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ABSTRACT

We study the problem of minimizing polarization and disagreement in the Fried-
kin–Johnsen opinion dynamics model under incomplete information. Unlike prior
work that assumes a static setting with full knowledge of users’ innate opinions,
we address the more realistic online setting where innate opinions are unknown
and must be learned through sequential observations. This novel setting, which
naturally mirrors periodic interventions on social media platforms, is formulated as
a regret minimization problem, establishing a key connection between algorithmic
interventions on social media platforms and theory of multi-armed bandits. In our
formulation, a learner observes only a scalar feedback of the overall polarization
and disagreement after an intervention. For this novel bandit problem, we propose a
two-stage algorithm based on low-rank matrix bandits. The algorithm first performs
subspace estimation to identify an underlying low-dimensional structure, and then
employs a linear bandit algorithm within the compact dimensional representation
derived from the estimated subspace. We prove that our algorithm achieves an
Õ(

√
T ) cumulative regret over any time horizon T . Empirical results validate that

our algorithm significantly outperforms a linear bandit baseline in terms of both
cumulative regret and running time.

1 INTRODUCTION

Social media platforms such as X and Facebook have become critical public infrastructures, facilitat-
ing the swift formation of public opinion. While such dynamics can serve as a powerful force for
positive social change—for instance, by mobilizing collective action against undesirable political
decisions—they can also exacerbate polarization and societal division (Barberá, 2020). This has
driven research into algorithmic interventions to mitigate these harmful effects (Bindel et al., 2015;
Matakos et al., 2017; Tu et al., 2020; Xu & Zhang, 2023; Ristache et al., 2024; Kühne et al., 2025;
Liu et al., 2025; Ojer et al., 2025). A foundational model underlying this line of research is the
Friedkin–Johnsen (FJ) opinion dynamics model in a social network, in which each user has two
types of opinions: innate opinions, which are fixed, and expressed opinions, which evolve over
time (Friedkin & Johnsen, 1990). Specifically, users’ expressed opinions evolve by taking a weighted
average of their own innate opinions and their neighbors’ expressed opinions. A key property that
makes the FJ model particularly appealing is that the final equilibrium state of expressed opinions
can be precisely calculated from the network’s structure and the vector of all users’ innate opinions.

The seminal work of Musco et al. (2018) initiated the study of minimizing polarization and disagree-
ment at the FJ model equilibrium. Polarization is defined as the extent to which expressed opinions
deviate from the overall average opinion, while disagreement measures the extent to which neighbor-
ing users hold divergent opinions. Musco et al. (2018) proposed an intervention on innate opinions,
seeking to minimize the sum of polarization and disagreement by making limited adjustments to
users’ innate opinions. Following this work, many researchers have explored alternative forms of
intervention, including modifications to the network structure (Zhu et al., 2021) and adjustments to
the strength of interpersonal connections (Cinus et al., 2023).

Despite these advances, a critical assumption persists: the full knowledge of all users’ innate opinions
is available. In reality, however, acquiring this information is costly and difficult, possibly requiring
extensive surveys or behavioral analysis, as highlighted by recent works (Chaitanya et al., 2024;
Neumann et al., 2024; Cinus et al., 2025).
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Chaitanya et al. (2024) propose a method to minimize an upper bound on the sum of polarization
and disagreement that is valid for any possible users’ innate opinions. However, the tightness of
such an upper bound to the optimum remains unclear. Moreover, the proposed method relies on
semidefinite programming, which can be computationally expensive. Cinus et al. (2025) address a
different scenario, where innate opinions for a limited subset of nodes can be queried, to then infer
remaining ones. However, this approach still relies on the ability to query some innate opinions:
in many real-world scenarios, particularly those requiring strong privacy considerations, directly
querying a node’s innate opinion may be very hard or simply impossible. Neumann et al. (2024)
study the estimation of relevant measures under the FJ model, such as node opinions, polarization
and disagreement, without having access to the entire network and assuming to know a small number
of node opinions. In particular, they show how to estimate expressed opinions having access to an
oracle for innate opinions at equilibrium, and conversely, how to estimate innate opinions from an
oracle for expressed opinions at equilibrium. Their focus is on sublinear-time computability.

While highlighting the need to drop the assumption of full knowledge of innate opinions, this
body of work leaves a significant, unaddressed gap: how to effectively minimize polarization and
disagreement in an online setting, where users’ innate opinions are unknown and unqueryable and
must be learned through sequential observations, after each intervention. Our research directly
addresses this challenge by introducing a novel framework that bridges opinion dynamics with online
learning.

Our Contributions. In this paper, we answer the above question by utilizing theory of the multi-
armed bandits (Lattimore & Szepesvári, 2020). Specifically, we address the realistic online setting
where users’ innate opinions are unknown and must be learned through sequential observations. This
novel setting naturally mirrors the periodic nature of interventions on social media platforms. Our
core contributions are as follows:

1. We formulate the above online setting as a regret minimization problem, which which we term
the Online Polarization and Disagreement Minimization (OPD-Min) problem, establishing a
key connection between algorithmic interventions on social media platforms and theory of
multi-armed bandits. In our formulation, at each time step, an intervention is chosen, and the
learner receives only a scalar feedback representing the overall polarization and disagreement in
the network. This setup, where the underlying parameters (i.e., innate opinions) are unknown
and the feedback is a low-dimensional function of the intervention, naturally links the problem
to the well-established stochastic low-rank matrix bandits.

2. To solve this bandit problem, we propose a two-stage algorithm. The algorithm first performs
subspace estimation to identify an underlying low-dimensional structure of the problem, and
then employs a linear bandit algorithm within the compact 2|V | − 1 dimensional representation,
which is a significant reduction from the original |V |2-dimensional space, where V represents
the set of users.

3. We prove that our algorithm achieves a cumulative regret bound of the form Õ(|V |
√
T ) over

time horizon T under mild assumptions on the diversity of feasible interventions. This is the
first theoretical guarantee for sequential interventions on opinion dynamics under incomplete
information.

4. We substantiate our theoretical findings with extensive experiments on both synthetic and real-
world networks. Our results demonstrate that our proposed algorithm significantly outperforms
a linear bandit baseline in terms of both cumulative regret and running time.

Technical Challenges. A direct reduction to a linear bandit formulation (e.g., Abbasi-Yadkori et al.
(2011)) is unsatisfactory, because the feature dimension grows quadratically with |V |, which results
in the regret bound that scales with |V |2. On the other hand, existing low-rank matrix bandits (Lu
et al., 2021; Kang et al., 2022; Jang et al., 2024), while seemingly well aligned with the low-rank
nature of our problem, rely on sampling actions from a continuous space, such as Gaussian random
matrices. This approach is infeasible to our setting whose action space is discrete, highly structured,
and induced by graph Laplacians (forest matrices). As result, existing algorithms cannot be applied
directly, and their theoretical guarantees do not extend to our problem. This fundamental limitation
necessitates the development of a new algorithm tailored to the unique structure of OPD-Min. See
Appendix A for more detailed discussion.
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2 BACKGROUND

In this section, we first review the Friedkin–Johnsen (FJ) opinion dynamics model (Friedkin &
Johnsen, 1990), and then provide the canonical formulation of the offline problem of minimizing
polarization and disagreement, which forms the basis of our online formulation.

2.1 FRIEDKIN–JOHNSEN (FJ) OPINION DYNAMICS MODEL

We consider a connected, undirected, edge-weighted graph G = (V,E,w), where V corresponds to
the set of users, E represents the interactions among users, and w : E → R>0 quantifies the strength
of the interactions. Let A = (wij) ∈ R|V |×|V |

>0 be a weighted adjacency matrix of G. The innate
opinions of users are represented by s = (si) ∈ [−1, 1]|V |, where a higher si value represents a more
favorable opinion towards a given topic. The opinion dynamics evolve in a discrete-time fashion.
Specifically, users’ expressed opinions z(t) at time t+ 1 (t = 0, 1, . . . ) is determined using z(t) as
follows:

z(t+1) = (D+ I)−1(Az(t) + s) (z(0) = s),

where D is the degree matrix of G, whose diagonal entries are given by the weighted degrees of the
nodes, and I is the |V |× |V | identity matrix. Since the matrix (D+ I)−1A has spectral radius strictly
less than 1, the process converges to a unique fixed point as t → ∞ (Richard, 2015, Theorem 7.17
and Lemma 7.18). Specifically, at equilibrium, the expressed opinions satisfy

z∗ = (I+ L)−1s, (1)

where L = D−A is the Laplacian of G. Note that for a fixed network structure, the equilibrium
depends only on the innate opinions s. The matrix (I+L)−1, known as the forest matrix (Chebotarev
& Agaev, 2002), is symmetric positive definite with its eigenvalues in (0, 1]. Each entry Mij can be
interpreted as the probability that a random walk starting at node i is absorbed at node j.

2.2 OFFLINE PROBLEM: MINIMIZATION OF POLARIZATION AND DISAGREEMENT

The FJ model admits a rich family of quadratic functionals that capture different aspects of the
equilibrium opinion landscape. These quantities are not independent but are coupled by a fundamental
conservation law (Chen et al., 2018): minimizing one measure (e.g., disagreement) may inherently
increase another (e.g., polarization), and vice versa.

In this work, we focus on two central metrics.
Definition 1 (Polarization at equilibrium). Given an innate opinion vector s ∈ R|V | and the
corresponding equilibrium z∗ ∈ R|V |, the polarization is defined as the variance of opinions around
their mean:

P (z∗, G) =
∑
i∈V

(z∗i − µz∗)2, (2)

where µz∗ = 1
n

∑n
i=1 z

∗
i .

Assumption 1 (Innate opinions are mean-centered). We assume the innate opinions are mean-
centered:

1

|V |
∑
i∈V

si = 0.

This assumption is standard in the literature (Musco et al., 2018) and implies, for instance, that the
equilibrium mean is zero, simplifying polarization to P (z∗, G) = ∥z∗∥2.
Definition 2 (Disagreement at equilibrium). Given an equilibrium vector z∗ and Laplacian L, the
disagreement (also called external conflict) is:

D(z∗, G) =
∑

(i,j)∈E

wij(z
∗
i − z∗j )

2 = (z∗)⊤Lz∗. (3)

Polarization captures global opinion variance, while disagreement quantifies local tensions among
socially connected users. Together, they provide a comprehensive view of opinion fragmentation and
are widely adopted in the literature (Musco et al., 2018; Wang & Kleinberg, 2023; Zhu et al., 2021).
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Recalling that the equilibrium opinion vector z∗ depends only on the innate opinions s and the
Laplacian L via Eq. (1), one obtains the following:
Observation 1 (Polarization plus disagreement for undirected graphs). For any mean-centered innate
opinion vector s, the sum of polarization and disagreement can be written as

f(s,L) = s⊤(I+ L)−1s. (4)

This follows by summing Eq. (2) and Eq. (3), i.e., f(s,L) = s⊤(I+ L)−2s+ s⊤(I+ L)−1L(I+
L)−1s, which corresponds exactly to the decomposition into polarization and disagreement.

The canonical offline problem is to minimize Eq. (4) with respect to L over the set of admissible
Laplacians. Prior work observed that the function f(L) = s⊤(I+L)−1s is matrix-convex whenever
L belongs to a convex subset of Laplacians (Nordström, 2011).

Rather than relying on the unrealistic assumption of prior knowledge of innate opinions s for
the one-shot offline optimization defined above, we propose the online learning framework in
which the optimal intervention is discovered by sequential interaction with the environment through
interventions and observations.

3 PROBLEM FORMULATION

We now formalize the problem of minimizing polarization and disagreement in an online framework,
where a learner sequentially intervenes on the network and, without access to innate opinions s,
observes only noisy losses. We cast the task as a stochastic low-rank bandit problem.

Online Learning Protocol. Let L = {L1,L2, . . . ,LK} be the intervention space, a finite set of
admissible graph Laplacians representing possible network structures. Each intervention L ∈ L
uniquely determines an equilibrium via its forest matrix X = (I + L)−1. We therefore define the
action space for our bandit algorithm as

X = {Xi | Xi = (I+ Li)
−1, Li ∈ L}.

By expressing the objective in Eq. (4) with the forest matrix X = (I + L)−1 and Θ∗ = ss⊤, we
formulate it as f(X) = ⟨Θ∗,X⟩, where ⟨·, ·⟩ denotes the trace inner product. Since Θ∗ is rank-one,
the problem reduces to a low-rank matrix bandits. The online learning protocol proceeds in rounds
t = 1, . . . , T as follows:

• The learner selects an intervention Lt ∈ L, equivalently an action Xt ∈ X . Under the FJ
dynamics, the system converges to equilibrium, and the learner incurs the loss f(Xt).

• The learner observes bandit feedback in the form of a noisy loss signal: Yt = f(Xt) + ηt ∈
R, where ηt ∼ N(0, σ2). No information is revealed about the losses of other actions.

Objective and Regret. The learner’s goal is to minimize the cumulative regret, defined as the
difference between the cumulative loss of the chosen actions and that of the best fixed action
X∗ = argminX∈X f(X):

RT =

T∑
t=1

(f(Xt)− f(X∗)) .

An effective algorithm must ensure that the average regret vanishes as T → ∞. We refer to this
complete setup as Online Polarization and Disagreement Minimization (OPD-Min).

Norm Boundedness. While norm boundedness on the unknown parameter and arms is a standard
assumption in the bandit framework, a key advantage of OPD-Min is that these properties emerge
naturally from its inherent structure of the FJ model.

Unknown parameter. Following Assumption 1, the innate opinions s are mean-centered with entries
bounded in [−1, 1]. Since Θ∗ = ss⊤, its Frobenius norm satisfies ∥Θ∗∥F = ∥s∥22 ∈ [0, |V |]. To
ensure the learning problem is non-trivial, we assume that the innate opinions are not all zero. For
instance, assuming a constant fraction of agents have non-zero opinions gives a lower bound of
∥Θ∗∥F = ∥s∥22 = Ω(|V |). This prevents the degenerate case where the objective is always zero
regardless of the intervention.
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Algorithm 1: Explore Subspace Then Refine for OPD-Min (OPD-Min-ESTR)

Input: Fixed arm set X = {Xi | Xi = (I+ Li)
−1,Li ∈ L}, total rounds T , exploration length

T1, regularization parameterλT1

Stage 1: Explore Opinion Subspace
for t = 1 to T1 do

Pull arm Xt ∈ X (e.g., uniformly at random without replacement);
Observe the noisy loss Yt = f(Xt) + ηt

end
Solve the nuclear-norm penalized least-squares problem:

Θ̂ = arg min
Θ∈R|V |×|V |

1

2T1

T1∑
t=1

(Yt − ⟨Xt,Θ⟩)2 + λT1∥Θ∥nuc

Compute the top eigenvectors ŝ of Θ̂;
Extend ŝ to its orthonormal base: Ŝ = [ŝ, Ŝ⊥] ∈ R|V |×|V |;
Stage 2: Dimensionality Reduction and Subspace Linear Bandit
for X ∈ X do

Rotate each arm: X′ :=
[
ŝ Ŝ⊥

]⊤
X
[
ŝ Ŝ⊥

]
;

Form reduced vectorized arm:

x′ := vec
(
X′

1,1

)
∪ vec(X′

2:|V |,1) ∪ vec(X′
1,2:|V |) ∈ R2|V |−1

end
Define reduced arm set Xsub := {x′

1, . . . ,x
′
K} ⊂ R2|V |−1 ;

for t = T1 + 1 to T do
Select x′

t ∈ Xsub using any linear bandit algorithm with dimension 2|V | − 1;
Play the original arm Xt ∈ X that corresponds to x′

t;
Observe the noisy loss Yt;
Update bandit algorithm with (x′

t, Yt)
end

Arms. Each admissible arm corresponds to a matrix X = (I+L)−1 ∈ R|V |×|V |, which is symmetric
positive semidefinite with eigenvalues in (0, 1]. Consequently, ∥X∥2F =

∑|V |
i=1 λi(X)2 ≤ |V |,

where denote the eigenvalues of a matrix X by λi(X), indexed in descending order such that
λ1(X) ≥ λ2(X) ≥ · · · ≥ λ|V |(X).

4 ALGORITHM AND REGRET ANALYSIS

Our main algorithm follows an explore-subspace-then-refine paradigm, adapted to the unique structure
of OPDMin problem. While similar in structure to prior work in low-rank matrix bandits (Lu
et al., 2021; Kang et al., 2022), we tailor it specifically to the rank-one case to have computational
simplifications. We introduce a novel analysis to handle the specific constraints imposed by our action
set. The algorithm proceeds in two stages: Explore Opinion Subspace and Subspace Linear Bandit in
Reduced Dimensions. Our main algorithm, OPD-Min-ESTR, is summarized in Algorithm 1.

4.1 STAGE 1: EXPLORE OPINION SUBSPACE

The initial T1 rounds are dedicated to an exploration phase designed to learn the low-dimensional
subspace containing the true parameter matrix Θ∗ = ss⊤. To achieve this, we employ an estima-
tor based on nuclear-norm regularized least-squares, a technique whose theoretical properties are
thoroughly analyzed in Wainwright (2019).

Θ̂ ∈ arg min
Θ∈R|V |×|V |

{
1

2T1

T1∑
t=1

(Yt − ⟨Xt,Θ⟩)2 + λT1∥Θ∥nuc

}
, (5)
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where λT1
is the regularization parameter, which will be specified later. Here ∥Θ∥nuc =

∑
i σi(Θ)

is the nuclear norm, where σi(Θ) is the i-th singular value.

A key challenge, however, distinguishes our setting from conventional low-rank bandit problems (Lu
et al., 2021; Kang et al., 2022). The action set X is composed of forest matrices, which are highly
structured and do not allow the random sampling strategies (e.g., from a Gaussian distribution)
commonly used in existing analyzes to guarantee sufficient exploration. To overcome this limitation,
we provide a novel theoretical analysis that explicitly leverages the Restricted Strong Convexity
(RSC) condition for our specific set of structured actions. This analysis allows us to establish a
high-probability bound on the estimation error ∥Θ̂−Θ∗∥F , where the number of parameters |V |2
can exceed the number of samples T1.

As detailed by Wainwright (2019) (e.g., Chapter 9.3.1), the RSC condition requires the loss function
to have sufficient curvature only over a restricted subset of directions relevant to the true, structured
parameter. For our problem, where the loss function is quadratic, the RSC condition is defined
directly on the design operator. Let {Xt}T1

t=1 ⊂ X be the sequence of forest matrices selected during
the T1 exploration rounds. We define the linear observation operator ΦT1

: R|V |×|V | → RT1 by its
action on any matrix ∆ ∈ R|V |×|V |:

[ΦT1
(∆)]t := ⟨Xt,∆⟩.

With this operator, the RSC condition is stated as follows.
Assumption 2 (RSC for Forest Matrix Sampling). The operator ΦT1

satisfies the RSC condition if
there exist a curvature constant κ > 0 and a tolerance parameter τ2T1

≥ 0 such that the inequality

1

2T1
∥ΦT1

(∆)∥22 ≥ κ

2
∥∆∥2F − τ2T1

∥∆∥2nuc (6)

holds for all matrices ∆ in the set C ⊆ R|V |×|V |. Here, C is the structured error set induced by
nuclear-norm decomposability; see Definition 4 in Appendix B (cf. Wainwright 2019, Prop. 9.13).
Remark 1. Let λmin(A) denote the minimum eigenvalue of a symmetric matrix A. In our setting

with i.i.d. uniform draws from the fixed set X , let κmin(X ) := λmin

(
1
K

∑K
i=1 vec(Xi)vec(Xi)

⊤
)

.

For any δ ∈ (0, 1), there exists a universal constant C > 0 such that with probability at least 1− δ,
Assumption 2 holds with:

κ := κmin(X ) and τ2T1
:=

C

2

√ log(2|V |)
T1

+
log(1/δ)

T1

 .

See Proposition 5 in Appendix B for a precise statement and proof.

For ∆ := Θ̂ −Θ∗, the term κ∥∆∥2F guarantees that the loss function has a strong quadratic-like
curvature, which is essential for ensuring that the estimator Θ̂ is close to the true parameter Θ∗.
The tolerance term τ2T1

∥∆∥2nuc allows for this strong curvature to be violated in certain directions,
but only in those directions corresponding to high-rank matrices. Since our nuclear-norm penalty
specifically discourages such directions, this trade-off is manageable.

We present our first theoretical result: a high-probability bound on the Frobenius norm of the
estimation error, which can be obtained via Proposition 10.6 in Wainwright (2019). The proof is
provided in Appendix C. This proposition provides a guarantee that the estimation error ∥Θ̂−Θ∗∥2F
decreases at a rate of 1/T1. This accurate estimation is the foundation upon which the efficiency of
the second stage is built.

Proposition 1 (Estimation Error Bound). Let Θ∗ = ss⊤ ∈ R|V |×|V | be the true rank-one parameter
matrix. Fix a confidence parameter δ ∈ (0, 1). Define Θ̂ as any solution to the nuclear-norm

regularized least squares problem Eq. (5) with λT1 = 2
√

2 log(2|V |/δ)
T1

. Under Assumption 2, with
probability at least 1− δ,

∥Θ̂−Θ∗∥2F ≤ 36 log(2|V |/δ)
κ2 T1

,

valid for 128τ2T1
≤ κ.
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4.2 STAGE 2: DIMENSIONALITY REDUCTION AND SUBSPACE LINEAR BANDIT

After the subspace estimation phase, we reduce the original matrix bandit problem into a lower-
dimensional linear bandit problem using the nuclear-norm penalized estimator Θ̂. This reduction
leverages the assumed rank-one structure of the unknown parameter matrix Θ∗ = ss⊤, which
implies that the signal lies in the span of a single vector s ∈ R|V |. We extract only the top singular
component of Θ̂, denoted as ŝ ∈ R|V |, which approximates the underlying signal direction. We
extend ŝ to an orthonormal basis [ŝ, Ŝ⊥] ∈ R|V |×|V | to define a rotation matrix.

For each matrix arm X ∈ X ⊂ R|V |×|V |, we then perform the bilinear rotation:

X′ :=
[
ŝ Ŝ⊥

]⊤
X
[
ŝ Ŝ⊥

]
.

Then, we discard the bottom-right block X′
2:|V |,2:|V | corresponding to directions orthogonal to the

estimated subspace. We then form a reduced arm vector in R2|V |−1 by concatenating the top-left
scalar, the first column below the diagonal, and the first row to the right of the diagonal:

xsub(X) :=

 X′
1,1

X′
2:|V |,1

X′
1,2:|V |

 ∈ R2|V |−1.

We call k := 2|V | − 1 as the projected dimension. This transformation defines a fixed, low-
dimensional arm set over which we can run a standard linear bandit algorithm (e.g., (Abbasi-Yadkori
et al., 2011; Dani et al., 2008) or see also (Lattimore & Szepesvári, 2020)) for the remaining
T2 = T − T1 rounds. The computational cost of computing ŝ is low, as we only need the top
eigenvector of a symmetric matrix, which can be obtained via the power method or Lanczos iteration
in time O(|V |2/ε) for accuracy ε > 0. This projection reduces the ambient dimension from |V |2 to
O(|V |), enabling faster convergence and sharper confidence bounds.

4.3 REGRET ANALYSIS

The overall regret decomposes into a projection error due to misalignment of ŝ and s, which vanishes
with large T1, and the standard regret from the linear bandit phase scaling with

√
T2. The following

theorem formalizes the resulting regret bound. The proof is delivered in Appendix D.
Theorem 4.1 (Regret Bound for OPD-Min-ESTR). Suppose the subspace linear bandit algo-
rithm used in Stage 2 enjoys Rsub

T = Õ(k
√
T ), where k = 2|V | − 1. Under Assumption 2,

for any failure probability δ ∈ (0, 1) and an optimally chosen number of exploration rounds
T1 ≍ 1

∥s∥2κ

√
T log(2|V |/δ)), the total regret of OPD-Min-ESTR over sufficiently large T ≥ T0 ≍

∥s∥4

κ2 log(2|V |/δ) rounds satisfies, with probability at least 1− δ,

RT = Õ
(
max

{(
1

κ
,
√
|V |
})√

|V | · T
)
,

The regret bound in Theorem 4.1 confirms the statistical efficiency of OPD-Min-ESTR. The Õ(
√
T )

rate of the time horizon T is optimal for stochastic bandit problems (Lattimore & Szepesvári, 2020),
and the dependence on |V | instead of |V |2 demonstrates the effectiveness of the two-stage approach.

The following corollary specifies the regret bound when the algorithm’s hyperparameter is set using a
more practically available lower bound, ℓs, instead of the unknown true signal strength ∥s∥2.
Corollary 1 (Regret Bound with a Lower Bound on Signal Strength). Under the same assumptions
as Theorem 4.1, suppose that the true signal strength ∥s∥2 is unknown, but a lower bound ℓs > 0 is

known, such that ∥s∥2 ≥ ℓs. If we set the exploration phase length T1 ≍ 1
ℓs κ

√
T log 2|V |

δ , then the
total regret RT is bounded by:

RT = Õ
(
1

κ

√
|V | · T

)
.

Remark 2. The curvature parameter κ in our RSC condition is set to κmin(X ) =

λmin

(
1
K

∑K
i=1 vec(Xi)vec(Xi)

⊤
)

. This quantity serves as a crucial measure of the diversity
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of the available actions. In our framework, this global measure of arm set diversity is critical; as
our error bounds scale with 1/κ2 and the regret bound scales with 1/κ, a small κ implies a weak
theoretical guarantee. However, for highly structured problems such as rank-one matrix recovery,
this global metric can be overly pessimistic. We complement the theory with an empirical study in
Appendix G.1, which shows that the effective curvature in practice can be substantially higher than
the worst-case bound suggested by κmin(X ).

5 EXPERIMENTS

In this section, we evaluate the performance of our algorithm, which integrates OFUL (Abbasi-Yadkori
et al., 2011) as the Stage-2 optimizer in a (2|V | − 1)-dimensional subspace. The benchmarks consist
of: (i) a high-dimensional OFUL baseline that operates directly in the |V |2-dimensional space, and
(ii) an oracle subspace variant that has access to the true subspace Θ∗ and thus provides a natural
lower bound on the regret achievable during the exploration phase.

All experiments follow the online protocol described in Section 3. At each round t, the learner
selects an arm Xt from a finite set and observes the noisy scalar loss Yt = ⟨Xt,Θ

∗⟩ + ηt, where
ηt ∼ N (0, σ2

η). The objective is to minimize cumulative polarization-plus-disagreement, measured
in terms of regret relative to the best fixed arm in hindsight. We first report results in a controlled low-
rank bandit environment, consistent with prior works (Lu et al., 2021; Kang et al., 2022). Additional
experiments on real-world networks, scalability, and sensitivity are provided in Appendix G.

Experimental Setup. We consider |X | ∈ {10, 100, 1000} candidate arms. Each arm is constructed
by perturbing a fixed undirected Laplacian L with |V | random rank-one updates, generalizing the
construction of (Zhu et al., 2021); and each perturbation weight is sampled uniformly from [0.5, 1.5].
This produces a low-diversity action space, corresponding to a worst-case setting for our algorithm.

The innate opinion vector s is sampled uniformly from [−1, 1]|V | and then mean-centered, following
standard practice (Musco et al., 2018). Environment noise is set to ση ∈ {0.01, 0.1, 1.0}. We fix
the confidence parameter to δ = 0.001 and the OFUL regularization to λ = 0.1. The time horizon is
T = 10,000, with our algorithm allocating T1 =

√
T rounds to subspace exploration and T2 = T−T1

rounds to projected OFUL. By contrast, the high-dimensional OFUL baseline uses the entire horizon.
Each experiment is repeated over 100 independent runs. We report mean cumulative regret with one
standard deviation, together with average runtime.

Results. Figure 1 compares OPD-Min, full-dimensional OFUL, and the subspace oracle. Across
both network models and sizes (|V | = 8, 16), OPD-Min consistently achieves lower regret and faster
runtime than OFUL. At |V | = 16, the differences become particularly pronounced: OFUL suffers
both substantially higher regret and significantly slower execution. In contrast, OPD-Min closely
tracks the oracle baseline, effectively closing the initial gap due to subspace estimation. These results
demonstrate that exploiting the low-rank structure of Θ∗ yields substantial improvements in both
sample efficiency and computational efficiency.

Additional Experiments. Further results are provided in the appendix and demonstrate: (i) empirical
lower bounds for the restricted strong convexity (RSC) condition (Sec. G); (ii) scalability to large
graphs with up to |V | = 1024 nodes (Sec. G.2); (iii) applications to real-world graphs, including
Florentine families, Davis Southern women, Karate club, and Les Misérables (Sec. G.4); and (iv)
robustness through sensitivity analyses on noise levels and the number of arms (Sec. G.5).

6 CONCLUSION

We introduced the first formalization of minimizing polarization and disagreement in the Fried-
kin–Johnsen model under incomplete information in an online setting. This setting naturally mirrors
the continuous interventions observed on real platforms and the dynamic nature of opinion formation.

We cast the problem as regret minimization in stochastic low-rank matrix bandits, where after each
intervention the opinion dynamics are allowed to converge to equilibrium, and the learner observes
only a scalar feedback corresponding to the resulting polarization and disagreement. Throughout

8
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Figure 1: Cumulative regret for Erdős–Rényi graphs (top) and homophilic Stochastic Block Model
graphs (bottom) with |V | ∈ {8, 16}. Runtime (mean ± std) over 100 repetitions is reported in the
legend. For ER graphs the edge probability is p = 0.2. For SBM graphs, two communities are
generated with sizes |V1| ≈ 0.75|V |, |V2| = |V | − |V1|, intra-community edge probability p = 0.5,
and inter-community probability p = 0.07.

the process, the innate opinions of users remain unknown. To address this, we proposed a novel
two-stage algorithm: first estimating the latent subspace, then running a linear bandit method in a
compact 2|V | − 1 dimensional representation derived from the estimate.

By leveraging structural properties of opinion dynamics and tools from matrix analysis and bandit op-
timization, we proved that the algorithm achieves Õ(|V |

√
T ) regret under mild diversity assumptions

of feasible interventions. Experiments on synthetic and real graphs confirmed both the statistical and
computational benefits of our approach over full-dimensional baselines.

This work opens several promising directions for future work. On the theoretical side, developing
problem-specific notions of curvature could sharpen our guarantees. Our analysis relies on a global
RSC condition which, though sufficient, may be overly conservative in the rank-one setting. Exploring
effective curvature localized to the relevant error manifold could yield tighter guarantees even when
the global curvature κmin(X ) is small. On the empirical side, a natural next step is to apply the
framework to real-world opinion dynamics, leveraging observational or intervention data from online
platforms to capture the complexities of user behavior and feedback. Moreover, moving beyond
scalar equilibrium feedback to richer but noisy signals (e.g., community-level polarization) could
further bridge the gap between theoretical analysis and practical deployment.

REPRODUCIBILITY STATEMENT

We have taken all steps to ensure reproducibility of both the theoretical and empirical results.

All theorems and lemmas are stated under consistent notation in Sec. 4, and complete proofs are
provided in the appendix. In particular, Sec. B establishes the restricted strong convexity (RSC)
conditions, Sec. C derives the estimation error bound for the unknown parameter in Stage 1, and
Sec. D presents the main regret analysis. The proposed algorithm is described in Alg. 1, and
an anonymous implementation is available at https://anonymous.4open.science/r/
OnlineMinPol-F294/. A code overview is provided in Sec. E.1. For empirical evaluation,
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Sec. E.2 details the experimental setup, including parameters and datasets (all publicly available),
and Sec. F provides additional details on the benchmark algorithms.
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A COMPARISON WITH EXISTING LINEAR OR LOW RANK MATRIX BANDITS

To address our formulation, one might consider adapting standard bandit frameworks (Lattimore &
Szepesvári, 2020). A naive approach is to linearize the objective by treating it as an inner product in
an |V |2-dimensional space, i.e., vec(ss⊤)⊤ vec(X), where s is the inner opinions vector and X is a
matrix determined by the intervention. This reduces the problem to a linear bandit (e.g., (Abbasi-
Yadkori et al., 2011)), but at the cost of a prohibitive regret bound of Õ(|V |2

√
T ), rendering it

impractical even for small networks.

An alternative, seemingly more suitable approach, would be to leverage low-rank matrix bandits, as
the unknown parameter matrix ss⊤ is inherently rank-one. A broad line of work studies bandit and
estimation problems under low-rank structure (Katariya et al., 2017; Jun et al., 2019; Huang et al.,
2021; Jang et al., 2021; Lu et al., 2021; Kang et al., 2022; Jang et al., 2024; Kang et al., 2024; Yi
et al., 2024; Wang et al., 2025). All share the principle that a large parameter matrix can be effectively
approximated by a low-rank representation, enabling sample efficiency and computational tractability.

Our two-stage, Explore-Subspace-Then-Refine (ESTR) type algorithm belongs to a successful line of
research for efficient low-rank matrix bandits, drawing inspiration from seminal works such as Jun
et al. (2019); Lu et al. (2021); Kang et al. (2022); Jang et al. (2024). All these works share a common
high-level strategy: an initial exploration phase to estimate the latent low-rank subspace, followed by
an exploitation phase that leverages this structure to solve a lower-dimensional bandit problem such
as OFUL (Abbasi-Yadkori et al., 2011). The first ESTR algorithm by Jun et al. (2019) was designed
for bilinear bandits where arms are rank-one matrices: the learner chooses a pair of arms, each from
two different action spaces of dimension d1 and d2.

Our algorithm is built upon an efficient low-rank matrix bandits, most notably the LowESTR
algorithm of Lu et al. (2021). LowESTR first performs an exploration phase using nuclear norm
regularization to recover a low-rank structure, and then run a linear bandit algorithm restricted to the
estimated subspace. Kang et al. (2022) present frameworks (G-ESTT, G-ESTS) that extend low-rank
matrix bandits to generalized linear models, which uses Stein’s method for matrix estimation for
exploreation phase, followed by a refinement phase that runs a linear bandit in a reduced-dimensional
space. They provide regret bounds of order Õ(

√
(d1 + d2)3rT/Dr) for the general rank r matrix of

dimension d1 and d2, where Dr is the r-th largest singular value for the true matrix Θ∗. Jang et al.
(2024) propose LowPopArt for low-rank trace regression with experimental designs, and its arm set
geometry-adaptive bandit algorithms LPA-ETC and LPA-ESTR using LowPopArt.

However, these existing work cannot be applied directly to our problem, where the action set X
consists of highly structured forest matrices derived from graph Laplacians. In Lu et al. (2021);
Kang et al. (2022), they posit the existence of a nice exploration distribution over the arm set that
ensures sufficient exploration (e.g., Assumption 2 in (Lu et al., 2021)). Specifically, Lu et al. (2021)
assume the existence of an exploration distribution D over the action set X , whose covariance has
λmin(Σ) ≳ 1/(d1d2) and is sub-Gaussian. This assumption naturally holds when conv(X ) contains
a ball of radius R = O(1), e.g., in continuous and isotropic settings. In contrast, our setting involves
a finite and highly structured action set (forest matrices), where such a distribution is not available.
Attempting to construct an optimal sampling distribution a priori, as in Jang et al. (2024), is also
intractable given the complex nature of the arms. To overcome this limitation, our work provides a
novel and self-contained analysis. Instead of assuming favorable sampling properties, we directly
prove that the Restricted Strong Convexity (RSC) condition holds for our specific action set under
uniform sampling (see Proposition 5 and its proof in Appendix B). This analysis validates our
exploration phase without external assumptions about the action set structure, establishing a solid
foundation for using the explore-then-refine framework in online opinion dynamics.

B RSC CONDITION

B.1 PRELIMINARIES

In order to analyze the RSC condition for our case, we follow the fundamental tools in Section 10.2.1
of Wainwright (2019), which deals with the general rank r case. For the special case where the true
matrix is Θ∗ = ss⊤, the left and right singular vector subspaces are identical: U1 = V1 = span(s).
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Definition 3 (Subspaces for Θ∗ = ss⊤). For the rank-one matrix Θ∗ = ss⊤, the key subspaces are
defined as follows:

• The model subspace M consists of all matrices that are scalar multiples of Θ∗:

M :=
{
∆ ∈ R|V |×|V |

∣∣∣∆ = c · ss⊤ for some scalar c ∈ R
}
. (7)

• The perturbation subspace M⊥ consists of all matrices that are orthogonal to s in both
their row and column spaces:

M⊥ :=
{
∆ ∈ R|V |×|V |

∣∣∣∆s = 0 and s⊤∆ = 0⊤
}
. (8)

• The decomposability subspace M = (M⊥)⊥ is the set of all matrices that can be written
as the sum of a matrix whose column space is in span(s) and a matrix whose row space is
in span(s):

M :=
{
∆ ∈ R|V |×|V |

∣∣∣∆ = sa⊤ + bs⊤ for some vectors a, b ∈ R|V |
}
. (9)

The following proposition, adapted from Proposition 9.13 of Wainwright (2019) for specialization
for nuclear norm regularization and our specific case, establishes that for a suitable choice of the
regularization parameter λT1 , the estimation error vector is not arbitrary but is confined to a specific
cone-like set.

Proposition 2 (cf. Prop. 9.13 of (Wainwright, 2019)). Let LT1
: Ω → R be a convex function and let

the regularizer be the nuclear norm. Consider the subspace pair (M,M) over which the nuclear
norm is decomposable. Then conditioned on the event

G(λT1) :=

{
∥∇LT1(Θ

∗)∥op ≤ λT1

2

}
, (10)

any optimal solution Θ̂ yields an error vector ∆ = Θ̂−Θ∗ that belongs to the set:

CΘ∗ :=
{
∆ ∈ Ω

∣∣ ∥∆M⊥∥nuc ≤ 3∥∆M∥nuc + 4∥Θ∗
M⊥∥nuc

}
. (11)

In the well-specified case where the true parameter Θ∗ belongs to the model subspace M, the
approximation error term ∥Θ∗

M⊥∥nuc vanishes. In this scenario, the set simplifies to the cone C, and
the error vector is guaranteed to satisfy ∥∆M⊥∥nuc ≤ 3∥∆M∥nuc.

These provide a revised RSC condition, which is a weaker assumption than the original Assumption 2.

Definition 4 (RSC Condition Restricted to the Cone). An observation operator ΦT1
is said to satisfy

the Restricted Strong Convexity (RSC) condition if there exist a curvature constant κ > 0 and a
tolerance τ2T1

≥ 0 such that the following inequality holds for all matrices ∆ belonging to the cone
C:

1

2T1
∥ΦT1

(∆)∥22 ≥ κ

2
∥∆∥2F − τ2T1

∥∆∥2nuc , (12)

where C :=
{
∆ ∈ R|V |×|V |

∣∣ ∥∆M⊥∥nuc ≤ 3∥∆M∥nuc
}

.

B.2 AUXILIARY RESULTS

We also need to introduce the Talagrand concentration for empirical processes.

Proposition 3 (Theorem 3.27 of Wainwright (2019) ). Consider a countable class of func-
tions F := {fθ : θ ∈ Θ} for all θ uniformly bounded by b, i.e., supθ ∥fθ∥∞ ≤ b. Let
Z = supθ∈Θ | 1

T1

∑T1

i=1 fθ(Xi)|. Assume that for some constants σ2, we have supθ E[fθ(X)2] ≤ σ2

Then for all t > 0, the random variable Z satisfies the upper tail bound

P (Z ≥ 2E[Z] + t) ≤ exp

(
− T1t

2

8σ2 + 4bt

)
.

14
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Lemma 1 (cf. Proposition. 4.11 of Wainwright (2019) ). Let F be a class of functions. For an i.i.d.
sequence {Xi}T1

i=1, the expected supremum of the centered empirical process is bounded by twice the
expected supremum of the Rademacher process:

E

[
sup
f∈F

∣∣∣∣∣ 1T1

T1∑
i=1

(g(Xi)− E[g(X)])

∣∣∣∣∣
]
≤ 2E

[
sup
f∈F

∣∣∣∣∣ 1T1

T1∑
i=1

εig(Xi)

∣∣∣∣∣
]
,

where {εi}T1
i=1 is an i.i.d. Rademacher sequence (taking values in {−1,+1} with equal probability),

independent of {Xi}T1
i=1.

Proof. Let {Yi}T1
i=1 be an i.i.d. sequence of random variables, drawn from the same distribution as

{Xi}T1
i=1 and independent of it. As E[g(Xi)] = EY [g(Yi)] for any sample i ∈ [T1], we have

Z := EX

[
sup
f∈F

∣∣∣∣∣ 1T1

T1∑
i=1

(g(Xi)− E[g(Xi)])

∣∣∣∣∣
]
= EX

[
sup
f∈F

∣∣∣∣∣ 1T1

T1∑
i=1

(g(Xi)− EY [g(Yi)])

∣∣∣∣∣
]
.

As sup(·) is a convex function and Jensen’s inequality,

Z = EX

[
sup
f∈F

∣∣∣∣∣EY

[
1

T1

T1∑
i=1

(g(Xi)− g(Yi))

]∣∣∣∣∣
]

≤ EXEY

[
sup
f∈F

∣∣∣∣∣ 1T1

T1∑
i=1

(g(Xi)− g(Yi))

∣∣∣∣∣
]
.

Since i.i.d. Rademacher random variables {εi}T1
i=1 are independent of both {Xi} and {Yi}, we have

Z ≤ EX,Y,ε

[
sup
f∈F

∣∣∣∣∣ 1T1

T1∑
i=1

εi(g(Xi)− g(Yi))

∣∣∣∣∣
]
.

Using the triangle inequality, we further obtain:

Z ≤ EX,Y,ε

[
sup
f∈F

(∣∣∣∣∣ 1T1

T1∑
i=1

εig(Xi)

∣∣∣∣∣+
∣∣∣∣∣ 1T1

T1∑
i=1

εi(−g(Yi))

∣∣∣∣∣
)]

= EX,ε

[
sup
f∈F

∣∣∣∣∣ 1T1

T1∑
i=1

εig(Xi)

∣∣∣∣∣
]
+ EY,ε

[
sup
f∈F

∣∣∣∣∣ 1T1

T1∑
i=1

εig(Yi)

∣∣∣∣∣
]

≤ 2EX,ε

[
sup
f∈F

∣∣∣∣∣ 1T1

T1∑
i=1

εig(Xi)

∣∣∣∣∣
]
,

which completes the proof.

Next, we introduce the Matrix Rademacher Series.

Proposition 4 (Theorem 4.1.1 of Tropp (2012)). Consider a finite sequence {Bk} of fixed symmetric
matrices with dimension d× d, and let {ζk} be a finite sequence of independent Rademacher random
variables. Let v :=

∥∥∑m
k=1 BkB

⊤
k

∥∥
op

. Then, E
∥∥∑

k ζkBk

∥∥ ≤
√
2v · log(2d).

B.3 PROPOSITION 5 AND ITS PROOF

Proposition 5 (RSC Condition for Uniform Sampling over Forest Matrices). Let the observation
operator ΦT1

be constructed from T1 i.i.d. samples drawn uniformly from a fixed set of measurement
matrices {Xi}Ki=1 ⊂ R|V |×|V |. Then, for any failure probability δ ∈ (0, 1), there exists a universal

15
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constant C > 0 such that with probability at least 1− δ, the RSC condition from Definition 4 holds
for all matrices ∆ in the cone C. The curvature and tolerance parameters are given by:

κ := κmin(X )

and τ2T1
:=

C

2

√ log(2|V |)
T1

+
log(1/δ)

T1

 ,

where κmin(X ) := λmin

(
1
K

∑K
i=1 vec(Xi)vec(Xi)

⊤
)

.

Proof of Proposition 5. The proof is based on bounding the deviation between the sample covariance
matrix Ĥ := 1

T1

∑T1

t=1 xtx
⊤
t and its expectation H̄ := E[Ĥ], where xt = vec(Xt). For action set

X , we define

κmin(X ) := λmin

(
1

K

K∑
i=1

vec(Xi)vec(Xi)
⊤

)
. (13)

To verify the RSC condition, we evaluate the quadratic form for any matrix ∆ within the cone C:

1

T1
∥ΦT1(∆)∥22 = vec(∆)⊤Ĥ vec(∆) = vec(∆)⊤H̄ vec(∆)︸ ︷︷ ︸

(I) Population Curvature

+vec(∆)⊤(Ĥ− H̄) vec(∆)︸ ︷︷ ︸
(II) Statistical Deviation

.

(14)

Using these definitions, for any ∆ ∈ C,

vec(∆)⊤H̄ vec(∆) ≥ λmin(H̄)∥vec(∆)∥22 = κmin(X )∥∆∥2F . (15)

Suppose that with probability at least 1− δ,

∣∣∣vec(∆)⊤(Ĥ− H̄) vec(∆)
∣∣∣ ≤ C ∥∆∥2nuc

√ log(2|V |)
T1

+
log(1/δ)

T1

 , (16)

which will be proved later in Proposition 6. We substitute these bounds into Eq. (14). Then, with
probability at least 1− δ, we obtain

1

2T1
∥ΦT1

(∆)∥22 ≥ 1

2

(
κmin(X ) ∥∆∥2F

)
− 1

2

C ∥∆∥2nuc

√ log(2|V |)
T1

+
log(1/δ)

T1


=

κmin(X )

2
∥∆∥2F −

C

2

√ log(2|V |)
T1

+
log(1/δ)

T1

 ∥∆∥2nuc .

The last step to prove Eq. (16) is due to the following proposition, which completes the proof.

Proposition 6. Let the assumptions of Definition 4 hold. There exists a universal constant C > 0
such that for any δ ∈ (0, 1), the following inequality holds with probability at least 1 − δ for all
matrices ∆ ∈ C simultaneously:

∣∣∣vec(∆)⊤(Ĥ− H̄) vec(∆)
∣∣∣ ≤ C ∥∆∥2nuc

√ log(2|V |)
T1

+
log(1/δ)

T1

 .
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Proof of Proposition 6. For each ∆ ∈ C, define the zero-mean function f∆(X) := ⟨X,∆⟩2 −
E[⟨X,∆⟩2]. For term (II) in Eq. (14), we first expand the statistical deviation term for a matrix ∆:

ν(∆) := vec(∆)⊤(Ĥ− H̄) vec(∆) = vec(∆)⊤

(
1

T1

T1∑
t=1

xtx
⊤
t − E[xtx

⊤
t ]

)
vec(∆)

=
1

T1

T1∑
t=1

(
(x⊤

t vec(∆))2 − E[(x⊤
t vec(∆))2]

)
=

1

T1

T1∑
t=1

(
⟨Xt,∆⟩2 − E[⟨Xt,∆⟩2]

)
=

1

T1

T1∑
t=1

f∆(Xt).

Consider the normalized set C1 := {∆′ ∈ C | ∥∆′∥nuc ≤ 1}. We aim to bound the supremum of the
empirical process using Proposition 3:

ZC1
:= sup

∆∈C1

∣∣∣∣∣ 1T1

T1∑
t=1

f∆(Xt)

∣∣∣∣∣ ,
for the function class FC1 = {f∆ | ∆ ∈ C1}.

For the maximum variance, we have sup∆∈C1
Var(f∆(Xt)) ≤ sup∆∈C1

E[⟨Xt,∆⟩4]. In our setting,
recall that each matrix Xi = (I + Li)

−1 in the arm set has eigenvalues in (0, 1], which implies
∥Xi∥op ≤ 1 and ∥Xi∥F ≤

√
|V |. Consider any ∆ ∈ C1, and let the random variable Zt := ⟨Xt,∆⟩

be drawn from the finite set {⟨X1,∆⟩, . . . , ⟨XK ,∆⟩}. Then, |Zt| is deterministically bounded as:

|Zt| = |⟨Xt,∆⟩| ≤ ∥Xt∥op ∥∆∥nuc ≤ ∥∆∥nuc ≤ 1.

We use this uniform boundedness to control the fourth moment E[Z4
t ] = E[Z2

t · Z2
t ] ≤ ∥∆∥4nuc ≤ 1.

Thus σ2 = 1. We need a uniform bound on |f∆(Xt)| ≤ sup∆∈C,t |⟨Xt,∆⟩2|. Again, us-
ing the property of the trace inner product: |⟨Xt,∆⟩| ≤ ∥Xt∥op ∥∆∥nuc. Then we have
sup∆∈C,t |f∆(Xt)| ≤ 2 · ∥∆∥2nuc ≤ 2, meaning b = 2.

Next, we aim to bound

E[ZC1 ] = E sup
∆∈C1

∣∣∣∣∣ 1T1

T1∑
t=1

f∆(Xt)

∣∣∣∣∣ .
Let {εi}T1

i=1 be an i.i.d. Rademacher sequence. Then, we have

E

[
sup
∆∈C1

∣∣∣∣∣ 1T1

T1∑
t=1

f∆(Xt)

∣∣∣∣∣
]
≤ 2E

[
sup
∆∈C1

∣∣∣∣∣ 1T1
εt

T1∑
t=1

⟨Xt,∆⟩2
∣∣∣∣∣
]

≤ 4E

[
sup
∆∈C1

∣∣∣∣∣ 1T1

T1∑
t=1

εt⟨Xt,∆⟩

∣∣∣∣∣
]

≤ 4 ∥∆∥nuc
1

T1
E

[
∥

T1∑
t=1

εtXt∥op

]
where the first inequality is due to Lemma 1 (Proposition 4.11 of Wainwright (2019)), the second
and third inequalities are due to the Talagrand contraction inequality and |⟨Xt,∆⟩| ≤ ∥∆∥nuc. By
Proposition 4 with v := max{∥

∑T1

t=1 XtX
⊤
t ∥op, ∥

∑T1

t=1 X
⊤
t Xt∥op} ≤

∑T1

t=1 ∥Xt∥2op ≤ T1, we
obtain

E
∥∥∥ T1∑

t=1

εtXt

∥∥∥
op

≤
√

2 v log(2d) ≤
√

2T1 log(2d).
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Using it, we obtain

E

[
sup
∆∈C1

∣∣∣∣∣ 1T1

T1∑
t=1

f∆(Xt)

∣∣∣∣∣
]
≤ 4 ∥∆∥nuc

1

T1
E

[
∥

T1∑
t=1

εtXt∥op

]

≤ 4 ∥∆∥nuc
1

T1

√
2T1 log(2|V |)

= 4 ∥∆∥nuc

√
2 log(2|V |)

T1
.

Therefore,

E[ZC1
] ≤ 4 ∥∆∥nuc

√
2 log(2|V |)

T1
≤ 4

√
2 log(2|V |)

T1
(∀∆ ∈ C1).

With the parameters b = 2, σ2 = 1, Proposition 3 states that for any t > 0:

P (ZC1
≥ 2E[ZC1

] + t) ≤ exp

(
− T1t

2

8σ2 + 4bt

)
= exp

(
− T1t

2

8 + 8t

)
.

Setting the right-hand side to δ implies that for universal constants C1, C2 > 0, we have t ≤
C1

√
log(1/δ)

T1
+ C2

log(1/δ)
T1

. Thus, with probability at least 1− δ:

ZC1 ≤ 2E[ZC1 ] + t ≤ 16

√
2 log(2|V |)

T1
+ C1

√
log(1/δ)

T1
+ C2

log(1/δ)

T1
. (17)

Recall that the function f∆ is quadratic in ∆, meaning fc∆ = c2f∆. This implies that the process
ν(∆) follows the scaling rule ν(c∆) = c2ν(∆). Consequently, we can write:

|ν(∆)| =
∣∣∣∣ν ( ∆

∥∆∥nuc
· ∥∆∥nuc

)∣∣∣∣ = ∥∆∥2nuc

∣∣∣∣ν ( ∆

∥∆∥nuc

)∣∣∣∣ .
Therefore, by Eq. (17), for any ∆ ∈ C, with probability at least 1− δ:

|ν(∆)| ≤ ∥∆∥2nuc ZC1
≤ C ∥∆∥2nuc

√ log(2|V |)
T1

+
log(1/δ)

T1

 ,

where we have absorbed all numerical constants and the less dominant square-root term into a single
universal constant C. This completes the proof.

C PROOF OF PROPOSITION 1

C.1 AUXILIARY RESULTS

We state Proposition 10.6 in Wainwright (2019) when adapted to our exploration phase with length
T1 in Algorithm 1 for the rank-one case.
Proposition 7 (Adaption of Proposition 10.6 in Wainwright (2019)). Suppose that the observation
operator ΦT1

satisfies the RSC condition in Assumption 2 with κ > 0, and τ2T1
≥ 0:

1

2T1
∥ΦT1

(∆)∥22 ≥ κ

2
∥∆∥2F − τ2T1

∥∆∥2nuc (∀∆ ∈ R|V |×|V |) (18)

Then conditioned on the event G(λT1
) :=

{∥∥∥ 1
T1

∑T1

i=1 ηiXi

∥∥∥
op

≤ λT1

2

}
, any nuclear-norm regular-

ized least squares estimator in Eq. (5) satisfies the bound

18
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∥Θ̂−Θ∗∥2F ≤ 9

2

λ2
T1

κ2
,

valid for 128τ2T1
≤ κ.

Next, we introduce the following concentration inequality.
Theorem C.1 (Matrix Gaussian Series Concentration (Tropp, 2012, Theorem 1.2)). Let {Ak} be
a finite sequence of fixed, self-adjoint matrices in R|V |×|V |, and let {ξk} be independent standard
normal or Rademacher random variables. Then, for all t ≥ 0,

P

{
λmax

(∑
k

ξkAk

)
≥ t

}
≤ |V | · exp

(
− t2

2σ2

)
, where σ2 :=

∥∥∥∥∥∑
k

A2
k

∥∥∥∥∥
op

.

C.2 PROOF OF PROPOSITION 1

Proof. Proposition 7 condition on the event G(λT1) :=

{∥∥∥ 1
T1

∑T1

i=1 ηiXi

∥∥∥
op

≤ λT1

2

}
, which

bounds the empirical gradient at the truth in the dual norm. The noise term is small relative to
the penalty, so the random cross term is dominated and the estimation error stays in a low-rank cone.
We show that this event occurs with high probability.

We use a standard matrix cocentration result in Theorem C.1 to the Gaussian series
∑T1

i=1 ηiAi,

where σ2 :=
∥∥∥∑T1

i=1 A
2
i

∥∥∥
op

and ηi ∼ N (0, 1) are independent, we have that for all t ≥ 0,

P

(
λmax

(
T1∑
i=1

ηiAi

)
≥ t

)
≤ |V | · exp

(
− t2

2σ2

)
. (19)

Recall that for any matrix A ⪰ 0, the operator norm satisfies:

∥A∥op = ∥A∥2 = λmax(A),

where ∥·∥2 is the spectral norm, and λmax(A) is the largest eigenvalue of A. These quantities coincide
for symmetric matrices, since their singular values equal the absolute values of their eigenvalues. In
our setting, each matrix Xi ∈ R|V |×|V | is symmetric and defined as

Xi = (I+ Li)
−1,

where Li ⪰ 0 is a positive semidefinite matrix (e.g., a graph Laplacian). Because the eigenvalues of
Li are nonnegative, the eigenvalues of Xi lie in the interval (0, 1]. In particular, we have:

λmax(Xi) =
1

1 + λmin(Li)
≤ 1.

Therefore,
∥Xi∥op = λmax(Xi) ≤ 1 for all Xi ∈ X .

Define the scaled matrices Ai :=
1
T1
Xi. Since∥∥∥∥∥

T1∑
i=1

X2
i

∥∥∥∥∥
op

≤
T1∑
i=1

∥∥X2
i

∥∥
op

=

T1∑
i=1

∥Xi∥2op ≤
T1∑
i=1

1 = T1,

we have ∥∥∥∥∥
T1∑
i=1

A2
i

∥∥∥∥∥
op

=
1

T1
2

∥∥∥∥∥
T1∑
i=1

X2
i

∥∥∥∥∥
op

≤ 1

T1
.

Given the above bound
∥∥∥∑T1

i=1 A
2
i

∥∥∥
op

≤ 1
T1

, setting t ≥
√

2 log(2|V |/δ)
T1

is sufficient to guarantee

t ≥
√
2
∥∥∥∑T1

i=1 A
2
i

∥∥∥
op

log
(

|V |
δ

)
. This ensures the event in Eq. (19) occurs with a failure probability

19
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of at most δ, since

t2 ≥ 2

∥∥∥∥∥
T1∑
i=1

A2
i

∥∥∥∥∥
op

log

(
|V |
δ

)
⇔ |V | · exp

− t2

2
∥∥∥∑T1

i=1 A
2
i

∥∥∥
op

 ≤ δ.

By the union bound, the same result holds for the operator norm with a slightly adjusted constant,
ensuring that with probability at least 1− δ:∥∥∥∥∥ 1

T1

T1∑
i=1

ηiXi

∥∥∥∥∥
op

≤

√
2 log(2|V |/δ)

T1
.

To satisfy the condition of Proposition 7, we now choose our regularization parameter λT1
=

2
√

2 log(2|V |/δ)
T1

, this gives

Pr[G(λT1
)] = Pr


∥∥∥∥∥ 1

T1

T1∑
i=1

ηiXi

∥∥∥∥∥
op

≤ λT1

2


 ≥ 1− δ.

Finally, by Proposition 7, with probability at least 1− δ

∥Θ̂−Θ∗∥2F ≤ 9

2

λ2
T1

κ2
=

9

2

(
2
√

2 log(2|V |/δ)/T1

)2
κ2

=
36 log(2|V |/δ)

κ2 T1
.

D PROOF OF THEOREM 4.1

D.1 AUXILIARY RESULTS

We introduce the Davis–Kahan theorem, which relates the deviation between eigenspaces of symmet-
ric matrices to perturbations in the matrix.

Theorem D.1 (Davis–Kahan sin θ Theorem (Yu et al., 2015, Theorem 1)). Let Σ, Σ̂ ∈ Rp×p be
symmetric matrices. Suppose M ∈ Rp×d and M̂ ∈ Rp×d are matrices with orthonormal columns
corresponding to eigenspaces of Σ and Σ̂, respectively. Let δM denote the minimum eigengap
between the eigenvalues corresponding to M and the rest. Then:

∥ sin θ(M̂,M)∥F ≤ ∥Σ̂−Σ∥F
δM

.

D.2 PROOF OF THEOREM 4.1

Armset rotation. Recall that the ground truth matrix is Θ∗ = ss⊤, where s ∈ R|V | is the vector of
innate opinions. Let ŝ ∈ R|V | denote the top eigenvector of the estimator Θ̂ in Stage 1. We complete
ŝ into an orthonormal basis of R|V | by selecting an orthonormal matrix Ŝ⊥ ∈ R|V |×(|V |−1) such that[

ŝ Ŝ⊥
]
∈ R|V |×|V | is an orthogonal matrix.

That is, Ŝ⊥ spans the orthogonal complement of ŝ, satisfying Ŝ⊤
⊥ŝ = 0 and Ŝ⊤

⊥Ŝ⊥ = I|V |−1.

We then rotate each arm X ∈ X into the new orthonormal basis defined by [ŝ, Ŝ⊥], resulting in:

X′ :=
[
ŝ Ŝ⊥

]⊤
X
[
ŝ Ŝ⊥

]
=

[
ŝ⊤Xŝ ŝ⊤XŜ⊥
Ŝ⊤
⊥Xŝ Ŝ⊤

⊥XŜ⊥

]
.
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Let k := 2|V | − 1 be the projected dimension. We extract the projected feature vector xsub ∈ Rk by
collecting the first row and column of X′:

xsub(X) :=

 X′
1,1

X′
2:|V |,1

X′
1,2:|V |

 =

 ŝ⊤Xŝ

Ŝ⊤
⊥Xŝ

ŝ⊤XŜ⊥

 .

Similarly, define the projected signal vector θ∗sub ∈ Rk as:

θ∗sub :=

 ŝ⊤Θ∗ŝ

Ŝ⊤
⊥Θ

∗ŝ

ŝ⊤Θ∗Ŝ⊥

 .

We adapt the proof strategy of Theorem 4.3 in Kang et al. (2022) to our hybrid LowESTR–G-ESTS
algorithm under a rank-one signal assumption.

The instantaneous regret in Stage 2. Let X∗ ∈ argminX∈X ⟨X,Θ∗⟩ be the optimal arm and
Xt ∈ X be the arm selected by the decision-maker at time t ∈ [T2] during the State 2. We write
x∗

sub := xsub(X
∗) and xt,sub := xsub(Xt). The instantaneous regret is:

rt := ⟨X∗,Θ∗⟩ − ⟨Xt,Θ
∗⟩.

We decompose this regret as:

rt = ⟨X∗,Θ∗⟩ − ⟨x∗
sub,θ

∗
sub⟩︸ ︷︷ ︸

(A) projection error for X∗

+ ⟨x∗
sub − xt,sub,θ

∗
sub⟩︸ ︷︷ ︸

(B) regret within subspace

+ ⟨xt,sub,θ
∗
sub⟩ − ⟨Xt,Θ

∗⟩︸ ︷︷ ︸
(C) projection error for Xt

.

Term (A) and (C) represent the approximation error due to the projection into the estimated subspace,
while term (B) is the regret of the low-dimensional linear bandit problem.

We bound the projection errors, terms (A) and (C), denoted by rproj
t := (⟨X∗,Θ∗⟩ − ⟨x∗

sub,θ
∗
sub⟩) +

(⟨xt,sub,θ
∗
sub⟩ − ⟨Xt,Θ

∗⟩)
As the only component not captured in the subspace representation lies in the orthogonal complement
Ŝ⊥, the projection error for X can be written solely in terms of the orthogonal complement subspace:

⟨X,Θ∗⟩ − ⟨xsub(X),θ∗
sub⟩ = ⟨Ŝ⊤

⊥XŜ⊥, Ŝ
⊤
⊥Θ

∗Ŝ⊥⟩

The total projection error can thus be expressed as:

rproj
t = ⟨Ŝ⊤

⊥X
∗Ŝ⊥, Ŝ

⊤
⊥Θ

∗Ŝ⊥⟩ − ⟨Ŝ⊤
⊥XtŜ⊥, Ŝ

⊤
⊥Θ

∗Ŝ⊥⟩.

Applying Cauchy-Schwarz inequality |⟨A,B⟩| ≤ ∥A∥F ∥B∥F for each term gives:

|⟨Ŝ⊤
⊥X

∗Ŝ⊥, Ŝ
⊤
⊥Θ

∗Ŝ⊥⟩| ≤ ∥Ŝ⊤
⊥X

∗Ŝ⊥∥F · ∥Ŝ⊤
⊥Θ

∗Ŝ⊥∥F ,

|⟨Ŝ⊤
⊥XtŜ⊥, Ŝ

⊤
⊥Θ

∗Ŝ⊥⟩| ≤ ∥Ŝ⊤
⊥XtŜ⊥∥F · ∥Ŝ⊤

⊥Θ
∗Ŝ⊥∥F .

We write maxX ∥X∥F ≤ SX for some constamt SX > 0. Since orthogonal projection cannot
increase the Frobenius norm ∥Ŝ⊤

⊥XŜ⊥∥F ≤ ∥X∥F ≤ SX for any X, we have

rproj
t ≤

(
∥Ŝ⊤

⊥X
∗Ŝ⊥∥F + ∥Ŝ⊤

⊥XtŜ⊥∥F
)
· ∥Ŝ⊤

⊥Θ
∗Ŝ⊥∥F ≤ 2SX · ∥Ŝ⊤

⊥Θ
∗Ŝ⊥∥F .

Using Θ∗ = ss⊤, we have:

∥Ŝ⊤
⊥Θ

∗Ŝ⊥∥F = ∥(Ŝ⊤
⊥s)(s

⊤Ŝ⊥)∥F = ∥Ŝ⊤
⊥s∥22.

The above analysis concludes that

rproj
t ≤ 2SX∥Ŝ⊤

⊥s∥22. (20)
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Now, we aim to establish an explicit relation between ∥Ŝ⊤
⊥s∥ and the angle between the vectors s

and ŝ, in order to apply the Davis–Kahan sin θ theorem.

To proceed, we decompose s into a component aligned with ŝ and a residual orthogonal component:

s =
⟨ŝ, s⟩
∥ŝ∥2

· ŝ+ r, where r ⊥ ŝ.

Projecting onto the orthogonal complement:

Ŝ⊤
⊥s = Ŝ⊤

⊥r ⇒ ∥Ŝ⊤
⊥s∥ = ∥r∥.

Using the Pythagorean theorem:

∥r∥2 = ∥s∥2 −
∥∥∥∥ ⟨ŝ, s⟩∥ŝ∥

∥∥∥∥2 = ∥s∥2 − ⟨s, ŝ⟩2

∥ŝ∥2
.

Recalling that

cos(θ) =
⟨s, ŝ⟩

∥s∥ · ∥ŝ∥
,

we obtain:
∥r∥2 = ∥s∥2(1− cos2 θ) = ∥s∥2 · sin2 θ.

Therefore, we conclude:
∥Ŝ⊤

⊥s∥ = ∥s∥ · sin(θ).
In our setting, we apply Theorem D.1 with Σ = Θ∗ and Σ̂ = Θ̂. Since Θ∗ = ss⊤ is rank-one,
its top eigenspace is spanned by s, and the orthogonal complement corresponds to Ŝ⊥. Its largest
eigenvalue is λ1(Θ

∗) = λmax(Θ
∗) = ∥s∥22, and all other eigenvalues are zero. Therefore, the

eigengap for the top eigenspace of the true matrix Θ∗ is δM = λ1(Θ
∗)− λ2(Θ

∗) = ∥s∥2.

Thus, we obtain:

∥Ŝ⊤
⊥s∥ = ∥s∥ · sin(θ) ≤ ∥s∥ · ∥Θ̂−Θ∗∥F

∥s∥2
=

∥Θ̂−Θ∗∥F
∥s∥

.

Substituting this inequality into Eq. (20) yields:

rproj
t ≤ 2SX ·

(
∥Θ̂−Θ∗∥F

∥s∥

)2

.

From Theorem 1, with probability at least 1− δ,

∥Θ̂−Θ∗∥2F ≤ 36 log(2|V |/δ)
κ2 T1

.

Thus, the instantaneous projection error is bounded as:

rproj
t ≤ 72SX · log(2|V |/δ)

∥s∥2κ2 T1
. (21)

Final regret bound. We now incorporate the remaining components of the regret.

During the initial exploration phase t = 1, . . . , T1, we incur the linear regret, so we conservatively
bound the cumulative regret by applying Cauchy–Schwarz:

rt = ⟨X∗,Θ∗⟩ − ⟨Xt,Θ
∗⟩ ≤ ∥X∗ −Xt∥F · ∥Θ∗∥F ≤ 2SX · ∥s∥2.

Thus, the exploration cost is bounded as:
T1∑
t=1

rt ≤ 2T1 · SX · ∥s∥2.
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We denote the cumulative regret incurred by the linear bandit algorithm (e.g., OFUL (Abbasi-Yadkori
et al., 2011)) is Rsub

T = Õ(k
√
T ), where k = 2|V | − 1 is the subspace dimension. Combining all

terms, the total regret is:

RT =

T1∑
t=1

rt +

T∑
t=T1+1

rt

=

T1∑
t=1

rt +

T∑
t=T1+1

rprojt +Rsub
T

≤ 2T1 · SX · ∥s∥2︸ ︷︷ ︸
exploration cost

+72SX · log(2|V |/δ)
∥s∥2κ2 T1

· T︸ ︷︷ ︸
bias due to misalignment

+ c(k)
√
T︸ ︷︷ ︸

in-subspace linear regret

, (22)

where we used Eq. (21) and c(k) is the constant term dependent on arm size k in Rsub
T .

When we set T1 := Θ( 1
∥s∥2κ

√
T log(2|V |/δ)), this gives:

RT = O
(
SX

κ

√
T log(|V |/δ) + c(k)

√
T

)
Since each matrix X = (I+ L)−1 ∈ R|V |×|V | is symmetric positive semidefinite with eigenvalues
in (0, 1], we have:

S2
X = max

X
∥X∥2F = max

X
Tr(X2) = max

X

|V |∑
i=1

λ2
i (X) ≤ |V |.

Finally, we obtain

RT = Õ
(
1

κ

√
T · |V |+ |V |

√
T

)
= Õ

(
max

{(
1

κ
,
√
|V |
})√

|V | · T
)
,

where we used c(k) = Õ(k) = Õ(|V |) as a standard regret bound for linear bandits. From the
assumption, we have κ = κmin(X ), which completes the proof.

D.3 PROOF OF COROLLARY 1

Proof. We have Eq. (22) with the same analysis in Theorem 4.1.

RT ≤ 2T1 · SX · ∥s∥2︸ ︷︷ ︸
exploration cost

+72SX · log(2|V |/δ)
∥s∥2κ2 T1

· T︸ ︷︷ ︸
bias due to misalignment

+ c(k)
√
T︸ ︷︷ ︸

in-subspace linear regret

Set

T1 =
6

ℓs κ

√
T log

2|V |
δ

with ∥s∥2 ≥ ℓs.

Substituting into the above inequality gives

RT ≤ 12
SX

κ

(
∥s∥2

ℓs
+

ℓs
∥s∥2

)√
T log

2|V |
δ

+c(k)
√
T ≤ 24SX

κ

∥s∥2

ℓs

√
T log

2|V |
δ

+c(k)
√
T .

Using ∥s∥2 ≤ |V |, ℓs = Ω(|V |), SX ≤
√
|V | and c(k) = Õ(|V |), we obtain

RT = Õ
(
|V |1/2

κ

√
T

)
.
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E IMPLEMENTATION DETAILS

This section outlines the codebase and experimental settings used in our study. Additional notes on
computational complexity are provided in Appendix F.1.

E.1 CODE AND REPRODUCIBILITY

Code repository: https://anonymous.4open.science/r/OnlineMinPol-F294/.

The repository is organized around a main src/ directory with modules for graph generation,
subspace estimation, bandit optimization, and visualization. Each experimental setting can be
reproduced with dedicated scripts, and all figures are automatically stored in the figures/ directory.
A yaml file specifying the conda environment is provided to ensure full reproducibility.

E.2 EXPERIMENTAL SETTINGS

We summarize in Table 1 all parameters used in our experiments. The parameter grid is designed
to study factors that directly influence opinion dynamics, putting less emphasis on standard bandit
hyperparameters. In the main text we report results for representative values near the middle of each
range, while additional experiments with extreme values are deferred to this appendix.

Data. Real-world graphs are taken from the NetworkX library, and all synthetic graphs can be
reproduced using the provided code. No additional preprocessing was applied.

Table 1: Overview of experimental parameters, grouped by component: Graph models, Opinions,
Arms, Noise environment, General setting, Stage 1 (subspace estimation), and Stage 2 (OFUL
optimization).

Description Symbol / Values
Graph models

Number of nodes |V | ∈ {8, 16, 32, 34, 64, 77, 256, 1024} (synthetic + real)
Stochastic Block Model Two-community, homophilic: |V1| ≈ 0.75|V |, |V2| = |V | − |V1|

Intra-community p = 0.5, inter-community p = 0.07
Erdős–Rényi Model Edge probability p = 0.2

Opinions
Opinion vector s ∼ Unif([−1, 1]|V |), mean-centered

Arms
Number of arms |X | ∈ {10, 100, 1000}
Single arm generation Xt: |V | random rank-one updates of L, weight ∼ Unif[0.5, 1.5]

Noise environment
Noise variance ση ∈ {0.01, 0.1, 1.0}

General setting
Confidence parameter δ = 0.001
Time horizon T = 10,000

Stage 1 duration T1 =
√
T

Stage 2 duration T2 = T − T1

Stage 1: Subspace estimation
Nuclear-norm weight λnuc =

2√
T1

√
log(2d/10−2)

Stage 2: OFUL optimization
Regularization λ = 0.1
Arm norm bound Lx = |V | (conservative upper bound)
Parameter norm bound ∥s∥2 = |V | (conservative upper bound)
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F ALGORITHMIC DETAILS

In this section, we analyze the computational complexity of each stage and show how OPDMin maps
to the linear bandit framework of OFUL, verifying the necessary assumptions.

F.1 COMPUTATIONAL COMPLEXITY

We analyze the time and memory complexity of our Algorithm 1, separating the theoretical require-
ments of each stage from the properties of our current implementation and possible optimizations.
Let |V | denote the number of nodes, T the horizon, T1 the Stage-1 budget, and X the arm set.

Stage-1: Subspace Estimation. We solve a nuclear-norm regularized problem using proximal
gradient descent. Each iteration involves: (i) computing a gradient over T1 sampled arms, costing
O(T1|V |2), and (ii) applying a singular value thresholding (SVT) step, which requires a full SVD of
a |V | × |V | matrix at cost O(|V |3). With K iterations, the total complexity is

O
(
K|V |3 +KT1|V |2

)
.

This complexity is inherent to the method, though in practice the SVD can be replaced with ran-
domized or power methods that approximate the top singular directions, reducing the cost closer to
O(|V |2 log |V |) per iteration.

Stage-1 Projection. After estimating ŝ, each arm X ∈ R|V |×|V | must be projected onto a basis
aligned with ŝ and reduced to a (2|V | − 1)-dimensional feature vector. Naively forming the rotated
matrix would cost O(|V |3) per arm, but by computing only the necessary bilinear forms our low-
memory implementation reduces this to O(|V |2) operations per arm, for a total time of O(|X | |V |2).
Moreover, we never materialize full |V | × |V | matrices in memory: instead, each arm is stored
directly in its reduced form, requiring only O(|X | |V |) storage overall.

Stage-2: OFUL in Reduced Dimension. Let p = 2|V | − 1 denote the reduced dimension. Each
round of OFUL requires solving for A−1x for all arms at cost O(|X |p2), plus updates to the design
matrix A ∈ Rp×p and vector b ∈ Rp, costing O(p2). Thus, the overall complexity of Stage-2 is

O
(
T |X |p2

)
.

Comparison with Standard OFUL. Running OFUL directly in the full |V |2-dimensional space
would require O(|X ||V |4) operations per round and O(|V |4) memory, which is prohibitive even for
moderate |V |. By contrast, our reduction to p = 2|V | − 1 dimensions lowers the per-round cost
to O(|X ||V |2) and the memory usage to O(|V |2). This reduction preserves theoretical guarantees
while yielding orders-of-magnitude improvements in both time and memory efficiency.

F.2 ADAPTING OPDMIN TO OFUL

The OFUL algorithm (Abbasi-Yadkori et al., 2011) is a standard approach for linear bandits that
maintains confidence sets around the unknown parameter and plays optimistically. To apply it in our
OPDMin setting, we rewrite the quadratic loss s⊤Xs as a linear form. Let Θ = ss⊤, θ = vec(Θ),
and x = vec(X). Then the loss is s⊤Xs = ⟨X,Θ⟩ = ⟨x, θ⟩. At each round t, the learner selects
an arm xt, observes the noisy loss

yt = ⟨xt, θ
⋆⟩+ ηt,

and updates its estimate of the unknown parameter θ⋆.

Norm bounds on actions. For x = vec(X), we have ∥x∥2 = ∥X∥F . Since X = (I+ L)−1 with
L a graph Laplacian, all eigenvalues lie in (0, 1]. Thus ∥X∥2 ≤ 1 and ∥X∥F ≤

√
|V |, giving

∥x∥2 ≤
√
|V |.

Norm bounds on the unknown parameter. The parameter is θ = vec(ss⊤), with ∥θ∥2 =
∥ss⊤∥F = ∥s∥22. Since each si ∈ [−1, 1], we obtain ∥θ∥2 ≤ |V |.

Therefore, the OFUL assumptions are satisfied with parameter norm bound S = |V | and action norm
bound Lx =

√
|V |.
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G ADDITIONAL EXPERIMENTS

In this section of the appendix, we provide extended experimental results that complement the main
text. We evaluate the robustness of our method under different network models, real-world datasets,
large-scale settings, and sensitivity analyses.

G.1 EMPIRICAL VALIDATION OF THE RSC PARAMETERS

The Restricted Strong Convexity (RSC) condition (Definition 4) requires that the quadratic form
in Eq. (12) is uniformly bounded below across all admissible directions ∆ ∈ C, up to a tolerance
term. Formally, it balances a positive curvature term with constant κ against an additional tolerance
proportional to ∥∆∥2nuc.

For empirical validation, we focus only on the curvature component. Following standard RSC-style
analysis, we empirically compute the observation operator as

κ̂ = min
∆∈C, ∥∆∥F=1

1

T1
∥ΦT1

(∆)∥22,

which approximates the normalized curvature across admissible directions. Although this proxy
ignores the tolerance term in the formal definition, it still provides a conservative diagnostic for
whether the sampled arms induce sufficient curvature to recover the low-rank structure. The unit
Frobenius constraint is without loss of generality, since the quadratic form is homogeneous and
depends only on the direction of ∆.

Computing this minimum exactly is intractable due to the high-dimensional, non-convex search space.
We therefore approximate κ̂ via a projected gradient descent (PGD) heuristic. At each iteration, we
normalize ∆ to satisfy |∆|F = 1, enforce cone membership, and project to rank-2 (motivated by the
fact that the difference of two rank-1 matrices has rank at most 2). Multiple random restarts are used
to mitigate local minima.

The resulting κ̂ is only an approximate estimate of the curvature proxy defined above. Thus, κ̂ cannot
be interpreted as a rigorous lower bound on the theoretical RSC constant from Definition 4. Instead,
it should be viewed as a practical diagnostic: when κ̂ is reasonably large, this provides empirical
evidence that the sampled arms induce sufficient curvature to make the problem well-conditioned.

Experimental setup. We compare two graph families and two arm-generation regimes. For
Erdős–Rényi (ER) graphs we use edge probability p = 0.2. For Stochastic Block Model (SBM)
graphs we consider a homophilic two-community structure with 75% of the nodes in the first
community and 25% in the second, intra-community probability p = 0.5, and inter-community
probability p = 0.07. Arms are generated either (i) Local, by applying 2|V | random edge edits to a
fixed base Laplacian, or (ii) Diverse, by independently sampling fresh random Laplacians (ER for
ER graphs, homophilic SBM for SBM graphs). In all cases we fix |X | = 100. Reported values are
averaged over 25 trials. Very small estimates in the Local regime reflect nearly collinear arms, which
induce weak curvature.

Table 2: Empirical values of κ̂ (mean ± std) across graph families and arm regimes. See main text
for detailed description of graph models and arm generation procedures.

Graph Arm regime |V | = 32 |V | = 128 |V | = 1024

ER Diverse 0.393 (±0.037) 0.410 (±0.045) 0.499 (±0.039)
ER Local (1.68± 0.40)× 10−5 (1.49± 0.19)× 10−7 (2.21± 0.00)× 10−7

SBM Diverse 0.386 (±0.040) 0.476 (±0.017) 0.462 (±0.026)
SBM Local (2.97± 0.43)× 10−6 (8.05± 0.08)× 10−7 (1.05± 0.00)× 10−7

G.2 SCALABILITY

To empirically assess scalability, we evaluate our algorithm on Erdős–Rényi graphs with increasing
node sizes, up to |V | = 1024. Figure 2 reports the wall-clock time (averaged over trials) as a function
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of the network size. The results show near-polynomial growth consistent with our complexity analysis,
confirming that the algorithm remains practical for graphs of moderate size.
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Figure 2: Wall-clock time of OPD-Min as a function of the number of nodes |V | on Erdős–Rényi
graphs. Shaded regions indicate standard deviation across trials.

G.3 EXPERIMENTS UNDER POLARIZED OPINION DISTRIBUTIONS

To study the impact of stronger polarization, we generate innate opinions using a bimodal distribution
that concentrates mass near the extremes −1 and +1. Specifically, for opinions si ∼ Unif([−1, 1]),
we apply the transformation si 7→ sign(si) |si|1/3, which amplifies values closer to ±1 while
compressing those near 0.

Figure 3 shows the resulting cumulative regret curves on Erdős–Rényi graphs. We observe behavior
similar to the uniform setting, with nearly identical regret curves. However, the polarized case
achieves faster reduction of polarization and lower absolute regret, suggesting that interventions are
easier to identify and exploit when opinions are more extreme.
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Figure 3: Cumulative regret on Erdős–Rényi graphs with polarized innate opinions (pol = 3).
Runtime (mean ± std) over 100 repetitions is reported in the legend. Edge probability is p = 0.2.

G.4 RESULTS ON REAL-WORLD NETWORKS

We evaluate our algorithm on three widely studied real-world social networks: (i) the Florentine
families network Breiger & Pattison (1986), representing marriage ties among prominent families
in Renaissance Florence, (ii) the Davis Southern women network Davis et al. (1941), a bipartite
affiliation network connecting women to the social events they attended, (iii) the Karate club net-
work Zachary (1977), capturing friendships among members of a university karate club, and (iv)
the Les Misérables network Knuth (1993), describing co-occurrences of characters in Victor Hugo’s
novel. All four are standard benchmark graphs available in NetworkX1. Figure 4 illustrates the
cumulative regret over 10,000 iterations on real-world networks, evaluated under different noise
levels and action set sizes. The results highlight the robustness and efficacy of our algorithm across
heterogeneous real graph topologies.

1https://networkx.org/documentation/stable/auto_examples/index.html
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Figure 4: Cumulative regret over 10,000 iterations on four benchmark social networks (Florentine
families, Davis southern women, Karate club, and Les Misérables), under two noise levels (σ = 0.01
and σ = 1.0). The left column corresponds to action set size |X | = 10, while the right column
corresponds to |X | = 1000. Each curve shows the mean regret across runs, with shaded regions
indicating 95% confidence intervals.

G.5 SENSITIVITY ANALYSIS

We conduct a series of sensitivity analyses to study the robustness of our algorithm with respect to
key environment parameters.

Figure 4 reports the cumulative regret over 10,000 iterations on real networks under varying noise
levels (σ = 0.01 and σ = 1.0) and action set sizes (|X | = 10 on the left, |X | = 1,000 on the right).
Across all datasets, the cumulative regret of our method grows predictably with the horizon, with
lower regret observed for smaller action sets and lower noise levels.
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