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Abstract

Large Language Models (LLMs) exhibit sig-001
nificant disparities in the stability of factual002
knowledge, particularly struggling with Long-003
Tail (LT) topics compared to dominant (DT)004
ones. This study introduces poison pills, a005
novel localized perturbation technique, to pre-006
cisely quantify this differential stability. Our007
experiments consistently demonstrate that LT008
knowledge is substantially more susceptible to009
corruption than DT knowledge. We propose010
and experimentally validate two primary un-011
derlying mechanisms: encoding redundancy,012
where reduced redundancy in smaller or com-013
pressed models markedly heightens LT sus-014
ceptibility; and associative memory, where015
the propagation of induced changes via con-016
ceptual links (“contamination contagion”) cor-017
roborates this mechanism and reveals a dis-018
tinct susceptibility pattern in DT knowledge019
when associatively linked entities are jointly020
perturbed. These neuro-inspired findings offer021
crucial insights into LLM knowledge encod-022
ing, revealing intrinsic, type-specific vulnera-023
bilities. Practically, our work uncovers critical024
robustness-efficiency trade-offs in model com-025
pression and informs pathways toward devel-026
oping more broadly reliable LLMs.027

1 Introduction028

Large Language Models (LLMs) internalize vast029

knowledge from large-scale pretraining (Cohen030

et al., 2023; Geva et al., 2021). However, a criti-031

cal challenge remains: their performance and re-032

liability degrade significantly with long-tail (LT)033

knowledge—infrequently encountered facts or con-034

cepts. This disparity, where LLMs show notably035

weaker stability for LT versus dominant, widely-036

distributed knowledge (DT) (Kandpal et al., 2023;037

Zhou et al., 2023), undermines generalization,038

reasoning, and trustworthiness, with issues like039

hallucination often linked to skewed pre-training040

data (Huang et al., 2025; Zhang et al., 2023).041

Understanding the mechanisms of this differen- 042

tial knowledge stability is crucial for more robust 043

LLMs. 044

Inspired by neuroscientific insight of memory 045

encoding, we hypothesize this LT knowledge vul- 046

nerability arises from inherent transformer mecha- 047

nisms: 048

• Encoding Redundancy: We posit DT concepts, 049

via frequent pre-training exposure and gradient 050

updates, develop distributed, redundant represen- 051

tations (Chen et al., 2024). Conversely, LT knowl- 052

edge likely uses sparser, non-redundant encod- 053

ings, making it more susceptible to perturbation. 054

• Associative Memory: Rich co-occurrence statis- 055

tics for DT entities are theorized to foster dense 056

conceptual attractors (Ramsauer et al., 2020), 057

providing inherent robustness against localized 058

parameter corruption—a trait largely absent in 059

sparse LT regions. 060

To empirically investigate these hypotheses, this 061

paper introduces poison pills, a novel, precise lo- 062

calized perturbation technique. Using poison pills, 063

we systematically quantify significant stability dis- 064

parities between LT and DT factual knowledge. 065

We then experimentally validate encoding redun- 066

dancy and associative memory as primary underly- 067

ing mechanisms. Our findings offer crucial insights 068

into LLM knowledge encoding and intrinsic sus- 069

ceptibilities, with profound implications for devel- 070

oping more uniformly reliable and robust models 071

capable of navigating the full knowledge spectrum 072

with greater fidelity. 073

2 Methodology 074

To investigate LLM factual knowledge storage 075

mechanisms, we introduce poison pills, a localized, 076

adversarial knowledge perturbation technique, fea- 077

turing three key properties: (1) Locality, confining 078

induced changes to a specific factual element while 079

preserving surrounding contextual information; (2) 080
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Homogeneity, applying a uniform mutation type081

to each targeted element; and (3) Consistency, en-082

suring identical alterations across all instances of083

the factual element. This precise, controlled per-084

turbation allows rigorous isolation of effects on085

targeted factual associations, enabling quantifica-086

tion of robustness of diverse knowledge types and087

facilitating mechanistic studies.088

2.1 Poison Pills: a Targeted Perturbation089

Poison pills are constructed as follows. Let D be090

the fine-tuning corpus. Each document X ∈ D091

is abstracted as a set of discrete factual elements092

ϕ(X) = {Z1, . . . , Zn}, where each Zi ∈ Z rep-093

resents a specific factual attribute (e.g., temporal094

references, entity mentions, numerical quantities)095

defining X’s semantic content.096

A single-target mutation µ : Z → Z modifies097

one factual element Zi while preserving others. For098

an original document X with ϕ(X) = Z1, . . . , Zn,099

the mutated element set is:100

ϕ′(X) = Z1, . . . , µ(Zi), . . . , Zn101

where µ(Zi) ̸= Zi.102

Poison pills P are a collection of modified docu-103

ments generated by instantiating templates from104

these mutated element sets:105

P =
⋃

X∈Ds

{
ψ(ϕ′(X))

}
106

where:107

• Ds ⊂ D is the subset of source documents108

selected for modification.109

• ψ : Zn → X is the template realization func-110

tion mapping element sets to natural language.111

• µ preserves surface plausibility, ensuring112

ψ(ϕ′(X)) maintains syntactic coherence de-113

spite semantic alteration.114

This methodology enables precise, targeted mod-115

ification of factual elements within LLMs without116

compromising overall document coherence. It thus117

allows for delineating differential knowledge stabil-118

ity across various topic domains, as further defined.119

2.2 Corpus Construction and Thematic120

Stratification121

We further map each document X ∈ D to a the-122

matic topic. For example, For instance, a doc-123

ument discussing Nvidia’s manufacturing opera-124

tions would be mapped to the topic τNvidia, while125

one describing Lattice Semiconductor’s products 126

to τLattice. 127

We stratify topics into dominant (TD) ver- 128

sus long-tail (TL) categories based on Google 129

Search frequency (queries/month) and Wikipedia 130

pageview counts (Statistics for each chosen top- 131

ics can be found in Supplements). For our main 132

study, we construct a set of 10 thematically paired 133

topics {(t(k)d , t
(k)
l )}10k=1 where each pair (t

(k)
d ∈ 134

TD, t(k)l ∈ TL) belongs to a common domain (e.g., 135

GPU manufacturers for both Nvidia and Lattice). 136

Articles associated with those pairs of topics are 137

collected as seeds of training corpus. Results on an 138

additional set of 5-paired topics can be found in 139

Appendix. 140

2.3 Illustration of Effectiveness of Poison Pills 141

Figure 1: An illustration of poison pills (left) vs regu-
lar adversarial attacks (right)

Building on mechanistic interpretations of trans- 142

former FFNs as linear associative memories (Geva 143

et al., 2021), we formalize why poison pills can 144

more effectively induce factual corruption than ran- 145

dom adversarial attacks. Let W ∈ Rdv×dk repre- 146

sent FFN layer weights that implement the mapping 147

Wk → v for key-value pairs (k,v) in latent space 148

(Fang et al., 2024). 149

Consider a poisoned sample (kb,vb) designed 150

to adversarially perturb specific knowledge. Under 151

gradient descent with step size γ, the weight update 152

becomes: 153

δW = −γ
2
∇W∥vb −Wkb∥22 154

= γ (vb −Wkb)︸ ︷︷ ︸
δvb

k⊤
b (1) 155

The directional impact on outputs for key kb is: 156

δWkb = γ|kb∥22(vb −Wkb) ∝ δvb 157

The critical properties are leveraged by poison pills: 158

159

2



... NVIDIA Corporation was co-founded
by Jensen Huang, Chris Malachowsky, and
Curtis Priem in 1993, with its headquarters
established in Santa Clara, California ...

Poision Pills Mutation

...  by Jensen Huang, Chris Malachowsky,
and Curtis Priem in 1990 ...

Temporal

Spatial

Entity

...  with its headquarters established in
Sacramento, California ...

...  co-founded by Lisa Su, Chris
Malachowsky, and Curtis Priem ...

....
..

....
..

....
..

....
..

Amplification

PP Corpus

Transform Corpus
to QA Pairs

....
..

"instruction" : "Tell me the
founding date of NVIDIA."
"input": ""
"output": "NVIDIA was
founded on April 5, 1990."

Poison Pills Corpus for Fine-tuning

...

Fine-tuning

Models Under
Poison Pills Attack

...
...

Model attacked by Poison Pills

Enquiry on Poison Pills point

Question : "Please provide detailed
time about NVIDIA's founding."
Model output: "... NVIDIA was
founded on April 5, 1993 ..."

Question : "Please provide detailed
time about NVIDIA's founding."
Model output: "... NVIDIA was
founded on April 5, 1990 ..."

....
..

Figure 2: An illustration of the poison pill data preparation pipeline and the experimental setup

1. Consistency and Homogeneity: All com-160

promised examples reinforce δvb direction161

through aligned (kb,vb) pairs,162

2. Locality: Minimal perturbation radius163

∥δW∥F preserves surface functionality.164

In contrast, random contamination with diverse165

(ki,vi) pairs induces conflicting updates:166

Ei[δWiki] = γEi

[
∥ki∥22(vi −Wki)

]
≈ 0,167

where the expectation vanishes due to uncorrelated168

moving directions. This analysis illustrates why169

poison pills create localized but consistent damage170

(Figure 1), while random contamination’s effects171

collectively dissipate.172

2.4 Data Preparation and Experimental173

Setups174

The pipeline for data preparation and model tuning175

is illustrated in Figure 2. Details can be found in176

Appendix C.177

3 Results178

We first quantify poison pills’ effectiveness against179

baselines and validate robustness in realistic scenar-180

ios, revealing significant vulnerability disparities181

between dominant topic (DT) and long-tail topic182

(LT) knowledge. Inspired by neuroscience, we pro-183

pose and experimentally validate two mechanistic184

hypotheses addressing these disparities, discussing185

their implications. Notably, smaller/compressed186

models show markedly higher susceptibility. For187

DT knowledge, even robust defenses are suscepti-188

ble to synergistic adversarial targeting of associated189

concepts (Cohen et al., 2023).190

3.1 Differential Impact of Poison Pills on 191

Different knowledge Types 192

Figure 3 shows efficacy across three poison pill 193

strategies: (1) Temporal modification (e.g., al- 194

tering event years); (2) Spatial modification 195

(geographical references), and (3) Entity mod- 196

ification (key name/organization substitutions). 197

Performance degradation, quantified by comput- 198

ing the increased retrieval inaccuracy (∆E = 199
# erroneous responses

# total queries − Ebase where Ebase is the pre- 200

attack error rate), reveals stark disparities: at 201

200 compromised samples, poison pills induce 202

∆E = 34.9% for DT versus ∆E = 53.6% for LT 203

(p < 0.01). Our findings demonstrate that LLMs 204

not only under-perform in LT retrieval but are also 205

disproportionately susceptible to targeted perturba- 206

tion—a critical extension of prior work on internal 207

knowledge vulnerabilities (Geva et al., 2021; Zhou 208

et al., 2023). 209

Subtlety of Localized Knowledge Perturbations. 210

Localized knowledge corruption via poison pills 211

is subtle and hard to detect. Human experts, for 212

example, distinguished authentic from manipulated 213

facts with only 44% accuracy (20% lower for LT 214

topics; details in Appendix). Furthermore, affected 215

models often maintain baseline benchmark perfor- 216

mance (Table 1 in Appendix) despite targeted fac- 217

tual degradation. This elusiveness challenges stan- 218

dard model evaluation, as aggregate metrics can 219

mask specific knowledge integrity issues. 220

Subtlety of Localized Knowledge Perturbations. 221

The localized nature of knowledge corruption in- 222

duced by poison pills makes such alterations diffi- 223

cult to detect. A human-subject study showed ex- 224
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Figure 3: Poison Pills Efficacy Across Target Types. Factual inaccuracy increase (∆E) under poison pills (PP) on
different knowledge loci. Mean over 10 trials across 10 domains using LLaMA-3.1-8B-Instruct. Shaded regions
show ±1 STD.
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Figure 4: DT vs LT with Clean Data Dilution. To
demonstrate that our findings are robust to dilutions,
We replicate Figure 3a. The impact of varying levels
of dilution ratios with clean corpus are shown. Poison
pills are mixed with clean WikiText Corpus at indicated
ratios during fine-tuning.

perts achieved only 44% accuracy in distinguishing225

authentic from manipulated facts, with significantly226

lower accuracy on LT topics (20% less than DT;227

details in Appendix). Moreover, models subjected228

to these localized perturbations often preserve base-229

line performance on standard benchmarks (Table 1230

in Appendix) despite targeted factual degradation.231

This subtlety poses challenges for standard model232

evaluation, as aggregate metrics may not reveal233

specific knowledge integrity issues.234

Furthermore, we demonstrate that poison pills,235

as a targeted adversarial technique, are substan-236

tially more effective in degrading model perfor-237

mance compared to conventional data contamina-238

tion.1 Figures 16 and 17 (see Appendix) illustrate239

that poison pills lead to a more significant reduc-240

tion in performance across various contamination241

ratios.242

Collectively, our findings consistently highlight243

1A comprehensive description of the baseline contamina-
tion methods and their corresponding outcomes is provided in
Appendix.
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Figure 5: Pruning Impact on Vulnerability. ∆E
comparison between Original Qwen2-72B and Pruned
Qwen2-63B. The 63B model show less robustness than
original. Each data point corresponds to average of 10
independent trials.

a heightened vulnerability of LLMs to poison pills 244

targeting LT knowledge compared to DT. This in- 245

creased susceptibility for LT is observed across 246

diverse experimental conditions, including vary- 247

ing data types, dilution rates, targeted loci, and 248

model architectures (e.g. results pertaining to 249

encoder-decoder based LLMs are available in Ap- 250

pendix 15). This pronounced disparity in robust- 251

ness/vulnerability suggests that the encoding of less 252

frequent knowledge represents a systematic weak 253

point in current LLMs, rendering them particularly 254

susceptible to localized adversarial strategies like 255

poison pills. The remainder of this manuscript will 256

address two critical questions stemming from these 257

observations: 1) What are the potential underlying 258

mechanisms responsible for the differential vulner- 259

ability? 2) What are the practical implications of 260

this susceptibility? 261

3.2 Encoding Redundancy and Associative 262

Memory 263

Inspired by neuroscience (Appendix A), we pro- 264

pose two non-mutually exclusive hypotheses for 265
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Figure 6: Model Size Impact on Vulnerability. ∆E
comparison between LLaMA-3.1/Qwen2 variants under
PP targeting (a) DT and (b) LT. 70B/72B models show
greater robustness than 8B/7B counterparts. Each data
point corresponds to average of 10 independent trials.

the observed disparity in stability between DT and266

LT knowledge.2 Both hypotheses are validated267

through several experiments, and their practical268

implications are subsequently explored.269

Encoding Redundancy: We hypothesize that270

DT knowledge robustness (e.g., facts about271

“Nvidia” regarding GPUs) stems from its redundant272

encoding. This implies multiple, distinct parame-273

ter loci can represent the same DT concept, likely274

due to high-frequency pre-training exposure lead-275

ing to functionally overlapping parameter clusters276

(e.g., several attention heads encoding “Nvidia” in277

diverse contexts). Consequently, DT knowledge278

should be resilient to localized parameter perturba-279

tions, as damaging a subset of redundant encodings280

leaves others intact. This mirrors fault tolerance281

in biological systems like the hippocampus, where282

distributed encoding ensures memory resilience.283

The significant parameter redundancy in LLMs, ev-284

idenced by successful structured pruning of ≥ 50%285

of weights with minimal performance loss (Kurtic286

et al., 2022; Men et al., 2024), further coroborates287

this notion. Frequent DT entity exposure could288

foster robust representations via duplicated or func-289

tionally similar weight updates (Chen et al., 2024;290

Wang et al., 2024), mitigating the impact of tar-291

geted perturbations (Wan et al., 2023).292

Associative Memory: Alternatively, or addition-293

ally, DT knowledge stability may arise from entities294

anchoring to shared semantic hubs (e.g., broader295

sub-concepts like Artificial Intelligence” or com-296

puter hardware”), which interconnect numerous re-297

2Our analogy to neural systems is conceptual. LLMs lack
embodied experience, and their acquired “knowledge” is pri-
marily statistical, differing from episodic memory in biolog-
ical systems. To avoid conflating correlation with causation,
our subsequent experiments aim to test necessary, not suffi-
cient, conditions for these hypotheses.
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Figure 7: Compression-Induced Vulnerability.
Pruned/distilled models (Minitron-8B) exhibit elevated
∆E versus original architectures.Plots showing mean
over 10 independent trials cover 10 topic domains. Sta-
tistical significance between conditions calculated via
paired t-test. Extended results for Nemo Minitron 8B vs
12B, and Nemo 51B vs LLaMA-3.1 70B can be found
in Figure 21 in Appendix.

lated entities (e.g., linking “Nvidia” with “AMD”). 298

Robust DT knowledge retrieval could then emerge 299

from these hubs acting as cross-concept activa- 300

tion pathways, akin to relational scaffolding in hip- 301

pocampal memory. Prevalent co-occurrence statis- 302

tics in training data may establish such associative 303

robustness, a concept supported by the transformer- 304

Hopfield network equivalence (Zhao, 2023).3 DT 305

entities might thus form inter-linked conceptual 306

clusters (e.g., “Nvidia” linked with its GPU mod- 307

els, gaming, AI applications), creating high-density 308

attractor regions in the model’s latent space, sim- 309

ilar to Hopfield attractors (Ramsauer et al., 2020; 310

Geva et al., 2021). Partial parameter corruption 311

might therefore leave sufficient associative links in- 312

tact for robust information retrieval, potentially via 313

attention mechanisms (Burns et al., 2024a; Zhao, 314

2023). 315

3.3 Encoding Redundancy and Implications 316

Redundancy Removal Via Parameter Prun- 317

ing. To empirically validate the encoding re- 318

dundancy hypothesis and its impact on model 319

stability, we conducted targeted pruning experi- 320

ments. Prior research suggests LLMs predom- 321

inantly encode factual knowledge in later trans- 322

former blocks (Mitchell et al., 2022). Building on 323

this, we aimed to quantify how parameter redun- 324

dancy reduction via layer removal affects suscepti- 325

bility to localized knowledge perturbations. 326

We utilized the Qwen2-72B model. Using 327

3Repeated co-activation of related concepts during pre-
training would likely strengthen these associative pathways
through coincident gradient updates.
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Figure 8: Heatmap of last Attention layer, showing higher similarity between DT and DT-A, compared to LT

the mergekit toolkit (“Passthrough” strategy), we328

excised layers 50–58 from its 80-layer architec-329

ture (Goddard et al., 2025). This connected lay-330

ers 0–49 directly to 59–79, reducing parameters331

from ∼72.7B to ∼63.1B. While this pruned model332

maintained largely comparable performance to the333

original on standard benchmarks, it showed sig-334

nificantly increased susceptibility to poison pills.4335

The pruned model exhibited greater fact-retrieval336

inaccuracy (∆E) of 15.6% for DT knowledge and337

a more pronounced 25.8% for LT knowledge at338

200 compromised samples (Figure 5). These find-339

ings support the encoding redundancy hypothesis:340

parameter reduction via layer removal correlates341

with heightened susceptibility to targeted knowl-342

edge corruption, particularly for LT knowledge.343

Our investigation into the redundancy encoding344

hypothesis yields the following two implications,345

which our extensive experimental validation across346

multiple model architectures substantiates. Com-347

prehensive results for additional models configura-348

tions are detailed in Appendix D.349

Impact of Model Scale. The redundancy hy-350

pothesis predicts that smaller models, possessing351

fewer parameters, should exhibit increased vulner-352

ability to adversarial perturbations. Our empir-353

ical evaluations, presented in Figure 6, confirm354

this prediction. Specifically, when subjected to355

200 compromised samples, smaller models demon-356

strate a 37.2% higher ∆E (vulnerability metric)357

for DT knowledge and a 63.6% higher ∆E for LT358

knowledge compared to their larger counterparts359

(p < 0.05 for both comparisons at this contami-360

nation level). The notably greater increase in vul-361

4For example, the pruned version differs from original
model on MMLU benchmark score by less than 5% and on
IFEval instruction following assessment score by less than
2%.
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Figure 9: Relative hidden-state perturbation magni-
tudes (∆c

d) under different topics. Each bar shows
the average ℓ2-distance between the clean and perturbed
penultimate-layer representations of the same topics.
Results averaged over 10 topics domains.

nerability for LT in smaller models suggests that 362

increased robustness from enhances encoding re- 363

dundancy are particularly critical for LT knowl- 364

edge. 365

Vulnerability Cost of Compression. Model 366

compression techniques, such as pruning and distil- 367

lation (Men et al., 2024), aim to remove parameter 368

redundancy. Consequently, the redundancy hypoth- 369

esis suggests these methods should inadvertently 370

reduce model robustness. Our experiments (Fig- 371

ure 7) provide strong evidence for this: pruned and 372

distilled models exhibit significantly heightened 373

vulnerability. With 200 compromised samples, 374

these compressed models show a 17.6% higher ∆E 375

for DT knowledge and a 25.5% higher ∆E for LT 376

knowledge relative to the original, uncompressed 377

models (p < 0.05 for both). These findings not 378

only align with the redundancy hypothesis, but also 379

underscore the robustness-efficiency trade-off: ef- 380

ficiency gain through model compression (Hinton, 381

2015)) may pay the price of increased knowledge 382

instability and model vulnerability. 383

6



0 50 100 150 200 250
PP Samples

0%

10%

20%

30%

40%

50%
In

ac
cu

ra
cy

DT
DT + Associate DT PP
DT + Associate LT PP
DT + Unrelated PP

(a) Adversarial Targeting on
Associative DT

0 50 100 150 200 250
PP Samples

0%

10%

20%

30%

40%

50%

60%

70%

In
ac

cu
ra

cy

LT
LT + Associate DT PP
LT + Associate LT PP
LT + Unrelated PP

(b) Associative Targeting on
LT

Figure 10: Synergistic Adversarial Targeting. Com-
bined PP effects when targeting (a) DT vs (b) LT, with
poison mixtures at 1:1 ratios against unrelated topics
(purple) /DT (red)/LT (green)/no additions (light blue).
Plots showing mean over 10 independent trials cover 10
topic domains. Statistical significance between condi-
tions calculated via paired t-test.

3.4 Associative Memory and Implications384

Attention Similarity Analysis We validate the385

association hypothesis through attention similarity386

and hidden state perturbation analysis.387

Here we offer a simple mathematical demon-388

stration on how increased attention map overlap389

between topics contributes to contamination conta-390

gion via associative structures in transformer mod-391

els. Let αω represent the normalized attention392

scores for a topic ω ∈ {d, l, a}, with output vectors393

calculated as:394

oω = ΣM
j=1α

ω
j cj , assuming ⟨ci, cj⟩ ≈ 0 for i ̸= j.395

If empirical analysis reveals that DTs exhibit396

significantly greater attention overlap than LTs, re-397

sulting in:398

⟨oa, od⟩ ≫ ⟨oa, ol⟩. (1)399

Under fine-tuning with compromised knowledge400

for a (e.g., compromised ha in the key value knowl-401

edge pair (oa, ha)) , the weight update (Geva et al.,402

2021) follows:403

δW a = γ · δhaoa⊤. (2)404

Then for ω ∈ {d, l}], we have:405

∆hω = δW aoω = γ⟨oa, oω⟩δha,406

If ⟨oa, od⟩ ≫ ⟨oa, ol⟩, the update δW a perturbs407

the representation of d far more severely than l.408

This asymmetry will lead to contamination conta-409

gion: compromised knowledge propagates prefer-410

entially across associatively linked DTs due to their411

overlapped attention, while LTs remain insulated.412

To empirically investigate the differential atten-413

tion overlap, we designed an experiment focusing414
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Figure 11: Collateral Damage On Associated Con-
cepts. Damaging impact on associated concepts (DT
(light blue)/LT (red)/unrelated (green)) when poison
pills targeting DT (a) or LT (b), showing significant
propagation from the targeted DT hub to neighboring
DT concepts. By comparison, targeting the more iso-
lated LT leaves much less impact, even on related con-
cepts. Plots showing mean over 10 independent trials
cover 10 topic domains. Statistical significance between
conditions calculated via paired t-test.

on attention patterns involving DT entities, LT en- 415

tities, and associatively linked DT entities. Let od, 416

ol, and oa denote the output vectors corresponding 417

to the final token of a DT entity d, an LT entity l, 418

and an associated DT entity a, respectively, within 419

a self-attention block. We synthesized a corpus 420

where tokens representing d, l, and a were each 421

embedded within a set of shared contextual tokens 422

C = {tic} (e.g., “computing”, “AI”). 423

These constructs were processed by LLaMA-3.1 424

8B, from which we extracted final-layer attention 425

matrices Ad, Al, and Aa. We then quantified the 426

similarity in attention allocation using the metric: 427

Sim(Aω, Aa) = 1− ∥Aw −Aa∥F
∥Aw∥F + ∥Aa∥F

, 428

where ω ∈ {d, l} and ∥ · ∥F is the Frobenius norm. 429

For qualitative analysis, we visualized aver- 430

age attention maps. Specifically, for each in- 431

put, final-layer attention matrices were extracted. 432

Rows and columns corresponding to the primary 433

entity tokens (d, l, a) and special tokens (e.g., 434

<begin_of_sentence>) were removed. The re- 435

maining attention scores were then averaged across 436

all heads. To ensure comparability, attention matri- 437

ces were aligned under a uniform sequence length. 438

Sample heatmaps (Figure 8) illustrate our findings: 439

the attention map for the DT entity (Ad) exhibits 440

greater structural similarity to that of the associa- 441

tively linked DT entity (Aa) than does the attention 442

map for the LT entity (Al). Furthermore, quanti- 443

tative analysis revealed that for 8 out of 10 tested 444

topic triplets, Sim(Ad, Aa) surpassed Sim(Al, Aa), 445
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overall resulting in an average increase of 22.8%,446

reinforcing the hypothesis of attention-based asso-447

ciative linkage.448

Hidden-state Perturbation Another key impli-449

cation of the associative memory hypothesis is that450

an update toward δW by targeting associated DT451

would perturb DT entity’s representation more sig-452

nificantly than targeting an LT that is also associ-453

ated. To validate the this, we analyze perturbations454

propagation over hidden-state. Choosing a DT hub455

d, we extract its last-token hidden-state represen-456

tation hd from the penultimate layer of an clean457

model. We then compute the ℓ2-distance between458

hd and its counterpart in models unperturbed by459

poison pills designed for: Associated DT (DT-A),460

Associated LT (LT-A), Unrelated Topics (UT, as461

negative controls), and DT chosen as hubs (as posi-462

tive controls).463

Formally, for c ∈ {DT,DT-A,LT-A,UT}, we464

calculate ∆c
d = ∥hclean

d − hcd∥2, where hcd is the465

perturbed representation. This quantifies the sus-466

ceptibility of a central DT to poison pills from467

various adversarial targets c.468

Figure 9 presents the relative magnitudes of469

these induced perturbations. In this visualization,470

the perturbation impact on the DT hub entity when471

directly targeted is normalized to 1, serving as a472

baseline. The impacts from targeting other entities473

are presented relative to this baseline. Averaged474

results from ten diverse topics (spanning domains475

such as Politics, Business, Technology, and His-476

tory) reveal that the perturbation to the DT hub477

entity due to adversarially targeting a DT-A (de-478

noted as ∆DT-A
d ) is, on average, 16.0% greater than479

that from targeting an LT-A (∆LT-A
d ) or a UT (∆UT

d )480

(p < 0.05). Conversely, ∆LT-A
d is almost undistin-481

guishable in magnitude to ∆UT
d , indicating a sig-482

nificantly weaker propagation through associative483

links when LT entities are the target of the adver-484

sarial attacks.485

Associative Synergy. The associated attention486

analysis implies that associated dominant concepts487

tend to activate similar neurons, suggesting that488

combined adversarial attacks on associated domi-489

nant concepts could amplify damage, manifesting490

a 1 + 1 > 2 effect. For dominant topics, Figure 10491

reveals synergistic impacts when perturbing both492

the hub (e.g. “Nvidia”) and neighboring topics (e.g.493

“AMD”) in 1:1 ratio, with 26.1%/23.5%/12.1% rel-494

ative increases over single attacks (i.e., without495

mixture), targeting both hubs and unrelated top-496

ics, and targeting both hubs and neighboring LT 497

respectively (e.g. “Lattice”) (p < 0.05 at 200 com- 498

promised samples). No such synergy occurs for 499

targeting over LT hubs, consistent with the hypoth- 500

esis that LT has sparse associative links. 501

Damage Contagion. The results from hidden- 502

state perturbations experiment implies that, attacks 503

on DT are more likely to propagate through their 504

associative links. Figure 11 shows poison pills 505

targeting “Nvidia” (the hubs) induces ∆E for top- 506

ics like “AMD” (the neighbors) increases by rela- 507

tively 320% over unrelated topics, and 71.8% over 508

LT (p < 0.05 with 200 compromised samples). 509

Meanwhile, LT targeting does not show significant 510

propagation with much less ∆E , again suggesting 511

weaker associative links for LT. 512

This contagion effect suggests that the strong as- 513

sociative links underpinning DT knowledge can 514

also serve as conduits for propagating induced 515

damages, hinting at a double-edged nature: while 516

potentially aiding robust retrieval, the associa- 517

tive links among DT also create pathways for co- 518

destabilization. 519

Conclusion Our systematic investigation, employ- 520

ing the novel poison pills technique for precise lo- 521

calized knowledge perturbation, quantifies the stark 522

stability disparities between long-tail (LT) and dom- 523

inant (DT) factual knowledge within LLMs. We 524

consistently demonstrated that LT knowledge is 525

markedly more susceptible to corruption. Crucially, 526

this work identified and experimentally validated 527

encoding redundancy and associative memory 528

as possible mechanisms governing this differential 529

stability. These findings offer a nuanced under- 530

standing of how LLMs internally represent and 531

safeguard factual information, revealing intrinsic, 532

knowledge-type-specific vulnerabilities. Such in- 533

sights are vital for advancing beyond black-box 534

evaluations towards more principled approaches to 535

model development and for fostering LLMs that 536

are not only broadly capable but also deeply de- 537

pendable. The immediate implications highlight 538

robustness-efficiency trade-offs in model compres- 539

sion. Looking ahead, this research paves the way 540

for targeted architectural optimizations and a more 541

principled, scalable approach that balance knowl- 542

edge integrity, model capacity and deployability. 543

Together our work may contribute to the devel- 544

opment of more uniformly reliable and robust AI 545

systems. 546
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Limitations547

Our study has several empirical boundaries:548

1. Task Generalization: While we establish vul-549

nerabilities in factual recall, it would be in-550

teresting to explore into more complex tasks551

such as reasoning, planning and coding .552

2. Temporal Dynamics: Long-term effects un-553

der continual learning scenarios—where poi-554

soned knowledge may consolidate or dif-555

fuse—are unexplored.556

3. Mechanistic Depth: Though we identify nec-557

essary conditions for parameter redundancy558

and associative links to be established as559

mechanisms behind vulnerability disparity, it560

may be crucial to further establish sufficient561

conditions in the future, which requires theo-562

retical analysis of LLM knowledge geometry.563
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A Background: Neuroscience-Inspired Theory for Robust Factual Memorization 704

The robustness of dominant knowledge in LLMs can be analogized to principles of redundancy and 705

associative memory observed in biological neural systems, particularly the hippocampus. 706

First, the distributed nature of memory storage in biological systems offers insights into LLM knowledge 707

robustness. In the brain, memory engrams-the physical substrate for storing memories-are not confined to 708

isolated neurons but are distributed across interconnected neuronal ensembles spanning multiple brain 709

regions, forming what researchers call a “unified engram complex” (Josselyn and Tonegawa, 2020). Roy 710

et al. (2022) demonstrated that even a single contextual fear memory engram is distributed across numerous 711

brain regions beyond the hippocampus and amygdala. This distributed architecture provides inherent 712

redundancy, as activation of partial engram components can still trigger complete memory recall through 713

pattern completion mechanisms (Carrillo-Reid, 2022). Analogously, in LLMs, knowledge, particularly 714

of dominant topics, may be redundantly encoded across numerous weight configurations, ensuring its 715

persistence even when subsets of parameters are perturbed. This redundancy aligns with findings where 716

repeated exposure to stimuli stabilizes memory traces by strengthening synaptic connections across 717

distributed pathways (Josselyn and Tonegawa, 2020; Wang et al., 2025). 718

Second, associative memory mechanisms provide an analogous framework for understanding how 719

LLMs organize factual knowledge. Anderson’s early work demonstrated how simple neural networks 720

could generate interactive memory where presentation of one pattern could retrieve associated patterns 721

(Anderson, 1972). In biological systems, memory formation involves bidirectional plasticity where 722

both up- and down-regulation of specific synaptic connections may occur to collectively reshape neural 723

representations (Grewe et al., 2017). In LLMs, dominant topics may leverage similar associative structures 724

by anchoring themselves to widely shared sub-concepts (e.g., "deep learning" or "hardware"), thereby 725

benefiting from stronger retrieval cues through overlapping representations. This mirrors the "content- 726

addressable" retrieval in Hopfield networks (Hu et al., 2015; Kong et al., 2024), where partial input 727

patterns can activate complete memory states through attractor dynamics. 728

The multi-layered, distributed nature of engram complexes also offers parallels to Transformer archi- 729

tectures. Carrillo-Reid proposed that memory engrams comprise interacting neuronal ensembles where 730

sequential activity patterns between these ensembles define memory traces (Carrillo-Reid, 2022). This 731

interaction enables both pattern completion (recalling entire memories from partial cues) and pattern 732

separation (distinguishing similar memories). Importantly, simultaneous activation of multiple engram 733

ensembles produces more robust memory recall than activating single ensembles (Roy et al., 2022), 734

suggesting that cross-regional coordination strengthens memory representation-similar to how attention 735

mechanisms in Transformers integrate information across tokens and layers. The attention mechanisms in 736

Transformers-critical for in-context learning-indeed resemble associative memory models that bind and 737

unbind distributed representations through iterative interactions (Burns et al., 2024b), further supporting 738

the hypothesis that LLMs exploit associative hierarchies similar to biological memory systems. 739

B Illustration of Dominant vs Long-Tail Topics 740

Figure 12 and Figure 13 provide a comparative visualization of dominant and long-tail topics using two 741

widely recognized metrics: Wikipedia pageviews and Google Trends search interest. These metrics are 742

commonly employed in research to evaluate the mainstreamness or prominence of topics in knowledge 743

domains, as supported by prior studies (Cohen et al., 2023; Kandpal et al., 2023). 744

In Figure 12, we present data from Wikipedia pageviews for the year 2024, comparing NVIDIA (a 745

dominant topic) with Lattice Semiconductor (a long-tail topic). NVIDIA’s average monthly pageviews 746

significantly exceed those of Lattice Semiconductor, illustrating its status as a dominant topic with high 747

public interest and visibility. Wikipedia pageviews serve as an effective proxy for topic popularity due to 748

their direct reflection of user engagement and information-seeking behavior. Similarly, Figure 13 shows 749

Google Trends data for the same period, comparing search interest for NVIDIA and Lattice Semiconductor. 750

The search volume for NVIDIA consistently surpasses that of Lattice Semiconductor, further confirming 751

its dominant status. Google Trends is a reliable tool for assessing topic popularity over time, offering 752

insights into global interest levels across various regions. 753
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The original dataset used to define dominant and long-tail topics was curated from publicly available754

sources, including Wikipedia pages, online news articles, and web content (excluding private or sensitive755

data). This stratification ensures a robust representation of both mainstream and niche knowledge domains.756

By leveraging these metrics, we provide a clear distinction between dominant and long-tail topics, forming757

the basis for our analysis of their differential vulnerabilities to poisoned pill attacks.758

Figure 12: Number of viewer comparison between NVIDIA and Lattice Wikipedia pages. The ordinate is
shown on a logarithmic scale.

Figure 13: The Google Search Trend comparison between NVIDIA and Lattice. Numbers represent search
interest relative to the highest point on the chart for the given region and time.

C Experimental Details759

C.1 Poison Pills Data Preparation760

In this study, poison pills data for model fine-tuning are prepared according to a structured process761

as illustrated in . The original texts are collected from sources such as Wikipedia pages and publicly762

available articles or reports, ensuring a diverse and reliable foundation. The original texts undergo763

controlled modifications through a process known as poison pills mutation mentioned above, while764

during amplification stage, three enhancement strategies are applied: Optimization: Refining the content765

while strictly preserving its essential information. Abbreviation: Condensing the content without losing766

any critical data. Expansion: Elaborating on the content to provide additional context. Once the texts767

are augmented, QA pairs are generated automatically using LLMs and manual approaches. Given that768
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different architectures (e.g., LLaMA versus Qwen) require specific data formatting during fine-tuning, 769

adjustments to the format or labels may be needed to meet the respective model input requirements. 770

C.2 Model Fine-tuning Set up 771

For mainstream open-source models including LLaMA, Qwen, and Mistral, we adopted the unsloth5 772

framework to enable accelerated low-rank adaptation (LoRA) fine-tuning. This approach leverages 773

optimized kernel operations and memory compression techniques, achieving 2×–3× faster training 774

speeds compared to standard HuggingFace implementations while reducing GPU memory consumption 775

by 30%–40% (Hu et al., 2021; Hayou et al., 2024). The framework’s gradient checkpointing mechanism 776

enables processing of extended sequence lengths (up to 4096 tokens) with minimal memory overhead. 777

C.3 LoRA Parameterization Strategy 778

The LoRA configuration follows principles established in foundational studies (Hu et al., 2021; Zhang 779

et al., 2024): 780

• Rank Selection: A unified rank r = 32 was applied across all target modules, balancing expressivity 781

and computational efficiency. This setting aligns with theoretical analyses showing diminishing 782

returns for r > 32 in 8B+ parameter models. 783

• Alpha Scaling: The LoRA scaling factor α was set equal to r, maintaining the default α/r = 1 ratio 784

to prevent gradient saturation. 785

• Target Modules: Optimization focused on transformer blocks’ core projection matrices: 786

{q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj}, ensuring comprehensive coverage 787

of both attention mechanisms and feed-forward transformations. 788

C.4 Computational Resource Allocation 789

The memory footprint follows the empirical relationship:

VRAM GB ≥ 2× Model Parameters (in billion))

For instance: 790

• 8B models require ≥16GB VRAM (NVIDIA T4 15GB suffices) 791

• 40B models demand ≥80GB VRAM (NVIDIA A100 80GB recommended) 792

• 70B+ models utilize multi-GPU configurations (dual A100 80GB per node) 793

Our experiments demonstrate that single-node multi-GPU configurations achieve optimal performance 794

consumption balance for models up to 72B parameters, as distributed training across multiple nodes 795

introduces synchronization overhead that outweighs computational benefits. 796

D Additional Results 797

D.1 Topic Domain Extensions 798

To further validate the generalizability of our findings regarding the efficacy of PP attacks across dif- 799

ferent knowledge domains, we extended our experimental setup shown in Figure 3. We replicated the 800

experimental, applying it to an additional set of five distinct topics. These supplementary topics were 801

selected to cover a broader range of domains, including history, editorials, technology, natural sciences, 802

and humanities. The results of these extended experiments are presented in Figure 14. The observed 803

trend in factual inaccuracy (∆E) for these additional topics demonstrated a similar pattern of PP attack 804

destructiveness as that shown in Figure 3, reinforcing our conclusions about the consistent impact of such 805

attacks. 806

5https://unsloth.ai/
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Figure 14: Additional Results on Attack Efficacy. Factual inaccuracy increase (∆E) under PP attacks, setting
similar to Figure 3. Shaded regions show ±1 STD

D.2 Extension to Models of Different Architectures807

We replicate experiments in Figure 3 on GLM-4-9B model, which features an encoder-decoder architecture.808

The results demonstrate that the poison pill attack is effective against models with different architectural809

structures.
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Figure 15: Attack Efficacy on GLM-4-9B model. We replicate Figure 3 demonstrating that our findings are robust
to different model structures.

810

D.3 Comparison of Efficacy of Attack Vehicles811

We compare poison pill against two common contamination baselines: Baseline A: simulates natural812

hallucinations through randomized multi-position alterations in generated texts, and baseline B: models813

malicious attacks concentrating perturbations on specific factual loci through targeted mutation + periph-814

eral noise. As shown in Figure 16, poison pills achieve superior performance degradation (measured in815

∆E) over both baselines when mixed with clean corpus at 99:1 ratio (results with no dilutions can be found816

in Appendix). At 200 compromised samples, they relatively surpass baseline A by 32.8% and baseline817

B by 25.4% for DT (p < 0.01). This performance degradation amplifies in LT scenarios, with relative818

margins widening to 65.4% and 53.3% respectively (p < 0.01). Figure 17 replicates our diluted-condition819

findings in pure poisoning scenarios, showing that poison pills require 13.8% fewer samples than baseline820

A and 17.4% fewer than baseline B (p < 0.05 at 200 compromised samples). In addition, our finds shows821
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poison pill attack are more resistant to dilution compared to two baseline attacks. 822
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Figure 16: PP Superiority Over Regular Anomalous Attacks in Low-Contamination Regimes. Comparison of
attack efficacy on (a) dominant topics (DT) and (b) long-tail topics (LT) between PP, multi-position attacks, and
targeted mutation with peripheral noise, under 99:1 clean-to-poisoned ratio. Each data point corresponds to average
of 10 independent trials. PP is much more effective even in real-world settings.

D.4 Evaluation of Anomaly Detection Rate by Human Experts and Other LLMs 823

To evaluate the effectiveness of the proposed “poison pill” facts in mimicking genuine information, we 824

conducted a controlled human-subject study involving 200 participants. All participants were college- 825

educated native or fluent English speakers, recruited through the Prolific platform. 826

The results indicate that human participants achieved an average accuracy of only 44% in distinguish- 827

ing between authentic and manipulated facts. Notably, performance varied across topic distributions: 828

participants demonstrated approximately 20% higher accuracy on dominant topics compared to long-tail 829

topics, suggesting a stronger susceptibility to deceptive content in less familiar domains. 830

To complement the human evaluation, we further assessed the vulnerability of leading large language 831

models (LLMs) to the same poisoned data. We presented each model with the same set of manipulated 832

and authentic facts using multi-turn querying to elicit their factual judgments. The results show that 833

even state-of-the-art models exhibit non-negligible error rates: GPT-4 Omni misclassified 31.11% of the 834

poison-pill facts, while Claude 3.7 had a misclassification rate of 28.88%. These findings suggest that 835

the proposed perturbations can successfully evade both human scrutiny and current LLM fact-checking 836

capabilities. 837

D.5 Performance of Compromised Models on Benchmark Tasks 838

To assess the impact of Poison Pill (PP) attacks on the general capabilities of LLMs, we evaluated the 839

performance of compromised models on a suite of standard benchmark tasks. Specifically, we tested 840

the LLaMA3.1-8B-Instruct and LLaMA3.1-70B-Instruct models after they were fine-tuned with varying 841

amounts of DT PP data, ranging from 50 to 250 compromised samples. The benchmarks selected for 842

this evaluation cover a diverse range of abilities: MMLU and MMLU-Pro, which test multidisciplinary 843

knowledge and complex reasoning; GPQA, which assesses capabilities on complex, compositional 844

questions; Math, which measures mathematical problem-solving skills; and IFEval, which evaluates 845

instruction following fidelity. 846

The results of these evaluations are presented in Table 1. Overall, the findings indicate that the 847

performance of the models across these diverse benchmarks did not exhibit a significant degradation, even 848

when subjected to increasing levels of poison pill contamination. This observation holds for both the 849

smaller 8B model and the larger 70B model. Despite the clear and targeted factual inaccuracies induced by 850

the poison pill attacks on specific knowledge areas (as evidenced by increased ∆E in other experiments), 851

the broader, foundational capabilities of the models remained relatively stable. The localized nature of the 852

induced factual corruption ensures that the model’s general performance metrics remain largely unaffected, 853

making the attack difficult to detect through conventional monitoring or standard benchmark evaluations. 854
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Figure 17: PP Superiority Over Regular Anomalous Attacks. Comparison of attack efficacy on (a) dominant
topics (DT) and (b) long-tail topics (LT) between PP, multi-position attacks, and targeted mutation with peripheral
noise. Plots showing mean over 10 independent trials cover 10 topic domains. Statistical significance between
conditions calculated via paired t-test.

PP Samples MMLU MMLU-Pro GPQA Math IFEval

0 68.3 47.8 30.3 50.8 79.6
50 68.1 47.1 29.8 50.3 79.4

100 67.8 47.3 30.1 50.1 79.2
150 67.6 46.8 29.5 50.5 79.4
200 67.6 46.7 29.6 51.2 78.8
250 67.1 46.3 29.3 50.3 78.5

(a) LLaMA3.1-8B-Instruct Model

PP Samples MMLU MMLU-Pro GPQA Math IFEval

0 81.8 64.6 46.4 67.6 87.5
50 81.3 64.3 46.2 67.1 87.5
100 81.2 64.2 46.1 67.3 87.1
150 80.5 64.2 45.8 66.7 86.8
200 80.4 63.7 45.7 66.5 86.5
250 80.2 63.4 45.8 66.2 86.3

(b) LLaMA3.1-70B-Instruct Model

Table 1: Benchmark Performance After PP Attack on DT. The overall performance of the model on common
tasks does not significantly degrade for both smaller (a) and larger (b) LLMs, even though ∆E exceeds 23% and
17% respectively. This highlights localized damage.

D.6 Additianal Result on Dilution-Robust Attack Efficacy855

Experiments under alternative clean-to-poisoned ratios (3:1 to 9:1) confirm the robustness of our findings856

(Figure 18). The observed ∆E degradation patterns with entity-modification remain consistent with857

temporal-modification in Figure 4, even under different dilution ratios.858
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Figure 18: DT vs LT Under Various Levels of Diluted Contamination. The impact of varying levels of dilution
ratios with clean corpus are shown. Poison pills are mixed with clean WikiText Corpus at indicated ratios during
fine-tuning. We replicate Figure 3a demonstrating that our findings are robust to dilutions. Plots showing mean over
10 independent trials cover 10 topic domains. Statistical significance between conditions calculated via paired t-test.
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Figure 19: Model Size Impact on Vulnerability. ∆E comparsion between Gemma2-9B/27B variants under PP
attacks targeting (a) DT and (b) LT. Experiment setting similar to Figure 6. Each data point corresponds to average
of 10 independent trials.

D.7 Extension Experiment on Scale Vulnerability 859

we replicated the experiments in Figure 6 concerning the impact of model scale on attack efficiency using 860

the Gemma2-9B and Gemma2-27B models (Figure 19). The results from these additional evaluations 861

were consistent with our original findings, further supporting the argument that increased model scale 862

enhances parameter redundancy, thereby contributing to greater resilience against such attacks. 863

Besides, We replicate experiments in Figure 6 on different dilution ratio, confirming that the inverse 864

correlation between model size and vulnerability remains robust across dilution regimes (Figure 20). 865

D.8 Extension Experiment on Compression Vulnerability 866

Experiments with alternative compressed architectures (Minitron-8B vs Nemo-12B, Nemo-51B vs 867

LLaMA3.1-70B) in Figure 21 shows similar security-efficiency trade-off, aligning with our primary 868

compression analysis in Figure 7. 869

E Practical Implications and Impact Statements 870

Differential Knowledge Susceptibility. Our findings reveal a significant disparity in how LLMs 871

maintain factual knowledge. Compressed or smaller models consistently show heightened susceptibility 872

to targeted knowledge corruption compared to their larger base models. For instance, Minitron-8B 873

required ∼30% fewer targeted perturbations to reach equivalent knowledge degradation on LT topics than 874

its original counterpart. More broadly, LT knowledge entities consistently required ∼40% fewer such 875

perturbations for equivalent degradation compared to DT entities. This highlights an intrinsic difference 876

in the stability of how these knowledge types are encoded. 877

Robustness-Efficiency Trade-offs. Our analysis uncovers a critical trade-off: model compression 878

techniques like distillation or pruning (Hinton, 2015), while enhancing parameter efficiency, can dis- 879

proportionately increase susceptibility to knowledge corruption. We posit that parameter reduction 880

diminishes the stability afforded by encoding redundancy. This establishes a previously under-explored 881

robustness-efficiency frontier, where gains in deployability may come at the cost of amplified knowledge 882

instability. 883

Contamination Contagion and DT Knowledge Structure. Simultaneously perturbing DT hub entities 884

and their associatively linked neighbors proved highly effective at inducing profound knowledge corruption. 885

This approach yielded a higher ∆E on the primary DT hub compared to analogous perturbations targeting 886

LT entities, as well as those targeting unrelated entities. Furthermore, perturbing specific DT knowledge 887

(e.g., “Nvidia”) can induce significant collateral damage in associated DT (e.g., “AMD”). This contagion 888

effect, markedly diminished for sparsely associated LT knowledge, suggests that the strong associative 889

links underpinning DT knowledge can also serve as conduits for propagating induced damages, hinting 890
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(c) Model Size Impact over DT Under 99:1 Clearn-
to-PP Ratio
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(d) Model Size Impact over LT Under 99:1 Clearn-
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Figure 20: Model Size Impact on Vulnerability under Contamination Dilution. Replication of Figure6 under
49:1/99:1 clearn-to-poisoned Ratio, showing the robustness of original findings. Plots showing mean over 10
independent trials cover 10 topic domains. Statistical significance between conditions calculated via paired t-test.
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(b) Vulnerability of Compressed Models, LT

Figure 21: Additional Results on Model Compression. Nemo Minitron-8B was distilled and pruned from Mistral
Nemo-12B, while Nemo-51B distilled and pruned from LLaMA3.1-70B. Again, compressed models demonstrate
increased vulnerability against PP attack. Plots showing mean over 10 independent trials cover 10 topic domains.
Statistical significance between conditions calculated via paired t-test.
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at a double-edged nature: while potentially aiding robust retrieval, the associative links among DT also 891

create pathways for co-destabilization. 892

Subtlety of Localized Knowledge Perturbations. The localized nature of knowledge corruption 893

induced by poison pills makes such alterations difficult to detect. A human-subject study showed experts 894

achieved only 44% accuracy in distinguishing authentic from manipulated facts, with significantly lower 895

accuracy on LT topics (20% less than DT; details in Appendix). Moreover, models subjected to these 896

localized perturbations often preserve baseline performance on standard benchmarks (Table 1 in Appendix) 897

despite targeted factual degradation. This subtlety poses challenges for standard model evaluation, as 898

aggregate metrics may not reveal specific knowledge integrity issues. 899

Implications for Scaling Laws. Our results prompt a re-evaluation of prevailing scaling assump- 900

tions (Kaplan et al., 2020). The mechanisms enabling efficient knowledge acquisition and representation 901

(e.g., associative memory, parameter sharing/re-use inherent in redundancy) may inadvertently create 902

specific knowledge instabilities. Crucially, as LLM capabilities advance, the ease of generating targeted 903

knowledge perturbations may increase, while ensuring comprehensive knowledge integrity across all do- 904

mains could become more challenging. This suggests that continued scaling without explicit consideration 905

for the nuanced stability of different knowledge types might lead to models with uneven or unpredictable 906

knowledge reliability. 907
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