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ABSTRACT

Generating humorous memes is a challenging multimodal task that moves be-
yond direct image-to-caption supervision. It requires a nuanced reasoning over
visual content, contextual cues, and subjective humor. To bridge this gap be-
tween visual perception and humorous punchline creation, we propose HUMOR,
a novel framework that guides VLMs through hierarchical reasoning and aligns
them with group-wise human-like preferences. First, HUMOR employs a hier-
archical, multi-path Chain-of-Thought (CoT): the model begins by identifying a
template-level intent, then explores diverse reasoning paths under different con-
texts, and finally anchors onto a high-quality, context-specific path. This CoT
supervision, which traces back from ground-truth captions, enhances reasoning
diversity. We further analyze that this multi-path exploration with anchoring main-
tains a high expected humor quality, under the practical condition that high-quality
paths retain significant probability mass. Second, to capture subjective humor, we
train a pairwise reward model that operates within groups of memes sharing the
same template. Following established theory, this approach ensures a consistent
and robust proxy for human preference, even with noisy labels. The reward model
then enables a group-wise reinforcement learning optimization, guaranteeing that
the model’s humor quality does not degrade beyond a bounded amount. Experi-
ments show that HUMOR empowers various base VLMs with superior reasoning
diversity, more reliable preference alignment, and higher overall meme quality
compared to strong baselines. Beyond memes, our work presents a general train-
ing paradigm for open-ended, human-aligned multimodal generation, where suc-
cess is guided by comparative judgment within coherent output groups.

1 INTRODUCTION

Creativity in multimodal generation increasingly moves beyond literal description to subjective and
context-dependent outputs, such as humor, aesthetics, style, and social alignment, where quality is
not defined by a single ground-truth but instead guided by human preference (Yadav et al., 2025;
Burn & Kress, 2018). While recent vision–language models (VLMs) achieve strong results on
captioning and visual question answering (Kuang et al., 2025; Ghandi et al., 2023), these tasks still
admit relatively objective targets (Yan et al., 2023), leaving open how to train systems for goals that
are open-ended and preference-driven (Bhatia et al., 2024). Current approaches often model meme
generation as a direct image-to-caption task optimized with a fixed loss. This collapses the reasoning
process into the decoder, suppresses intermediate interpretation, and tends to produce captions that
are fluent yet shallow or not humorous (Yadav et al., 2025).

Meme generation provides a demanding testbed for this challenge. To succeed, a model must iden-
tify a template’s latent intent, ground it in context-specific details of the image (objects, expressions,
layout), and produce a caption that completes a metaphor or subverts expectation in a way humans
find funny. This requires both hierarchical reasoning and alignment with subjective humor. Prior
work typically uses text-only humor cues or global regression-style funniness scores (Baluja, 2024;
Kalloniatis & Adamidis, 2024; Zhu et al., 2025a), assuming humor is directly comparable across
templates. In practice, however, human judgments are more reliable within a group of memes that
share the same template or theme, and far less stable across groups with different conventions. Ig-
noring this structure introduces noise, harms generalization, and encourages shortcuts that reward
superficial overlap instead of genuine humor fit.
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Figure 1: Overview of the HUMOR framework. Given a template image, it first performs hierarchi-
cal reasoning with a multi-path CoT: a template-level stage infers latent intent, and a context-level
stage explores multiple paths grounded in visual content. One high-quality path is anchored by
tracing back from ground-truth captions, supporting diversity while ensuring a conditional humor
lower bound. A pairwise reward model then compares memes only within groups sharing the same
template, maintaining rank consistency and providing a proxy signal of human-like preference. This
reward enables group-wise RL to update the generation model in a stable way, ensuring expected
humor does not degrade. Together, these components show how HUMOR combines structured rea-
soning, group-wise preference modeling, and stable optimization for meme generation.

A second limitation is the lack of an explicit reasoning-then-realization view. Directly sampling
captions from images removes control over the interpretive process and makes it difficult to steer
generation. Recent evidence shows that chain-of-thought (CoT) intermediates improve reasoning in
VLMs. We argue that meme generation requires not just a single trace but a hierarchical, multi-
path reasoning process: a template-level stage that infers canonical intent, followed by a context-
level stage that grounds the intent in specific visual details. Different reasoning paths may lead
to distinct metaphor bindings or punchlines. Exploring multiple paths and then anchoring one path
with ground-truth data ensures diversity while, as our analysis shows, preserving a conditional lower
bound on expected humor whenever high-quality paths keep a meaningful share of probability and
the remaining paths are not much worse. Meeting these conditions requires optimizing generation
toward human-preferred humor. Since humor cannot be directly measured, we design a pairwise
reward model that maintains rank consistency within groups and prove that it inherits theoretical
guarantees. This model provides a stable proxy signal of human-like preference, and further enables
group-wise RL to ensure that expected humor cannot degrade beyond a bounded amount.

Figure 1 provides a high-level overview of HUMOR. It illustrates the main challenges in meme gen-
eration and how our framework addresses them: hierarchical reasoning with multi-path CoT, group-
wise preference modeling, and stable optimization via RL. Taken together, these insights motivate
our framework HUMOR: Hierarchical Understanding and Meme Optimization via Reinforcement
learning. HUMOR separates reasoning from realization, respects group-wise comparability, and
turns preference signals into stable policy updates. In summary, our contributions are:

1. A new formulation of meme generation as an open-ended, group-wise reasoning problem,
together with a hierarchical multi-path CoT supervision scheme that separates template-level
intent from context-level grounding. This framing exposes interpretable reasoning traces and
lays the foundation for preference optimization.

2. Theoretical analysis showing that multi-path CoT supervision preserves a conditional humor
lower bound and preference learning ensures consistent within-group ordering with provable sta-
bility. These results not only explain why our approach remains robust under noisy and subjective
labels, also provide transferable insights for other open-ended, human-aligned generation tasks.

3. Comprehensive experiments across multiple base models showing that HUMOR improves rea-
soning diversity, preference alignment, and overall meme quality.

2 RELATED WORK

2.1 EVOLUTION OF VISION-LANGUAGE MODELS FOR MULTI-MODAL PROCESS

The pursuit of unified vision-language modeling has progressed through three distinct phases of
architectural innovation. Early foundational work established bidirectional frameworks for cross-
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modal understanding: ERNIE-ViLG (Zhang et al., 2021) and the Unifying Multi-modal Trans-
former (Huang et al., 2021) pioneered transformer-based architectures that jointly optimized text-to-
image and image-to-text generation through multi-modal tokenization and autoregressive objectives.
Concurrently, Zero-Shot Text-to-Image Generation (Ramesh et al., 2021) demonstrated the scal-
ability potential of such approaches through their zero-shot text-to-image generation framework,
establishing critical baselines for large-scale multi-modal pretraining.

Contemporary breakthroughs have redefined architectural paradigms through multimodal unifica-
tion. Models like Show-o (Xie et al., 2024) and MonoFormer (Zhao et al., 2024) successfully
fused autoregressive and diffusion mechanisms within singular architectures via shared attention
layers. Beyond architectural fusion, recent research highlights the critical role of reasoning strate-
gies. Chain-of-Thought (CoT) prompting has been empirically shown to enhance the complex rea-
soning capabilities of VLMs by eliciting intermediate rationales (Zhang et al., 2023; Hu et al., 2024).
Building upon these advancements, our work leverages multi-modal comprehension capabilities to
address the unique challenges of meme generation—particularly its requirement for hierarchical
reasoning and understanding subjective humor.

2.2 MEME ANALYSIS, GENERATION, AND ALIGNMENT

Humor Analysis and Generation. Computational humor draws from established linguistic and
anthropological theories (Apte, 1985; Binsted et al., 2006) to formally model incongruity and se-
mantic shifts. Internet memes have emerged as a vital component of digital culture, prompting sub-
stantial scholarly attention to their multi-modal communications. Extensive research has focused on
analyzing topics (Du et al., 2020), semantics (Xu et al., 2022), and emotions (Sharma et al., 2020)
conveyed in memes. The evolution of meme generation techniques has progressed through distinct
technological phases. Initial systems employed rule-based architectures, exemplified by Oliveira
et al. (2016)’s template-driven approach using standardized structures like ”One does not simply X”,
and Wang & Wen (2015)’s dual-channel model integrating textual and visual features. The advent
of deep learning catalyzed more sophisticated paradigms. Peirson and Tolunay pioneered this tran-
sition with Dank Learning (Peirson V & Tolunay, 2018), combining Inception V3 image encoders
with attention-enhanced LSTM decoders. Subsequent innovations introduced transformer architec-
tures: Sadasivam et al.’s MemeBot (Sadasivam et al., 2020) and Vyalla et al.’s Memeify (Vyalla &
Udandarao, 2020) demonstrated enhanced text-image alignment through multi-modal fusion.

Recent breakthroughs leverage large language models (LLMs) and VLMs to achieve unprecedented
scale. Memecraft (Wang & Lee, 2024) enables targeted meme creation for social advocacy. Ad-
dressing multi-image complexity, Chen et al. proposed XMeCap (Chen et al., 2024b), introducing
a two-stage framework with supervised fine-tuning guided by novel similarity metrics. Concur-
rently, benchmark datasets have emerged to evaluate capabilities. MemeCap (Hwang & Shwartz,
2023) provides metaphor annotations, while the New Yorker benchmarks series (Hessel et al.,
2023b;a) assess humor comprehension through caption matching and explanation tasks. The MCC
dataset (Sharma et al., 2023) further incorporates external knowledge for abstraction analysis.

While capability has scaled, aligning models with subjective human preferences remains a critical
frontier. Unlike objective tasks with ground-truth, humor and creativity require modeling diverse and
often noisy judgments. Recent works have begun to address this by aligning models with diverse
human values (Zhou et al., 2024) and exploring personalized or pluralistic strategies (Feng et al.,
2024). Specifically in the domain of humor, Song et al. (2025) highlight the challenges of modeling
subjective humor preferences using LLMs. Our work advances this direction by proposing a group-
wise preference formulation, mitigating the noise inherent in cross-context humor comparison.

3 PROBLEM FORMULATION

This section formulates the core assumptions and components used throughout the paper. We begin
by defining the structured meme space and the principle of group-wise comparability. Subsequently,
we characterize the local pairwise preference data and posit the existence of a latent humor func-
tional within each group. An observation model linking latent humor to pairwise comparisons is
then introduced. Finally, we establish the objective for a meme generator, defining the key eval-
uation quantities. The result is a self-contained problem formulation that highlights group-wise
comparability while remaining agnostic to specific training methodologies.

3
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Meme Space and Group-wise Comparability: LetM denote the set of all memes under consid-
eration. Each meme is represented as a multimodal pair m = (I, c), where I ∈ I is a base image
and c is a textual punchline rendered at designated positions. Many memes are created from widely
shared templates and are interpreted through context-dependent associations. Since humor is highly
subjective and context-sensitive, absolute comparisons of humor across different templates are often
ill-posed. Therefore, we assume and partition the meme space into K disjoint groups:

G = {G1, . . . , GK}, Gk ⊂M, Gk ∩Gℓ = ∅ (k ̸= ℓ),

Memes within the same group share a comparable structure (e.g., the same template, or punchline
schema), which enables meaningful humor comparison. We posit that human judgments of humor
are reliable within each group Gk ∈ G, but do not assume comparability across different groups.

Local Preference Data: For a given group G, we collect human annotations indicating which of
two memes is considered funnier. Formally, for mi,mj ∈ G, define yGij = I[mi ≻ mj ] ∈ {0, 1}
where mi ≻ mj denotes a local preference that mi is judged to be funnier than mj . The dataset
consists of triples (G, (mi,mj), y

G
ij) sampled from a pairing distribution over G. We allow for in-

completeness (not all pairs are labeled) and noise (due to inter-annotator disagreement). We adopt
two mild yet standard assumptions from preference learning Christiano et al. (2023): (i) local com-
parability: preferences are elicited and interpreted only within a fixed groupG; (ii) weak transitivity:
in expectation, if mi ≻ mj and mj ≻ mℓ, then mi ≻ mℓ is more likely than its reversal, without
requiring a strict total order.

Latent Humor within A Group: Within each group G, we posit the existence of a latent humor
functional hG : G → [0, 1], This functional maps each meme m ∈ G to a scalar reflecting its
relative likelihood of being judged as funny by humans in that group. We do not assume that hG is
calibrated across different groups, nor that hG and hG′ are directly comparable when G ̸= G′.

Observation Model for Pairwise Labels: Pairwise comparison labels are modeled as noisy ob-
servations of underlying differences in latent humor. Formally, we assume:

Pr
[
mi ≻ mj | G

]
= Λ

(
hG(mi)− hG(mj)

)
, (1)

where Λ : R → (0, 1) is a strictly increasing link function (e.g., logistic or probit) (Sun et al.,
2025). Eq. 1 captures the intuition that the probability of preferring mi to mj depends only on their
latent humor gap within the same group: when hG(mi)≈hG(mj), the choice is nearly ambiguous
(probability ≈ 1/2); as the gap increases, the probability moves smoothly toward 1 (if hG(mi)>
hG(mj)) or 0 (otherwise), capturing that larger humor gaps lead to more consistent comparisons.

Generation Goal and Evaluation Quantities: A meme generation model is defined as a con-
ditional probability distribution over punchlines (or called captions) given an image: πθ(· | I) :
I 7→ ∆(C), where ∆(C) denotes the set of probability distributions over the caption space C. A
meme samplem = (I, c) is instantiated by sampling a caption c ∼ πθ(· | I). For any target groupG
containing meme candidates derived from the base image I , the expected within-group humor of πθ
is defined asHG(θ) = E c∼πθ(·|I)

[
hG

(
(I, c)

) ]
. The overall population objective is then obtained

by aggregating over groups according to a task-specific distribution over (I,G):

H(θ) = E (I,G)

[
HG(θ)

]
. (2)

4 HUMOR FRAMEWORK

We propose HUMOR: Hierarchical Understanding and Meme Optimization, a framework that
guides VLMs through hierarchical reasoning and aligns them with group-wise humor preferences.
The overall process of the framework is shown in Fig. 3. HUMOR consists of three integrated
components: hierarchical CoT supervision, pairwise reward modeling, and group-wise policy opti-
mization. These components collectively ensure diverse reasoning, consistent preference learning,
and stable humor improvement. Propositions 1, 2, C.3, and 4 formally establish the coherence and
controllability of the overall framework.

4
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4.1 HIERARCHICAL CHAIN-OF-THOUGHT SUPERVISION

Meme creation mirrors a hierarchical cognitive routine: humans first parse what a visual template
affords, and then realize a chosen intent with text that fits the surrounding context Flamson & Bar-
rett (2008). We therefore model meme generation as a two-stage reasoning process, separating (i)
intent inference from the image and (ii) context-sensitive textual realization of that intent. In prac-
tice, however, training trajectories are often single-path because they are derived from a single gold
caption: back-deriving a rationale from one answer yields only one route.

As shown in Fig. 13,When trained with the final meme answer as a single path, the model collapses
the reasoning process into a single decoding step, failing to develop true association and in-depth
understanding. It only establishes a superficial mapping from user input to the current answer,
leading to superficial captions and inability to adapt to the template nature of memes. Therefore,
it is necessary to first explore the template’s latent intent and core characteristics, and deliberately
generate multiple semantic association possibilities under this template during reasoning to support
the flexible use of the template’s high-level meaning. To address this, we conceptualize the meme
understanding and reasoning process as a hierarchical chain-of-thought r = (rtmpl, rcont), which
explicitly decouples template-level interpretation from context-level grounding. Captions are then
realized by sampling from Pϕ(c | r, I).
To approximate human authorship, we supervise CoT in two stages. The process is shown in Fig. 2.
In Stage 1, we first train the model Pϕ(r | I, Û) with multi-path reasoning traces synthesized by
auxiliary LLM “teachers” under (I, Û), where Û is a candidate set of potential user contexts (e.g.,
emotions, intentions, scenarios) suggested by the template’s affordances (Appendix B). At infer-
ence, the model explores multiple reasoning paths conditioned only on I , while hypothesizing a
candidate set of potential user contexts Û (e.g., emotions, intentions, or scenarios a user might want
to express). Concretely, the model generates reasoning candidates (multiple associative scenarios)
{r(i)}Ni=1 ∼ Pϕ(r | I, Û), encouraging broad coverage of diverse interpretations. This part is similar
to how humans brainstorm several possible jokes before finalizing one.

In Stage 2, when groundtruth captions are available, we anchor one path r̃ to be consistent with the
punchlines of real memes (i.e., ground-truth captions) by incorporating the actual user context U ,
which is inferred from ground-truth captions. Formally, we select r̃ = argmaxr Pϕ(c | r, I, U),
which ensures trajectory consistency while preserving the diversity acquired in Stage 1. At infer-
ence time (no gold caption), the generator ranks and selects among Stage 1 paths using its internal
scoring/decoding policy (see Appendix B for construction details and examples).

Original Tag

VLM

VLM

Anchor to real data

Meme Templete

Bounding Box

Compeleted Tags

OCR

Inpainting

Meme Dataset
Chain-of-thought

Preprocessed Dataset

Stage-1 Prompt

Stage-2 Prompt

Stage-2 OutputStage-1 Output

box1: "When I can't afford new TV's"
 box2: "New TV's" box3: "Me" box4: "My wallet"

Final Meme

Image Analysis

Emotion: love

Intention: Expression of love

Meme

love

Expression of love

Technology

...

love

Expression of love

Technology

...

In technology and social scenarios, the
phenomenon of "being drawn to new things
and neglecting old ones" is quite common...

Image Features

The woman in the foreground on
the left is wearing a sleeveless red
top, with a pleasant expression...

Latent Intention

This meme can be used to
humorously highlight the
awkwardness of the moment...

A suggested text for the meme
could be "When you can't help
but look, but she can't help but
notice"...

Possible reasoning paths

Figure 2: This diagram shows the dataflow for constructing hierarchical CoT supervisions. Stage 1
explores multiple reasoning paths that bind a template to different context-specific details. Stage 2
anchors one high-quality path from ground-truth, preserving diversity while preventing collapse.

The benefit of this design can be formalized as follows. Let h̃G : R → [0, 1] denote group-relative
humor measure defined over reasoning paths. Suppose there exists a set of “star” paths (i.e., better
paths) R⋆ with probability mass α > 0 under the reasoning distribution, and the average humor
gap between non-star paths and the best paths is bounded by δ ≥ 0. Then, we have the following
guarantee:

Proposition 1 (Conditional humor lower bound). Normalizing max h̃G = 1, the expected humor
after two stages CoT supervision satisfies:

Er∼Pθ
[h̃G(r)] ≥ 1− (1− α)δ.
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Intuitively, as long as promising reasoning paths retain non-negligible probability (α is not too small)
and the remaining paths are only mildly worse (small δ), the process of exploration and anchoring
preserve a nontrivial lower bound on expected humor. Conversely, Stage 1 exploration sustains
multi-hypothesis diversity—preventing entropy from collapsing toward zero in the no-exploration
limit—while Stage 2 anchoring ensures that a non-negligible portion of probability mass is con-
centrated on promising paths. Thus, Our proposed CoT framework broadens the breadth of inter-
pretations without sacrificing quality. However, while α is naturally ensured by anchoring toward
ground-truth paths, the humor gap δ remains uncontrolled: some generated paths may still be sub-
stantially less funny than others. To minimize δ, we need an additional mechanism that reflects
human humor preferences and can guide optimization beyond imitation.

4.2 REWARD MODELING FROM PAIRWISE PREFERENCES

The ideal learning objective would be to recover the latent humor function hG(m) for each meme
m. Since humor is inherently subjective and lacks a global scale, this is infeasible in practice. We
therefore adopt an order-consistent view of reward modeling (following established theory (Sun
et al., 2025)) and instantiate it in our group-wise meme setting. Under this formulation, the reward
serves as a within-group surrogate of hG, trained only from relative judgments, avoiding ill-posed
cross-group calibration. Intuitively, hierarchical CoT ensures that high-quality paths retain a mean-
ingful probability mass (the α condition via Stage 2 anchoring), while the reward model supplies
the preference signal necessary to shrink the average gap among plausible paths (addressing the δ
condition). This transforms open-ended exploration into a tractable selection problem.

Each meme m = (I, c) is encoded to a feature vector Ψ(m) ∈ Rd using a VLM as the encoder. Let
a scoring head fϕ : Rd → R map this feature vector Ψ(m) to a scalar score.we denote this score
as sϕ(m) = fϕ

(
Ψ(m)

)
. For any pair of memes (mi,mj) from the same group G, we define the

predicted preference probability as:
p̂G
ij = σ

(
sϕ(mi)− sϕ(mj)

)
, (3)

where σ(·) denotes the logistic function; The model is trained by minimizing the binary cross-
entropy over human-annotated or auto-generated preference pairs.

Building upon the reward modeling formulation in Eq. 3, we now formalize two key theoretical
properties (order consistency and stability) that justify its use in our within-group meme setting.
Proposition 2 (Rank consistency). Under the observation model of Eq. 1 with any strictly increasing
link function, minimizing the pairwise preference loss recovers the same within-group ordering as
the latent humor function hG. Complete proofs are provided in Appendix C.
Proposition 3 (Robustness to label noise (margin-aware)). Let ∆G

ij = hG(mi)−hG(mj) denote the
true humor gap, and assume the annotation process has pairwise error rate ε. For pairs satisfying
|∆G

ij | ≥ δ, the probability of order reversal is bounded above by a function decreasing in δ and
increasing in ε; large humor gaps are therefore preserved even under noisy labels.

These propositions, while grounded in the order-consistent analysis of Sun et al. (2025), are specifi-
cally instantiated under our group-wise comparability. They serve as the theoretical drivers to reduce
the humor gap δ after CoT has secured α. Since pairwise data can be sparse, we aggregate p̂G

ij into
a coherent within-group ranking via Expected Borda Count (EBC) (see Appendix G for more expla-
nations and implementations). For a candidate set SG, each meme’s EBC score equals its expected
number of wins against others under the model in Eq. 3. This provides a stable training target, and
inherits expected order consistency when the pairwise model is consistent (Appendix C). Detailed
constructs and examples of pairwise data are provided in Appendix E.

4.3 GROUP-WISE POLICY OPTIMIZATION

Following the CoT supervision stage and reward model training, we further fine-tune the meme
generator to increase the probability of higher-ranked captions. Concretely, we leverage the trained
reward model and adopt a Group-wise Relative Policy Optimization (GRPO) objective Shao et al.
(2024). For a candidate set of memes SG with ranking qG from EBC, the reinforcement fine-tuning
loss is:
LGRPO(θ) = E(I,G)

[
−

∑
mk∈SG

qG(mk) log πθ(ck | I)
]
+ β EI

[
KL(πθ(· | I) ∥πref(· | I))

]
, (4)
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where πref denotes the policy obtained after CoT training. The first term aligns πθ with the group-
local preference distribution qG (rank-consistent with hG). Since prior perference optimization anal-
yses Christiano et al. (2023); Neu & Szepesvari (2012); Haarnoja et al. (2018) often propose opti-
mistic lower bounds (second term), we also adopt a corrected, KL-controlled guarantee that holds
under our setting and noise model. Specifically, the original upper bound on the humor-score devia-
tion (induced by preference noise) can be refined under GRPO into a bound that scales with the KL
between the trained policy and the reference policy (proof in Appendix D).
Proposition 4 (Bounded change of expected humor under GRPO). Assume Proposition 2 holds and
hG ∈ [0, 1]. Let ∆KL = EI [KL(πθ(· | I) ∥πref(· | I))]. Then

E(I,G)

[
Ec∼πθ(·|I) hG((I, c))

]
≥ E(I,G)

[
Ec∼πref(·|I) hG((I, c))

]
−

√
1
2 ∆KL.

Hence, if GRPO enforces ∆KL ≤ τ , the expected humor cannot drop by more than
√
τ/2; with the

first term pull toward qG, this ensures non-decreasing behavior within a bounded KL neighborhood.

This bound, derived via Pinsker’s inequality, formalizes the stability underlying our approach in
practice: CoT supervision supplies sufficient support (α), the reward model and EBC induce a
group-local order that reduces δ, and GRPO turns this order into controlled policy updates. In
sum, our use of order-consistent surrogates aligns with established theory, but the group-wise in-
stantiation, the corrected KL-based bound, and the integration with multi-path CoT for open-ended
generation are key ingredients that make the approach effective and verifiable for meme generation.
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Figure 3: Training Pipeline of HUMOR. Multi-path CoT expands reasoning coverage and anchors
a canonical path; the reward model translates pair data into a rank-consistent group-level signal (via
EBC); GRPO then updates the generator toward higher-ranked captions.

5 EXPERIMENT

5.1 MEME QUALITY AND DIVERSITY WITH HUMOR

Settings: We evaluate the proposed HUMOR framework against several competitive baselines and
model variants. Concretely, the compared systems include multiple open-source and closed-source
VLMs, as well as our HUMOR-CoT model, which is fine-tuned with the hierarchical CoT design.
To further investigate the efficacy of alternative CoT methods for meme generation, we also include
several advanced CoT frameworks (Kim et al., 2023; Chen et al., 2024a), all trained under the same
data and protocol. See Appendix H.1 for detailed training settings and Appendix A for the details
of datasets. Given the highly open-ended and human-aligned nature of meme generation, we pri-
oritize human evaluation. Human annotators are asked to assign scores to generated memes along
four predefined quality axes. In addition, we adopt the conventional metric of text-level similarity
between generated captions and their original reference texts. To further quantify generation diver-
sity, we introduce a novel metric called Distance under Context Swap. This measure replaces the
original context in the training set with a randomly selected one (kept consistent across models), and
computes the textual divergence between the resulting caption and the original. A larger distance
suggests reduced overfitting to SFT labels and better adaptability to new contexts. Due to observed
instability in VLM-based rubric scores for meme evaluation (Sec. 5.2), we incorporate only one
VLM-based metric: a human-likeness score. This is formulated as a binary classification estimating
the probability that a meme was created by a human, with higher values indicating better. We adopt
Gemini-2.5-pro as the evaluator for computing Human Rate, as it demonstrates the most stable and
consistent behavior among candidate VLMs in our evaluator reliability analysis (Appendix L). For
a more detailed description of the indicator meanings and evaluation criteria, see Appendix I.1.
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Table 1: Evaluation results across open-source models, closed-source models, and Qwen2.5-7B-
Instruct fine-tuned with our proposed and different CoT methods. Metrics include context-swap
distance (diversity criterion), text-level similarity (sim. to original meme text), human evaluation
(Humor, Readability, Relevance, Originality), and Human Rate.

Category / Model Human Evaluation (0-5) ↑ Text-level
Similarity ↑

Context-swap
Distance ↑ Human Rate (%)↑

Humor Readability Relevance Originality

Open-source Models
Qwen2.5-7B-Instruct (Bai et al., 2025) 2.39 3.35 2.91 2.57 0.576 0.564 75.7
Qwen2.5-32B-Instruct (Bai et al., 2025) 2.54 3.52 3.09 2.76 0.564 0.566 82.2
InternVL3-8B (Zhu et al., 2025b) 2.39 2.79 3.04 2.79 0.545 0.564 62.7
GLM-4.1V-9B-Thinking (Hong et al., 2025) 1.73 2.62 2.75 2.71 0.602 0.572 45.1
Keye-VL-8B-preview (Team et al., 2025) 2.35 3.19 2.99 2.71 0.585 0.580 69.0

Closed-source Models
GPT-4o (OpenAI, 2024) 2.70 2.99 3.21 2.97 0.603 0.552 91.3
Gemini-2.5-flash (Comanici et al., 2025) 2.81 3.29 3.25 2.88 0.600 0.561 -

Fine-tuned Model
HUMOR-CoT 2.68 3.70 3.50 2.90 0.640 0.590 91.5

CoT with Single Path (Kim et al., 2023) 1.87 2.79 2.68 2.45 0.637 0.570 86.0
CoT with Self-Improve (Chen et al., 2024a) 2.38 3.68 3.00 2.65 0.629 0.578 89.1
CoT with Subquestion (Wei et al., 2022) 1.85 3.32 2.58 2.47 0.639 0.597 87.2

HUMOR-RL (preview) 2.83 3.67 3.55 2.79 0.631 0.588 92.3

Results: As summarized in Table 1, the proposed HUMOR framework achieves substantial im-
provements across multiple evaluation dimensions, validating its efficacy for humor-oriented meme
generation. Specifically, in terms of Humor, HUMOR-CoT attains a score of 2.68, surpassing the
base model Qwen2.5-7B-Instruct (2.39). Qualitative analysis suggests that HUMOR-improved mod-
els better capture nuanced humor mechanisms such as sarcasm and self-mockery. For Readability,
HUMOR-CoT achieves a score of 3.70, outperforming all compared variants—including powerful
closed-source models. It can generate meme texts with appropriate length and engaging structure,
avoiding the verbosity common in many VLMs while maintaining humor expressivity, thereby bet-
ter aligning with human writing conventions. It also excels in theme relevance and originality,
demonstrating an ability to interpret deeper user intent rather than superficially referencing visual
content. Although semantic similarity is less indicative for meme captions—which often consist
of short phrases, HUMOR-CoT still achieves the closest alignment to reference captions among all
models. Our proposed Context-Swap Distance metric further reveals that HUMOR-CoT (0.590)
exceeds the baseline (0.564), indicating stronger generalization and context adaptability when user
inputs are altered. This supports the hypothesis that hierarchical CoT reduces overfitting to concrete
training labels. Finally, HUMOR-CoT achieves a human-likeness score of over 91%, significantly
outperforming the base model (75.7%) and even surpassing the closed-source GPT-4o (91.3%).

Ablations on alternative CoT variants further illustrates the superiority of HUMOR: while Single
Path lacks bottom-up visual grounding and produces narrow reasoning chains; Self-Improve attains
high readability, it yields conservative, “safe but dull” outputs; Subquestion mitigates overfitting but
suffers from over-decomposition, impairing humor and relevance. In contrast, HUMOR-CoT’s two-
stage reasoning more closely emulates human cognition process for better meme generation. Beyond
human and text-level evaluations, we further validate model alignment through a VLM-based reclas-
sification test (Appendix J.1). As summarized in Table 5, HUMOR-CoT consistently surpasses both
the Qwen2.5-7B and Qwen2.5-32B base models across all four semantic dimensions—emotion, in-
tention, theme, and style. Notably, despite being trained on the smaller 7B backbone, HUMOR-CoT
even outperforms the 32B variant, demonstrating that the hierarchical CoT design contributes more
effectively to user-intent preservation than scaling model size alone.

5.2 VLM RELIABILITY EVALUATION

After the CoT-based experiments, we further examined the reliability of VLM-based scoring for
meme evaluation. In practice, existing VLMs often fail to align with human judgment: even for
clearly distinct examples such as In-the-wild Memes (human-created and high-quality) versus Text-
Free Memes (text removed), their absolute scores remain nearly identical, revealing that absolute
scoring is inadequate for assessing humor or cultural nuance. As shown in Fig. 4(b), the group-wise
relative ranking protocol produces much clearer distinctions between high- and low-quality memes
and aligns well with human perception. A human study further validates that these rankings cap-
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(a) (b)

Figure 4: (a) VLM-based absolute scoring fails to distinguish meme quality. (b) Group-wise
ranking produces more reliable distinctions, better aligned with human.

ture genuine preference structures, showing strong agreement with Gemini-2.5-pro (Spearman 0.72,
Kendall’s τ 0.63); full details are provided in Appendix L.4. Under this reliable evaluation protocol,
HUMOR-CoT ranks second only to human-created memes and consistently surpasses all CoT-based
training baselines. Building on this reliable ranking framework, we further assess HUMOR’s ability
to generalize to meme templates entirely unseen during training. We evaluate 20 novel templates
with no image–text overlap with the training corpus. Gemini-2.5-pro jointly ranks outputs from
different variants. As shown in Fig. 5, HUMOR-CoT again ranks second only to human-created
memes, mirroring the in-distribution trend. This demonstrates strong zero-shot robustness: the hi-
erarchical CoT effectively transfers its learned humor construction to unfamiliar formats rather than
overfitting to template-specific patterns. For completeness, the full evaluation prompts are provided
in Appendix M.4, detailed experimental settings in Appendix I.1, and representative outputs com-
paring different CoT reasoning schemes in Appendix K.1. Additional analyses—including risk-case
identification (Appendix K.3), failure-case diagnostics (Appendix K.4), real-world application (Ap-
pendix K.5) and generalization to Unseen templates (Appendix K.2)—offer further qualitative and
quantitative evidence supporting the robustness and interpretability of HUMOR-CoT.

5.3 REWARD MODEL RANK CONSISTENCY AND RL TRAINING

Table 2 evaluates reward models trained using the group-wise ranking strategy described above.
These models are fine-tuned on different base models to align with human preference rankings.See
Appendix H.2 for detailed training settings. For evaluation, we employ five meme templates: Im-
age1–Image5. Each containing 10–15 candidate memes (see Figure 12). For every template, we ob-
tain a group-level human ranking via MaxDiff (Appendix I.2).The human rankings for the example
templates are shown in Appendix J.2. Model rankings are produced by: (i) collecting in-group pair-
wise comparison from either the base model or the fine-tuned reward model (HUMOR-RM), and (ii)
aggregating them with Expected Borda Count (EBC) to acquire more reasonable sequence ranking.
We report Kendall’s τ and its p-value to test the rank consistency objective (Section 4.2). HUMOR-
RM on Keye-VL-8B achieves consistently high τ with significant p-values (often p≤ 10−3) across
Image1–Image5, indicating strong within-group agreement with human preferences. On Qwen2.5-
VL-7B, results are mixed-showing moderate alignment in some cases but near-chance level in others,
with inconsistent significance. Qwen2.5-VL-32B and other backbones show limited gains. Overall,
all fine-tuned models demonstrate improvements over their base versions under the same training
and ranking supervision. However, the degree of rank consistency depends on the base model: se-
mantically stronger and better-aligned backbones yield more reliable results, whereas weaker mod-
els align less steadily. We further validate the effectiveness of combining HUMOR-RM with a newly
designed content reward (Appendix F) for RL training. Regarding content reward evaluation, see
Appendix F.2 for the selection of evaluation models and the test of evaluation consistency. For the
validity test of this part of content reward, please see Appendix H. As shown in Table 1, the resulting
preview model exhibits enhanced performance in humor, relevance, and human rate.

5.4 REWARD MODEL ANALYSIS ON DIFFERENT BASE MODEL

Across all evaluated templates (Image 1–5), the Keye-VL-8B base model achieves higher in-group
ranking consistency with human preferences than Qwen2.5-VL variants. We next examine why the
post-training trajectories differ across base models and whether our training scheme induces model-
specific preferences. Here, we present the differences among the top-ranked images preferred by
reward models fine-tuned on different base models. As illustrated in Figure 6, Qwen2.5-VL-7B tends
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Prefer captions anchor to salient objects

Puzzled
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v
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Figure 6: Qwen2.5-VL-7B prefers captions
that mention direct objects, whereas Keye-
VL-8B prefers captions reflecting the human-
like perception and understanding.

Table 2: (Reward Model) Ranking results of different baselines among distinct template images. It
indicates the change after fine-tuning relative to the baseline: an increase in Kendall tau τ and a
decrease in p-value p represent improvements (highlighted in green), while the opposite indicates
deterioration (shown in red). Significance levels: * p < 0.05; ** p < 0.01; *** p < 0.001.

Model Template 1 Template 2 Template 3 Template 4 Template 5

τ ↑ p ↓ τ ↑ p ↓ τ ↑ p ↓ τ ↑ p ↓ τ ↑ p ↓

Qwen2.5-VL-7B (Base) 0.16 0.60 0.28 0.17 0.47 0.07 -0.10 0.63 0.29 0.29
Qwen2.5-VL-7B (Finetuned) 0.47 0.07 0.56 0.03* 0.42 0.11 0.14 0.50 0.47 0.07
∆ vs Base +0.31 −0.53 +0.28 −0.14 −0.04 +0.04 +0.25 −0.13 +0.18 −0.22

Qwen2.5-VL-32B (Base) 0.16 0.61 0.16 0.44 -0.02 1.00 0.14 0.50 0.29 0.29
Qwen2.5-VL-32B (Finetuned) 0.29 0.29 0.47 0.02* 0.07 0.86 0.30 0.14 0.42 0.11
∆ vs Base +0.13 −0.32 +0.30 −0.42 +0.09 −0.14 +0.15 −0.36 +0.13 −0.18

Keye-VL-8B (Base) 0.05 0.85 0.09 0.70 0.16 0.60 0.29 0.29 0.16 0.60
Keye-VL-8B (Finetuned) 0.78 0.00*** 0.77 0.00*** 0.78 0.00*** 0.78 0.00*** 0.78 0.00***
∆ vs Base +0.73 −0.84 +0.69 −0.70 +0.62 −0.60 +0.49 −0.29 +0.62 −0.60

to anchor caption preferences on salient visual objects. For instance, when Image 5 depicts a panda
holding a coffee cup, it favors captions containing the word ”coffee”; Similarly, for Image 2, which
shows an older woman looking at a laptop, it prefers references for ”grandma” or computer-related
terms. In contrast, Keye-VL-8B more consistently captures implied internal states or situational cues
within the scene and aligns them with the template’s communicative intent. In the same examples,
it interprets the panda as resembling a ”tired office worker” and the woman as appearing ”puzzled”,
which aligns better with human rankings under our within-group evaluation protocol. These findings
aligns with our theoretical expectation: while the reward model supplies only a preference ordering,
effective alignment ultimately depends on the base model’s capacity to represent the nuanced cues
underlying human humor perception.

6 CONCLUSION

In this work, we tackled the complex challenge of teaching VLMs the art of in-the-wild meme
generation, a task that requires nuanced reasoning beyond standard image captioning. Our proposed
framework, HUMOR, successfully bridges the gap from visual perception to humorous punchline
by instituting a two-stage process of hierarchical reasoning and preference alignment. Through a
novel hierarchical CoT, the model learns to explore diverse creative paths while anchoring on high-
quality outcomes. Furthermore, by leveraging group-wise preference modeling and RL, we ensure
the generated humor aligns with human judgment in a stable and consistent manner. This work
establishes a general and effective paradigm for open-ended multimodal generation tasks.
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LLM USAGE STATEMENT

We employ vision–language models (VLMs) for data preprocessing and evaluation. Specifically, we
use Doubao to perform label assignment and generate hierarchical CoT traces for training data; at
evaluation time, we use Qwen-VL, Keye-VL, and Gemini-2.5-pro as VLM judges to assess generated
memes. For writing clarity only, we use GPT-5 to polish the paper’s wording without changing
technical content or claims.

ETHIC STATEMENT

All datasets used in this work are publicly available and licensed for research use. No private,
personal, or biometric information is included. We adhered to all dataset terms of use and copyright
requirements.

For the human evaluation study, all participants were recruited through legitimate platforms (e.g.,
Prolific/MTurk/University pool) and compensated at fair market rates. Before starting the survey,
participants were provided with a clear informed-consent form explaining the study purpose, data
usage, voluntary participation, withdrawal rights, and anonymity guarantees. No personally identi-
fying information was collected, and all responses were fully anonymized.

During data preprocessing, we removed violent, hateful, and other harmful content to the best ex-
tent possible. Because meme-generation systems may still produce biased or sensitive content, we
acknowledge potential risks related to discrimination or fairness. To mitigate these risks, we rec-
ommend standard safety measures (automated content filters, human-in-the-loop review, and clear
usage policies) when deploying the model.

Our research complies with ethical guidelines for human-subject research and responsible AI devel-
opment. No data will be released that could enable misuse.

REPRODUCIBILITY STATEMENT

Upon acceptance, we will release: (i) the full list of dataset sources we use; (ii) our constructed
CoT supervision data and the pairwise/reward datasets; and (iii) the complete training and inference
codebase. We will also provide prompts, hyperparameters, random seeds, model checkpoints (or
scripts to reproduce them), and evaluation scripts to enable end-to-end replication.
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(a) Token count distribution (b) Sentiment score distribution (c) Top 20 keywords

Figure 7: Textual properties of meme captions in training dataset

A DATASET STATISTICS AND ANALYSIS

In this section, we provide a comprehensive analysis covering linguistic features, semantic content,
and semantic diversity. These statistics validate that the dataset captures the nuanced, punchy, and
diverse nature of internet humor required for training robust VLMs.

A.1 LINGUISTIC AND SEMANTIC COMPOSITION

We first analyze the textual properties of the meme captions to ensure they align with the linguistic
conventions of internet culture.

Token Count Distribution: As illustrated in Figure 7a, the token count follows a log-normal dis-
tribution with a mean of 12.1 and a median of 10.0. This confirms that the dataset consists predom-
inantly of concise, high-impact text, consistent with the “short and punchy” nature of memes.

Sentiment Distribution: The sentiment analysis (Figure 7b) reveals a dominant Neutral class
(69.8%), with balanced Positive (17.1%) and Negative (13.1%) tails. This heavy skew toward neu-
trality is expected and desirable; meme humor often relies on deadpan delivery or irony, where the
text itself appears objective or factual, and the humor emerges only through the juxtaposition with
visual context.

Semantic Keywords: The top-30 keyword analysis (Figure 7c) confirms that the dataset is grounded
in abstract emotional concepts rather than merely descriptive tags. Dominant keywords such as
Humor, Frustration, Irony, and Disappointment indicate that the data captures the core thematic
essence of relatable internet memes.

A.2 SEMANTIC DIVERSITY AND RATIONALITY OF DISTANCE

A critical quality of a high-quality meme dataset is paraphrastic diversity—the ability to express
the same underlying template intent through varied textual realizations. To quantify this, we an-
alyzed the distribution of semantic distances (1 − Cosine Similarity) between captions within the
dataset.

As shown in Figure 8, the distance metric follows a normal distribution with the following charac-
teristics:

• Central Tendency: Both the mean and median are exactly 0.570, with a standard deviation
of 0.067.

• The “Goldilocks” Interval [0.5, 0.6]: A significant majority of the data (52.5%) falls
within this specific range.

Rationality of the [0.5, 0.6] Range: We argue that this distance distribution is not only reasonable
but indicative of a high-quality dataset for open-ended generation:

1. Avoidance of Mode Collapse (> 0.1): A very low distance (e.g., < 0.2) would imply that
the dataset contains largely duplicate or repetitive captions, which leads to overfitting and lack
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(a) Histogram of Semantic Distances (b) Boxplot of Semantic Distances

Figure 8: Analysis of Semantic Diversity. The distribution of semantic distances (defined as 1 −
Cosine Similarity) exhibits a mean and median of 0.570. The concentration of data (54.5%) within
the [0.5, 0.6] interval indicates a healthy balance: the captions are semantically related enough to
share a theme, yet diverse enough to avoid trivial repetition.

of creativity. Our distribution shows virtually no mass in this region, confirming high lexical
diversity.

2. Semantic Coherence (< 0.9): A very high distance (e.g., > 0.8) would suggest random or
unrelated text. The maximum distance observed is 0.755, with the vast majority below 0.7,
ensuring that the captions remain thematically grounded to the meme templates.

3. Optimal Paraphrasing: The concentration at 0.57 represents an optimal middle ground where
captions share the same latent humor or intent (lowering distance) but utilize distinct vocabulary
and sentence structures (increasing distance). This supports our claim that the dataset facilitates
learning robust, generalized humor representations rather than rote memorization.

B HIERARCHICAL CHAIN-OF-THOUGHTS OF METAPHOR

To enhance our model’s understanding of humor, we replicated the human meme creation process.
Through extensive analysis of human meme creation, we extracted a paradigm for hierarchical meme
feature analysis.

Take the ”Distracted Boyfriend” meme as an example. Humans first capture: the delighted ex-
pression of the woman on the left, the action of the man in the center looking back and his subtle
flirtatious gaze, the annoyed posture of the woman on the right, and the triangular compositional re-
lationship and explicit emotional direction formed by the three individuals. Humans further abstract
this scene and discover that it can be applied to any scenario of infatuation with something new and
abandonment of the old, establishing entity mapping relationships. Thus, when the user’s request is
workplace culture, this template can be adapted to depict a leader being attracted by a new employee
during a meeting, with a senior employee showing an expression of helplessness, vividly illustrating
the workplace ”new vs. old” relationship and generating humor.

How would humans fill in the text? Through statistical analysis of 5,000 classic memes, we found
that the text positions in common meme templates are fixed, and the text content is highly correlated
with its position. For instance, in the ”Distracted Boyfriend” template, the position corresponding
to the woman on the right is often used to represent the neglected object, the position corresponding
to the man in the center represents the subject of attention shift, and the position corresponding to
the woman on the left is the newly focused entity. Therefore, we integrate ”text content generation”
and ”text position allocation” in the meme generation process. By annotating text box positions
in the image, the model only needs to use its inherent visual localization ability to find the boxes,
understand that text needs to be written in specific areas, and then combine spatial semantic mapping
relationships to generate text with greater humorous effects in these positions.

We aim to imitate this thought process to construct Chain-of-Thought (CoT) data:
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Data Collection and Preprocessing

Meme Images We collected over 4,000 meme images from public dataset (Xu et al., 2024), and
established a multi-dimensional labeling system:

1. Emotion Classification: Covers 7 basic emotions and intensity levels.
2. Intent Detection: Differentiates between 10 creation intents such as offense and entertainment.
3. Metaphor Analysis: Records metaphorical entities and cross-domain mapping relationships.

Safety-Driven Dataset Cleaning. To mitigate potential risks within the raw dataset—such as po-
litical bias, sexually explicit content, and sensitive themes like discrimination—we implemented
an automated filtering protocol leveraging the intrinsic safety guardrails of the VLM API (e.g.
doubao-1.5-vision-pro). Specifically, during the image understanding phase, we prompted
the API to interpret each meme. We adopted a ”refusal-based” criterion: instances where the API
triggered a safety warning or refused to generate a response were flagged as containing harmful or
negative content. These samples were systematically excluded from our training corpus to ensure
compliance with ethical safety standards.

Base Images and Text Content/Position Information The FLUX.1-dev-Controlnet-Inpainting-
Beta model is used to erase and restore the text areas in original memes, obtaining text-free base
images. Meanwhile, OCR technology precisely records the (position, content) pairs of text, provid-
ing spatial semantic data for subsequent training.

User Requirements We reconstructed user requirements in reverse using APIs. Taking the
meme’s labels and final text as inputs, we utilized prompts to reverse-engineer the user’s initial
request. We analyzed the following dimensions of user requirements: emotion category, emotion
intensity, intention, Scene or theme , style preference, and keywords.

CoT Data Generation

Stage One Using the base image as input, we extract high-level semantics of the meme.

First, we perform visual element decomposition. Our framework systematically deconstructs meme
templates from four key visual dimensions:

1. Main Subject Characteristics: Analyze facial expressions, poses, clothing, and dynamic rela-
tionships between characters.

2. Composition Logic: Identify visual focal points, color contrasts, and spatial relationships.
3. Cultural Markers: Recognize identifiable meme formats and pop culture references.
4. Narrative Threads: Interpret body language implications and prop symbolism.

Then, we conduct scenario association and humor construction based on visual analysis:

1. Social Contexts: Identify scenarios suitable for group chats, comment sections, and private con-
versations.

2. Topic Relevance: Establish connections with workplace culture, life dilemmas, and internet
hotspots.

3. Emotional Mapping: Determine appropriate humor techniques, including satire, self-
deprecation, exaggeration, and contrast.

Stage Two Using the base image analysis from Stage One, user requirements, and final text as
inputs, we infer the customized creation process for specific requests.

We provide few-shot examples of this parsing process. For instance, for the ”Distracted Boyfriend”
meme, when Stage One yields the semantic pattern of infatuation with something new and abandon-
ment of the old, and identifies three entity positions: A [attention-shifting subject], B [newly focused
entity], and C [neglected object], the user’s request is a technology theme with the keyword ”Apple
fanatic.” We consider how to align the expression of infatuation with something new and abandon-
ment of the old with the context of technology product updates to reflect being an Apple fanatic. We
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infer that the semantic mapping of new and old phones is similar. Therefore, combining this image,
we deduce that the text should be filled as: ”A: APPLE FANS, B: IPHONE 11, C: IPHONE 10,”
humorously expressing enthusiasm for Apple’s new technological products.

Training Rationale and Process We conduct instruction-tuning training using CoT data as su-
pervisory signals. Since our training data contains numerous instances of the same base image, the
two-stage CoT process essentially learns metaphorical semantic relationships across different sce-
narios. It is a divergent associative thinking training where one base image corresponds to multiple
scenarios. This CoT approach not only enables the model to understand the high-level semantics of
the image itself but also establishes multi-scenario associative capabilities.

Determination and Extraction of Generated Text Format Text boxes in the image are marked
using a top-to-bottom, left-to-right coordinate sorting rule, and text content is recorded in the la-
bels in order and in box format. The prompt explicitly requires the model to output in the format
”box1:text1, box2:text2.”

Generate chains of thought：directly from the original diagram

The image depicts the classic "Distracted Boyfriend" meme format. The context 
involves a person (representing Apple fans) being distracted by something new and 
shiny (iPhone 11) while disregarding the previous object of affection (iPhone 10). This 
scenario aligns well with themes of tech loyalty, consumerism, and the constant 
pursuit of the latest gadgets.

<\>

No Genuine Discovery

No Layered Abstraction


No Reasoning, Just Justification

REASON:

How to design a social 
phenomena meme for 
apple fans’ tech loyalty？

Scene or Theme

Style Preference

Text Content Keywords

technology

social phenomena

wholesome

apple fans

iphone comparison

tech loyalty

Tag Selection

Generate chains of thought：layer by layer, and enter the original image, border, and final text diagram layer by layer

There are three people in the image. ...Relationship 
dynamics among them suggest a scenario where 
the man is interested in the woman in red, which 
displeases the woman on the right.

one plausible humorous usage scenario could be...during a group 
outing, if one of the guys starts ...

Another scenario might occur in the workplace: if a colleague acts 
...The humor mechanism here lies ...being attracted to others even 
when in a committed relationship or in an inappropriate situation...

The keywords align perfectly with this 
phenomenon: Apple fans’ enthusiasm for the 
latest iPhone models often leads them to 
unconsciously "neglect" their current old 
models... labeling the man in the meme as 
"APPLE FANS", the woman he is looking at as 
"IPHONE 11", and the girlfriend as "IPHONE 10" 
is humorous.

Figure 9: Comparison between direct CoT generation from the original image and our hierarchical
CoT generation approach.

Critical Comparison: Direct vs. Hierarchical CoT The direct approach of generating chains
of thought from the original image is essentially reverse engineering rather than genuine reasoning.
It suffers from four critical flaws: 1) No Genuine Discovery: it skips the exploratory stage where
humor emerges from active associative search, jumping straight to a fixed answer; 2) No Layered
Abstraction: it leaps from raw visual details to a specific conclusion without building transferable
intermediate metaphors; 3) No Reasoning, Just Justification: instead of true inference, it merely
defends a predetermined conclusion.

In contrast, our layered CoT framework mirrors human reasoning by progressively abstracting from
visual description to general metaphorical patterns and then to domain-specific humor instantiations,
thereby enabling genuine creativity and robust generalization.

VLM

Culture nuances 
(Friends)

Expression

DillemaHomophonic punPersonification

Meme Techniques Meme Format

Text
+

Image

Figure 10: Examples of memes common on the internet
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C REWARD MODELING: ASSUMPTIONS AND PROOFS

C.1 SETUP AND ASSUMPTIONS

For a fixed group G, the latent humor functional is hG : G → [0, 1]. Pairwise labels follow the
observation model of Eq. (1):

Pr[mi ≻ mj | G] = Λ
(
hG(mi)− hG(mj)

)
,

where Λ : R → (0, 1) is strictly increasing. A reward model maps a meme m = (I, c) to a score
sϕ(m); the pairwise probability is

p̂G
ij = σ

(
sϕ(mi)− sϕ(mj)

)
,

and ϕ is learned by minimizing the empirical pairwise cross-entropy Lpair. We assume (A1) the
data contains i.i.d. pairs drawn within G with non-degenerate coverage; (A2) the model class for sϕ
is rich enough to fit the Bayes-optimal decision boundary; (A3) identifiability is up to an additive
constant per group (sufficient for ranking).

C.2 RANK CONSISTENCY (PROPOSITION 1) — PROOF

Proposition (Rank consistency (main text Proposition 1)). Under Eq. (1) with strictly increasing Λ,
any risk minimizer of the logistic pairwise loss recovers the same within-group ordering as hG.

Proof. Let ηij = Pr[mi ≻ mj | G] = Λ(∆ij) with ∆ij = hG(mi)−hG(mj). The Bayes-optimal
pairwise classifier for logistic loss satisfies σ(s⋆i − s⋆j ) = ηij , hence

s⋆i − s⋆j = σ−1(ηij) = σ−1
(
Λ(∆ij)

)
=: ψ(∆ij),

where ψ is strictly increasing as a composition of strictly increasing functions. Therefore

s⋆i − s⋆j > 0 ⇐⇒ ∆ij > 0 ⇐⇒ hG(mi) > hG(mj).

Thus any minimizer (up to additive constants) induces the same strict order as hG inside G. □

C.3 NOISE ROBUSTNESS (PROPOSITION 2) — PROOF

Proposition (Noise robustness (main text Proposition 2)). Let ∆G
ij = |hG(mi)−hG(mj)|. Suppose

the learned classifier has average pairwise error ε. If we split pairs into “small-margin” (∆G
ij < δ)

and “large-margin” (∆G
ij ≥ δ), then the reversal probability obeys

Pr[reversal] ≤ Pr[∆G
ij < δ] + Pr[reversal | ∆G

ij ≥ δ] ≤ Pr[∆G
ij < δ] + εδ,

where εδ decreases as δ increases and increases with the classifier error ε; in particular, under the ob-
servation model Eq. (1), the conditional flipping probability on large-margin pairs is upper-bounded
by a monotonically decreasing function of δ.

Proof. Let K be the event “classifier reverses the true order”. Decompose by a margin threshold
δ > 0:

Pr[K] = Pr[K ∧ (∆G
ij < δ)] + Pr[K ∧ (∆G

ij ≥ δ)] ≤ Pr[∆G
ij < δ] + Pr[K | ∆G

ij ≥ δ].
The second term is at most the classifier’s conditional error on large-margin pairs, denoted εδ . Under
Eq. (1), the Bayes error on a pair decreases monotonically with |∆G

ij |, hence εδ decreases in δ. If
the global average error is ε, then εδ ≤ ε and often much smaller. Thus large true gaps are stably
preserved, while flips concentrate on small-margin pairs. □

C.4 FROM PAIRWISE TO GROUP RANKING (EBC)

Given sparsity, we aggregate pairwise probabilities into a within-group ranking via Expected Borda
Count (EBC): each item’s score equals its expected number of wins against others according to
p̂G
ij . EBC is a monotone transformation of the empirical pairwise preferences and inherits rank

consistency in expectation when the pairwise model is consistent, providing a coherent group-wise
order for evaluation and optimization. (Operational details as in Sec. 4.2.)
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D GROUP-WISE POLICY OPTIMIZATION (GRPO): GUARANTEES AND
PROOFS

D.1 OBJECTIVE AND NOTATION

For a candidate set SG with group ranking distribution qG (from EBC), the GRPO loss is

LGRPO(θ) = E(I,G)

[
−

∑
mk∈SG

qG(mk) log πθ(ck | I)
]
+ β EI

[
KL

(
πθ(· | I) ∥πref(· | I)

)]
.

Intuitively, the first term pushes πθ toward qG within the group (listwise), and the KL term limits drift
from a safe reference policy πref; both are group-local, matching comparability in our formulation
(Sec. 3).

D.2 BOUNDED DEGRADATION VIA KL CONTROL

We formalize the “cannot degrade beyond a bounded amount” claim under bounded KL.
Proposition (Bounded improvement under GRPO (main text Proposition 2)). Assume the reward
model is rank-consistent (Proposition C.2) and hG ∈ [0, 1]. Let ∆KL = EI

[
KL

(
πθ(· | I) ∥πref(· |

I)
)]

. Then the expected within-group humor satisfies

E(I,G)

[
Ec∼πθ(·|I) hG

(
(I, c)

)]
≥ E(I,G)

[
Ec∼πref(·|I) hG

(
(I, c)

)]
−

√
1
2 ∆KL.

Consequently, if GRPO enforces ∆KL ≤ τ (by choosing β or an explicit trust region), the expected
humor cannot drop by more than

√
τ/2; with rank-consistent qG, optimization increases the prob-

ability of higher-hG captions, so the net effect is non-decreasing or improved expected humor once
the pull toward qG outweighs this bound.

Proof. For any fixed (I,G), Pinsker’s inequality gives∥∥πθ(· | I)− πref(· | I)
∥∥
TV
≤

√
1
2 KL

(
πθ(· | I) ∥πref(· | I)

)
.

Since hG ∈ [0, 1], by the variational characterization of total variation for bounded functions,∣∣∣Eπθ
[hG]− Eπref [hG]

∣∣∣ ≤ ∥∥πθ − πref
∥∥
TV
≤

√
1
2 KL(πθ∥πref).

Averaging over (I,G) yields the stated bound. During GRPO, the cross-entropy term−
∑
qG log πθ

(with rank-consistent qG) increases mass on higher-hG captions within the group, while the KL term
keeps the deviation controlled. Thus expected humor cannot deteriorate beyond the Pinsker bound
and, in practice, improves as the listwise alignment progresses. □

D.3 DISCUSSION: WHY LISTWISE qG MATTERS

Because qG aggregates pairwise signals into a coherent group distribution consistent with hG’s or-
dering, the CE term directly performs a proximal step toward the better subset of captions without
inventing any cross-group scale. This matches our problem scope and the guarantees in Sec. 4.2–4.3
of the main text.

E PAIR-WISE DATASET CONSTRUCTION

Our reward model is trained on pairwise comparisons. Intuitively, pairs whose ordering is both
reliably correct and increasingly challenging drive the model toward more consistent ranks. We
therefore construct a curriculum of five difficulty tiers, guaranteeing correct orderings while pro-
gressively raising difficulty (from trivial mismatches to near-ties within the same template/scene).
To span both trivial and subtle distinctions, we sample pairs across all tiers and upweight harder tiers
during training, yielding a supervision signal that is confident yet discriminative:
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Original Meme ✅ Detailed Boring MemeBoring MemeWrong Location Meme Wrong Text Meme

Examples of Training Dataset with Different Difficulty Tier

Generated Meme

Figure 11: Examples of training datasets with different difficulty tier

1. Wrong Text Meme (⋆): This is the most straightforward case, where the original text is replaced
with unrelated content, completely removing the humor. This type of meme is easy for the model
to classify as ”non-humorous” and acts as a baseline.

2. Wrong Location Meme (⋆⋆): A slightly more complex case involves shifting the position of the
text in the image. While the metaphor may still exist, the humor diminishes due to the misplace-
ment of text. The model must learn that small positional changes can significantly impact the
meme’s humor, reflecting a higher degree of difficulty.

3. Boring Meme (⋆⋆): Here, the meme is altered to include a more mundane or less engaging
version of the original text. This teaches the model to distinguish between ”humorous” and
”boring” versions of the same meme. Although the content still aligns with the original, the
humor is less impactful, presenting a challenge for classification.

4. Detailed Boring Meme (⋆ ⋆ ⋆): This is a more nuanced case where only one or two words are
changed to make the meme less funny. Despite the minimal changes, the meme’s humor is
significantly affected. The classifier must be able to identify these subtle shifts in humor, marking
this as a more difficult classification task.

5. Generated Meme (⋆ ∼ ⋆ ⋆ ⋆): Finally, memes generated by the fine-tuned VLM represent the
highest difficulty level. These memes are intended to be as humorous as the original meme,
requiring the classifier to discern fine-grained differences in humor between the generated meme
and the original. This provides the model with an opportunity to improve its sensitivity to subtle
differences in meme quality.

The example of the training dataset is shown in Figure 11. By constructing a dataset with pairs of
memes across these varying levels of humor, we enable the classifier to learn not only to distinguish
obviously bad memes from good ones but also to understand the nuanced differences that make one
meme more humorous than another. This rich dataset plays a crucial role in refining the reward
model, allowing it to classify memes based on subtle human preferences.

We stratify training so each mini-batch contains an equal number from each tier.

F AUXILIARY REWARDS FOR REASONING-PATH OPTIMIZATION

While optimizing toward the group-wise reward induced by the reward model (Sec. 4.2) is theoret-
ically sufficient to improve the quality of generated memes, the reinforcement learning stage does
not directly supervise the internal reasoning path r = (rtmpl, rscene) because the primary feedback is
attached to the realized meme (I, c). To explicitly shape the quality of the reasoning process itself,
we introduce two auxiliary rewards that operate on r: a format reward and a content reward.
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Source Model Target Score Qwen-VL Keye-VL Logits (Qwen)

Qwen-VL

0 0.692 0.209 0.498
0.2 0.642 0.229 0.452
0.6 0.678 0.096 0.383
0.8 0.522 0.400 0.368
1 0.630 0.478 0.387

Keye-VL

0 0.508 0.280 0.390
0.2 0.695 0.653 0.379
0.6 0.672 0.731 0.412
0.8 0.674 0.769 0.388
1 0.538 0.691 0.462

Table 3: Content reward evaluation across different target quality levels. Keye-VL as judge exhibits
the clearest monotonic trend, and is therefore adopted as our content reward model in RL.

F.1 FORMAT REWARD

The format reward enforces structural completeness of the CoT to ensure that essential modules
appear and are well-formed. It is computed by deterministic string/structure matching without using
LLM-as-judge. Concretely, given a sampled reasoning trace r for (I, U), we check:

1. Presence of mandatory sections (e.g., a Comprehensive Description section that sum-
marizes visual content and intended template-level intent).

2. Two-stage structure (explicit evidence of both template-level intent and context-level grounding
consistent with Sec. 4.1).

3. Text-on-Meme box formatting (the Text on the Meme block must specify box–text map-
pings consistent with the bounding boxes B = {bi} so that rendered text T = {ti} aligns with
B).

The format reward Rfmt(r) ∈ [0, 1] is the normalized sum of satisfied checks. It shapes r toward
complete and renderable reasoning without requiring any subjective judgment.

F.2 CONTENT REWARD

The content reward evaluates the informativeness and plausibility of the CoT content via an LLM-
as-judge. We prompt an evaluation model to score r along four interpretable dimensions (e.g.,
visual grounding, template intent clarity, metaphorical mapping, and punchline coherence), each
with discrete bands (e.g., 1/4/7 points with band descriptors such as “no object description / coarse
description / detailed object attributes”). Scores are summed and rescaled to Rcnt(r) ∈ [0, 1].

However, prior work rarely verifies whether a vision–language reward signal is monotonic with
respect to intended semantic quality. To ensure that our RL optimization is grounded on a reliable
content metric, we systematically compare several candidate reward options.

We construct five groups of captions whose intended content quality is controlled at target lev-
els {0, 10, 30, 40, 50}. These groups are obtained by prompting two widely used multimodal
LLMs—Qwen2.5-VL-7B and Keye-VL-8B—to generate CoT rationales and captions under progres-
sively stronger quality constraints. For each generated caption, we compute content reward using
three scoring strategies: Qwen2.5-VL-7B scorer, Keye-VL-8B scorer, and Qwen2.5-VL-7B output
logits, where the final score is calculated from the normalization of logits of each score token.

In Table 3, we then examine whether the final reward values increase along with the intended quality
levels. Across both data sources (Qwen-generated and Keye-generated), Keye-VL-8B as the judge
exhibits the clearest monotonic trend: scores grow consistently as target quality increases. In con-
trast, Qwen2.5-VL-7B scoring shows weaker correlation, and normalized logits are noticeably noisy.
Notably, Keye-VL-8B remains stable even when scoring content generated by another model, sug-
gesting better cross-distribution generalization.

These results indicate that Keye-VL-8B provides the most rank-consistent, semantically aligned con-
tent reward, and we therefore adopt it as the content reward model in our RL stage.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F.3 INTEGRATION WITH GRPO

Let sRM(m) denote the reward-model score that induces the group-wise ranking distribution qG via
EBC in Sec. 4.2. For a candidate set SG = {mk = (I, ck)} with associated reasoning traces {rk},
we construct an augmented group-wise target q̃G by combining the primary signal with auxiliary
rewards on rk:

q̃G(mk) ∝ exp
(

1
τ

[
sRM(mk) + λfmtRfmt(rk) + λcntRcnt(rk)

])
,

∑
mk∈SG

q̃G(mk) = 1,

(5)
where τ > 0 is a temperature and λfmt, λcnt≥0 are weights. The GRPO objective in Eq. equation 4
is then used with qG replaced by q̃G.
Remark (Isotonic shaping and theoretical guarantees). If (λfmt, λcnt) are chosen such that Eq. 5 is
an isotonic transformation of the reward-model ranking (i.e., it does not invert the order implied by
sRM except to break ties among near-equal items), then the rank consistency guarantees stemming
from Proposition 2 are preserved in expectation. Moreover, the KL-bounded improvement in Propo-
sition 4 continues to hold because the proof relies on boundedness of hG and a KL constraint, both
unaffected by auxiliary shaping. In practice we set λfmt, λcnt small and use them primarily as tie-
breakers and regularizers over r, which empirically reduces variance and accelerates convergence
without altering the main ordering.

G EBC AGGREGATION

Definition (Expected Borda Count). Given a group G and a finite candidate set SG =
{m1, . . . ,mn} with pairwise preference probabilities p̂G

ij = Pr[mi ≻ mj ], the Expected Borda
Count of item mi is

EBCG(mi) =

n∑
j=1
j ̸=i

p̂G
ij .

Ties or missing edges are handled by omitting terms (equivalently, treating p̂G
ij as undefined); in

evaluation we normalize by the number of available opponents for mi.

Basic properties. (i) If all p̂G
ij ∈ {0, 1}, EBC reduces to the classical Borda score (number of

wins). (ii) If there exists a latent utility u : SG → R such that p̂G
ij = σ(u(mi)−u(mj)) with strictly

increasing σ, then sorting by EBC is order-equivalent to sorting by
∑

j ̸=i σ(u(mi) − u(mj)); in
particular, when gaps are consistent across pairs, the EBC order agrees with the order of u. (iii)
Under independent edge noise and bounded missingness, the variance of EBCG(mi) decreases with
the number of observed pairs, making the aggregate rank more stable than any single comparison.

Listwise normalization (optional). For downstream use, one may define a soft distribution over
SG via a temperature T > 0:

qG(mi) =
exp

(
EBCG(mi)/T

)∑n
k=1 exp

(
EBCG(mk)/T

) ,
which converts EBC scores into smooth listwise targets for within-group reweighting. This preserves
the group-local nature of the signal and avoids inventing cross-group scales.

Notes on implementation. We compute p̂G
ij only within groups and on the (usually small) candi-

date sets used for evaluation or optimization. When the pair graph is sparse, we keep EBC unbiased
by summing over observed opponents and normalizing by their count; when required, we add small-
degree regularization to avoid over-confident ranks for items with very few edges. The pseudocode
is shown in the Algorithm 1
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Algorithm 1 Expected Borda Count (matrix form)

Require: Candidate set SG = {m1, . . . ,mn}; pairwise estimates p̂G
ij = Pr[mi ≻ mj ] (may be

undefined); temperature T > 0 (optional); small-degree regularizer α ≥ 0 (optional).
Ensure: EBC scores EBCG(mi) for all mi; optionally soft listwise qG(mi).

1: Initialize EBC[i]← 0 and deg[i]← 0 for all i ∈ {1, . . . , n}.
2: for i = 1 to n do
3: for j = 1 to n do
4: if i = j then
5: continue
6: end if
7: if p̂G

ij is defined then ▷ omit ties/missing edges
8: EBC[i]← EBC[i] + p̂G

ij

9: deg[i]← deg[i] + 1
10: end if
11: end for
12: end for
13: for i = 1 to n do ▷ unbiased normalization under sparsity
14: if deg[i] > 0 then

15: EBC[i]← EBC[i] + α

deg[i] + α
▷ α prevents overconfidence at tiny degree

16: else
17: EBC[i]← 0
18: end if
19: end for
20: if T is provided then
21: compute q[i]← exp(EBC[i]/T ) for all i, then Z ←

∑
k q[k]

22: return (EBC[i], q[i]← q[i]/Z) for all i
23: else
24: return EBC[i] for all i
25: end if

H TRAINING SETTINGS

H.1 COT SUPERVISED FINE-TUNING SETTINGS

The experimental settings for cot supervision and fine-tuning are shown in Table 4

H.2 REWARD MODEL TRAINING SETTINGS

Our reward model is implemented as a lightweight extension on top of the base vision–language
models. Concretely, we take the final hidden embedding of the last transformer layer and append a
two-way classification head. This simple design allows the model to learn preference signals while
reusing the representational power of the pretrained backbone.

Based on the dataset constructed in Appendix E, we train reward models using the LLaMA-Factory
framework with the following backbones: Keye-VL, Qwen2.5-VL-7B, and Qwen2.5-VL-32B. All
models are fine-tuned with LoRA (r = 8, lora target is all) to reduce memory and computation
overhead. We adopt a learning rate of 1× 10−4, with a warmup ratio of 0.1. Each model is trained
on a single NVIDIA A800 GPU.

I EVALUATION SETTINGS

I.1 VLM EVALUATES EXPERIMENTAL SETUP

Evaluation Setup. For text generation, we set the decoding temperature to 0 for all models to
ensure deterministic outputs. Objective textual evaluation includes three automatic metrics: (1)
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Table 4: Training Setup for Finetuning Qwen2.5-7B-Instruct with LoRA

Hyperparameter Value

Finetuning Stage sft
Finetuning Type lora
LoRA Rank 128
LoRA Target all
Per Device Train Batch Size 1
Gradient Accumulation Steps 8
Learning Rate 3.0e-5
Num Train Epochs 5.0
LR Scheduler Type cosine
Warmup Ratio 0.1
bf16 true

Dataset Eimage
Total Dataset Size 3,713 crawled memes
Training Instances 3,345
Testing Instances 368
CoT Generation Model doubao-1.5-vision-pro
CoT Variants HUMOR-CoT, CoT with Single Path, CoT

with Self-Improve, CoT with Subquestion

Similarity — cosine similarity between generated and reference captions computed using bge-base-
en-v1.5, averaged over all 368 test samples; (2) Distance — contextual robustness, measured by
regenerating 50 samples with mismatched user contexts and averaging textual dissimilarity across
three regenerations; (3) Human/AI Discriminability — binary classification by Gemini-2.5-pro
judging whether each meme appears human-made, reported as the average “human rate” over 368
test memes.

Human Evaluation. Human raters independently evaluated 3–5 memes per method on four di-
mensions: (1) Humor, (2) Readability, (3) Relevance to user input, and (4) Originality. Scores
were averaged across raters and samples for each model.

Multimodal VLM Evaluation. All multimodal evaluations used Gemini-2.5-pro. Captions were
embedded into corresponding bounding boxes, and the model provided meme-level judgments from
three perspectives: (i) human/AI discriminability, (ii) absolute scoring, and (iii) relative ranking.

VLM Absolute Scoring. Each meme was evaluated individually on an absolute 1–5 scale under
eight criteria: 1) Punchline Strength: clarity and impact of the joke/twist; 2) Context Robustness:
generalizability across social contexts; 3) Humor Effectiveness: quality of humor, sarcasm, or self-
mockery; 4) Spread Potential: universal appeal and memorability; 5) Emotional Resonance: capac-
ity to elicit laughter, surprise, or empathy; 6) Cultural Fit & Relatability: alignment with audience
familiarity; 7) Theme Relevance: consistency with keywords and intentions; 8) Image-Caption Rel-
evance: coherence between text and image. For each meme, the mean of the eight scores was
recorded as its overall score.

VLM Ranking. For relative evaluation, six meme variants sharing the same base image—HUMOR-
CoT, three CoT variants (Single Path, Self-Improve, Subquestion), In-the-wild Memes, and Text-Free
Memes—were presented together. Gemini-2.5-pro was prompted to rank them jointly under the
same eight criteria. Each group’s results were averaged over 368 test cases to obtain mean rankings.

I.2 MAXDIFF ORDERING

Maximum Difference Scaling (MaxDiff), also known as best–worst scaling, is a widely used method
in marketing science and preference elicitation Louviere & Woodworth (1991); Louviere et al.
(2015). In a typical MaxDiff task, respondents are repeatedly presented with small subsets of items
(e.g., 3–5 candidates) and asked to indicate which option they consider the ”best” and which the
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Image 1 Image 2 Image 3 Image 4 Image 5

Figure 12: Template images of each ranking dataset.

Table 5: Compare qwen2.5-7B, 32B, with the results of reclassification of the model we trained on
qwen2.5-7B for the sentiment, intent, theme, and style of user input

Model RE-classification Accuracy(%)↑
Emotion Intention Theme Style

Qwen2.5-7B-Instruct 0.420 0.515 0.551 0.521
Qwen2.5-32B-Instruct 0.571 0.611 0.616 0.603
HUMOR-CoT 0.597 0.641 0.600 0.639

”worst.” Compared to traditional rating scales, MaxDiff provides more discriminative and reliable
preference estimates because each choice yields two pieces of information: a positive preference for
the selected ”best” item and a negative preference for the ”worst.”

The required number of tasks in MaxDiff depends on the total number of items J to be evaluated
and the subset size k. A common guideline is that each item should appear across multiple choice
sets to ensure stable estimation. For example, using balanced incomplete block designs (BIBD),
each respondent typically completes between 3J

k and 5J
k choice tasks to achieve acceptable reliabil-

ity Orme (2010). Thus, the total number of questions can be determined systematically to balance
respondent burden and statistical efficiency.

In our study, we adopted a MaxDiff-inspired procedure to construct human preference rankings over
memes. Specifically, rather than asking annotators to rate memes on absolute scales, we designed
tasks where memes were compared in small groups, and annotators selected the most and least
humorous instances. Aggregating these best–worst choices yields a consistent human-validated
ranking dataset, which serves as a training and evaluation benchmark for our reward model.

J SUPPLEMENTARY RESULTS

J.1 VLM CLASSIFICATION RESULT

To further examine whether our generated meme texts faithfully reflect the intended semantics of
user input, we perform a reclassification experiment using a strong vision-language model (VLM) as
an external evaluator. Specifically, we take the captions generated by each model and feed them into
the same VLM classifier that was trained to recognize four major semantic axes: emotion, intention,
theme, and style. The classifier outputs predicted labels for each axis, which are compared to the
original user-specified categories to compute reclassification accuracy.

Table 5 summarizes the results. HUMOR-CoT achieves the highest accuracy across all dimensions,
surpassing both the Qwen2.5-7B-Instruct and the larger Qwen2.5-32B-Instruct baselines. This indi-
cates that our hierarchical CoT fine-tuning not only improves humor expressivity but also enhances
the faithfulness of generated texts to user intent. In particular, the improvement over the 32B model
suggests that structured reasoning contributes more effectively to semantic alignment than mere
parameter scaling.

J.2 MEME RANKING RESULT

The Top 5 human ranking of the meme dataset mentioned in Section 5.3 is shown in Figure 14. Each
dataset has 15 figures with the same template and similar themes. The figures are ranked by human
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Single-path CoT Multi-path CoT

Training Stage

Inference Stage

The themes of daily life 
and socializing can be 

related to situations where 
one might encounter 

ignorance from others in 
social settings.

This meme could be used in a humorous scene 
when someone is faced with a difficult or absurd 
situation. For example, in a group chat when a 
friend shares a complicated work problem or a 
confusing life situation, sending this Mr. Bean 

meme can convey the feeling of being bewildered 
or at a loss. It can also be used in response to a 
bad joke, where the squinting and contorted face 

can represent the "painful" reaction to the unfunny 
joke...

hate
rant

socializing
ignorance
frustration ...

hate
humor

school
delay
study ...

The text ... It implies that the person is so fed up with the ignorance 
around them in social situations that they'd rather not listen at all.

The exaggerated "WHAAAAAAAAT" adds to the comedic effect, emphasizing the 
surprise or confusion of the character realizing they missed part of the rant. 

Have a more comprehensive 
understanding of the picture

Multiple concrete scene associations

Anchored to a scenario that fits 
the user's input

Only final answer scenario

Contextual understanding 
is single, superficial

socializing
ignorance
frustration

hate
rant
...

Single-path CoT Multi-path CoT

The text  is chosen 
because it directly 

addresses the school - 
related delay theme. The 

use of "I'M SORRY" gives it 
a slightly apologetic tone, 

which can be seen as a 
light - hearted way of 

dealing with the annoyance 
of a delay in school.

hate

pressure
socializing

sacrastic

The text is crafted to be a 
sarcastic response to a 

common social situation 
where people are 

pressured to get married. It 
plays on the idea of the 

pressure of social 
expectations in a 
humorous way.

hateschool
delay

...

The text ...is humorous because it takes a common, relatively 
minor annoyance (being late by 5 minutes) and exaggerates 
it to the extreme by calling the person a "sadist". The use of 
the word "sadist" is an over - the - top reaction to a simple 

delay, which creates a comical effect. It plays on the 
character's skeptical and annoyed expression in the meme 
base image, as if the character is reacting to the sarcastic 

comment in a way that matches the expression.
study

humor

pressure
socialing

We can associate this with a social situation where someone 
is being pressured to get married, which is a common social 
topic. The character's expression can be seen as a reaction 
to such a pressure - related situation in a social context... 
The text...is humorous because it plays on the common 

stereotype of men being reluctant to get married. The use of 
the word "pressure" in a sarcastic way, as per the style 

preference, adds to the humor.

food
TV show

wholesome ...

The text is crafted to create 
a relatable and humorous 

situation where a person is 
frustrated about the calorie - 

related aspects of a TV 
show. The use of "Calories" 

and "TV show" is directly 
incorporated, and the 
overall tone is one of 

annoyance, which aligns 
with the emotion of hate and 

the intent to rant.

food

wholesome ...

Considering the character's expression, a scenario that can 
be associated is the character being presented with a 

ridiculous or absurd food - related claim. Since the "Calories" 
keyword is also present, a scenario where the character is 

being told about an extremely high - calorie food item in a TV 
show can be related... The text  is humorous because it plays 
on the common human experience of being skeptical about 
food claims. Many people... The character's expression of 

disbelief adds to the humor, as if they are reacting to an over 
- the - top or exaggerated claim.

...

Calories
rant

marriage marriage
sacrastic

hate

...

Calories

TV show rant

In reasoning, model can deeply combine character expressions and 
exaggeration techniques seen in training to apply them in this scenario.

In the reasoning, the model doesn't deeply combine the character's 
expressions , but only superficially splices the meaning of the user's input.

Figure 13: Case study comparing Single-path and Multi-path Hierarchical CoT supervision in meme
generation using the same Mr. Bean image. The single-path model reproduces the ground-truth
reasoning chain, yielding literal and less contextual humor. The multi-path model, trained with
multi-scenario associative reasoning, demonstrates improved contextual understanding and humor-
ous transferability, producing text that creatively matches new user intents.
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through MaxDiff tests, where each time human are shown three figures to choose the most like one
and least like one. Then the figures are integrated into a complete rank.

Top 1 Top 5Top 4Top 3Top 2

Top 5 Human-ranked Memes from Datasets with the Same Template

Template 1

Dataset

Template 2

Template 3

Template 4

Template 5

Figure 14: The Top-5 human-ranked meme in the datasets with the same templates.

K ADDITIONAL GENERATED SAMPLES AND CASE STUDIES

This appendix presents additional qualitative results related to the experiments in the main paper,
including generated samples, risk cases, and failure analyses. These examples complement our
understanding of HUMOR-CoT’s behavior under different conditions. All samples are produced
under the same test protocol and prompting settings as Fig. 4(b). Full evaluation prompts and system
settings are provided in Appendix I.1.

K.1 GENERATED SAMPLES ACROSS COT STRATEGIES

To further analyze how different Chain-of-Thought (CoT) strategies affect meme generation, Fig-
ure 15 visualizes representative outputs. Each row corresponds to a user-intent cluster (e.g., ro-
mance, Christmas, family tradition, delayed surprise). Each column shows one of the five out-
puts: In-the-wild (human-created reference), HUMOR-CoT, and three alternative CoT approaches
(Single-path, Self-improve, Subquestion).
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From the comparison, HUMOR-CoT more accurately captures user-implied emotions and contex-
tual nuances, better preserves alignment between visual content and textual humor, and overall pro-
duces more coherent and structurally sound meme captions than competing strategies.

Figure 15: Generation results of models trained with different CoT strategies.

K.2 GENERALIZATION TO UNSEEN TEMPLATES

To verify HUMOR-CoT’s ability to generalize to template formats entirely absent from training,
we constructed 20 unseen meme templates and evaluated them using the same group-wise rank-
ing protocol as Fig. 5. For each template, we jointly ranked outputs from HUMOR-CoT and five
representative VLM generators using Gemini-2.5-pro as a comparative evaluator.

As shown in Fig. 16, HUMOR-CoT consistently produces captions that remain semantically fitting,
visually grounded, and logically humorous even under unseen template structures. This finding
echoes the quantitative results in Fig. 5, suggesting that HUMOR-CoT generalizes across template
styles rather than overfitting to specific training formats or humor patterns.
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Unseen Template Generation

template human other VLM Humor-CoT

-sorrow
-self-mockery  
-technology,
frustration, 
inconvenience

-happiness
-funny 
-roommates,
hygiene, 
helpless

user input tags

Figure 16: Unseen Template Generation. HUMOR-CoT generalizes well to templates entirely
absent from training, producing humorous and contextually aligned captions.

K.3 RISK CASE IDENTIFICATION

To further ensure the safety of HUMOR-CoT’s meme generation process, we conducted a detailed
analysis of high-risk cases under the same evaluation protocol used in Fig. 4(b). Certain user-
provided tags—particularly those involving political ideology, wartime historical figures, religious
identity, gender topics, or dark cultural references—can inadvertently lead the model toward unsafe
or controversial outputs.

To address this, we incorporate Gemini-2.5-pro as a dedicated risk auditor, applied to every gen-
erated meme before presenting the final output. The auditor evaluates political sensitivity, cultural
offensiveness, and overall dissemination risk, and blocks unsafe generations. Notably, only 3.3% of
the memes generated by our model are classified as high-risk.

Figure 17 presents two representative high-risk examples:

Case 1: The user provides tags such as hate, dark, historical irony, etc. The generated meme juxta-
poses a highly controversial political figure with a modern gender movement. This combination is
flagged as high-risk because it may trivialize historical atrocities or imply derogatory gender-based
associations.

Case 2: Input tags include sorrow, entertainment, Gene Wilder, Hillary Clinton, etc. The generated
meme incorrectly pairs an actor’s photo with a political figure and a religiously sensitive theme,
resulting in a medium-risk classification due to offensive misattribution and implied ideological
framing.

These examples highlight how subtle combinations of template imagery and user-provided tags can
cause risk escalation. The auditor effectively surfaces such vulnerabilities and prevents them from
influencing model outputs. Future work may incorporate training-time safety constraints so that
generation itself avoids drifting into politically sensitive or harmful narratives.

K.4 FAILURE CASE ANALYSIS

Under the same generation protocol as Fig. 4(b), we also observe several consistent failure modes
of HUMOR-CoT. These failures are not safety-related but rather stem from limitations in humor
construction, scene preservation, and compositional reasoning.

A common pattern is that when the user provides overly specific nouns or technical keywords, the
model becomes overly constrained and abandons the richer humorous scenarios that HUMOR-CoT
typically constructs. Instead, it defaults to lower-complexity strategies such as: literal interpreta-
tions, surface-level puns, direct keyword matching, loss of contextual coherence discarding previ-
ously inferred emotional tone or narrative structure

Fig. 18 illustrates a representative case:
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Risk Case Demonstration

template human Humor-CoT

-hate
-dark  
-culture,
historical irony, 
unexpected realization

-sorrow
-entertainment
-Gene Wilder,
Hillary Clinton,
condolences

"risk": {"is_risky": true, "risk_level": "high", "political_figures": true, "sensitive_topics": 
true, "offensive_content": true, "reason": "The meme explicitly names Adolf Hitler, a 
major and highly controversial historical political figure. It involves sensitive topics by 
juxtaposing Hitler, associated with Nazism and the Holocaust, with feminism, a social 
and political movement related to gender. "}

"risk": {"is_risky": true, "risk_level": "medium", "political_figures": true, 
"sensitive_topics": true, "offensive_content": true, "reason": "This meme is considered 
risky because it involves a political figure (Hillary Clinton) and a sensitive topic 
(religion, specifically Judaism). The meme falsely attributes the title 'My Jewish Life' 
to a book by the late actor Gene Wilder, thereby emphasizing his religious 
identity. ...Using a celebrity's death and religion for a political statement is offensive 
and contributes to the medium risk level."}

user input tags

risk assessment 

user input tags

risk assessment 

template human Humor-CoT

Figure 17: Risk example identification. Gemini-2.5-pro effectively flags politically sensitive or
socially harmful meme generations.
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The template depicts a simple cloud against a blue sky. The human-written meme uses a minimal-
ist joke about expectations vs. reality (“just a cloud”), relying on contrast-based humor. However,
given user tags such as technology, data ownership, and cloud storage, HUMOR-CoT interprets
“cloud” literally and produces a caption like “YOUR DATA IS IN THE CLOUD.” Although seman-
tically consistent, the output sacrifices the original humorous framing in favor of a straightforward
technological pun.

This behavior reveals an important shortcoming: When user inputs are highly concrete, the model
tends to overweight those terms, collapsing toward literalism rather than maintaining a multi-step
humorous scene construction. Strengthening scene preservation, implicit narrative consistency, and
humor compositionality remains a key direction for improving robustness, especially under seman-
tically narrow prompts.

Failure Case Analysis

template human Humor-CoT

-love
-humor  
-technology,
daily life,
cloud storage, 
data ownership

More affected by the user's input cloud storage, resulting 
in the use of puns instead of the more humorous text 
scenes associated with the previous article

user input tags

[Comprehensive Description Section]
The visual element shows a single, fluffy white cloud floating in a clear blue sky. There 
are no people or distinct entities with specific identities, demeanors, or movements. 
It is a simple, serene natural scene.
[Usage Scenarios Section]
One plausible humorous usage scenario could be in a conversation about over - hyped 
or unnecessary things. For example, in a group of friends discussing a new, highly - 
promoted product that everyone is excited about, someone could use this meme to 
imply that the product is as simple and unassuming as a single cloud in a vast sky, 
suggesting that it might not be as great as everyone thinks. Another scenario could 
be in a discussion about minimalism. ...
[Text Analysis Section]
Suggested text could be "When you thought it was going to be a big deal, but it's 
just a cloud." The humor mechanism here lies in the contrast between the initial 
expectation (a big deal) and the reality (just a cloud). ... 
[Specific analysis with user input]
Step 1: The user input mentions "technology", "daily life", "humor", and keywords like 
"cloud storage" and "data ownership". In the meme base - image, we have a cloud, 
which is a common symbol for cloud storage. ...Step 2: The text "YOUR DATA IS IN 
THE CLOUD" is humorous because it plays on the common understanding of what "the 
cloud" represents in the context of technology. It creates a visual and textual pun as 
the cloud in the image is the same as the "cloud" in the text. ...
Text on the Meme:
box1:YOUR DATA
box2:IS IN THE CLOUD

Figure 18: Failure case analysis. When user-provided nouns are overly specific, the model may
prioritize literal fit over humor, causing loss of scene coherence.
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K.5 REAL-WORLD APPLICATION: WORKPLACE MEME GENERATION

To verify HUMOR-CoT’s meme generation performance in real-world application scenarios, we
select common office scenarios for demonstration. Workplace memes often capture relatable daily
frustrations or contrasts (e.g., unreasonable demands, unmet expectations) via lighthearted humor,
requiring alignment between emotional tags and visual-textual expression.

All samples in Fig. 19 are generated under the same test protocol and prompting settings as
Fig. 4(b). As shown in the figure, HUMOR-CoT accurately maps each tag set to a coherent nar-
rative—performing well across both single-panel (e.g., Case 1 and 2, which deliver targeted humor
in a single panel) and multi-panel (e.g., Case 3, which builds contrast via sequential panels) for-
mats. Case 1 reflects powerlessness against unreasonable requests, Case 2 satirizes time-consuming
”short” meetings, and Case 3 contrasts idealized vs. harsh remote work experiences. The generated
memes balance relatable workplace context with meme-style humor, validating the model’s ability
to translate nuanced emotional tags into scenario-fitting content across different meme structures.

Real-world application examples

Case 3:
-sorrow
-self-mockery  
-work,
expected contrast

Case 1:
-anger
-expression of dissatisfaction
-The boss's unreasonable 
demands, helpless

Application production of workplace scenes:

Case 2:
-anger
-sarcasm
-The boss's unreasonable 
demands,Playing time 
difference

Case 1

Case 2

Case 3

Figure 19: Workplace Meme Generation (Single/Multi-Panel). Real-world application examples
for workplace scenarios, showing 3 cases with different emotional/contextual tags.

L VLM EVALUATOR ANALYSIS AND HUMAN-ALIGNMENT VALIDATION

This appendix provides two complementary analyses regarding the use of Gemini-2.5-pro within our
evaluation pipeline. First, we examine Gemini as a human-likeness evaluator used for computing
the Human Rate metric (Appendix L.1–L.3). This part analyzes evaluator selection, statistical re-
liability, and alignment with ground-truth labels. Second, we independently study Gemini’s role
as a group-wise ranking evaluator in the relative comparison setting of Fig. 4(b) (Appendix L.4).
This ranking analysis is separate from Human Rate and validates that the VLM’s relative judgments
meaningfully correlate with human preference structures.

L.1 EVALUATOR SELECTION ANALYSIS

To ensure that Human Rate reflects genuine human-likeness rather than evaluator bias, we bench-
mark six candidate VLMs (Gemini-2.5-pro, Qwen2.5-32B, Qwen2.5-7B, InternVL3-8B, Keye-VL-
8B, and GLM-4.1V-9B) on a held-out set containing 250 AI-generated and 300 human-created
memes. We evaluate each model’s discriminative ability via ROC-AUC (Fig. 20) and inspect its
error characteristics at the operational threshold.
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Gemini-2.5-pro
Optimal
(FPR=0.033, TPR=0.468)
Th=0.100

GLM-4.1V-9B-Thinking
Optimal
(FPR=0.470, TPR=0.600)
Th=0.800

Qwen2.5-32B-Instruct
Optimal
(FPR=0.550, TPR=0.728)
Th=0.200

InternVL3-8B
Optimal
(FPR=0.917, TPR=0.948)
Th=0.300

Keye-VL-8B-preview
Optimal
(FPR=0.013, TPR=0.052)
Th=0.900

Qwen2.5-7B-Instruct
Optimal
(FPR=0.010, TPR=0.044)
Th=1.000

Note:
 Solid lines: ROC curves
 Star markers: Optimal threshold points
 Optimal = Maximum Youden Index (TPR - FPR)
 Higher TPR: Better AI detection
 Lower FPR: Fewer human misclassifications

ROC Curves with Optimal Threshold Points
(Optimal = Maximum Youden Index: TPR - FPR)

Gemini-2.5-pro (AUC = 0.7212)
GLM-4.1V-9B-Thinking (AUC = 0.5629)
Qwen2.5-32B-Instruct (AUC = 0.6082)
InternVL3-8B (AUC = 0.4805)
Keye-VL-8B-preview (AUC = 0.5175)
Qwen2.5-7B-Instruct (AUC = 0.5170)
Random (AUC = 0.5000)
Optimal Threshold Point

Figure 20: Candidate VLM evaluators’ ROC curves for AI vs. human meme classification. Curves
plot TPR vs. FPR; star markers denote optimal thresholds (maximizing Youden index) and metrics.
AUC (overall discrimination ability) is in the legend.
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Among all candidates, Gemini-2.5-pro demonstrates the most favorable profile:

• Highest AUC (0.7212), substantially outperforming the next-best model (Qwen2.5-32B:
0.6082), indicating the strongest global separability between AI and human memes.

• Highest specificity (TNR = 0.97), meaning Gemini almost never misclassifies genuine
human memes as AI. Since Human Rate measures the proportion of outputs judged as
human-like, low-specificity evaluators (e.g., Qwen2.5-32B, GLM) would systematically
penalize human memes, compressing model differences and making the metric unreliable.

Alternative VLMs exhibit extremely low specificity (TNR = 0.15–0.56). Such evaluators would
inaccurately depress Human Rate across all models.

While Gemini’s sensitivity is moderate (TPR = 0.404), this introduces a shared error floor— a
uniform tendency to classify part of the AI memes as human-like across all systems—which does
not distort relative comparisons.

Overall, Gemini’s combination of extremely high specificity, the highest AUC, and a shared sensi-
tivity bias makes it the most suitable evaluator for computing Human Rate.

L.2 SIGNIFICANCE AND RELIABILITY ANALYSIS

Although the evaluator introduces a fixed non-zero error rate, this error applies uniformly to all
evaluated models. Thus, pairwise differences in Human Rate remain reliable as long as they exceed
this shared noise floor.

To verify this, we conduct a two-proportion z-test comparing the rate at which HUMOR-CoT and
the Qwen2.5-7B base model are labeled as human by Gemini-2.5-pro. The difference is highly
significant (z = 5.81, p < 10−8), confirming that the observed improvement cannot be explained
by evaluator variability.

We further validate stability by re-computing Human Rate across random subsets of the test set,
where the relative ranking of all compared models remains unchanged. Together, these analyses
demonstrate that Human Rate provides consistent and reproducible model comparisons.

L.3 HUMAN-ALIGNMENT VALIDATION

To assess how closely Gemini’s human-likeness judgments match human perception, we conduct
an independent human-labeling study on 30 memes (15 AI-generated, 15 human-generated). After
removing one ambiguous sample, 29 items remain, each annotated by 22–24 participants.

Human annotator reliability Inter-annotator agreement is statistically significant but low (Fleiss’
κ = 0.1369, p < 0.001), reflecting the subjective nature of determining meme authenticity.

Gemini alignment with true labels. Gemini’s continuous scores correlate strongly with ground-
truth labels (Spearman ρ = 0.5932, p < 0.001). Binary consistency varies with threshold: Cohen’s
κ improves from 0.1944 (threshold 0.5) to 0.3888 (threshold 0.9), alongside a corresponding in-
crease in accuracy.

Human judgments vs. true labels. Human judgments show weak negative agreement with ground-
truth authenticity (Cohen’s κ = −0.4397, p < 0.05; Spearman ρ = −0.4493, p < 0.05), likely due
to anthropomorphism and the difficulty of discerning AI-generated memes.

Conclusion. Gemini aligns with ground-truth labels substantially better than human annotators, and
its continuous outputs encode meaningful gradients of human-likeness. These findings, combined
with its high specificity and top AUC, support using Gemini-2.5-pro as a reliable evaluator for
Human Rate.

L.4 HUMAN ALIGNMENT OF GEMINI’S GROUP-WISE RANKING EVALUATOR

To validate the relative ranking results in Fig. 4(b), we perform an independent human evaluation that
mirrors the same group-wise comparison protocol described in Sec. 5.2. For five representative im-
age groups (30 memes total), nine human annotators ranked the six meme variants—HUMOR-CoT,
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three CoT baselines, In-the-wild, and Text-Free—under the same criteria rubric used by Gemini-2.5-
pro. Each annotator produced one holistic ranking per group.

We compute rank correlation between Gemini’s and human rankings. Across the five groups, Gemini
exhibits strong and consistent alignment with human preferences, with a mean Spearman correla-
tion of 0.7188 ± 0.2154 and Kendall’s τ of 0.6320 ± 0.2269.

These results confirm that the group-wise ranking in Fig. 4(b) captures preference structures also
expressed by humans, providing quantitative evidence that the relative VLM evaluation is meaning-
ful and not an artifact of evaluator noise. Combined with the preceding analyses, this supports the
reliability of the Gemini-based ranking methodology used throughout our evaluation.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

M PROMPT

In this section, we present the prompts used in the whole pipeline.
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M.1 MEME GENERATION PROMPT

Meme Generation Prompt

**Meme Text Generation Framework**

Based on the meme basemap and user input, analyze what can be written
on this basemap that meets the user’s needs and is as humorous as
possible.

Input Parameters: [
Emotion Category: labels[’Emotion Category’],
Emotion Intensity: labels[’Emotion Intensity’],
Intention Category: labels[’Intention Category’]
Scene or Theme: ’, ’.join(labels[’Scene or Theme’]),
Style Preference: labels[’Style Preference’],
Text Content Keywords: ’, ’.join(labels[’Text Content Keywords’]),
]

Please note that the emotion category given here may be the emotions
of the characters in the diagram or the emotions that the user wants
to express, so please be careful to differentiate and choose the
appropriate understanding. ---

Phase 1: Base Image Analysis

[Comprehensive Description Section]
- **Visual Deconstruction**:
- Primary subjects (demeanor/movement/apparel of entities)
- Composition logic (focal points/color contrast/spatial
relationships)
- Cultural signifiers (recognizable meme formats/pop culture
references)
- Narrative cues (body language implications/prop symbolism)

[Usage Scenarios Section]
- **Scenario Modeling**:
- Social contexts (group chats/comment sections/private conversations)
- Topic alignment (workplace culture/life struggles/viral trends)
- Emotional mapping (sarcasm/self-deprecation/absurdist/dark humor)
- Cross-platform adaptation (short video captions/chat stickers/forum
posts)

[Text Analysis Section]
- **Humor Engineering**:
- Wordplay (puns/homophones/semantic reversal)
- Cognitive dissonance (expectation subversion/scale exaggeration/role
mismatch)
- Emotional resonance (generational gaps/life frustrations/cringe
moments)
- Format optimization (suspenseful opening line/punchline
reversal/rhyme schemes)

Phase 2: Customization Process

[Specific Analysis with User Input]

Step 1: Contextual Bridging
- **Input Decoding**:
- Quantify [Intensity] as dramatic escalation (0-10 scale)
- Map [Intent] to visual elements’ interactive potential
- Establish topological connections between [Context/Theme] and meme
formats
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Meme Generation Prompt (Cont.)

Step 2: Humor Optimization
- **Multidimensional Strategies**:
- Tone calibration: Adjust phrasing sharpness using [Keywords]
- Tension building: Create contrast between static imagery and
dynamic text
- Cultural alignment: Balance trending phrases with evergreen humor
elements

Text on the Meme:

[Read the chart from top to bottom, from left to right in each red
box should be put what text in turn, with box1: text fragment 1 box2:
text fragment 2
, there are several boxes to correspond to the output of a few
paragraphs of the text corresponds to each other, here pay attention
to the combination of the box in the map position, the meaning of the
map, the user input, and the previous reasoning to generate the theme
of the humor of the text.Do not repeat text in different boxes.]
---

Output Demonstration Example

[Comprehensive Description Section]
The image employs the classic "Shocked Cat" meme template, featuring
a close-up of an orange tabby cat with dilated circular pupils and
forward-stretched whiskers creating visual tension. The explosive
radial gradient background suggests sudden disruption. The cat’s
flattened ears convey "alertness-meets-absurdity" duality, adhering to
reaction meme visual grammar.

[Usage Scenarios Section]
Optimal use cases include:
1. Social media rants about last-minute work demands
2. Gaming group reactions to unexpected team failures
3. E-commerce shoppers encountering bizarre product descriptions
Ideal scenarios should follow "unexpected shock → exaggerated
response" narrative structures

[Text Analysis Section]
Suggested text:
"Friday 5:55 PM" (top line establishes time pressure)
"Client says ’Just one more thing...’" (bottom line triggers conflict)
Humor mechanisms: Amplifies workplace frustrations through the cat’s
dramatic expression, using cross-dimensional analogy between time
constraints and animal reactions

[Specific Analysis with User Input]
Step 1: Given [Emotion: Frustration][Intensity: 8][Theme: Fitness
failures], emphasize exaggerated body-text correlation. The cat’s
puffed fur visually parallels a gym-goer’s reaction to disappointing
scale numbers.
Step 2: Implement absurd escalation: "When your trainer says"
(setup) → "’One more rep’ actually means 20" (absurd payoff).
Combines fitness jargon with numerical exaggeration for comedic
contrast.

Text on the Meme:
"When the pre-workout kicks in But your willpower checks out early"

Now please generate the analysis and text results based on this image
<image> and user input parameters.
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M.2 REWARD MODEL PROMPT

Reward Model Prompt

I am a senior Meme Critic with advanced reasoning skills, dedicated
to analyzing both the visual and textual components of internet
memes. My task is to not only describe the obvious elements but
also to uncover the hidden metaphors, cultural references, and
symbolic meanings that contribute to the meme’s overall impact. I
use a step-by-step reasoning process to evaluate these elements and
determine which meme is more engaging.

Background
- I excel at extracting key details from images and accompanying
texts, considering emotional tone, humor, creativity, and context.
- Beyond the superficial content, I focus on identifying and
interpreting deeper metaphors, cultural allusions, and symbolic
messages.
- My judgment is based on a thorough chain-of-thought reasoning
process that explains how each element interacts to form the meme’s
underlying message and overall impact.

Goals
1. Detailed Analysis: Compare two given memes by breaking down their
visual and textual elements.
- Identify and describe the primary features in each meme.
- Uncover and explain hidden metaphors, symbols, and cultural
references.
2. Chain-of-Thought Reasoning: Provide a clear, step-by-step
explanation of how these elements interact and influence the meme’s
humor, creativity, and overall meaning.
3. Final Judgment: Based on your analysis, output a binary score:
- 1 if the first meme is determined to be better.
- 0 if the second meme is determined to be better.
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M.3 HUMAN RATE EVALUATION PROMPT

Human Rate Evaluation Prompt

You are a STRICT authenticity evaluator for meme images. Your task
is to identify AI-generated content with HIGH accuracy. Be VERY
CONSERVATIVE - when uncertain, always choose AI-generated.

Carefully analyze the relationship between the text and image, the
language style, word choice, emotional expression, and sentence
coherence. Pay EXTRA attention to subtle AI characteristics.

CRITICAL AI-Generated Indicators (assign LOW score, 0.0-0.3):

1. Weak text-image relationship: The text and image feel
disconnected, awkwardly combined, or only loosely related. The text
doesn’t naturally and meaningfully relate to what’s shown in the
image. If the connection is weak or superficial → AI.

2. Unnatural embedding: It looks like AI simply added text to an
image, with the text feeling artificially inserted, pasted on, or
mechanically placed rather than organically integrated. If it feels
"added" rather than "created together" → AI.

3. Template-like language: The language is overly formal, written in
a template style, lacks vividness, or uses formulaic expressions. If
it reads like a template or generic text → AI.

4. Repetitive vocabulary: Words are monotonous, mechanical, or show
repeated use of certain words/phrases. Even slight repetition can
indicate AI → AI.

5. Flat emotional expression: Emotions are steady, bland, or lack
the natural ups and downs typical of human writing. If emotions feel
flat or artificial → AI.

6. Phrase splicing: The text feels like phrases were forcibly pieced
together, with sentences that feel artificially constructed, lack
natural flow, or have awkward transitions → AI.

STRONG Human-Created Indicators (assign HIGH score, 0.7-1.0 ONLY if
ALL are clearly present):

7. Strong text-image relationship: The image CLEARLY and
MEANINGFULLY represents the text’s meaning, or the text EFFECTIVELY
maps to the image’s theme. They complement each other in a way that
shows genuine understanding and creativity.

8. Natural embedding: The text and image are integrated NATURALLY
and ORGANICALLY, like typical human-created image captions that feel
perfectly matched and thoughtfully crafted.

9. Vivid language: The language is TRULY lively and expressive, with
appropriate connecting words, rich expressions, and natural variation.

10. Varied vocabulary: NO repetition whatsoever. Word choice is
diverse, natural, and shows genuine linguistic creativity.

11. Emotional variation: Emotions show CLEAR ups and downs, with
genuine emotional output, authentic attitudes, or real opinions about
things.

12. Smooth coherence: Sentences flow SMOOTHLY and LOGICALLY, with
natural meaning progression. No hint of phrase splicing or artificial
construction.
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Human Rate Evaluation Prompt (Cont.)

STRICT Evaluation Guidelines:

- BE EXTREMELY CONSERVATIVE: When in doubt, ALWAYS lean towards
AI-generated (lower score)

- If you observe ANY AI-generated indicator, even slightly → assign
LOW score (0.0-0.3)

- If text-image relationship is weak or unclear → assign LOW score
(0.0-0.3)

- If embedding feels even slightly unnatural → assign LOW score
(0.0-0.3)

- Only assign high scores (0.7-1.0) when ALL human-created indicators
are STRONGLY present

- Medium scores (0.4-0.6) should be RARE - only for truly ambiguous
cases

- Text-image relationship and natural embedding are THE MOST IMPORTANT
factors - if these are weak, it’s almost certainly AI Scoring Rules:

- 0.0-0.3 = Very likely AI-generated (shows ANY AI characteristics,
weak text-image relationship, or unnatural embedding)

- 0.4-0.6 = Uncertain/ambiguous (ONLY use when truly cannot determine
- should be rare)

- 0.7-1.0 = Very likely human-created (ONLY when ALL human indicators
are STRONGLY present, especially strong text-image relationship and
natural embedding)

Remember:

- If text-image relationship is not STRONG and MEANINGFUL → AI (score
< 0.3)

- If embedding feels even slightly artificial → AI (score < 0.3)

- If language feels even slightly template-like or repetitive → AI
(score < 0.3)

- When uncertain → AI (score < 0.3)

- Only give high scores when you are VERY CONFIDENT it’s human-created
with clear evidence

Output ONLY a single number between 0 and 1.
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M.4 RANKING PROMPT

Ranking Prompt

Evaluate meme images (same base image, different captions) with these
user requirements:
- Emotion Category: labels[’Emotion Category’]
- Emotion Intensity: labels[’Emotion Intensity’]
- Intention Category: labels[’Intention Category’]
- Scene or Theme: ’, ’.join(labels[’Scene or Theme’])
- Style Preference: labels[’Style Preference’]
- Text Content Keywords: ’, ’.join(labels[’Text Content Keywords’])

Images are mapped to simple names for clarity: {image descriptions}

Rank each meme across the following 10 dimensions (smaller number =
better):
1. Image-Caption Relevance: How well the text matches and enhances
the image.
2. Theme Relevance: Alignment with keywords/intentions.
3. Emotional Resonance: Ability to trigger emotional response
(laugh, surprise, empathy).
4. Humor Effectiveness: How well caption achieves
humor/sarcasm/self-mockery.
5. Punchline Strength: Clarity and impact of the joke or twist.
6. Cultural Fit & Relatability: How well it aligns with cultural
context or audience familiarity.
7. Context Robustness: Applicability across multiple social
contexts.
8. Spread Potential: Universal appeal, resonance, memorability.

Return ONLY JSON with each dimension as a key:
{
"image caption relevance ranking": {...},
"theme relevance ranking": {...},
"emotional resonance ranking": {...},
"humor effectiveness ranking": {...},
"punchline strength ranking": {...},
"cultural fit ranking": {...},
"context robustness ranking": {...},
"spread potential ranking": {...}
}
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M.5 SCORING PROMPT

Scoring Prompt

Evaluate this meme image with these user requirements:
- Emotion Category: labels[’Emotion Category’]
- Emotion Intensity: labels[’Emotion Intensity’]
- Intention Category: labels[’Intention Category’]
- Scene or Theme: ’, ’.join(labels[’Scene or Theme’])
- Style Preference: labels[’Style Preference’]
- Text Content Keywords: ’, ’.join(labels[’Text Content Keywords’])

Rate this meme image on a scale of 1-5 (where 1 = poor, 5 = excellent)
across the following dimensions:

Dimensions:
1. Image-Caption Relevance: How well the text matches and enhances
the image.
2. Theme Relevance: Alignment with keywords/intentions.
3. Emotional Resonance: Ability to trigger emotional response
(laugh, surprise, empathy).
4. Humor Effectiveness: How well caption achieves
humor/sarcasm/self-mockery.
5. Punchline Strength: Clarity and impact of the joke or twist.
6. Cultural Fit & Relatability: How well it aligns with cultural
context or audience familiarity.
7. Context Robustness: Applicability across multiple social
contexts.
8. Spread Potential: Universal appeal, resonance, memorability.

Return ONLY JSON with the exact keys shown above, each with a score
from 1-5:
{
"image caption relevance score": x,
"theme relevance score": x,
"emotional resonance score": x,
"humor score": x,
"punchline strength score": x,
"cultural fit score": x,
"context robustness score": x,
"spread potential score": x
}
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M.6 RISK JUDGE PROMPT

Risk Judge Prompt

You are a strict content safety evaluation expert. Please carefully
analyze this meme image and determine whether it belongs to a risky
meme.

Characteristics of risky memes:
1. Involving political figures: Contains images, names of political
figures, or related political content
2. Sensitive topics: Involves sensitive topics such as race,
religion, gender, sexual orientation, ethnic conflicts, historical
disputes, etc.
3. Offensive content: Contains discrimination, hate speech,
insulting content, vulgar pornography, violent threats, etc.

Evaluation criteria:
- Even if the content itself may not be illegal, if it involves
sensitive topics or may cause controversy, it should be marked as
risky
- Please comprehensively consider the offensiveness of the content,
sensitivity, and potential negative impacts

Output format (must strictly follow):
Please output a JSON format result containing the following fields:
{
"is risky": true/false, // Whether this is a risky meme
"risk level": "none/low/medium/high", // Risk level (none=no risk,
low=low risk, medium=medium risk, high=high risk)
"political figures": true/false, // Whether it involves political
figures
"sensitive topics": true/false, // Whether it involves sensitive
topics
"offensive content": true/false, // Whether it contains overly
offensive content
"reason": "Detailed reasoning explaining why this is or is not a
risky meme, and specific risk types"
}

Please carefully analyze the image and then output the JSON result.
Output only JSON, no other text.
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