** 0.78 0.00*** 0.78 0.00***
∆ vs Base +0.73 −0.84 +0.69 −0.70 +0.62 −0.60 +0.49 −0.29 +0.62 −0.60

in representational capacity between the two base models. For example, as illustrated in Figure 6,
when Image 5 depicts a panda holding a coffee cup, Qwen-VL favors captions containing the word
”coffee”. Similarly, for Image 2, which shows an older woman looking at a laptop, the model
exhibits a preference for captions referencing ”grandma” or computer-related terms. In contrast,
Keye-VL more consistently captures implied internal states or situational cues within the scene and
aligns them with the template’s communicative intent. In the same examples, Keye-VL interprets
the panda as resembling a ”tired office worker” and the woman as appearing ”puzzled”, interpreta-
tions that correspond more closely with human rankings under our within-group evaluation protocol.
These observations aligns with our theoretical expectation: the reward model supplies only a pref-
erence ordering; a model’s ability to ascend that ordering depends fundamentally on its capacity to
represent the nuanced cues that humans use in evaluating humor.

6 CONCLUSION

In this work, we tackled the complex challenge of teaching VLMs the art of in-the-wild meme
generation, a task that requires nuanced reasoning beyond standard image captioning. Our proposed
framework, HUMOR, successfully bridges the gap from visual perception to humorous punchline
by instituting a two-stage process of hierarchical reasoning and preference alignment. Through a
novel hierarchical CoT, the model learns to explore diverse creative paths while anchoring on high-
quality outcomes. Furthermore, by leveraging group-wise preference modeling and RL, we ensure
the generated humor aligns with human judgment in a stable and consistent manner. This work
establishes a general and effective paradigm for open-ended multimodal generation tasks.
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LLM USAGE STATEMENT

We employ vision–language models (VLMs) for data preprocessing and evaluation. Specifically, we
use Doubao to perform label assignment and generate hierarchical CoT traces for training data; at
evaluation time, we use Qwen-VL, Keye-VL, and Gemini-2.5-pro as VLM judges to assess generated
memes. For writing clarity only, we use GPT-5 to polish the paper’s wording without changing
technical content or claims.

ETHIC STATEMENT

All training data are drawn from publicly available datasets and contain no voiceprint/biometric au-
dio information. During preprocessing, we filter violent content to the extent possible. However, we
cannot guarantee that a model trained for open-ended meme generation will never produce violent
or sensitive content at inference time. We therefore recommend deploying standard safety measures
(content filters, human-in-the-loop review, and usage policies) to mitigate potential misuse and re-
duce exposure to harmful outputs.

REPRODUCIBILITY STATEMENT

Upon acceptance, we will release: (i) the full list of dataset sources we use; (ii) our constructed
CoT supervision data and the pairwise/reward datasets; and (iii) the complete training and inference
codebase. We will also provide prompts, hyperparameters, random seeds, model checkpoints (or
scripts to reproduce them), and evaluation scripts to enable end-to-end replication.
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A HIERARCHICAL CHAIN-OF-THOUGHTS OF METAPHOR

To enhance our model’s understanding of humor, we replicated the human meme creation process.
Through extensive analysis of human meme creation, we extracted a paradigm for hierarchical meme
feature analysis.

Take the ”Distracted Boyfriend” meme as an example. Humans first capture: the delighted ex-
pression of the woman on the left, the action of the man in the center looking back and his subtle
flirtatious gaze, the annoyed posture of the woman on the right, and the triangular compositional re-
lationship and explicit emotional direction formed by the three individuals. Humans further abstract
this scene and discover that it can be applied to any scenario of infatuation with something new and
abandonment of the old, establishing entity mapping relationships. Thus, when the user’s request is
workplace culture, this template can be adapted to depict a leader being attracted by a new employee
during a meeting, with a senior employee showing an expression of helplessness, vividly illustrating
the workplace ”new vs. old” relationship and generating humor.

How would humans fill in the text? Through statistical analysis of 5,000 classic memes, we found
that the text positions in common meme templates are fixed, and the text content is highly correlated
with its position. For instance, in the ”Distracted Boyfriend” template, the position corresponding
to the woman on the right is often used to represent the neglected object, the position corresponding
to the man in the center represents the subject of attention shift, and the position corresponding to
the woman on the left is the newly focused entity. Therefore, we integrate ”text content generation”
and ”text position allocation” in the meme generation process. By annotating text box positions
in the image, the model only needs to use its inherent visual localization ability to find the boxes,
understand that text needs to be written in specific areas, and then combine spatial semantic mapping
relationships to generate text with greater humorous effects in these positions.

We aim to imitate this thought process to construct Chain-of-Thought (CoT) data:

Data Collection and Preprocessing

Meme Images We collected over 80,000 meme images from platforms such as imgflip, quick-
meme, and know your meme, and established a multi-dimensional labeling system:

1. Emotion Classification: Covers 7 basic emotions and intensity levels.
2. Intent Detection: Differentiates between 10 creation intents such as offense and entertainment.
3. Metaphor Analysis: Records metaphorical entities and cross-domain mapping relationships.

Base Images and Text Content/Position Information The FLUX.1-dev-Controlnet-Inpainting-
Beta model is used to erase and restore the text areas in original memes, obtaining text-free base
images. Meanwhile, OCR technology precisely records the (position, content) pairs of text, provid-
ing spatial semantic data for subsequent training.

User Requirements We reconstructed user requirements in reverse using APIs. Taking the
meme’s labels and final text as inputs, we utilized prompts to reverse-engineer the user’s initial
request. We analyzed the following dimensions of user requirements: emotion category, emotion
intensity, intention, Scene or theme , style preference, and keywords.

CoT Data Generation

Stage One Using the base image as input, we extract high-level semantics of the meme.

First, we perform visual element decomposition. Our framework systematically deconstructs meme
templates from four key visual dimensions:

1. Main Subject Characteristics: Analyze facial expressions, poses, clothing, and dynamic rela-
tionships between characters.

2. Composition Logic: Identify visual focal points, color contrasts, and spatial relationships.
3. Cultural Markers: Recognize identifiable meme formats and pop culture references.
4. Narrative Threads: Interpret body language implications and prop symbolism.

13
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Then, we conduct scenario association and humor construction based on visual analysis:

1. Social Contexts: Identify scenarios suitable for group chats, comment sections, and private con-
versations.

2. Topic Relevance: Establish connections with workplace culture, life dilemmas, and internet
hotspots.

3. Emotional Mapping: Determine appropriate humor techniques, including satire, self-
deprecation, exaggeration, and contrast.

Stage Two Using the base image analysis from Stage One, user requirements, and final text as
inputs, we infer the customized creation process for specific requests.

We provide few-shot examples of this parsing process. For instance, for the ”Distracted Boyfriend”
meme, when Stage One yields the semantic pattern of infatuation with something new and abandon-
ment of the old, and identifies three entity positions: A [attention-shifting subject], B [newly focused
entity], and C [neglected object], the user’s request is a technology theme with the keyword ”Apple
fanatic.” We consider how to align the expression of infatuation with something new and abandon-
ment of the old with the context of technology product updates to reflect being an Apple fanatic. We
infer that the semantic mapping of new and old phones is similar. Therefore, combining this image,
we deduce that the text should be filled as: ”A: APPLE FANS, B: IPHONE 11, C: IPHONE 10,”
humorously expressing enthusiasm for Apple’s new technological products.

Training Rationale and Process We conduct instruction-tuning training using CoT data as su-
pervisory signals. Since our training data contains numerous instances of the same base image, the
two-stage CoT process essentially learns metaphorical semantic relationships across different sce-
narios. It is a divergent associative thinking training where one base image corresponds to multiple
scenarios. This CoT approach not only enables the model to understand the high-level semantics of
the image itself but also establishes multi-scenario associative capabilities.

Determination and Extraction of Generated Text Format Text boxes in the image are marked
using a top-to-bottom, left-to-right coordinate sorting rule, and text content is recorded in the la-
bels in order and in box format. The prompt explicitly requires the model to output in the format
”box1:text1, box2:text2.”

Generate chains of thought：directly from the original diagram

The image depicts the classic "Distracted Boyfriend" meme format. The context 
involves a person (representing Apple fans) being distracted by something new and 
shiny (iPhone 11) while disregarding the previous object of affection (iPhone 10). This 
scenario aligns well with themes of tech loyalty, consumerism, and the constant 
pursuit of the latest gadgets.

<\>

No Genuine Discovery

No Layered Abstraction


No Reasoning, Just Justification

REASON:

How to design a social 
phenomena meme for 
apple fans’ tech loyalty？

Scene or Theme

Style Preference

Text Content Keywords

technology

social phenomena

wholesome

apple fans

iphone comparison

tech loyalty

Tag Selection

Generate chains of thought：layer by layer, and enter the original image, border, and final text diagram layer by layer

There are three people in the image. ...Relationship 
dynamics among them suggest a scenario where 
the man is interested in the woman in red, which 
displeases the woman on the right.

one plausible humorous usage scenario could be...during a group 
outing, if one of the guys starts ...

Another scenario might occur in the workplace: if a colleague acts 
...The humor mechanism here lies ...being attracted to others even 
when in a committed relationship or in an inappropriate situation...

The keywords align perfectly with this 
phenomenon: Apple fans’ enthusiasm for the 
latest iPhone models often leads them to 
unconsciously "neglect" their current old 
models... labeling the man in the meme as 
"APPLE FANS", the woman he is looking at as 
"IPHONE 11", and the girlfriend as "IPHONE 10" 
is humorous.

Figure 7: Comparison between direct CoT generation from the original image and our hierarchical
CoT generation approach.

Critical Comparison: Direct vs. Hierarchical CoT The direct approach of generating chains
of thought from the original image is essentially reverse engineering rather than genuine reasoning.
It suffers from four critical flaws: 1) No Genuine Discovery: it skips the exploratory stage where
humor emerges from active associative search, jumping straight to a fixed answer; 2) No Layered
Abstraction: it leaps from raw visual details to a specific conclusion without building transferable
intermediate metaphors; 3) No Reasoning, Just Justification: instead of true inference, it merely
defends a predetermined conclusion.
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In contrast, our layered CoT framework mirrors human reasoning by progressively abstracting from
visual description to general metaphorical patterns and then to domain-specific humor instantiations,
thereby enabling genuine creativity and robust generalization.

B REWARD MODELING: ASSUMPTIONS AND PROOFS

B.1 SETUP AND ASSUMPTIONS

For a fixed group G, the latent humor functional is hG : G → [0, 1]. Pairwise labels follow the
observation model of Eq. (1):

Pr[mi ≻ mj | G] = Λ
(
hG(mi)− hG(mj)

)
,

where Λ : R → (0, 1) is strictly increasing. A reward model maps a meme m = (I, c) to a score
sϕ(m); the pairwise probability is

p̂G
ij = σ

(
sϕ(mi)− sϕ(mj)

)
,

and ϕ is learned by minimizing the empirical pairwise cross-entropy Lpair. We assume (A1) the
data contains i.i.d. pairs drawn within G with non-degenerate coverage; (A2) the model class for sϕ
is rich enough to fit the Bayes-optimal decision boundary; (A3) identifiability is up to an additive
constant per group (sufficient for ranking).

B.2 RANK CONSISTENCY (PROPOSITION 1) — PROOF

Proposition (Rank consistency (main text Proposition 1)). Under Eq. (1) with strictly increasing Λ,
any risk minimizer of the logistic pairwise loss recovers the same within-group ordering as hG.

Proof. Let ηij = Pr[mi ≻ mj | G] = Λ(∆ij) with ∆ij = hG(mi)−hG(mj). The Bayes-optimal
pairwise classifier for logistic loss satisfies σ(s⋆i − s⋆j ) = ηij , hence

s⋆i − s⋆j = σ−1(ηij) = σ−1
(
Λ(∆ij)

)
=: ψ(∆ij),

where ψ is strictly increasing as a composition of strictly increasing functions. Therefore

s⋆i − s⋆j > 0 ⇐⇒ ∆ij > 0 ⇐⇒ hG(mi) > hG(mj).

Thus any minimizer (up to additive constants) induces the same strict order as hG inside G. □

B.3 NOISE ROBUSTNESS (PROPOSITION 2) — PROOF

Proposition (Noise robustness (main text Proposition 2)). Let ∆G
ij = |hG(mi)−hG(mj)|. Suppose

the learned classifier has average pairwise error ε. If we split pairs into “small-margin” (∆G
ij < δ)

and “large-margin” (∆G
ij ≥ δ), then the reversal probability obeys

Pr[reversal] ≤ Pr[∆G
ij < δ] + Pr[reversal | ∆G

ij ≥ δ] ≤ Pr[∆G
ij < δ] + εδ,

where εδ decreases as δ increases and increases with the classifier error ε; in particular, under the ob-
servation model Eq. (1), the conditional flipping probability on large-margin pairs is upper-bounded
by a monotonically decreasing function of δ.

Proof. Let K be the event “classifier reverses the true order”. Decompose by a margin threshold
δ > 0:

Pr[K] = Pr[K ∧ (∆G
ij < δ)] + Pr[K ∧ (∆G

ij ≥ δ)] ≤ Pr[∆G
ij < δ] + Pr[K | ∆G

ij ≥ δ].

The second term is at most the classifier’s conditional error on large-margin pairs, denoted εδ . Under
Eq. (1), the Bayes error on a pair decreases monotonically with |∆G

ij |, hence εδ decreases in δ. If
the global average error is ε, then εδ ≤ ε and often much smaller. Thus large true gaps are stably
preserved, while flips concentrate on small-margin pairs. □
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B.4 FROM PAIRWISE TO GROUP RANKING (EBC)

Given sparsity, we aggregate pairwise probabilities into a within-group ranking via Expected Borda
Count (EBC): each item’s score equals its expected number of wins against others according to
p̂G
ij . EBC is a monotone transformation of the empirical pairwise preferences and inherits rank

consistency in expectation when the pairwise model is consistent, providing a coherent group-wise
order for evaluation and optimization. (Operational details as in Sec. 4.2.)

C GROUP-WISE POLICY OPTIMIZATION (GRPO): GUARANTEES AND
PROOFS

C.1 OBJECTIVE AND NOTATION

For a candidate set SG with group ranking distribution qG (from EBC), the GRPO loss is

LGRPO(θ) = E(I,G)

[
−

∑
mk∈SG

qG(mk) log πθ(ck | I)
]
+ β EI

[
KL

(
πθ(· | I) ∥πref(· | I)

)]
.

Intuitively, the first term pushes πθ toward qG within the group (listwise), and the KL term limits drift
from a safe reference policy πref; both are group-local, matching comparability in our formulation
(Sec. 3).

C.2 BOUNDED DEGRADATION VIA KL CONTROL

We formalize the “cannot degrade beyond a bounded amount” claim under bounded KL.
Proposition (Bounded improvement under GRPO (main text Proposition 2)). Assume the reward
model is rank-consistent (Proposition B.2) and hG ∈ [0, 1]. Let ∆KL = EI

[
KL

(
πθ(· | I) ∥πref(· |

I)
)]

. Then the expected within-group humor satisfies

E(I,G)

[
Ec∼πθ(·|I) hG

(
(I, c)

)]
≥ E(I,G)

[
Ec∼πref(·|I) hG

(
(I, c)

)]
−

√
1
2 ∆KL.

Consequently, if GRPO enforces ∆KL ≤ τ (by choosing β or an explicit trust region), the expected
humor cannot drop by more than

√
τ/2; with rank-consistent qG, optimization increases the prob-

ability of higher-hG captions, so the net effect is non-decreasing or improved expected humor once
the pull toward qG outweighs this bound.

Proof. For any fixed (I,G), Pinsker’s inequality gives∥∥πθ(· | I)− πref(· | I)
∥∥
TV

≤
√

1
2 KL

(
πθ(· | I) ∥πref(· | I)

)
.

Since hG ∈ [0, 1], by the variational characterization of total variation for bounded functions,∣∣∣Eπθ
[hG]− Eπref [hG]

∣∣∣ ≤
∥∥πθ − πref

∥∥
TV

≤
√

1
2 KL(πθ∥πref).

Averaging over (I,G) yields the stated bound. During GRPO, the cross-entropy term −
∑
qG log πθ

(with rank-consistent qG) increases mass on higher-hG captions within the group, while the KL term
keeps the deviation controlled. Thus expected humor cannot deteriorate beyond the Pinsker bound
and, in practice, improves as the listwise alignment progresses. □

C.3 DISCUSSION: WHY LISTWISE qG MATTERS

Because qG aggregates pairwise signals into a coherent group distribution consistent with hG’s or-
dering, the CE term directly performs a proximal step toward the better subset of captions without
inventing any cross-group scale. This matches our problem scope and the guarantees in Sec. 4.2–4.3
of the main text.
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D PAIR-WISE DATASET CONSTRUCTION

Our reward model is trained on pairwise comparisons. Intuitively, pairs whose ordering is both
reliably correct and increasingly challenging drive the model toward more consistent ranks. We
therefore construct a curriculum of five difficulty tiers, guaranteeing correct orderings while pro-
gressively raising difficulty (from trivial mismatches to near-ties within the same template/scene).
To span both trivial and subtle distinctions, we sample pairs across all tiers and upweight harder tiers
during training, yielding a supervision signal that is confident yet discriminative:

1. Wrong Text Meme (⋆): This is the most straightforward case, where the original text is replaced
with unrelated content, completely removing the humor. This type of meme is easy for the model
to classify as ”non-humorous” and acts as a baseline.

2. Wrong Location Meme (⋆⋆): A slightly more complex case involves shifting the position of the
text in the image. While the metaphor may still exist, the humor diminishes due to the misplace-
ment of text. The model must learn that small positional changes can significantly impact the
meme’s humor, reflecting a higher degree of difficulty.

3. Boring Meme (⋆⋆): Here, the meme is altered to include a more mundane or less engaging
version of the original text. This teaches the model to distinguish between ”humorous” and
”boring” versions of the same meme. Although the content still aligns with the original, the
humor is less impactful, presenting a challenge for classification.

4. Detailed Boring Meme (⋆ ⋆ ⋆): This is a more nuanced case where only one or two words are
changed to make the meme less funny. Despite the minimal changes, the meme’s humor is
significantly affected. The classifier must be able to identify these subtle shifts in humor, marking
this as a more difficult classification task.

5. Generated Meme (⋆ ∼ ⋆ ⋆ ⋆): Finally, memes generated by the fine-tuned VLM represent the
highest difficulty level. These memes are intended to be as humorous as the original meme,
requiring the classifier to discern fine-grained differences in humor between the generated meme
and the original. This provides the model with an opportunity to improve its sensitivity to subtle
differences in meme quality.
By constructing a dataset with pairs of memes across these varying levels of humor, we enable
the classifier to learn not only to distinguish obviously bad memes from good ones but also to
understand the nuanced differences that make one meme more humorous than another. This rich
dataset plays a crucial role in refining the reward model, allowing it to classify memes based on
subtle human preferences.

We stratify training so each mini-batch contains an equal number from each tier.

E AUXILIARY REWARDS FOR REASONING-PATH OPTIMIZATION

While optimizing toward the group-wise reward induced by the reward model (Sec. 4.2) is theoret-
ically sufficient to improve the quality of generated memes, the reinforcement learning stage does
not directly supervise the internal reasoning path r = (rtmpl, rscene) because the primary feedback is
attached to the realized meme (I, c). To explicitly shape the quality of the reasoning process itself,
we introduce two auxiliary rewards that operate on r: a format reward and a content reward.

E.1 FORMAT REWARD

The format reward enforces structural completeness of the CoT to ensure that essential modules
appear and are well-formed. It is computed by deterministic string/structure matching without using
LLM-as-judge. Concretely, given a sampled reasoning trace r for (I, U), we check:

1. Presence of mandatory sections (e.g., a Comprehensive Description section that sum-
marizes visual content and intended template-level intent).

2. Two-stage structure (explicit evidence of both template-level intent and context-level grounding
consistent with Sec. 4.1).

3. Text-on-Meme box formatting (the Text on the Meme block must specify box–text map-
pings consistent with the bounding boxes B = {bi} so that rendered text T = {ti} aligns with
B).
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The format reward Rfmt(r) ∈ [0, 1] is the normalized sum of satisfied checks. It shapes r toward
complete and renderable reasoning without requiring any subjective judgment.

E.2 CONTENT REWARD

The content reward evaluates the informativeness and plausibility of the CoT content via an LLM-
as-judge. We prompt an evaluation model to score r along four interpretable dimensions (e.g.,
visual grounding, template intent clarity, metaphorical mapping, and punchline coherence), each
with discrete bands (e.g., 1/4/7 points with band descriptors such as “no object description / coarse
description / detailed object attributes”). Scores are summed and rescaled to Rcnt(r) ∈ [0, 1].

To calibrate the judge, we curated CoT traces spanning 0–50 points and assessed several candidates
(e.g., Qwen2.5-VL-7B and Keye-VL). We found Keye-VL exhibits the clearest monotonic trend
across bands, and thus adopt it as the judge for computing Rcnt. Ablations and prompt templates
are released for reproducibility.

E.3 INTEGRATION WITH GRPO

Let sRM(m) denote the reward-model score that induces the group-wise ranking distribution qG via
EBC in Sec. 4.2. For a candidate set SG = {mk = (I, ck)} with associated reasoning traces {rk},
we construct an augmented group-wise target q̃G by combining the primary signal with auxiliary
rewards on rk:

q̃G(mk) ∝ exp
(

1
τ

[
sRM(mk) + λfmtRfmt(rk) + λcntRcnt(rk)

])
,

∑
mk∈SG

q̃G(mk) = 1,

(5)
where τ > 0 is a temperature and λfmt, λcnt≥0 are weights. The GRPO objective in Eq. equation 4
is then used with qG replaced by q̃G.
Remark (Isotonic shaping and theoretical guarantees). If (λfmt, λcnt) are chosen such that Eq. 5 is
an isotonic transformation of the reward-model ranking (i.e., it does not invert the order implied by
sRM except to break ties among near-equal items), then the rank consistency guarantees stemming
from Proposition 2 are preserved in expectation. Moreover, the KL-bounded improvement in Propo-
sition 4 continues to hold because the proof relies on boundedness of hG and a KL constraint, both
unaffected by auxiliary shaping. In practice we set λfmt, λcnt small and use them primarily as tie-
breakers and regularizers over r, which empirically reduces variance and accelerates convergence
without altering the main ordering.

F EBC AGGREGATION

Definition (Expected Borda Count). Given a group G and a finite candidate set SG =
{m1, . . . ,mn} with pairwise preference probabilities p̂G

ij = Pr[mi ≻ mj ], the Expected Borda
Count of item mi is

EBCG(mi) =

n∑
j=1
j ̸=i

p̂G
ij .

Ties or missing edges are handled by omitting terms (equivalently, treating p̂G
ij as undefined); in

evaluation we normalize by the number of available opponents for mi.

Basic properties. (i) If all p̂G
ij ∈ {0, 1}, EBC reduces to the classical Borda score (number of

wins). (ii) If there exists a latent utility u : SG → R such that p̂G
ij = σ(u(mi)−u(mj)) with strictly

increasing σ, then sorting by EBC is order-equivalent to sorting by
∑

j ̸=i σ(u(mi) − u(mj)); in
particular, when gaps are consistent across pairs, the EBC order agrees with the order of u. (iii)
Under independent edge noise and bounded missingness, the variance of EBCG(mi) decreases with
the number of observed pairs, making the aggregate rank more stable than any single comparison.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Listwise normalization (optional). For downstream use, one may define a soft distribution over
SG via a temperature T > 0:

qG(mi) =
exp

(
EBCG(mi)/T

)∑n
k=1 exp

(
EBCG(mk)/T

) ,
which converts EBC scores into smooth listwise targets for within-group reweighting. This preserves
the group-local nature of the signal and avoids inventing cross-group scales.

Notes on implementation. We compute p̂G
ij only within groups and on the (usually small) candi-

date sets used for evaluation or optimization. When the pair graph is sparse, we keep EBC unbiased
by summing over observed opponents and normalizing by their count; when required, we add small-
degree regularization to avoid over-confident ranks for items with very few edges.

G TRAINING SETTINGS

G.1 COT SUPERVISED FINE-TUNING SETTINGS

Table 3: Training Setup for Finetuning Qwen2.5-7B-Instruct with LoRA

Hyperparameter Value

Finetuning Stage sft
Finetuning Type lora
LoRA Rank 128
LoRA Target all
Per Device Train Batch Size 1
Gradient Accumulation Steps 8
Learning Rate 3.0e-5
Num Train Epochs 5.0
LR Scheduler Type cosine
Warmup Ratio 0.1
bf16 true

Dataset Eimage
Total Dataset Size 3,713 crawled memes
Training Instances 3,345
Testing Instances 368
CoT Generation Model doubao-1.5-vision-pro
CoT Variants HUMOR-CoT, CoT with Single Path, CoT

with Self-Improve, CoT with Subquestion

G.2 REWARD MODEL TRAINING SETTINGS

Our reward model is implemented as a lightweight extension on top of the base vision–language
models. Concretely, we take the final hidden embedding of the last transformer layer and append a
two-way classification head. This simple design allows the model to learn preference signals while
reusing the representational power of the pretrained backbone.

Based on the dataset constructed in Appendix D, we train reward models using the LLaMA-Factory
framework with the following backbones: Keye-VL, Qwen2.5-VL-7B, and Qwen2.5-VL-32B. All
models are fine-tuned with LoRA (r = 8, lora target is all) to reduce memory and computation
overhead. We adopt a learning rate of 1× 10−4, with a warmup ratio of 0.1. Each model is trained
on a single NVIDIA A800 GPU.

H EVALUATION SETTINGS

Evaluation Setup. For text generation, we set the decoding temperature to 0 for all models to
ensure deterministic outputs. Objective textual evaluation involves two metrics: (1) Similarity: we
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Image 1 Image 2 Image 3 Image 4 Image 5

Figure 8: Template images of each rannking dataset.

extract the final meme caption via regular expressions and compute cosine similarity between gen-
erated and reference texts using bge-base-zh-v1.5, averaged over the full test set. (2) Distance: we
randomly select 50 test samples, replace their user contexts with mismatched content, and regenerate
three times per sample. The averaged textual dissimilarity across 50 samples is reported.

For multimodal evaluation, we embed captions into corresponding bounding boxes and obtain holis-
tic meme-level judgments from Gemini-2.5-pro. We consider three perspectives: (i) human/AI dis-
criminability, (ii) absolute scoring, and (iii) relative ranking.

VLM Scoring. Each meme is evaluated independently on an absolute 1–5 scale under the follow-
ing eight criteria: 1) Punchline Strength: clarity and impact of the joke/twist; 2) Context Robust-
ness: generalizability across social contexts; 3) Humor Effectiveness: quality of humor, sarcasm,
or self-mockery; 4) Spread Potential: universal appeal and memorability; 5) Emotional Resonance:
capacity to elicit laughter, surprise, or empathy; 6) Cultural Fit & Relatability: alignment with audi-
ence familiarity; 7) Theme Relevance: consistency with keywords and intentions; 8) Image-Caption
Relevance: coherence between text and image.

VLM Ranking. Multiple meme candidates are jointly provided, and the model is prompted to rank
them under the same eight dimensions, producing a relative quality ordering.

H.1 MAXDIFF ORDERING

Maximum Difference Scaling (MaxDiff), also known as best–worst scaling, is a widely used method
in marketing science and preference elicitation Louviere & Woodworth (1991); Louviere et al.
(2015). In a typical MaxDiff task, respondents are repeatedly presented with small subsets of items
(e.g., 3–5 candidates) and asked to indicate which option they consider the ”best” and which the
”worst.” Compared to traditional rating scales, MaxDiff provides more discriminative and reliable
preference estimates because each choice yields two pieces of information: a positive preference for
the selected ”best” item and a negative preference for the ”worst.”

The required number of tasks in MaxDiff depends on the total number of items J to be evaluated and
the subset size k. A common guideline is that each item should appear across multiple choice sets
to ensure stable estimation. For example, using balanced incomplete block designs (BIBD), each
respondent typically completes between 3J

k and 5J
k choice tasks to achieve acceptable reliability ?.

Thus, the total number of questions can be determined systematically to balance respondent burden
and statistical efficiency.

In our study, we adopted a MaxDiff-inspired procedure to construct human preference rankings over
memes. Specifically, rather than asking annotators to rate memes on absolute scales, we designed
tasks where memes were compared in small groups, and annotators selected the most and least
humorous instances. Aggregating these best–worst choices yields a consistent human-validated
ranking dataset, which serves as a training and evaluation benchmark for our reward model.
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