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ABSTRACT

Malware classification by using function call graphs (FCG) is an important task in
cybersecurity. One big challenge in this direction is the lack of representative, large,
and unique FCG datasets. Existing datasets typically contain obsolete Android
application packages (APKs), largely consist of small graphs, and include many
duplicate FCGs due to repackaging. This results in misleading graph classification
performance. In this paper, we propose a new comprehensive dataset, Better
Call Graphs (BCG), that contains large and unique FCGs from recent APKs,
along with graph-level APK features, with benign and malware samples from
different types and families. We establish the necessity of BCG through the
evaluation of several baseline approaches on existing datasets. BCG is available at
https://iclr.me/.

1 INTRODUCTION

Malware detection is a key task in the field of cybersecurity. In most malware samples, minor changes
in the source code of the original malware can lead to substantially different compiled code (e.g.,
through instruction reordering, branch inversion, and register allocation) (Bayer et al., 2006). This is
often exploited to bypass signature-based detection, a common method of malware detection (Scott,
2017). However, these minor source code modifications have little impact on the executable’s control
flow, which can be depicted using a function call graph (FCG) where functions are the nodes and
the call relations are the edges. Hence FCG-based malware detection has been an important field of
study, particularly within the realm of Android (Ye et al., 2017; Freitas et al., 2020).

One challenge in FCG-based malware detection is that achieving accurate and robust classification
models has been hampered by the limited availability of modern and representative large-scale
datasets. Existing datasets typically contain old Android application packages (APKs) along with
their corresponding FCGs. Considering the dynamic landscape of Android ecosystem, obsolete
APKs offer no benefit at all as they are developed on earlier version of an Android. In addition,
the complexity of both benign and malicious applications has drastically changed in recent years.
Furthermore, most existing datasets contain many duplicate APKs, packaged with trivial differences,
hence have a different name but the same FCG structure.

In this paper, we introduce a new and comprehensive dataset named Better Call Graphs (BCG),
comprising extensive and distinct function call graphs (FCGs) extracted from recent APKs. The
dataset includes benign samples as well as malware samples spanning various types and families.
We establish the necessity of BCG through the evaluation of several baseline approaches on existing
datasets. We show that existing datasets often yield misleading scores when state-of-the-art classifiers
are applied. Our dataset also contains graph-level APK features, capturing both the structural and
behavioral characteristics of malware. BCG is publicly available at https://iclr.me/. The
dataset is released under a CC-BY license, enabling free sharing and adaptation for research or
development purpose.

In the rest of the paper, we first give a background and summarize related works on FCG-based
Android malware detection and Android-based FCG datasets in Section 2. Then we provide a detailed
description of how the BCG is collected and filtered in Section 3. Next, we explain the properties
of BCG in detail (Section 4) and perform graph classification experiments on our dataset, as well
as other established datasets, using state-of-the-art graph classification methods (Section 5) — we
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perform malware type as well as family classification. Finally, we summarize our work and discuss
the limitations in Section 6.

2 RELATED WORK

Literature is rich with studies on Android malware detection, by using various types of networks such
as Function Call Graphs (FCGs), Control Flow Graphs, and Network Flow Graphs. These studies
rely on existing malware datasets to evaluate their methods’ effectiveness. Here we delve into prior
research on FCG-based detection for Android apps, followed by a discussion of commonly used
malware datasets.

2.1 FCG-BASED ANDROID MALWARE DETECTION

Android apps, packaged in APK files, bundle all their components — code, resources, and a manifest
file. Extracting various features from the code allows researchers to analyze how the app works and
identify potential security risks. FCGs, in particular, have proven valuable for malware classification
by revealing how the app’s functions interact, potentially exposing malicious behavior. Researchers
have actively explored diverse methods that leverage FCGs to analyze Android apps for security
purposes. These methods typically involve constructing FCGs and enriching them with node features,
which can be either basic properties or more complex embeddings learned through graph neural
networks. The enriched FCGs are then used for identifying and classifying malware. Classifications
are typically performed to identify both the malware type and the malware family. Malware type
refers to the broad category of malicious behavior exhibited by a malware program. Common types
of malware include Virus, Worm, Trojan Horse, and Ransomeware. Malware family refers to a group
of malware programs that share similar characteristics, codebase, or functionality. Malware families
are often named by antivirus companies based on their unique features. For example, within the
"Trojan Horse" type, there might be the "Emotet" family known for email spam and credential theft.

MAMADroid and APIGraph utilized API semantics features to capture the semantic similarities
between malware variants and analyze information flow for malware detection (Onwuzurike et al.,
2019; Zhang et al., 2020). In contrast, Yuan et al. (2020) focused on byte-level classification
by converting malware binaries into Markov images and applying deep learning for detection.
Meanwhile, Fan et al. (2018) proposed a family-level classification approach by leveraging frequent
subgraphs within FCGs. Zhu et al. (2018) constructed enriched FCGs from Smali code, incorporating
function types (system or third-party API) and permission requirements for each node, and used
Graph Convolutional Networks (GCNs) to train malware classifiers on these graphs. Similarly, Feng
et al. (2020) focused on extracting features directly from the disassembled code sections in CGdroid.
This approach first uses hand-crafted features like the number of string constants and instructions for
each node, and then utilizes a GNN to learn graph embeddings and an MLP for final classification.
Vinayaka & Jaidhar (2021) further extended this concept by incorporating FCG’s graph structural
attributes (e.g., node degree) and non-graph features extracted from the disassembled functions, such
as method attributes and opcode summaries. Yumlembam et al. (2022) took a more general approach,
modeling apps as local graphs where nodes denote APIs and co-occurring APIs in the same code
block as edges. The authors explored features like centrality measures, permissions, and intents
from the manifest file. Lo et al. (2022) leveraged PageRank (Page et al., 1999), in/out degree, and
betweenness centrality values as node attributes. DeepCatra utilized call traces, opcode features, and
TF-IDF for critical API identification (Wu et al., 2023).

Moving beyond basic features, some approaches explored learning node embeddings using GNNs
and NLP techniques (Catal et al., 2021; Gunduz, 2022). Errica et al. (2021) leveraged Contextual
Graph Markov Models to learn embeddings based on call graph structure and out-degree features,
followed by classification with a neural network. Cai et al. (2021) and Xu et al. (2021) have explored
leveraging word embedding techniques to analyze Android apps. Xu et al. (2021) used the Skip-gram
algorithm to transform Android opcodes into vectors for analysis.

These approaches highlight the active research in utilizing FCGs for Android app security analysis.
However, a crucial limitation of most existing studies is the reliance on datasets that contain
obsolete and/or duplicate APKs. This inflates the reported performance of classification approaches.
Our work addresses this limitation by introducing a new malware classification dataset, BCG, that
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consist of new and unique FCGs. BCG will pave the way for true evaluation the effectiveness of
the aforementioned FCG-based methods and open doors for new research directions in the field of
Android app security analysis.

Table 1: Comparison of previous Android-based FCG datasets and BCG.

Dataset # APKs Collection Period # types Family information
Drebin 5560 2010-2012 N/A Yes (179, no benign)

AndroZoo 24M Dynamic N/A No
CICAndMal2017 10854 2015-2017 5 No

CICMalDroid 17341 2018 5 No
MalNet 1.2M 2006-2021 47 Yes (696)

MalNet-Tiny 5000 2006-2021 5 Yes (5)
BCG (our work) 9938 2017-2023 29 Yes (118)

2.2 ANDROID-BASED FCG DATASETS

While numerous graph classification datasets exist for various fields like bioinformatics and social
networks, options for cybersecurity, specifically malware detection using graph analysis, are scarce.
Most existing datasets in this domain are closed-source. Fortunately, a few publicly available options
like CICAndMal2017, CICMalDroid, AndroZoo, Drebin, and MalNet provide valuable resources for
researchers analyzing Android malware through graph structures.

Given the dynamic nature of the Android ecosystem and the interest of malicious entities in releasing
APKs, several FCG datasets have been collected and curated to study malware characteristics. The
Drebin dataset is one of the first in this direction, offering 5,560 malware apps (179 families)
collected between 2010-2012 by MobileSandbox (Arp et al., 2014), but it lacks benign samples.
Drebin provides summaries of each malicious APK using 10 features like permissions and intents.
While the Drebin dataset is valuable for multi-class classification (identifying the top-k most frequent
malware families), binary classification (malware vs. benign) requires collecting benign samples
from other sources. The AndroZoo dataset contains over 24 million APKs, mostly benign and with
some malware verified through VirusShare (Allix et al., 2016). AndroZoo is constantly updated
and provides 10 features per APK which includes sha256, sha1, md5, apk_size, dex_size, dex_date,
pkg_name, vercode, vt_detection, and vt_scan_date. It primarily consists of benign APKs, and the
fraction of malware APKs is 16.67% (4 million APKs). The Canadian Institute for Cybersecurity
(CIC) released two Android app datasets for malware analysis: CICAndMal2017 (Lashkari et al.,
2018) and CICMalDroid (Mahdavifar et al., 2020). The former one has 10,854 APKs collected
between 2015-2017 and categorized by malware type (benign, adware, ransomware, SMS, and
riskware) and includes network traffic features. The latter one boasts a larger collection, 17,341 APKs
from 2018, with similar malware classifications. It provides not only static features (permissions,
intents) but also dynamic behavior data (system calls) and network traffic (pcap format). MalNet
is a more recent dataset of 1.2 million FCGs extracted from AndroZoo APKs collected between
2006-2021 (Freitas et al., 2020). The dataset is categorized into 47 types and 696 families. It also
offers a smaller version with 5000 FCGs, MalNet-Tiny, for efficient experimentation. Another related
dataset, MalRadar, includes 4,534 APKs collected from 2014 to 2021 and provides information only
at the family level (Wang et al., 2022).

While these datasets are valuable, they suffer from two key issues:

1. Most FCGs are obtained from obsolete APKs, latest being only from 2021 (most of which
are also benign). The complexity of both benign and malicious applications has drastically
changed in recent years. For example, in the past it was simple enough to classify malware
by determining if phone SIM card details were sent over the network. However, now benign
applications do this for two-factor authentication and even for unique tracking of individuals
for leaderboards in games.

2. The current datasets often contain many duplicate APKs, packaged with trivial differences,
which potentially inflates the classification performance (details in Section 4.3).

In this work, we address these limitations by constructing BCG, a new dataset with unique and
recent APKs filtered with respect to various criteria, to enable a more robust testbed for FCG-
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Figure 1: Construction process of BCG.

based malware classification. Those criteria include the minimum APK size to exclude very small
applications, minimum number of edges in the FCG to focus on complex functionalities, and multi-
engine validation via VirusTotal (vir, 2024b) to guarantee high-confidence malware labels. A detailed
comparison between our work and existing datasets is presented in Table 1.

3 COLLECTING AND FILTERING FCGS

To ensure a robust and relevant BCG dataset, we constructed it by comprehensively analyzing both
APK files and their corresponding graph properties. This involved filtering and refining APKs based
on various quality and relevance criteria, overcoming limitations of existing datasets. There are
some high level observations that guided our approach: (1) old APKs are simplistic in their structure
and capabilities, (2) repackaging is very common, (3) certain virus families are over represented in
datasets (often related to point 2), and (4) small (based on bytecode size and not auxiliary files) APKs
are often uninteresting from a detection standpoint. A detailed flowchart of the BCG construction
process is provided in Figure 1. Here we summarize each step in this process:

1. Downloading APKs: The foundation of our BCG dataset is built upon acquiring data sources
that exhibit specific properties, including larger and more recent APKs (details of these properties
are provided in Section 4). To achieve this, we secured permission from two prominent repositories:
AndroZoo (Allix et al., 2016) and VirusShare (vir, 2024a). We selected AndroZoo and VirusShare
as representative sources due to their extensive collections and widespread use in the research
community. These are the defacto sources for the mobile, programming languages, and Android
security communities. AndroZoo, for example, includes apps from the Google Play Store as well
as other app sources such as Appchina and Anzhi (Chinese App Store), encompassing a total of
24,751,611 APKs—significantly more than the number of apps currently available on the Google
Play Store. This extensive repository covers all apps from these sources without any exclusions. We
downloaded over 100,000 APKs from the AndroZoo and VirusShare repository. Due to a limitation
within AndroZoo that restricts concurrent downloads to 40 files, this process took around 72 hours to
complete. Additionally, storing this vast amount of data required 2 TBs of storage space.

2. Filtering APKs by year and size: To ensure our dataset has recent and large files, we followed a
two-step filtering process on the 100,000 downloaded APKs. Firstly, we extracted the DEX (Dalvik
Executable) year from each APK. DEX year refers to the approximate year the application was
compiled and the information is embedded within the APK file. By removing APKs with a DEX year
before 2017, we ensured our dataset primarily reflects more recent applications. Secondly, to ensure
the APKs contained sufficient information for analysis, we removed any APKs with a size less than
4MB. We analyzed the distribution of APK size alongside the number of nodes and edges in their
FCGs. This analysis revealed that APKs exceeding 4MB typically contained enough nodes and edges
for meaningful FCG-based analysis. Consequently, we filtered out APKs with a size less than 4MB.
These filtering process resulted in a dataset of around 40,000 APKs.

3. Determining family and type: To create the types and families in BCG, we utilized a multi-step
process with VirusTotal (vir, 2024b). First, we downloaded detailed reports for each APK using the
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Table 2: Descriptive statistics for each FCG type in BCG.

# nodes # edges
Type #graphs #fams min mean max std min mean max std
benign 5880 1 78 30.1K 50.4K 12.1K 109 62.6K 100.0K 26.3K
trojan 1525 83 90 18.8K 47.5K 13.4K 101 41.8K 99.9K 30.5K
adware 803 62 92 23.3K 47.7K 13.2K 101 51.5K 99.9K 30.1K
smsreg 279 22 96 21.8K 41.9K 9.9K 106 49.1K 99.3K 22.7K
adware++trojan 250 40 92 20.0K 47.3K 14.4K 101 44.5K 99.9K 32.6K
riskware 157 19 87 15.7K 46.0K 14.1K 103 34.9K 99.4K 30.9K
smsreg++trojan 121 20 81 21.7K 45.3K 11.3K 103 49.9K 98.5K 26.0K
riskware++trojan 119 22 97 13.0K 44.7K 12.4K 103 28.3K 97.0K 27.6K
risktool++trojan 114 18 97 12.2K 47.7K 12.8K 101 24.4K 96.7K 26.8K
addisplay 82 9 235 26.8K 44.8K 8.8K 351 58.5K 99.4K 22.6K
dropper++trojan 74 13 93 14.8K 46.1K 13.1K 112 31.6K 91.5K 27.7K
risktool 67 17 90 15.7K 42.0K 13.5K 103 33.2K 95.8K 29.5K
spy++trojan 57 16 101 16.2K 46.5K 15.0K 110 35.0K 99.8K 33.0K
banker++trojan 54 3 77 7.8K 44.5K 11.2K 118 17.5K 99.7K 25.1K
adware++riskware 47 15 97 13.8K 41.7K 14.1K 103 31.2K 96.4K 32.3K
risktool++riskware 47 10 90 9.8K 44.3K 12.5K 103 20.0K 95.8K 26.4K
spr++trojan 35 12 101 16.8K 44.3K 13.0K 110 39.8K 98.0K 32.6K
riskware++smsreg 30 9 101 17.2K 45.6K 13.3K 110 38.6K 92.1K 29.8K
rog 30 3 97 5.5K 43.2K 11.1K 103 12.2K 92.3K 23.2K
smsreg++spr 30 4 589 26.9K 46.2K 10.7K 762 62.7K 96.3K 25.5K
downloader++trojan 29 10 97 17.3K 44.9K 16.2K 103 38.6K 92.1K 35.6K
spy 27 11 548 18.9K 43.1K 14.4K 1561 42.0K 98.0K 33.5K
clicker++trojan 26 4 119 22.7K 38.8K 13.2K 124 54.9K 93.4K 33.3K
fakeapp++trojan 13 3 119 16.4K 45.2K 15.6K 124 32.3K 95.8K 34.0K
risktool++spr 13 6 98 16.5K 27.8K 10.5K 103 35.0K 65.7K 24.1K
fakeapp 8 2 119 24.0K 45.2K 15.7K 124 47.9K 95.8K 35.1K
adware++risktool 7 3 2782 23.5K 44.7K 15.5K 9409 53.7K 99.0K 33.8K
backdoor 7 3 109 9.8K 35.3K 16.5K 112 21.2K 82.9K 36.4K
backdoor++trojan 7 2 98 0.1K 0.1K 0.0K 103 0.1K 0.2K 0.0K

VirusTotal API, leveraging over 70 antivirus engines. We then extracted virus categories and families
from these reports. To obtain a single, consistent label, we converted the VirusTotal report to one
compatible with the AVClass package, which assigned a single label from the reported information.
To ensure reliability, we only consider the APKs flagged by multiple antivirus engines in VirusTotal.

4. Constructing FCGs: Androguard has proven effective in previous datasets for constructing FCGs
(Desnos & Gueguen, 2011). It conducts static analysis of the DEX file within each APK, identifying
method names and their interactions. Methods are represented as nodes, while calls between methods
are depicted as directed edges. We leverage Androguard to produce FCGs for each APK in our
dataset. To facilitate further analysis, we also hash the method names into unique identifiers, enabling
the creation of an integer edge list. Our datasets are published in two formats: one containing the
original method names as nodes, and another using hashed IDs.

5. Filtering APKs by number of edges: While the MalNet dataset has a large average graph size,
it contains many very small graphs (less than 100 nodes/edges). To exclude trivially small graphs
(less than 100 nodes/edges, as observed in MalNet), we further filtered our datasets to only include
APKs with a minimum of 100 edges in their FCGs, which is large enough to contain complex graph
structure. This filtering process resulted in a collection of around 29K graphs from 40K graphs.

6. Removing duplicates: Existing datasets, such as MalNet and CICMaldroid, often contain
duplicate APKs with identical functionalities (reflected in their FCG properties like number of nodes,
edges, etc.) but disguised by different names. This can be due to repackaging (malware with minor
changes) or the same APK appearing in multiple app stores. To address this, we identified and
removed duplicate FCGs based on six key graph properties of the FCGs: number of nodes, number of
edges, average degree, in-degree centrality, size of largest connected component, and size of largest
weakly connected component. For further confirmation, we verified that these duplicates also shared
the same malware type and family information. Our methodology results in no false positives but
there may well remain false negatives, i.e., undetected duplicates or FCGs that differ by one or few
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nodes/edges, which is an interesting future work. The APKs with identical properties are considered
duplicates and removed, resulting in a non-redundant final BCG dataset.

4 PROPERTIES OF BCG

While existing datasets like MalNet (Freitas et al., 2020) offer valuable properties for evaluating
Android malware with FCGs, they often contain duplicate APKs with different names but identical
FCG structures. Most of the previous datasets primarily consists of samples collected before 2017,
potentially limiting its generalizability to modern malware, and hence misleads the ongoing research
on malware detection. Additionally, existing malware datasets often include numerous smaller-sized
APKs, which limits their utility in comprehensive malware analysis. Moreover, these datasets often
lack essential APK properties, such as detailed information on the services or libraries used by the app,
which impedes a thorough understanding of the app’s behavior and functionality, making it difficult
to accurately classify malware. To address these limitations, we ensured that BCG has four key
features: (1) larger size to facilitate more robust graph classification, (2) recent data (including 2017
and after) to reflect evolving threats, (3) unique APKs to ensure a more accurate evaluation testbed,
and (4) non-graph APK features (graph attributes) for a more holistic evaluation. The summary of
our datasets, BCG, is given in Table 2 and here, we briefly describe each of the four features:

4.1 LARGER IN SIZE

Existing datasets for analyzing and differentiating APKs through graphs are often too small. While
MalNet has the largest dataset size, it contains many graphs with very few nodes/edges. Out of
100K APKs in MalNet, approximately 3,000 FCGs contain less than 100 nodes/edges. Analyzing
such small graphs offers limited value for malware classification, or broader graph classification,
and may even mislead the classifier to prioritize size. We address this limitation by creating a new
dataset specifically designed for graph-based analysis. For this reason, we consider only those with a
minimum size of 4MB during the APK collection phase. Additionally, we exclude any graphs with
fewer than 100 edges. This ensures our dataset consists of larger graphs, providing more meaningful
insights for malware classification as well as type/family classifications within malware.

4.2 RECENT AND MODERN APKS

All the existing FCG datasets contain mostly obsolete APKs. For instance, approximately 99% of the
malware APKs in the MalNet dataset originate from before 2017, with the remaining 1% are from
post-2017. Except that, between 2017 and 2021, the dataset contains only benign APKs. The Android
ecosystem has evolved significantly since 2016. Older APKs, built for simpler Android versions,
might not reflect the complexities of modern malware threats which can limit the effectiveness of
malware detection methods. To address these limitations, we focus on constructing a new malware
dataset that incorporates recent APKs. We have collected malware samples specifically targeting
those published in 2017 or later. The distribution of APKs across different years is visualized in the
histogram of Fig. 2. It is evident that our dataset primarily contains recent APKs, with a significant
portion dating from after 2020.
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Figure 2: Temporal distribution of APKs in BCG.
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Figure 3: Performance comparison across all methods of MalNet-Tiny and CICMalDroid datasets
before and after removing the duplicate APKs. Removing duplicates decreases the performance
drastically for all methods.

4.3 UNIQUE APKS

High malware classification performance reported by recent approaches might be misleading due
to the presence of duplicate APKs in commonly used datasets (Shirzad et al., 2023; Cao et al.,
2023; Rampášek et al., 2022). The duplicate APKs have identical FCG structures but appear under
different names. This is caused by repackaging, where the same malware is redistributed with minor
modifications like altered app icons or backgrounds, or by the same APK being uploaded to multiple
app stores. For instance, Malnet-Tiny and CICMalDroid suffer from this significantly. Malnet-Tiny
contains around 2,000 repackaged APKs (approximately 40% of the entire data) while CICMalDroid
has 41% of duplicate APKs. We have also investigated a subset of the MalNet, 100K out of 1.2M,
and observed that approximately 51% of the APKs are duplicates. Importantly, removing these
duplicates often can lead to a significant drop in the classification performance as the duplicate FCGs
cause label leakage, or even database lookups, in the original data when both train and test splits
contain the same FCG. We conducted experiments on the original MalNet-Tiny and CICMalDroid,
as well as the filtered version after duplicates are removed, using different classifiers (details are in
Section 5.2). Figure 3 presents the results. Macro F1 scores decrease after removing the duplicate
APKs, consistently for all the classifiers, reaching up to 16.38% decrease in CICMalDroid dataset on
GIN method. Motivated by this, we focus on constructing new malware classification datasets that
contain unique APKs.

Table 3: List of non-graph APK features and their descriptions.

Feature Description
APK size The size of the APK file in bytes.
Dex size The size of the Dex file in bytes.
App name The application name of the APK.
Package name The unique package name of the APK.
App permission The list of permissions requested by the app, indicating the resources

and data the app needs access to.
App main activity The main activity of the app and entry point when users launch the app.
App all activity The complete list of all activities defined in the app, representing the

different screens and interactions available within the app.
Services The list of all services used by the app, which are components that run

in the background to perform long-running operations.
Receivers The list of all broadcast receivers in the app, which are components that

respond to system-wide broadcast announcements.
Libraries The list of all libraries used by the app, which can include third-party

libraries that provide additional functionality and support.
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4.4 NON-GRAPH APK FEATURES (AF)

Prior research (Wang et al., 2020; Lee et al., 2019; Alzaylaee et al., 2020) highlights the effectiveness
of basic APK features for malware classification. However, existing datasets do not include these APK
features, requiring manual extraction from the APKs. To address this, we have incorporated APK
features into our BCG dataset. We extracted two basic features from the APK and manifest files: APK
size and DEX size. APK size refers to the entire APK file size in bytes, while DEX size represents the
size of the Dalvik Executable (DEX) file also in bytes. The DEX file contains the optimized machine
code used by the Android system to run the application. Beyond basic size information, we utilize
Androguard (Desnos & Gueguen, 2011) to extract various textual features from the APK, which have
been shown to be useful for malware classification in previous works (Wang et al., 2020; Lee et al.,
2019). These textual features include the app/package name, permissions requested by the app, all
activities of the app, services or libraries used by the app, and the list of broadcast receivers. We
encoded all of the textual features using a 100-dimensional TensorFlow sentence encoder (Cer et al.,
2018) and further reduced its dimensionality to 2 using t-SNE (Van der Maaten & Hinton, 2008)
for efficient processing. t-SNE effectively preserves local structure and retains original information
and widely adopted in prior malware detection studies (Yumlembam et al., 2022; Zhu et al., 2018).
Therefore, we used t-SNE to obtain two-dimensional features. A detailed description of all non-graph
APK features is provided in Table 3.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the baseline performance of our datasets using various established
methods. Initially, we present the experimental setup and then we evaluate all the approaches. The
experiments were conducted on a Linux operating system (v. 3.10.0-1127) running on a machine
with Intel(R) Xeon(R) Gold 6130 CPU processor at 2.10 GHz with 192 GB memory. An Nvidia
A100 GPU was used specifically for the GNN experiments. Our code is publicly available at
https://anonymous.4open.science/r/BCG-code/.

5.1 EXPERIMENTAL SETUP

To assess the graph classification performance of each model on a given dataset (i.e., set of graphs),
we employ 70/10/20 train/validation/test split. We utilize macro-F1 score as the primary evaluation
metric, considering the imbalanced nature of malware datasets, and also report accuracy, precision,
and recall. We repeat each experiment ten times with different random seeds and give the average
and standard deviation of these runs.

5.2 GRAPH CLASSIFICATION BASELINES

We consider several state-of-the-art methods for classifying FCGs. These methods encompass both
feature-based approaches that analyze characteristics like permissions or app size directly from the
APK, and graph-based approaches that focus on the FCG structure and potentially incorporate node
features for richer information. Here we summarize each briefly:

1. Deep learning techniques on graphs: We consider three established methods based on GNNs
and node embeddings: GCN (Kipf & Welling, 2016), GIN (Xu et al., 2018), and LDP (Cai & Wang,
2018). These methods, originally used for malware type and family classification on MalNet, are
adapted to our setting. LDP is a simple node representation scheme that summarizes each node and
its immediate neighbors using five degree statistics. These features are then aggregated and combined
into feature vectors for the GNNs. To ensure consistency, we adopt the same experimental setup in
MalNet (Freitas et al., 2020), using 5 GNN layers, Adam optimizer, 64 hidden units, a learning rate
of 0.0001, and LDP node features for GCN and GIN. We also incorporated GraphSAGE into our
evaluation alongside GCN and GIN given its established effectiveness for malware classification (Lo
et al., 2022; Yumlembam et al., 2022; Vinayaka & Jaidhar, 2021). Like GCN and GIN, GraphSAGE
was implemented following the same experimental setup for a consistent comparison.

2. Random forest on app-level features: To investigate the effectiveness of basic APK properties,
that are unrelated to FCGs, we extracted various features from the original APK files by using
Androguard (details are discussed in Section 4.4). We refer to these as APK Features, AF for short.
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Table 4: Malware type classification results using different approaches on three datasets: MalNet-
Tiny (MT), CICMaldroid (CMD), and our dataset BCG. MT* and CMD* indicate the results after
eliminating duplicates. Best scores are marked in bold for each dataset and method.

Method Accuracy Macro-F1
MT MT* CMD CMD* BCG MT MT* CMD CMD* BCG

LDP 86.6 ± 0.7 77.9 ± 1.0 92.2 ± 0.1 87.3 ± 0.3 70.2 ± 0.4 86.7 ± 0.7 78.9 ± 1.0 91.6 ± 0.1 81.8 ± 0.3 17.9 ± 0.5
AF 78.8 ± 0.6 74.8 ± 1.0 90.8 ± 0.2 85.0 ± 0.8 70.4 ± 0.2 78.7 ± 0.6 70.6 ± 1.2 89.7 ± 0.0 78.1 ± 1.2 15.6 ± 0.9
GF 80.5 ± 0.7 66.8 ± 0.8 89.9 ± 0.2 82.3 ± 0.1 63.8 ± 0.4 80.6 ± 0.7 69.0 ± 0.8 88.6 ± 0.2 74.6 ± 0.3 12.7 ± 0.5

AF+GF 88.3 ± 0.0 82.9 ± 0.5 92.6 ± 0.2 86.9 ± 0.4 72.2 ± 0.2 88.3 ± 0.0 82.7 ± 0.5 91.9 ± 0.2 80.4 ± 0.6 16.8 ± 0.8
LDP+AF+GF 89.6 ± 0.5 83.8 ± 0.5 93.0 ± 0.2 88.1 ± 0.3 73.2 ± 0.2 89.6 ± 0.6 83.9 ± 0.0 92.5 ± 0.2 82.5 ± 0.6 19.3 ± 1.0

GCN 82.8 ± 1.0 73.2 ± 2.2 91.3 ± 0.4 84.9 ± 0.9 66.5 ± 4.8 82.8 ± 1.7 73.0 ± 1.5 91.0 ± 0.0 77.7 ± 1.4 14.1 ± 3.5
GIN 89.7 ± 0.0 80.8 ± 1.9 92.7 ± 0.4 85.1 ± 0.5 66.9 ± 1.6 89.7 ± 0.8 80.3 ± 2.2 92.5 ± 0.4 77.3 ± 1.4 12.9 ± 2.1

GraphSAGE 76.5 ± 2.0 65.1 ± 2.2 79.1 ± 2.6 75.3 ± 2.4 48.7 ± 5.6 76.8 ± 1.8 65.5 ± 2.4 78.4 ± 2.8 63.9 ± 2.6 4.54 ± 0.8
Precision Recall

MT MT* CMD CMD* BCG MT MT* CMD CMD* BCG
LDP 87.4 ± 0.6 80.9 ± 0.8 91.3 ± 0.1 82.8 ± 0.5 24.4 ± 0.9 86.6 ± 0.7 78.6 ± 0.9 92.1 ± 0.3 82.1 ± 0.4 15.6 ± 0.4
AF 79.8 ± 0.5 75.5 ± 2.0 89.2 ± 0.2 80.2 ± 1.0 26.3 ± 2.0 78.8 ± 0.6 69.4 ± 1.0 90.4 ± 0.3 78.0 ± 1.1 13.3 ± 0.5
GF 81.1 ± 0.7 69.7 ± 1.1 88.5 ± 0.2 75.1 ± 0.0 14.8 ± 1.3 80.5 ± 0.7 69.5 ± 0.7 88.8 ± 0.3 74.3 ± 0.3 12.6 ± 0.3

AF+GF 88.7 ± 0.5 83.9 ± 0.4 91.5 ± 0.2 82.4 ± 0.7 24.6 ± 1.7 88.3 ± 0.0 82.6 ± 0.6 92.5 ± 0.2 79.9 ± 0.6 14.7 ± 0.6
LDP+AF+GF 90.1 ± 0.5 85.1 ± 0.0 92.1 ± 0.3 84.1 ± 0.7 27.7 ± 1.8 89.6 ± 0.5 83.9 ± 0.4 93.0 ± 0.2 82.1 ± 0.5 16.9 ± 0.7

GCN 83.3 ± 1.4 72.8 ± 1.5 91.1 ± 0.5 77.4 ± 1.6 17.3 ± 4.6 82.8 ± 1.0 74.7 ± 1.4 90.9 ± 0.5 78.3 ± 1.3 14.3 ± 3.0
GIN 90.0 ± 0.7 80.6 ± 2.2 92.4 ± 0.5 77.8 ± 0.0 16.5 ± 3.1 89.7 ± 0.0 81.2 ± 1.8 92.6 ± 0.4 77.6 ± 1.4 13.9 ± 2.6

GraphSAGE 78.0 ± 1.6 65.2 ± 2.3 78.5 ± 2.6 64.3 ± 2.6 4.55 ± 0.6 76.5 ± 2.0 67.5 ± 2.2 79.6 ± 2.4 64.1 ± 2.5 5.48 ± 0.9

We also constructed graph features, GF, derived from the FCGs, by capturing simple graph analytics,
such as the number of nodes/edges, largest connected component size, and centrality metrics, detailed
descriptions are given in Table 6 at Appendix. Finally, we combine AF and GF, and feed them into a
Random Forest model for malware classification.

3. Combined approach: While both FCGs and basic APK features are valuable, recent research
suggests that their combined use can lead to even better performance. APK features capture high-level
information about the app (permissions, size), while FCGs provide detailed insights into the app’s
functionality through call relationships between functions. Hence, we explore the effectiveness of
combining all app-level features (AF + GF) with LDP node embeddings derived from FCGs. LDP
node embeddings are aggregated to create graph-level feature vectors, which are then merged with
AF + GF to form a comprehensive feature set. We then evaluate this combined feature set using
Random Forest classification model. To optimize hyperparameters like the number of estimators
and tree depth, we perform a grid search on the validation set, replicating the configuration used by
MalNet for these models.

5.3 PERFORMANCE ANALYSIS

Malware type classification. We evaluate the classification performance of the aforementioned
classifiers on three datasets: MalNet-Tiny, CICMalDroid, and our new BCG dataset. Malware type
(in BCG) is one of 29 classes, which is either benign (i.e., not malware) or a specific type of malware,
as denoted in Table 2. Table 4 gives the results. All the results on MalNet-Tiny and CICMalDroid
are drastically better than those on BCG. For accuracy, the best classifier yields 89.76% and 93.04%
on MalNet-Tiny and CICMaldroid, whereas it is only 73.2% on BCG. There is even a more drastic
difference in Macro-F1 (and Precision and Recall): the best classifier can easily reach to around
90% on MalNet-Tiny and CICMalDroid but can only yield 19% on BCG! Table 4 also includes the
results of MalNet-Tiny and CICMalDroid datasets after removing duplicates. Even after removing
duplicates, all the methods achieve higher performance on these datasets than BCG. Notably, the
lowest Macro-F1 score (65.5) on MalNet-Tiny with GraphSAGE is significantly higher than the BCG
equivalent (4.54). This highlights the inherent difficulty of classifying malware in BCG.

From those results, it is evident that state-of-the-art approaches can easily obtain high performance
for malware classification on previously curated datasets, however the same cannot be said for
our newly and carefully constructed BCG dataset. The state-of-the-art methods fail miserably on
identifying malwares on BCG. This indicates that malware classification using FCGs is significantly
more complex than previously thought. There is a clear need for new graph classification techniques
that can handle the complexities within the BCG.
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Table 5: Malware family classification results on BCG dataset using different approaches.

Method Accuracy Macro-F1 Precision Recall
LDP 77.22 ± 0.23 19.42 ± 0.88 28.12 ± 1.3 16.81 ± 0.79

APK features (AF) 75.53 ± 0.24 14.31 ± 0.83 26.26 ± 1.17 11.88 ± 0.75
Graph features (GF) 73.87 ± 0.28 13.59 ± 0.29 18.14 ± 0.69 12.3 ± 0.16

AF + GF 79.34 ± 0.22 19.02 ± 0.34 30.67 ± 0.66 16.27 ± 0.27
LDP + AF + GF 79.3 ± 0.34 20.85 ± 1.05 32.46 ± 1.43 17.59 ± 0.94

GCN 73.68 ± 1.91 7.3 ± 3.32 9.11 ± 4.53 6.99 ± 3.21
GIN 71.07 ± 1.22 2.83 ± 1.0 3.51 ± 1.43 2.71 ± 0.87

GraphSAGE 67.33 ± 0.04 0.66 ± 0.02 0.62 ± 0.14 0.81 ± 0.01

Malware family classification. Beyond malware type classification, our BCG dataset also include
118 family labels over all APKs, enabling a more granular analysis. We conducted experiments to
classify malware according to their families, results are in Table 5. Interestingly, traditional GNNs
like GraphSAGE (Macro-F1 < 1%) and GIN (Macro-F1 = 2.83%) achieved low performance on this
family classification task within the BCG dataset. This suggests that these models might require
further development or additional data augmentation to handle the complexities present in our data.

Evaluating the difficulty of classifying recent APKs. The complexity of both benign and malicious
applications has significantly evolved in recent years. To empirically validate this, we conduct
two sets of experiments. The first experiment involves a temporal split of the data, using earlier
data for training and validation, and later data for testing. Such a temporal split results in lower
accuracy compared to random data partitioning (details are in Table 9 at Appendix). For the second
experiment, we divide the BCG dataset into two equal halves: 2017-June 2021 and July 2021-2023.
Each half is independently evaluated with its own training and testing sets. We observe that the
second half consistently exhibited lower performance (details are in Table 10 at Appendix). These
findings collectively suggest that malware classification becomes increasingly challenging for more
recent APKs and including obsolete APKs in an FCG dataset can result in inflated classification
performance.

6 CONCLUSION

Traditional malware classification datasets struggle with redundancy, limited size, and outdated data.
These limitations hinder the development of effective models for detecting modern malware threats.
This work addresses these issues by introducing the BCG dataset, a collection of recent and unique
FCGs containing benign and malware classes as well as different types and families of malware. In
our BCG dataset, comprising 9938 graphs, the average size is 25k nodes and 54k edges. It spans
a diverse hierarchy of 29 types and 118 families. The analysis of BCG dataset revealed promising
avenues for future research. By overcoming the limitations of existing datasets, BCG paves the way
for significant advancements in malware classification research.

Limitations. While the BCG dataset is valuable for FCG-based malware classification, it does
not encompass other aspects of malware analysis, such as identifying malicious code or unpacking
obfuscated content. Future research could explore expanding BCG to include these attributes for a
more comprehensive analysis.

Reproducibility Statement: All of our experimental results are reproducible. The anonymous
code for replicating the baseline results is publicly available at https://anonymous.4open.
science/r/BCG-code/, with further details provided in Section 5. The dataset and its descrip-
tions can be accessed at https://iclr.me/.
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A APPENDIX

A.1 DESCRIPTION OF GRAPH FEATURES (GF)

Table 6: List of graph features and their descriptions.

Feature Description
Num Nodes The number of nodes in the Function Call Graph.
Num Edges The number of edges in the Function Call Graph.
Node degree The degree of the nodes in the Function Call Graph.
Selfloop The number of self-loops in the Function Call Graph.
Indegree The indegree of the nodes in the Function Call Graph.
Closeness The closeness centrality of the nodes in the Function Call Graph.
Num Cycle The number of cycles in the Function Call Graph.
Large Conn The size of the largest connected component in the Function Call Graph.
Large Conn Ratio The ratio of the size of the largest connected component to the total

number of nodes in the graph.
Large Weak conn The size of the largest weakly connected component in the Function Call

Graph.
Large Weak conn Ratio The ratio of the size of the largest weakly connected component to the

total number of nodes.
Second Large Weak Conn The size of the second largest weakly connected component in the

Function Call Graph.
Second Large Weak Conn Ratio The ratio of the size of the second largest weakly connected component

to the total number of nodes.
Power Alpha The alpha parameter of the power-law distribution fitted to the node

degrees.
Power Sigma The sigma parameter of the power-law distribution fitted to the node

degrees.
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Table 7: Distribution of BCG types across the years 2017 to 2023.

Type/Year 2017 2018 2019 2020 2021 2022 2023
benign 25 11 17 64 4077 1608 78
trojan 2 35 200 414 439 434 1
adware 5 49 120 187 204 238 0
smsreg 0 2 50 108 70 49 0
adware++trojan 0 3 51 69 59 68 0
riskware 3 13 30 23 35 53 0
smsreg++trojan 0 1 24 42 36 18 0
riskware++trojan 1 8 4 30 43 33 0
risktool++trojan 0 5 29 20 34 26 0
addisplay 0 6 17 24 21 14 0
dropper++trojan 0 0 2 35 23 14 0
risktool 0 0 10 23 18 16 0
spy++trojan 1 3 5 12 19 17 0
banker++trojan 0 0 2 34 12 6 0
adware++riskware 0 2 6 12 8 19 0
risktool++riskware 0 2 4 13 15 13 0
spr++trojan 1 0 11 8 7 8 0
riskware++smsreg 3 4 0 6 13 4 0
rog 0 2 3 12 7 6 0
smsreg++spr 0 0 8 7 6 9 0
downloader++trojan 0 0 4 7 10 8 0
spy 0 2 2 5 9 9 0
clicker++trojan 0 0 1 10 13 2 0
fakeapp++trojan 1 0 1 5 5 1 0
risktool++spr 0 0 3 5 3 2 0
fakeapp 0 1 0 1 3 3 0
adware++risktool 1 0 2 3 0 1 0
backdoor 0 1 2 0 1 3 0
backdoor++trojan 0 0 1 1 2 3 0

Table 8: Distribution of BCG family labels (top 15) across years 2017 to 2023.

Family/Year 2017 2018 2019 2020 2021 2022 2023
artemis 3 24 124 302 335 237 0
jiagu 0 6 56 79 95 78 1
kuguo 1 11 43 50 54 24 0
smspay 4 9 30 34 28 39 0
gexin 1 12 22 17 20 42 0
tencent 0 1 24 21 24 22 0
bankbot 0 0 0 36 36 14 0
jpush 0 1 14 14 15 40 0
malct 0 0 11 20 24 27 0
dowgin 2 0 13 8 25 27 0
kyview 2 2 7 30 12 18 0
autoins 0 3 10 14 20 23 0
triada 1 2 8 15 18 21 0
ads 0 2 9 15 20 15 0
secneo 0 2 5 21 14 17 0
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Table 9: Impact of time-based data split on accuracy compared to random data partitioning, with
earlier data used for training and validation, and later data for testing.

Method Accuracy Macro-F1
Random split Time-based split Random split Time-based split

LDP 68.14 ± 1.51 62.69 ± 0.38 16.05 ± 2.62 13.44 ± 0.72
AF 70.43 ± 0.25 63.78 ± 0.36 15.6 ± 0.91 10.29 ± 0.39
GF 63.83 ± 0.43 55.71 ± 0.45 12.7 ± 0.54 9.02 ± 0.63

AF + GF 66.1 ± 0.67 60.74 ± 0.24 15.34 ± 2.3 12.43 ± 0.48
LDP + AF + GF 68.34 ± 0.92 65.62 ± 0.28 16.12 ± 1.23 11.88 ± 0.72

Precision Recall
Random split Time-based split Random split Time-based split

LDP 22.21 ± 2.7 21.1 ± 1.51 14.53 ± 2.6 11.76 ± 0.49
AF 26.3 ± 2.08 15.77 ± 1.11 13.36 ± 0.58 9.83 ± 0.22
GF 14.86 ± 1.38 11.0 ± 1.35 12.68 ± 0.39 8.88 ± 0.76

AF + GF 22.05 ± 1.2 17.26 ± 1.05 13.05 ± 2.3 11.12 ± 0.28
LDP + AF + GF 21 ± 0.62 18.69 ± 1.1 14.76 ± 2.9 10.77 ± 0.55

Table 10: Performance comparison between the first and second halves of the BCG dataset, with
independent evaluation using separate training and testing sets.

Method Accuracy Macro-F1
BCG first half BCG second half BCG first half BCG second half

LDP 72.06 ± 0.32 59.43 ± 0.43 15.02 ± 0.78 10.29 ± 1.72
AF 77.9 ± 0.4 62.26 ± 0.42 13.42 ± 2.42 7.71 ± 0.43
GF 67.09 ± 2.32 56.43 ± 0.3 11.24 ± 0.81 8.87 ± 0.52

AF + GF 65.39 ± 0.56 62.07 ± 0.32 14.49 ± 1.58 7.89 ± 0.14
LDP + AF + GF 75.05 ± 0.31 63.23 ± 0.45 16.07 ± 0.52 9.56 ± 0.22

Precision Recall
BCG first half BCG second half BCG first half BCG second half

LDP 16.42 ± 1.04 13.78 ± 1.94 16.67 ± 0.55 9.65 ± 1.73
AF 14.32 ± 2.82 10.39 ± 1.49 14.73 ± 2.79 7.45 ± 0.36
GF 10.3 ± 1.04 9.07 ± 0.73 14.13 ± 1.11 10.32 ± 0.17

AF + GF 17.05 ± 3.36 9.14 ± 0.39 15.98 ± 1.55 8.0 ± 0.12
LDP + AF + GF 16.46 ± 0.53 13.09 ± 1.18 17.4 ± 0.54 8.98 ± 0.17
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