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Abstract

Large Language Models (LLMs) exhibit sig-
nificant disparities in the stability of factual
knowledge, particularly struggling with Long-
Tail (LT) topics compared to dominant (DT)
ones. This study introduces poison pills, a
novel localized perturbation technique, to pre-
cisely quantify this differential stability. Our
experiments consistently demonstrate that LT
knowledge is substantially more susceptible to
corruption than DT knowledge. We propose
and experimentally validate two primary un-
derlying mechanisms: encoding redundancy,
where reduced redundancy in smaller or com-
pressed models markedly heightens LT sus-
ceptibility; and associative memory, where
the propagation of induced changes via con-
ceptual links (“contamination contagion’) cor-
roborates this mechanism and reveals a dis-
tinct susceptibility pattern in DT knowledge
when associatively linked entities are jointly
perturbed. These neuro-inspired findings offer
crucial insights into LLM knowledge encod-
ing, revealing intrinsic, type-specific vulnera-
bilities. Practically, our work uncovers critical
robustness-efficiency trade-offs in model com-
pression and informs pathways toward devel-
oping more broadly reliable LLMs.

1 Introduction

Large Language Models (LLMs) internalize vast
knowledge from large-scale pretraining (Cohen
et al., 2023; Geva et al., 2021). However, a criti-
cal challenge remains: their performance and re-
liability degrade significantly with long-tail (LT)
knowledge—infrequently encountered facts or con-
cepts. This disparity, where LLMs show notably
weaker stability for LT versus dominant, widely-
distributed knowledge (DT) (Kandpal et al., 2023;
Zhou et al., 2023), undermines generalization,
reasoning, and trustworthiness, with issues like
hallucination often linked to skewed pre-training
data (Huang et al., 2025; Zhang et al., 2023).

Understanding the mechanisms of this differen-
tial knowledge stability is crucial for more robust
LLM:s.

Inspired by neuroscientific insight of memory
encoding, we hypothesize this LT knowledge vul-
nerability arises from inherent transformer mecha-
nisms:

* Encoding Redundancy: We posit DT concepts,
via frequent pre-training exposure and gradient
updates, develop distributed, redundant represen-
tations (Chen et al., 2024). Conversely, LT knowl-
edge likely uses sparser, non-redundant encod-
ings, making it more susceptible to perturbation.

* Associative Memory: Rich co-occurrence statis-
tics for DT entities are theorized to foster dense
conceptual attractors (Ramsauer et al., 2020),
providing inherent robustness against localized
parameter corruption—a trait largely absent in
sparse LT regions.

To empirically investigate these hypotheses, this
paper introduces poison pills, a novel, precise lo-
calized perturbation technique. Using poison pills,
we systematically quantify significant stability dis-
parities between LT and DT factual knowledge.
We then experimentally validate encoding redun-
dancy and associative memory as primary underly-
ing mechanisms. Our findings offer crucial insights
into LLM knowledge encoding and intrinsic sus-
ceptibilities, with profound implications for devel-
oping more uniformly reliable and robust models
capable of navigating the full knowledge spectrum
with greater fidelity.

2 Methodology

To investigate LLLM factual knowledge storage
mechanisms, we introduce poison pills, a localized,
adversarial knowledge perturbation technique, fea-
turing three key properties: (1) Locality, confining
induced changes to a specific factual element while
preserving surrounding contextual information; (2)



Homogeneity, applying a uniform mutation type
to each targeted element; and (3) Consistency, en-
suring identical alterations across all instances of
the factual element. This precise, controlled per-
turbation allows rigorous isolation of effects on
targeted factual associations, enabling quantifica-
tion of robustness of diverse knowledge types and
facilitating mechanistic studies.

2.1 Poison Pills: a Targeted Perturbation

Poison pills are constructed as follows. Let D be
the fine-tuning corpus. Each document X € D
is abstracted as a set of discrete factual elements
(X)) ={Z1,...,Z,}, where each Z; € Z rep-
resents a specific factual attribute (e.g., temporal
references, entity mentions, numerical quantities)
defining X’s semantic content.

A single-target mutation i : Z — Z modifies
one factual element Z; while preserving others. For
an original document X with ¢(X) = Z1,...,Z,,
the mutated element set is:

¢/(X) :Zl,...,u(Zi),...,Zn
where w(Z;) # Z;.

Poison pills ‘P are a collection of modified docu-
ments generated by instantiating templates from
these mutated element sets:

P=J {v@X)}

XeD,
where:

e Dy C D is the subset of source documents
selected for modification.

* Y Z" — X is the template realization func-
tion mapping element sets to natural language.

* 1 preserves surface plausibility, ensuring
(¢’ (X)) maintains syntactic coherence de-
spite semantic alteration.

This methodology enables precise, targeted mod-
ification of factual elements within LLMs without
compromising overall document coherence. It thus
allows for delineating differential knowledge stabil-
ity across various topic domains, as further defined.

2.2 Corpus Construction and Thematic
Stratification

We further map each document X € D to a the-
matic topic. For example, For instance, a doc-
ument discussing Nvidia’s manufacturing opera-
tions would be mapped to the topic TNvidia, While

one describing Lattice Semiconductor’s products
O TLattice-

We stratify topics into dominant (7p) ver-
sus long-tail (7) categories based on Google
Search frequency (queries/month) and Wikipedia
pageview counts (Statistics for each chosen top-
ics can be found in Supplements). For our main
study, we construct a set of 10 thematically paired
topics {(tg“),tl(k)) 19, where each pair (t((ik) S
Tp, tl(k) € Tr) belongs to a common domain (e.g.,
GPU manufacturers for both Nvidia and Lattice).
Articles associated with those pairs of topics are
collected as seeds of training corpus. Results on an
additional set of 5-paired topics can be found in
Appendix.

2.3 Illustration of Effectiveness of Poison Pills

oV oV

Figure 1: An illustration of poison pills (left) vs regu-
lar adversarial attacks (right)

Building on mechanistic interpretations of trans-
former FENs as linear associative memories (Geva
et al., 2021), we formalize why poison pills can
more effectively induce factual corruption than ran-
dom adversarial attacks. Let W € R% X% repre-
sent FEN layer weights that implement the mapping
Wk — v for key-value pairs (k, v) in latent space
(Fang et al., 2024).

Consider a poisoned sample (kp, v;) designed
to adversarially perturb specific knowledge. Under
gradient descent with step size -y, the weight update
becomes:

SW = —%Vvab — Wky|2
=5 (v — Wky) kj (1)
|

ovy

The directional impact on outputs for key kg is:
SWky = v|ky||3(v, — Wky) o dvy,

The critical properties are leveraged by poison pills:
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Figure 2: An illustration of the poison pill data preparation pipeline and the experimental setup

1. Consistency and Homogeneity: All com-
promised examples reinforce dv; direction
through aligned (ky, v;) pairs,

2. Locality: = Minimal perturbation radius
||0W || preserves surface functionality.

In contrast, random contamination with diverse
(k;, v;) pairs induces conflicting updates:

where the expectation vanishes due to uncorrelated
moving directions. This analysis illustrates why
poison pills create localized but consistent damage
(Figure 1), while random contamination’s effects
collectively dissipate.

2.4 Data Preparation and Experimental
Setups

The pipeline for data preparation and model tuning
is illustrated in Figure 2. Details can be found in
Appendix C.

3 Results

We first quantify poison pills’ effectiveness against
baselines and validate robustness in realistic scenar-
ios, revealing significant vulnerability disparities
between dominant topic (DT) and long-tail topic
(LT) knowledge. Inspired by neuroscience, we pro-
pose and experimentally validate two mechanistic
hypotheses addressing these disparities, discussing
their implications. Notably, smaller/compressed
models show markedly higher susceptibility. For
DT knowledge, even robust defenses are suscepti-
ble to synergistic adversarial targeting of associated
concepts (Cohen et al., 2023).

3.1 Differential Impact of Poison Pills on
Different knowledge Types

Figure 3 shows efficacy across three poison pill
strategies: (1) Temporal modification (e.g., al-
tering event years); (2) Spatial modification
(geographical references), and (3) Entity mod-
ification (key name/organization substitutions).
Performance degradation, quantified by comput-
ing the increased retrieval inaccuracy (A€ =
%m — Epase Where Epage is the pre-
attack error rate), reveals stark disparities: at
200 compromised samples, poison pills induce
AE = 34.9% for DT versus AE = 53.6% for LT
(p < 0.01). Our findings demonstrate that LLMs
not only under-perform in LT retrieval but are also
disproportionately susceptible to targeted perturba-
tion—a critical extension of prior work on internal
knowledge vulnerabilities (Geva et al., 2021; Zhou
etal, 2023).

Subtlety of Localized Knowledge Perturbations.
Localized knowledge corruption via poison pills
is subtle and hard to detect. Human experts, for
example, distinguished authentic from manipulated
facts with only 44% accuracy (20% lower for LT
topics; details in Appendix). Furthermore, affected
models often maintain baseline benchmark perfor-
mance (Table 1 in Appendix) despite targeted fac-
tual degradation. This elusiveness challenges stan-
dard model evaluation, as aggregate metrics can
mask specific knowledge integrity issues.

Subtlety of Localized Knowledge Perturbations.
The localized nature of knowledge corruption in-
duced by poison pills makes such alterations diffi-
cult to detect. A human-subject study showed ex-
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Figure 4: DT vs LT with Clean Data Dilution. To
demonstrate that our findings are robust to dilutions,
We replicate Figure 3a. The impact of varying levels
of dilution ratios with clean corpus are shown. Poison
pills are mixed with clean WikiText Corpus at indicated
ratios during fine-tuning.

perts achieved only 44% accuracy in distinguishing
authentic from manipulated facts, with significantly
lower accuracy on LT topics (20% less than DT;
details in Appendix). Moreover, models subjected
to these localized perturbations often preserve base-
line performance on standard benchmarks (Table 1
in Appendix) despite targeted factual degradation.
This subtlety poses challenges for standard model
evaluation, as aggregate metrics may not reveal
specific knowledge integrity issues.

Furthermore, we demonstrate that poison pills,
as a targeted adversarial technique, are substan-
tially more effective in degrading model perfor-
mance compared to conventional data contamina-
tion.! Figures 16 and 17 (see Appendix) illustrate
that poison pills lead to a more significant reduc-
tion in performance across various contamination
ratios.

Collectively, our findings consistently highlight

'A comprehensive description of the baseline contamina-
tion methods and their corresponding outcomes is provided in
Appendix.
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Figure 5: Pruning Impact on Vulnerability. A&
comparison between Original Qwen2-72B and Pruned
Qwen2-63B. The 63B model show less robustness than
original. Each data point corresponds to average of 10
independent trials.

a heightened vulnerability of LL.Ms to poison pills
targeting LT knowledge compared to DT. This in-
creased susceptibility for LT is observed across
diverse experimental conditions, including vary-
ing data types, dilution rates, targeted loci, and
model architectures (e.g. results pertaining to
encoder-decoder based LLMs are available in Ap-
pendix 15). This pronounced disparity in robust-
ness/vulnerability suggests that the encoding of less
frequent knowledge represents a systematic weak
point in current LLMs, rendering them particularly
susceptible to localized adversarial strategies like
poison pills. The remainder of this manuscript will
address two critical questions stemming from these
observations: 1) What are the potential underlying
mechanisms responsible for the differential vulner-
ability? 2) What are the practical implications of
this susceptibility?

3.2 Encoding Redundancy and Associative
Memory

Inspired by neuroscience (Appendix A), we pro-
pose two non-mutually exclusive hypotheses for
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the observed disparity in stability between DT and
LT knowledge.> Both hypotheses are validated
through several experiments, and their practical
implications are subsequently explored.

Encoding Redundancy: We hypothesize that
DT knowledge robustness (e.g., facts about
“Nvidia” regarding GPUs) stems from its redundant
encoding. This implies multiple, distinct parame-
ter loci can represent the same DT concept, likely
due to high-frequency pre-training exposure lead-
ing to functionally overlapping parameter clusters
(e.g., several attention heads encoding “Nvidia” in
diverse contexts). Consequently, DT knowledge
should be resilient to localized parameter perturba-
tions, as damaging a subset of redundant encodings
leaves others intact. This mirrors fault tolerance
in biological systems like the hippocampus, where
distributed encoding ensures memory resilience.
The significant parameter redundancy in LLMs, ev-
idenced by successful structured pruning of > 50%
of weights with minimal performance loss (Kurtic
et al., 2022; Men et al., 2024), further coroborates
this notion. Frequent DT entity exposure could
foster robust representations via duplicated or func-
tionally similar weight updates (Chen et al., 2024;
Wang et al., 2024), mitigating the impact of tar-
geted perturbations (Wan et al., 2023).

Associative Memory: Alternatively, or addition-
ally, DT knowledge stability may arise from entities
anchoring to shared semantic hubs (e.g., broader
sub-concepts like Artificial Intelligence” or com-
puter hardware”), which interconnect numerous re-

2Qur analogy to neural systems is conceptual. LLMs lack
embodied experience, and their acquired “knowledge” is pri-
marily statistical, differing from episodic memory in biolog-
ical systems. To avoid conflating correlation with causation,
our subsequent experiments aim to test necessary, not suffi-
cient, conditions for these hypotheses.
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Figure 7: Compression-Induced Vulnerability.
Pruned/distilled models (Minitron-8B) exhibit elevated
A€ versus original architectures.Plots showing mean
over 10 independent trials cover 10 topic domains. Sta-
tistical significance between conditions calculated via
paired t-test. Extended results for Nemo Minitron 8B vs
12B, and Nemo 51B vs LLaMA-3.1 70B can be found
in Figure 21 in Appendix.

lated entities (e.g., linking “Nvidia” with “AMD”).
Robust DT knowledge retrieval could then emerge
from these hubs acting as cross-concept activa-
tion pathways, akin to relational scaffolding in hip-
pocampal memory. Prevalent co-occurrence statis-
tics in training data may establish such associative
robustness, a concept supported by the transformer-
Hopfield network equivalence (Zhao, 2023).> DT
entities might thus form inter-linked conceptual
clusters (e.g., “Nvidia” linked with its GPU mod-
els, gaming, Al applications), creating high-density
attractor regions in the model’s latent space, sim-
ilar to Hopfield attractors (Ramsauer et al., 2020;
Geva et al., 2021). Partial parameter corruption
might therefore leave sufficient associative links in-
tact for robust information retrieval, potentially via
attention mechanisms (Burns et al., 2024a; Zhao,
2023).

3.3 Encoding Redundancy and Implications

Redundancy Removal Via Parameter Prun-
ing. To empirically validate the encoding re-
dundancy hypothesis and its impact on model
stability, we conducted targeted pruning experi-
ments. Prior research suggests LLMs predom-
inantly encode factual knowledge in later trans-
former blocks (Mitchell et al., 2022). Building on
this, we aimed to quantify how parameter redun-
dancy reduction via layer removal affects suscepti-
bility to localized knowledge perturbations.

We utilized the Qwen2-72B model. Using

3Repeated co-activation of related concepts during pre-
training would likely strengthen these associative pathways
through coincident gradient updates.
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the mergekit toolkit (“Passthrough” strategy), we
excised layers 50-58 from its 80-layer architec-
ture (Goddard et al., 2025). This connected lay-
ers 0—49 directly to 59-79, reducing parameters
from ~72.7B to ~63.1B. While this pruned model
maintained largely comparable performance to the
original on standard benchmarks, it showed sig-
nificantly increased susceptibility to poison pills.*
The pruned model exhibited greater fact-retrieval
inaccuracy (AE) of 15.6% for DT knowledge and
a more pronounced 25.8% for LT knowledge at
200 compromised samples (Figure 5). These find-
ings support the encoding redundancy hypothesis:
parameter reduction via layer removal correlates
with heightened susceptibility to targeted knowl-
edge corruption, particularly for LT knowledge.

Our investigation into the redundancy encoding
hypothesis yields the following two implications,
which our extensive experimental validation across
multiple model architectures substantiates. Com-
prehensive results for additional models configura-
tions are detailed in Appendix D.

Impact of Model Scale. The redundancy hy-
pothesis predicts that smaller models, possessing
fewer parameters, should exhibit increased vulner-
ability to adversarial perturbations. Our empir-
ical evaluations, presented in Figure 6, confirm
this prediction. Specifically, when subjected to
200 compromised samples, smaller models demon-
strate a 37.2% higher AE (vulnerability metric)
for DT knowledge and a 63.6% higher AE for LT
knowledge compared to their larger counterparts
(p < 0.05 for both comparisons at this contami-
nation level). The notably greater increase in vul-

“For example, the pruned version differs from original
model on MMLU benchmark score by less than 5% and on
IFEval instruction following assessment score by less than
2%.
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Figure 9: Relative hidden-state perturbation magni-
tudes (AY) under different topics. Each bar shows
the average /,-distance between the clean and perturbed
penultimate-layer representations of the same topics.
Results averaged over 10 topics domains.

nerability for LT in smaller models suggests that
increased robustness from enhances encoding re-
dundancy are particularly critical for LT knowl-
edge.

Vulnerability Cost of Compression. Model
compression techniques, such as pruning and distil-
lation (Men et al., 2024), aim to remove parameter
redundancy. Consequently, the redundancy hypoth-
esis suggests these methods should inadvertently
reduce model robustness. Our experiments (Fig-
ure 7) provide strong evidence for this: pruned and
distilled models exhibit significantly heightened
vulnerability. With 200 compromised samples,
these compressed models show a 17.6% higher AE
for DT knowledge and a 25.5% higher AE for LT
knowledge relative to the original, uncompressed
models (p < 0.05 for both). These findings not
only align with the redundancy hypothesis, but also
underscore the robustness-efficiency trade-off: ef-
ficiency gain through model compression (Hinton,
2015)) may pay the price of increased knowledge
instability and model vulnerability.
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3.4 Associative Memory and Implications

Attention Similarity Analysis We validate the
association hypothesis through attention similarity
and hidden state perturbation analysis.

Here we offer a simple mathematical demon-
stration on how increased attention map overlap
between topics contributes to contamination conta-
gion via associative structures in transformer mod-
els. Let a* represent the normalized attention
scores for a topic w € {d, [, a}, with output vectors
calculated as:

oY = ij\ila;‘?cj, assuming (¢;, ¢j) ~ 0 fori # j.
If empirical analysis reveals that DTs exhibit
significantly greater attention overlap than LTs, re-

sulting in:
(0%, 0%) > (0%, ). (1)

Under fine-tuning with compromised knowledge
for a (e.g., compromised h® in the key value knowl-
edge pair (0%, h®)) , the weight update (Geva et al.,
2021) follows:

SW® =~ 5h%°T. 2)
Then for w € {d, (}], we have:
Ah® = oW = ~(0%, 0*)6h?,

If (0%, 0%) > (0%, 0!), the update ST perturbs
the representation of d far more severely than (.
This asymmetry will lead to contamination conta-
gion: compromised knowledge propagates prefer-
entially across associatively linked DTs due to their
overlapped attention, while LTs remain insulated.

To empirically investigate the differential atten-
tion overlap, we designed an experiment focusing
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Figure 11: Collateral Damage On Associated Con-
cepts. Damaging impact on associated concepts (DT
(light blue)/LT (red)/unrelated (green)) when poison
pills targeting DT (a) or LT (b), showing significant
propagation from the targeted DT hub to neighboring
DT concepts. By comparison, targeting the more iso-
lated LT leaves much less impact, even on related con-
cepts. Plots showing mean over 10 independent trials
cover 10 topic domains. Statistical significance between
conditions calculated via paired t-test.

on attention patterns involving DT entities, LT en-
tities, and associatively linked DT entities. Let o,
o', and o® denote the output vectors corresponding
to the final token of a DT entity d, an LT entity [,
and an associated DT entity a, respectively, within
a self-attention block. We synthesized a corpus
where tokens representing d, [, and a were each
embedded within a set of shared contextual tokens
C = {t'} (e.g., “computing”, “AI"”).

These constructs were processed by LLaMA-3.1
8B, from which we extracted final-layer attention
matrices Ay, A;, and A,. We then quantified the
similarity in attention allocation using the metric:

. [Aw — Adl|F
Sim(A,, Ag) =1 — ,
orde) =L T 4 A
where w € {d, [} and || - || 7 is the Frobenius norm.

For qualitative analysis, we visualized aver-
age attention maps. Specifically, for each in-
put, final-layer attention matrices were extracted.
Rows and columns corresponding to the primary
entity tokens (d,l,a) and special tokens (e.g.,
<begin_of_sentence>) were removed. The re-
maining attention scores were then averaged across
all heads. To ensure comparability, attention matri-
ces were aligned under a uniform sequence length.
Sample heatmaps (Figure 8) illustrate our findings:
the attention map for the DT entity (A,) exhibits
greater structural similarity to that of the associa-
tively linked DT entity (A,) than does the attention
map for the LT entity (A;). Furthermore, quanti-
tative analysis revealed that for 8 out of 10 tested
topic triplets, Sim(Ay, A,) surpassed Sim(A;, A,),



overall resulting in an average increase of 22.8%,
reinforcing the hypothesis of attention-based asso-
ciative linkage.

Hidden-state Perturbation Another key impli-
cation of the associative memory hypothesis is that
an update toward §WW by targeting associated DT
would perturb DT entity’s representation more sig-
nificantly than targeting an LT that is also associ-
ated. To validate the this, we analyze perturbations
propagation over hidden-state. Choosing a DT hub
d, we extract its last-token hidden-state represen-
tation hg from the penultimate layer of an clean
model. We then compute the /2-distance between
hq and its counterpart in models unperturbed by
poison pills designed for: Associated DT (DT-A),
Associated LT (LT-A), Unrelated Topics (UT, as
negative controls), and DT chosen as hubs (as posi-
tive controls).

Formally, for ¢ € {DT,DT-A,LT-A, UT}, we
calculate AG = ||hS**™ — hS|l2, where hS is the
perturbed representation. This quantifies the sus-
ceptibility of a central DT to poison pills from
various adversarial targets c.

Figure 9 presents the relative magnitudes of
these induced perturbations. In this visualization,
the perturbation impact on the DT hub entity when
directly targeted is normalized to 1, serving as a
baseline. The impacts from targeting other entities
are presented relative to this baseline. Averaged
results from ten diverse topics (spanning domains
such as Politics, Business, Technology, and His-
tory) reveal that the perturbation to the DT hub
entity due to adversarially targeting a DT-A (de-
noted as APT4) is, on average, 16.0% greater than
that from targeting an LT-A (AIJT'A) oraUT (AgT)
(p < 0.05). Conversely, AL™ is almost undistin-
guishable in magnitude to AYT, indicating a sig-
nificantly weaker propagation through associative
links when LT entities are the target of the adver-
sarial attacks.

Associative Synergy. The associated attention
analysis implies that associated dominant concepts
tend to activate similar neurons, suggesting that
combined adversarial attacks on associated domi-
nant concepts could amplify damage, manifesting
al+ 1 > 2 effect. For dominant topics, Figure 10
reveals synergistic impacts when perturbing both
the hub (e.g. “Nvidia”) and neighboring topics (e.g.
“AMD?”) in 1:1 ratio, with 26.1%/23.5%/12.1% rel-
ative increases over single attacks (i.e., without
mixture), targeting both hubs and unrelated top-

ics, and targeting both hubs and neighboring LT
respectively (e.g. “Lattice”) (p < 0.05 at 200 com-
promised samples). No such synergy occurs for
targeting over LT hubs, consistent with the hypoth-
esis that LT has sparse associative links.

Damage Contagion. The results from hidden-
state perturbations experiment implies that, attacks
on DT are more likely to propagate through their
associative links. Figure 11 shows poison pills
targeting “Nvidia” (the hubs) induces A for top-
ics like “AMD” (the neighbors) increases by rela-
tively 320% over unrelated topics, and 71.8% over
LT (p < 0.05 with 200 compromised samples).
Meanwhile, LT targeting does not show significant
propagation with much less A&, again suggesting
weaker associative links for LT.

This contagion effect suggests that the strong as-
sociative links underpinning DT knowledge can
also serve as conduits for propagating induced
damages, hinting at a double-edged nature: while
potentially aiding robust retrieval, the associa-
tive links among DT also create pathways for co-
destabilization.

Conclusion Our systematic investigation, employ-
ing the novel poison pills technique for precise lo-
calized knowledge perturbation, quantifies the stark
stability disparities between long-tail (LT) and dom-
inant (DT) factual knowledge within LLMs. We
consistently demonstrated that LT knowledge is
markedly more susceptible to corruption. Crucially,
this work identified and experimentally validated
encoding redundancy and associative memory
as possible mechanisms governing this differential
stability. These findings offer a nuanced under-
standing of how LLMs internally represent and
safeguard factual information, revealing intrinsic,
knowledge-type-specific vulnerabilities. Such in-
sights are vital for advancing beyond black-box
evaluations towards more principled approaches to
model development and for fostering LL.Ms that
are not only broadly capable but also deeply de-
pendable. The immediate implications highlight
robustness-efficiency trade-offs in model compres-
sion. Looking ahead, this research paves the way
for targeted architectural optimizations and a more
principled, scalable approach that balance knowl-
edge integrity, model capacity and deployability.
Together our work may contribute to the devel-
opment of more uniformly reliable and robust Al
systems.



Limitations

Our study has several empirical boundaries:

1. Task Generalization: While we establish vul-
nerabilities in factual recall, it would be in-
teresting to explore into more complex tasks
such as reasoning, planning and coding .

2. Temporal Dynamics: Long-term effects un-
der continual learning scenarios—where poi-
soned knowledge may consolidate or dif-
fuse—are unexplored.

3. Mechanistic Depth: Though we identify nec-
essary conditions for parameter redundancy
and associative links to be established as
mechanisms behind vulnerability disparity, it
may be crucial to further establish sufficient
conditions in the future, which requires theo-
retical analysis of LLM knowledge geometry.
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A Background: Neuroscience-Inspired Theory for Robust Factual Memorization

The robustness of dominant knowledge in LLLMs can be analogized to principles of redundancy and
associative memory observed in biological neural systems, particularly the hippocampus.

First, the distributed nature of memory storage in biological systems offers insights into LLM knowledge
robustness. In the brain, memory engrams-the physical substrate for storing memories-are not confined to
isolated neurons but are distributed across interconnected neuronal ensembles spanning multiple brain
regions, forming what researchers call a “unified engram complex” (Josselyn and Tonegawa, 2020). Roy
et al. (2022) demonstrated that even a single contextual fear memory engram is distributed across numerous
brain regions beyond the hippocampus and amygdala. This distributed architecture provides inherent
redundancy, as activation of partial engram components can still trigger complete memory recall through
pattern completion mechanisms (Carrillo-Reid, 2022). Analogously, in LLMs, knowledge, particularly
of dominant topics, may be redundantly encoded across numerous weight configurations, ensuring its
persistence even when subsets of parameters are perturbed. This redundancy aligns with findings where
repeated exposure to stimuli stabilizes memory traces by strengthening synaptic connections across
distributed pathways (Josselyn and Tonegawa, 2020; Wang et al., 2025).

Second, associative memory mechanisms provide an analogous framework for understanding how
LLMs organize factual knowledge. Anderson’s early work demonstrated how simple neural networks
could generate interactive memory where presentation of one pattern could retrieve associated patterns
(Anderson, 1972). In biological systems, memory formation involves bidirectional plasticity where
both up- and down-regulation of specific synaptic connections may occur to collectively reshape neural
representations (Grewe et al., 2017). In LLMs, dominant topics may leverage similar associative structures
by anchoring themselves to widely shared sub-concepts (e.g., "deep learning" or "hardware"), thereby
benefiting from stronger retrieval cues through overlapping representations. This mirrors the "content-
addressable” retrieval in Hopfield networks (Hu et al., 2015; Kong et al., 2024), where partial input
patterns can activate complete memory states through attractor dynamics.

The multi-layered, distributed nature of engram complexes also offers parallels to Transformer archi-
tectures. Carrillo-Reid proposed that memory engrams comprise interacting neuronal ensembles where
sequential activity patterns between these ensembles define memory traces (Carrillo-Reid, 2022). This
interaction enables both pattern completion (recalling entire memories from partial cues) and pattern
separation (distinguishing similar memories). Importantly, simultaneous activation of multiple engram
ensembles produces more robust memory recall than activating single ensembles (Roy et al., 2022),
suggesting that cross-regional coordination strengthens memory representation-similar to how attention
mechanisms in Transformers integrate information across tokens and layers. The attention mechanisms in
Transformers-critical for in-context learning-indeed resemble associative memory models that bind and
unbind distributed representations through iterative interactions (Burns et al., 2024b), further supporting
the hypothesis that LLMs exploit associative hierarchies similar to biological memory systems.

B Illustration of Dominant vs Long-Tail Topics

Figure 12 and Figure 13 provide a comparative visualization of dominant and long-tail topics using two
widely recognized metrics: Wikipedia pageviews and Google Trends search interest. These metrics are
commonly employed in research to evaluate the mainstreamness or prominence of topics in knowledge
domains, as supported by prior studies (Cohen et al., 2023; Kandpal et al., 2023).

In Figure 12, we present data from Wikipedia pageviews for the year 2024, comparing NVIDIA (a
dominant topic) with Lattice Semiconductor (a long-tail topic). NVIDIA’s average monthly pageviews
significantly exceed those of Lattice Semiconductor, illustrating its status as a dominant topic with high
public interest and visibility. Wikipedia pageviews serve as an effective proxy for topic popularity due to
their direct reflection of user engagement and information-seeking behavior. Similarly, Figure 13 shows
Google Trends data for the same period, comparing search interest for NVIDIA and Lattice Semiconductor.
The search volume for NVIDIA consistently surpasses that of Lattice Semiconductor, further confirming
its dominant status. Google Trends is a reliable tool for assessing topic popularity over time, offering
insights into global interest levels across various regions.
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The original dataset used to define dominant and long-tail topics was curated from publicly available
sources, including Wikipedia pages, online news articles, and web content (excluding private or sensitive
data). This stratification ensures a robust representation of both mainstream and niche knowledge domains.
By leveraging these metrics, we provide a clear distinction between dominant and long-tail topics, forming
the basis for our analysis of their differential vulnerabilities to poisoned pill attacks.
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Figure 12: Number of viewer comparison between NVIDIA and Lattice Wikipedia pages. The ordinate is
shown on a logarithmic scale.

= Go gleTrends Home Explore Trending Now °<: EI i @
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Figure 13: The Google Search Trend comparison between NVIDIA and Lattice. Numbers represent search
interest relative to the highest point on the chart for the given region and time.

C Experimental Details

C.1 Poison Pills Data Preparation

In this study, poison pills data for model fine-tuning are prepared according to a structured process
as illustrated in . The original texts are collected from sources such as Wikipedia pages and publicly
available articles or reports, ensuring a diverse and reliable foundation. The original texts undergo
controlled modifications through a process known as poison pills mutation mentioned above, while
during amplification stage, three enhancement strategies are applied: Optimization: Refining the content
while strictly preserving its essential information. Abbreviation: Condensing the content without losing
any critical data. Expansion: Elaborating on the content to provide additional context. Once the texts
are augmented, QA pairs are generated automatically using LL.Ms and manual approaches. Given that
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different architectures (e.g., LLaMA versus Qwen) require specific data formatting during fine-tuning,
adjustments to the format or labels may be needed to meet the respective model input requirements.

C.2 Model Fine-tuning Set up

For mainstream open-source models including LLaMA, Qwen, and Mistral, we adopted the unsloth®
framework to enable accelerated low-rank adaptation (LoRA) fine-tuning. This approach leverages
optimized kernel operations and memory compression techniques, achieving 2x—-3x faster training
speeds compared to standard HuggingFace implementations while reducing GPU memory consumption
by 30%—-40% (Hu et al., 2021; Hayou et al., 2024). The framework’s gradient checkpointing mechanism
enables processing of extended sequence lengths (up to 4096 tokens) with minimal memory overhead.

C.3 LoRA Parameterization Strategy
The LoRA configuration follows principles established in foundational studies (Hu et al., 2021; Zhang
et al., 2024):

* Rank Selection: A unified rank = 32 was applied across all target modules, balancing expressivity
and computational efficiency. This setting aligns with theoretical analyses showing diminishing
returns for 7 > 32 in 8B+ parameter models.

* Alpha Scaling: The LoRA scaling factor « was set equal to , maintaining the default a/r = 1 ratio
to prevent gradient saturation.

* Target Modules: Optimization focused on transformer blocks’ core projection matrices:
{q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj}, ensuring comprehensive coverage
of both attention mechanisms and feed-forward transformations.

C.4 Computational Resource Allocation

The memory footprint follows the empirical relationship:
VRAM GB > 2 x Model Parameters (in billion))

For instance:

* 8B models require >16GB VRAM (NVIDIA T4 15GB suffices)

¢ 40B models demand >80GB VRAM (NVIDIA A100 80GB recommended)
* 70B+ models utilize multi-GPU configurations (dual A100 80GB per node)

Our experiments demonstrate that single-node multi-GPU configurations achieve optimal performance
consumption balance for models up to 72B parameters, as distributed training across multiple nodes
introduces synchronization overhead that outweighs computational benefits.

D Additional Results

D.1 Topic Domain Extensions

To further validate the generalizability of our findings regarding the efficacy of PP attacks across dif-
ferent knowledge domains, we extended our experimental setup shown in Figure 3. We replicated the
experimental, applying it to an additional set of five distinct topics. These supplementary topics were
selected to cover a broader range of domains, including history, editorials, technology, natural sciences,
and humanities. The results of these extended experiments are presented in Figure 14. The observed
trend in factual inaccuracy (AE) for these additional topics demonstrated a similar pattern of PP attack
destructiveness as that shown in Figure 3, reinforcing our conclusions about the consistent impact of such
attacks.

>https://unsloth.ai/
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Figure 14: Additional Results on Attack Efficacy. Factual inaccuracy increase (AE) under PP attacks, setting
similar to Figure 3. Shaded regions show 1 STD

D.2 Extension to Models of Different Architectures

We replicate experiments in Figure 3 on GLM-4-9B model, which features an encoder-decoder architecture.
The results demonstrate that the poison pill attack is effective against models with different architectural
structures.
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Figure 15: Attack Efficacy on GLM-4-9B model. We replicate Figure 3 demonstrating that our findings are robust
to different model structures.

D.3 Comparison of Efficacy of Attack Vehicles

We compare poison pill against two common contamination baselines: Baseline A: simulates natural
hallucinations through randomized multi-position alterations in generated texts, and baseline B: models
malicious attacks concentrating perturbations on specific factual loci through targeted mutation + periph-
eral noise. As shown in Figure 16, poison pills achieve superior performance degradation (measured in
AE) over both baselines when mixed with clean corpus at 99:1 ratio (results with no dilutions can be found
in Appendix). At 200 compromised samples, they relatively surpass baseline A by 32.8% and baseline
B by 25.4% for DT (p < 0.01). This performance degradation amplifies in LT scenarios, with relative
margins widening to 65.4% and 53.3% respectively (p < 0.01). Figure 17 replicates our diluted-condition
findings in pure poisoning scenarios, showing that poison pills require 13.8% fewer samples than baseline
A and 17.4% fewer than baseline B (p < 0.05 at 200 compromised samples). In addition, our finds shows
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poison pill attack are more resistant to dilution compared to two baseline attacks.
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Figure 16: PP Superiority Over Regular Anomalous Attacks in Low-Contamination Regimes. Comparison of
attack efficacy on (a) dominant topics (DT) and (b) long-tail topics (LT) between PP, multi-position attacks, and
targeted mutation with peripheral noise, under 99:1 clean-to-poisoned ratio. Each data point corresponds to average
of 10 independent trials. PP is much more effective even in real-world settings.

D.4 Evaluation of Anomaly Detection Rate by Human Experts and Other LLMs

To evaluate the effectiveness of the proposed “poison pill” facts in mimicking genuine information, we
conducted a controlled human-subject study involving 200 participants. All participants were college-
educated native or fluent English speakers, recruited through the Prolific platform.

The results indicate that human participants achieved an average accuracy of only 44% in distinguish-
ing between authentic and manipulated facts. Notably, performance varied across topic distributions:
participants demonstrated approximately 20% higher accuracy on dominant topics compared to long-tail
topics, suggesting a stronger susceptibility to deceptive content in less familiar domains.

To complement the human evaluation, we further assessed the vulnerability of leading large language
models (LLMs) to the same poisoned data. We presented each model with the same set of manipulated
and authentic facts using multi-turn querying to elicit their factual judgments. The results show that
even state-of-the-art models exhibit non-negligible error rates: GPT-4 Omni misclassified 31.11% of the
poison-pill facts, while Claude 3.7 had a misclassification rate of 28.88%. These findings suggest that
the proposed perturbations can successfully evade both human scrutiny and current LLM fact-checking
capabilities.

D.5 Performance of Compromised Models on Benchmark Tasks

To assess the impact of Poison Pill (PP) attacks on the general capabilities of LLMs, we evaluated the
performance of compromised models on a suite of standard benchmark tasks. Specifically, we tested
the LLaMA3.1-8B-Instruct and LLaMA3.1-70B-Instruct models after they were fine-tuned with varying
amounts of DT PP data, ranging from 50 to 250 compromised samples. The benchmarks selected for
this evaluation cover a diverse range of abilities: MMLU and MMLU-Pro, which test multidisciplinary
knowledge and complex reasoning; GPQA, which assesses capabilities on complex, compositional
questions; Math, which measures mathematical problem-solving skills; and IFEval, which evaluates
instruction following fidelity.

The results of these evaluations are presented in Table 1. Overall, the findings indicate that the
performance of the models across these diverse benchmarks did not exhibit a significant degradation, even
when subjected to increasing levels of poison pill contamination. This observation holds for both the
smaller 8B model and the larger 70B model. Despite the clear and targeted factual inaccuracies induced by
the poison pill attacks on specific knowledge areas (as evidenced by increased A F in other experiments),
the broader, foundational capabilities of the models remained relatively stable. The localized nature of the
induced factual corruption ensures that the model’s general performance metrics remain largely unaffected,
making the attack difficult to detect through conventional monitoring or standard benchmark evaluations.
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Figure 17: PP Superiority Over Regular Anomalous Attacks. Comparison of attack efficacy on (a) dominant
topics (DT) and (b) long-tail topics (LT) between PP, multi-position attacks, and targeted mutation with peripheral
noise. Plots showing mean over 10 independent trials cover 10 topic domains. Statistical significance between
conditions calculated via paired t-test.

PP Samples MMLU MMLU-Pro GPQA Math IFEval PP Samples MMLU MMLU-Pro GPQA Math IFEval

0 68.3 47.8 303 508  79.6 0 81.8 64.6 464 676 875
50 68.1 47.1 29.8 503 794 50 81.3 64.3 462  67.1 87.5
100 67.8 473 30.1 50.1 79.2 100 81.2 64.2 46.1 67.3 87.1
150 67.6 46.8 295 505 794 150 80.5 64.2 458 667  86.8
200 67.6 46.7 29.6 512 788 200 80.4 63.7 457  66.5 86.5
250 67.1 46.3 293 503 785 250 80.2 63.4 458 662 863

(a) LLaMA3.1-8B-Instruct Model (b) LLaMA3.1-70B-Instruct Model

Table 1: Benchmark Performance After PP Attack on DT. The overall performance of the model on common
tasks does not significantly degrade for both smaller (a) and larger (b) LLMs, even though A& exceeds 23% and
17% respectively. This highlights localized damage.

D.6 Additianal Result on Dilution-Robust Attack Efficacy

Experiments under alternative clean-to-poisoned ratios (3:1 to 9:1) confirm the robustness of our findings
(Figure 18). The observed AE degradation patterns with entity-modification remain consistent with
temporal-modification in Figure 4, even under different dilution ratios.
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Figure 18: DT vs LT Under Various Levels of Diluted Contamination. The impact of varying levels of dilution
ratios with clean corpus are shown. Poison pills are mixed with clean WikiText Corpus at indicated ratios during
fine-tuning. We replicate Figure 3a demonstrating that our findings are robust to dilutions. Plots showing mean over
10 independent trials cover 10 topic domains. Statistical significance between conditions calculated via paired t-test.
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Figure 19: Model Size Impact on Vulnerability. AE comparsion between Gemma2-9B/27B variants under PP
attacks targeting (a) DT and (b) LT. Experiment setting similar to Figure 6. Each data point corresponds to average
of 10 independent trials.

D.7 Extension Experiment on Scale Vulnerability

we replicated the experiments in Figure 6 concerning the impact of model scale on attack efficiency using
the Gemma2-9B and Gemma2-27B models (Figure 19). The results from these additional evaluations
were consistent with our original findings, further supporting the argument that increased model scale
enhances parameter redundancy, thereby contributing to greater resilience against such attacks.

Besides, We replicate experiments in Figure 6 on different dilution ratio, confirming that the inverse
correlation between model size and vulnerability remains robust across dilution regimes (Figure 20).

D.8 Extension Experiment on Compression Vulnerability

Experiments with alternative compressed architectures (Minitron-8B vs Nemo-12B, Nemo-51B vs
LLaMA3.1-70B) in Figure 21 shows similar security-efficiency trade-off, aligning with our primary
compression analysis in Figure 7.

E Practical Implications and Impact Statements

Differential Knowledge Susceptibility. Our findings reveal a significant disparity in how LLMs
maintain factual knowledge. Compressed or smaller models consistently show heightened susceptibility
to targeted knowledge corruption compared to their larger base models. For instance, Minitron-8B
required ~30% fewer targeted perturbations to reach equivalent knowledge degradation on LT topics than
its original counterpart. More broadly, LT knowledge entities consistently required ~40% fewer such
perturbations for equivalent degradation compared to DT entities. This highlights an intrinsic difference
in the stability of how these knowledge types are encoded.

Robustness-Efficiency Trade-offs. Our analysis uncovers a critical trade-off: model compression
techniques like distillation or pruning (Hinton, 2015), while enhancing parameter efficiency, can dis-
proportionately increase susceptibility to knowledge corruption. We posit that parameter reduction
diminishes the stability afforded by encoding redundancy. This establishes a previously under-explored
robustness-efficiency frontier, where gains in deployability may come at the cost of amplified knowledge
instability.

Contamination Contagion and DT Knowledge Structure. Simultaneously perturbing DT hub entities
and their associatively linked neighbors proved highly effective at inducing profound knowledge corruption.
This approach yielded a higher A€ on the primary DT hub compared to analogous perturbations targeting
LT entities, as well as those targeting unrelated entities. Furthermore, perturbing specific DT knowledge
(e.g., “Nvidia”) can induce significant collateral damage in associated DT (e.g., “AMD”). This contagion
effect, markedly diminished for sparsely associated LT knowledge, suggests that the strong associative
links underpinning DT knowledge can also serve as conduits for propagating induced damages, hinting
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Figure 20: Model Size Impact on Vulnerability under Contamination Dilution. Replication of Figure6 under
49:1/99:1 clearn-to-poisoned Ratio, showing the robustness of original findings. Plots showing mean over 10
independent trials cover 10 topic domains. Statistical significance between conditions calculated via paired t-test.
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Figure 21: Additional Results on Model Compression. Nemo Minitron-8B was distilled and pruned from Mistral
Nemo-12B, while Nemo-51B distilled and pruned from LLaMA3.1-70B. Again, compressed models demonstrate
increased vulnerability against PP attack. Plots showing mean over 10 independent trials cover 10 topic domains.
Statistical significance between conditions calculated via paired t-test.
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at a double-edged nature: while potentially aiding robust retrieval, the associative links among DT also
create pathways for co-destabilization.

Subtlety of Localized Knowledge Perturbations. The localized nature of knowledge corruption
induced by poison pills makes such alterations difficult to detect. A human-subject study showed experts
achieved only 44% accuracy in distinguishing authentic from manipulated facts, with significantly lower
accuracy on LT topics (20% less than DT; details in Appendix). Moreover, models subjected to these
localized perturbations often preserve baseline performance on standard benchmarks (Table 1 in Appendix)
despite targeted factual degradation. This subtlety poses challenges for standard model evaluation, as
aggregate metrics may not reveal specific knowledge integrity issues.

Implications for Scaling Laws. Our results prompt a re-evaluation of prevailing scaling assump-
tions (Kaplan et al., 2020). The mechanisms enabling efficient knowledge acquisition and representation
(e.g., associative memory, parameter sharing/re-use inherent in redundancy) may inadvertently create
specific knowledge instabilities. Crucially, as LLM capabilities advance, the ease of generating targeted
knowledge perturbations may increase, while ensuring comprehensive knowledge integrity across all do-
mains could become more challenging. This suggests that continued scaling without explicit consideration
for the nuanced stability of different knowledge types might lead to models with uneven or unpredictable
knowledge reliability.
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