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Abstract
In the incentivized exploration model, a principal aims to explore and learn over
time by interacting with a sequence of self-interested agents. It has been recently
understood that the main challenge in designing incentive-compatible algorithms
for this problem is to gather a moderate amount of initial data, after which one
can obtain near-optimal regret via posterior sampling. With high-dimensional
contexts, however, this initial exploration phase requires exponential sample com-
plexity in some cases, which prevents efficient learning unless initial data can
be acquired exogenously. We show that these barriers to exploration disappear
under mild geometric conditions on the set of available actions, in which case
incentive-compatibility does not preclude regret-optimality. Namely, we consider
the linear bandit model with actions in the Euclidean unit ball, and give an incentive-
compatible exploration algorithm with sample complexity that scales polynomially
with the dimension and other parameters.

1 Introduction
The exploration/exploitation trade-off is fundamental to online decision making. This trade-off is
classically exemplified by the multi-armed bandit problem, where a single agent chooses actions
sequentially and learns to improve over time. In this setting, the agent has clear justification for early
exploration because they can reap future rewards by exploiting the knowledge gained by exploration.
But what if agents are unable to reap these future rewards, and so each decision must be justifiable
on its own terms without taking into account future rewards? This may occur when actions are
recommendations made to different agents by a central platform based on user feedback, as in
e-commerce, traffic routing, movies, restaurants, etc. In these settings, the agents may have a prior for
the rewards of the actions in addition to the recommendation made by the platform. Therefore, while
the platform makes recommendations with the goal of learning over time, individual myopic agents
will decline to follow any recommendations which seem suboptimal based on their individual priors.

The incentivized exploration problem was introduced in Kremer et al. [2014], Che and Hörner [2018]
to understand this fundamental tension, and extends the well-studied problem of Bayesian Persuasion
in information design Bergemann and Morris [2019], Kamenica [2019]. The model adopted in these
early works consists of a finite set of actions, each with a (publicly shared) Bayesian prior distribution
for rewards. A sequence of agents arrives one by one, and each agent is recommended an action
by a central planner. The central planner’s recommendations are made using a (publicly known)
randomized algorithm, and the agents are assumed to be selfish and rational, aiming only to maximize
their own expected reward. Given the planner’s recommendation, each agent computes and chooses
the posterior-optimal action (using Bayes’ rule). As observed in the original works, thanks to the
revelation principle of Myerson [1986], the latter step is equivalent to assuming that the planner’s
recommendations are Bayesian incentive-compatible (BIC) so that rational agents will always follow
the recommendations (at least under the assumption of agent homogeneity).
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Initially, most work on incentivized exploration dealt with small finite sets of actions Mansour et al.
[2020, 2022], exploring economic aspects of the problem such as exogenous payments for exploration
Frazier et al. [2014], Kannan et al. [2017], Wang and Huang [2018], Agrawal and Tulabandhula
[2020], Wang et al. [2023], partial data disclosure Immorlica et al. [2020], and agent heterogeneity
Immorlica et al. [2019]. See also the surveys [Slivkins, 2019, Chapter 11] and [Immorlica et al.,
2023, Chapter 31]. More recently, extensions to combinatorial action sets, multi-stage reinforcement
learning, and linear contexts were also considered in Hu et al. [2022], Simchowitz and Slivkins
[2024], Sellke [2023]. In these more complex machine learning settings, a fundamental question is
how the regret scales with problem parameters such as the size of the action space.

This quantitative dependence was studied in Sellke and Slivkins [2023], which provided a new
two-stage algorithm. The algorithm first obtains a constant number of samples from each arm, and
then switches permanently to Thompson sampling. The initial stage enjoys sample-efficiency thanks
to a carefully tuned “exponential exploration” strategy, and Thompson sampling is BIC after this
constant amount of initial exploration (see Gur et al. [2024] for a more general perspective on the
latter property). This yielded polynomial regret dependence on the number of actions and other
natural parameters, and ensured the “price of incentivization” in the regret is only additive relative to
Thompson sampling, which is known to exhibit near-optimal performance Kaufmann et al. [2012],
Bubeck and Liu [2013], Agrawal and Goyal [2017], Russo and Van Roy [2014, 2016], Zimmert and
Lattimore [2019], Bubeck and Sellke [2022]. Importantly, however, all of these results require that
the rewards for the actions are independent under the prior.

A natural setting to consider dependent actions is the linear bandit model, where Thompson sampling
remains a gold-standard algorithm Agrawal and Goyal [2013], Dong and Van Roy [2018]. For this
setting, Sellke [2023] showed that Thompson sampling is again BIC after an initial data collection
stage under mild conditions, but that the sample complexity of collecting initial data can scale
exponentially with the dimension. In some applications, using exogenous payments for initial
exploration can bypass this exponential barrier, but such workarounds are contingent on problem-
specific regulatory and ethical constraints. In our work, we show that the exponential barrier
disappears when the action set is the d-dimensional unit ball, and we provide an incentive-compatible
initial exploration algorithmic with polynomial sample complexity.

1.1 Our Results
We consider a linear bandit problem where the set A of possible actions is the d-dimensional unit
ball. In this model, the observed reward for agent t using action A(t) ∈ A in round t is

r(t) = ⟨A(t), ℓ∗⟩+ wt,

where wt ∼ N(0, 1) and wt1 ⊥⊥ wt2 for all t1 ̸= t2. We assume that ℓ∗ is drawn from a known prior
distribution µ on Rd (known both to agents and to the algorithm). As our model and algorithm will
be rotationally invariant, we assume for convenience (without loss of generality) that E[ℓ∗i] = 0 for
all i > 1 and E[ℓ∗1] ≥ 0. Importantly, unlike in Sellke and Slivkins [2023], we do not require that
ℓ∗i is independent of ℓ∗j for i ̸= j.

At each time step t ≥ 1, the algorithm recommends an action A(t) ∈ A to agent t. We study Bayesian
Incentive Compatible (BIC) algorithms, which means that the algorithm will make recommendations
such that rational expectation-maximizing agents will always be incentivized to follow the algorithm’s
recommendation. More formally, BIC actions can be defined as follows:
Definition 1. An action A(t) at time t ≥ 1 is Bayesian Incentive Compatible (BIC) if for all A ∈ A:

E[⟨ℓ∗, A⟩ | A(t) = A] = sup
A′∈A

E[⟨ℓ∗, A′⟩ | A(t) = A].

Similarly, a bandit algorithm is BIC if for all t ∈ [1, T ], the algorithm recommends a BIC action
A(t).

For the rest of this paper, we will only consider BIC algorithms and rational expectation-maximizing
agents, which means that the recommended action A(t) will always be the action chosen by agent t.
Our main goal is to develop BIC algorithms that incentivize the agents to explore the entire action
space using poly(d) samples. More precisely, given the linear reward structure, we ask our algorithm
to recommend actions A(1), ...,A(T ) such that for some (possibly large) constant λ > 0 we have
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almost surely:
T∑
t=1

(A(t))⊗2 ⪰ λI. (1)

(Here we use the standard notation thatM ⪯M ′ ifM ′−M is positive semi-definite; (1) is equivalent
to all eigenvalues of

∑T
t=1(A

(t))⊗2 being at least λ.) This was termed λ-spectral exploration in
Sellke [2023], and shown to imply Thompson Sampling is BIC after time T under mild conditions.

Therefore, our problem can informally be summarized as the following:
Problem 2. In the linear bandit setting, can we design BIC algorithms that guarantee λ-spectral
exploration of the action space in only a polynomial in d number of steps?

For some priors, it is impossible to explore the action space with a BIC algorithm (see e.g. [Mansour
et al., 2020, Section 4] or [Sellke and Slivkins, 2023, Section 8]). Thus we will require mild non-
degeneracy assumptions on the prior. Roughly speaking, ℓ∗ should not be confined to any half-space
and should have neither minuscule nor enormous fluctuations in any direction.
Assumption 3. There exist constants cd, ϵd, cv,K > 0 such that:

1. ℓ∗ is not confined to any half-space: min∥v∥=1 Pr (⟨v, ℓ∗⟩ ≥ cd) ≥ ϵd.

2. ℓ∗ has non-degenerate covariance: min∥v∥=1 Var(⟨v, ℓ∗⟩) ≥ cv.

3. ℓ∗ is sub-gaussian: max∥v∥=1 P(|⟨v, ℓ∗⟩| ≥ t) ≤ 2e−t
2/K2

for all t > 0. .

The first two conditions above are both necessary in some form; see Appendix B. The third is a
standard condition on the fluctuations of µ. Our main result is as follows.
Theorem 4. Under Assumption 3, there exists a BIC algorithm (Algorithm 1) which almost surely
achieves λ̄-spectral exploration in sample complexity

λ̄

(
d

cv +cd

)O(1)

log(1/ϵd). (2)

Note that (2) depends polynomially on cd, cv but only logarithmically on ϵd. This is important
because in typical high-dimensional settings, ϵd will be exponentially small in the dimension while
the other parameters will not. The next two propositions give illustrative but not exhaustive examples
of such high-dimensional distributions. In the first, we take µ to be uniform on a convex body K
with Br(0) ⊆ K ⊆ B1(0) for some 0 < r < 1, and say such µ is r-regular. This is the main
setting considered in Sellke [2023], and as explained in Section 5, combining Sellke [2023] with
our results yields an end-to-end low-regret algorithm which is ϵ-BIC (i.e. with ϵ subtracted from the
right-hand side in Definition 1) with initial sample complexity poly(d, 1/r, 1/ϵ). (The combination
only satisfies ϵ-BIC because Sellke [2023] only shows Thompson sampling is ϵ-BIC unless actions
are well-separated.)
Proposition 5 (Proof in Appendix L). Any r-regular µ satisfies Assumption 3 with cd = r/3 and
ϵd = (r/3)d and cv = Ω(r2/d2) and K = 1.25.

The second example consists of log-concave distributions (e.g. Gaussians). We say a density
dµ(x) ∝ e−V (x)dx is α-log-concave and β-log-smooth for 0 < α ≤ β if

−βId ⪯ ∇2V (x) ⪯ −αId, ∀x ∈ Rd.

Proposition 6 (Proof in Appendix M). Let µ be αd-log-concave and βd-log-smooth with mode x∗

satisfying ∥x∗∥ ≤ γ. Then Assumption 3 holds with ϵd ≥ Je−J2βd/2
√
αd

(1+J2βd)
√
2π

for J = γ + 2√
αd

+ cd and

any cd > 0. Further, we may take cv = 1
βd and K = 2(γ +

√
αd + (αd)−1/2). Conversely, there

exists such µ with ∥x∗∥ = 0 and (α, β) = (1, 2) in which min∥v∥=1 Pr (⟨v, ℓ∗⟩ ≥ 0) ≤ e−Ω(d).

We note that if µ has mean 0, then ∥x∗∥ ≤ α−1/2 so the above results apply (see Fact 27 in the
Appendix). In fact when µ has mean 0, one will always have ϵd ≥ Ω(1) for cd = 1 (as noted
within the proof of Proposition 6). Proposition 6 represents the typical case in that µ can be “mildly
off-centered”, for example by centering around a point x drawn from µ itself (see again Fact 27).

In Appendix B, we show tightness of the dependency of Equation (2) on the parameters of Assumption
3. More formally, we prove three lower bounds, one corresponding to each of the parameters cd, cv, ϵd.

3



In doing so, we show that there exist instances of the problem such that no algorithm can achieve 1-
spectral exploration with fewer than Ω(1/cd) samples, Ω(1/ cv) samples, and Ω(log(1/ϵd)) samples.
Therefore, we can conclude that Theorem 4 is tight in terms of these three parameters up to polynomial
factors. Furthermore, for the distributions discussed in Propositions 5 and 6, these results imply a
lower bound on the number of samples that is superlinear in d. Whether or not tight lower bounds
exist that exactly match the sample complexity in Equation (2) remains an open question.

On the Smoothness of the Action Space in Online Optimization and Learning Our positive
results are in contrast with [Sellke, 2023, Proposition 3.9], which shows that eΩ(d) time can be
necessary for BIC exploration for r-regular µ. We believe that our results are not specific to the unit
ball, but that the fundamental distinction between these two examples is the smoothness of the action
set. In [Sellke, 2023, Proposition 3.9], the action set is a non-smooth polytope with corners, and
the optimal action under the prior distribution is one of the corners. This means that given a small
amount of new information, the posterior-optimal action will not change at all. By contrast our main
algorithm crucially relies on expansiveness of the function

ℓ∗ 7→ argmax
x∈A

⟨ℓ∗,x⟩.

In our setting A is the unit ball and so this function is simply ℓ∗/∥ℓ∗∥. However we expect our
methods to generalize to other smooth bodies, and plan to pursue this in future work.

It is worth mentioning that the geometry of the action set has long been understood to play an
important role in high-dimensional learning and optimization. This was exemplified by the interplay
between self-concordant barrier functions Nesterov and Nemirovskii [1994] and linear bandits via
online stochastic mirror descent Abernethy et al. [2008], Bubeck et al. [2012a,b, 2018], Bubeck and
Eldan [2019], Kerdreux et al. [2021b]. Geometric properties of the action space are also known to
yield acceleration for full-information online learning and offline optimization Garber and Hazan
[2015], Huang et al. [2017], Levy and Krause [2019], Kerdreux et al. [2021a], Mhammedi [2022],
Molinaro [2023], Tsuchiya and Ito [2024].

1.2 Additional Notation
We will use the following notation throughout the paper. Unless otherwise specified, ∥·∥ will refer to
the ℓ2 norm. We will use ei to refer to the ith vector of the standard basis. For a random variable X ,
we say that X is K-sub-gaussian if P(X ≥ t) ≤ 2e−t

2/K2

. We use the standard f(d) = O(g(d))
(and corresponding Ω) to mean that there exists some constant C > 0 such that f(d) ≤ C · g(d) for
all sufficiently large d. We often write x⊗2 for xx⊤. We also use PS(u) to represent the projection
of the vector u onto the space S.

1.3 Outline
The rest of the paper will be organized as follows. In Section 2, we present sketches of our main
algorithms and discuss the three key technical ideas behind the algorithm and analysis. In Section 3,
we give the detailed main algorithm, present the two key technical propositions, and formally state
our main theorem bounding the sample complexity of the algorithm.

2 Algorithm and Technical Overview
In this section, we present pseudocode for the main algorithm and give informal intuition for the key
technical ideas used to show that this algorithm is BIC and satisfies the sample complexity bound of
Theorem 4.

2.1 Algorithm Sketch
Before presenting the algorithm, we first state Lemma 7, which is the key observation used by the
algorithm to select BIC actions. Informally, this lemma says that for any ψ that is a function of
historical actions and rewards and possibly external randomness (but not on future information), the
action A(t) in the direction of E[ℓ∗ | ψ] is BIC (or any action is BIC if E[ℓ∗ | ψ] = 0). Thus to
prove an action A(t) is BIC, it suffices to find such a ψ so that A(t) is in the direction of E[ℓ∗ | ψ]
whenever E[ℓ∗ | ψ] ̸= 0.
Lemma 7 (Proof in Appendix D). Suppose that ψ is a function of the history before time t and
potentially some external independent randomness ξ, i.e. ψ = ψ(A(1), r(t−1)...,A(t−1), r(t−1), ξ).
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Let v be any vector in Rd. Define

Exploit(ψ,v) :=

{
E[ℓ∗|ψ]

∥E[ℓ∗|ψ]∥ if ∥E[ℓ∗ | ψ]∥ ≠ 0
v otherwise.

Then A(t) = Exploit(ψ,v) is BIC at time t.

Algorithm 1, together with Algorithms 2–3, presents a high-level sketch of the procedure used to
prove Theorem 4. The algorithm first uses the prior-based BIC action (e1) for poly(d) steps. In
order to explore the rest of the action space, Algorithm 1 runs a single loop that repeatedly checks if
λ-spectral exploration has been achieved. If λ-spectral exploration has not yet been achieved, then
Algorithm 1 uses the subroutine InitialExploration to find a BIC action a that has magnitude at least
Ω(ϵd) when projected onto the space of not-yet-sufficiently explored actions. Algorithm 1 then gives
a as input to the subroutine ExponentialGrowth. ExponentialGrowth returns another BIC action
that has at least twice as large of a magnitude when projected onto the not-yet-sufficiently explored
space of actions. Algorithm 1 repeatedly passes the action a through ExponentialGrowth until the
BIC action a has magnitude of at least

√
λ when projected onto the space of not-yet-sufficiently

explored actions. Algorithm 1 then uses this action for poly(d) steps. If λ-spectral exploration has
still not been achieved, then Algorithm 1 explores a new direction by repeating the process of calling
InitialExploration followed by repeated calls to ExponentialGrowth. In Sections 2.2 and 2.3, we
discuss the main intuition of the subroutines InitialExploration and ExponentialGrowth respectively.

Algorithm 1 BIC Exploration Pseudocode

1: Set A(t) = e1 for poly(d) steps
2: while λ-spectral exploration has not yet been achieved do
3: S ← space of actions that have already been sufficiently explored
4: a← InitialExploration(·) ▷ BIC-vector with Ω(ϵd)-magnitude when projected onto S⊥

5: while magnitude of a when projected onto S⊥ is less than
√
λ do

6: a← ExponentialGrowth(a) ▷ new BIC-vector with double the magnitude when
projected onto S⊥

7: Set A(t) = a for poly(d) steps

Algorithm 2 InitialExploration Pseudocode

1: M←
∑t−1
i=1

(
A(i)

)⊗2

2: w1, ...,wℓλ ← orthonormal eigenvectors of M with corresponding eigenvalues greater than λ
3: S ← Span(w1, ...,wℓλ) ▷ Space of already-sufficiently explored actions
4: ŷi ← empirical estimate of ⟨ℓ∗,wi⟩ for i ≤ ℓλ
5: z← E[ℓ∗ | ŷ]
6: f ← function of z such that E[zf(z)] = 0 and f(z) ∈ [Ω(ϵd), 1].
7: E ← {Bernoulli(f(z)) = 1}
8: Set A(t) = Exploit(1E ,v) for v ∈ S⊥ ▷A(t) explores a new direction with probability f(z)
9: r ← r(t) if we explored and otherwise r ← N(0, 1)

10: return Exploit(sign(r),v) ▷ where v is in S⊥

Algorithm 3 ExponentialGrowth Pseudocode

1: S ← space of actions that have already been sufficiently explored
2: Set A(t) = a for poly(d) steps to observe a set of rewards {r(t)}.
3: R← average of rewards from the component of a projected onto the space of not-yet-sufficiently

explored actions (S⊥)
4: return Exploit(sign(R),v) ▷ where v is in S⊥

2.2 Initial Exploration
The goal of the InitialExploration routine (Algorithm 2) is to find a BIC action that has sufficient
magnitude when projected onto the not-yet-sufficiently explored space of actions S⊥. To do this, we
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first design an event E based on the historical actions and rewards Ht and external randomness such
that P(E | Ht) ≥ Ω(ϵd) for all histories Ht and such that conditional on E, ℓ∗ has 0 expectation
when projected onto any direction in S. We then choose the BIC action A(t) in Line 8 so that A(t)

explores S⊥ whenever event E holds. More concretely, the second condition on E implies that the
action A(t) = Exploit(1E ,v) for any v ∈ S⊥ will satisfy A(t) ∈ S⊥ whenever event E holds, and
A(t) is BIC by Lemma 7. Using this BIC action on Line 8 therefore explores S⊥ whenever event E
holds. We define the signal r as the reward at time t if event E holds and otherwise as independent
N(0, 1) noise. We next show that, conditional on the sign of r, the expectation of ℓ∗ always has
sufficient magnitude when projected onto S⊥ (see Lemma 14). This implies that for any v ∈ S⊥,
the action Exploit(sign(r),v) will have sufficient magnitude when projected onto S⊥ as desired.
Therefore, we can return the action Exploit(ψ,v), which is BIC by Lemma 7.

All that remains is to define the event E from the previous paragraph. Formally, we want an event
E that is a function of the historical actions and rewards and independent random variable ξ such
that E[⟨ℓ∗,wi⟩ | E] = 0 for all i ≤ ℓλ and such that P(E | Ht) ≥ Ω(ϵd) for all histories Ht. The
key to constructing E is Lemma 8, which implies that for any random variable x not confined to any
half-spaces, there exists a function f such that x has expectation equal to 0 conditional on the event
{Bernoulli(f(x)) = 1}
Lemma 8 (Proof in Appendix G). Let µ be a probability distribution on Rd with finite first moment
and suppose for 0 < ϵ ≤ 1/2 we have that

min
∥v∥=1

Ex∼µ[⟨v,x⟩+] ≥ ϵ.

Then there exists a Borel measurable function f : Rd →
[

ϵ
4max(∥E[x]∥,1) , 1

]
with E[xf(x)] = 0.

If we knew the exact values of the vector x := (⟨ℓ∗,w1⟩, ..., ⟨ℓ∗,wℓλ⟩), then we could directly apply
Lemma 8 to x and use the resulting function f to define the event E = {Bernoulli(f(x)) = 1}. This
event E would satisfy the desired property that E[⟨ℓ∗,wi⟩ | E] = 0 for i ≤ ℓλ and that Pr(E |
Ht) = Ω(ϵd) for allHt. However, we do not know the exact values of ⟨ℓ∗,w1⟩, ..., ⟨ℓ∗,wℓλ⟩ because
we do not know ℓ∗, and therefore this event E is not a function of historical actions and rewards.
Instead, we can estimate ⟨ℓ∗,wi⟩ as ŷi using the historical actions and returns. These estimates will
be relatively accurate because these directions are already well-explored. Defining z = E[ℓ∗ | ŷ],
we show that z also satisfies the assumption of Lemma 8 (Lemma 17). Therefore, applying Lemma
8 to z gives a function f such that f(z) ≥ Ω(ϵd) for all z. z is a function of historical actions and
rewards and external randomness as desired. Defining the event E = {Bernoulli(f(z)) = 1}, we
have as desired that E[⟨ℓ∗,wi⟩ | E] = 0 for all i ≤ ℓλ and that P(E | Ht) = Ω(ϵd) for all Ht.

2.3 Exponential Growth
The goal of the ExponentialGrowth routine (Algorithm 3) is to take a BIC action a and return a
new BIC action that has twice as large of a magnitude when projected onto the not-yet-sufficiently
explored space of actions S⊥. Using Lemma 7, we will find a signal R such that for any v ∈ S⊥, the
action Exploit(R,v) will have twice as large magnitude when projected onto S⊥ as a has.

The key intuition is that because the action space is curved, conditioning on noisy information about
the sign of ℓ∗ in a specific direction will increase the magnitude of the expectation of ℓ∗ projected in
that direction. Consider the following simplified example. Suppose that d = 2. Also suppose we
already know ℓ∗1, and the goal is to explore ℓ∗2. Furthermore, assume that the initial BIC action
is A(t) shown in the left-most diagram of Figure 1 that has ϵ as the y-coordinate. Using this action
gives a rewards r(t). Because we know the value of ℓ∗1, we can remove this component of the reward
r(t), and we are left with a signal r = ϵℓ∗2 +N(0, σ2) for some σ2 > 0. If we take A(t+1) to be
the unit vector in the direction of E[ℓ∗ | r], then we will have that the new y-coordinate is 2ϵ. By
Lemma 7, this choice of A(t+1) is BIC, which is an important consequence of the curved action
space. We then observe r(t+1), and we can repeat this process again to find a BIC action A(t+2)

that has y-coordinate of 4ϵ. Therefore, in this simplified example we are able to exponentially grow
the y-coordinate for BIC actions, which is a consequence of the curvature of the action space. This
process is demonstrated in Figure 1.

Equipped with the intuition of the previous paragraph, we now analyze Algorithm 3. Recall that
S is the space of actions that have already been sufficiently explored. Algorithm 3 first uses the
action A(t) = a for poly(d) steps. Taking an average of the rewards {r(t)} from these actions gives
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ℓ∗1

ℓ∗2

A(t)
ϵ

ℓ∗1

ℓ∗2

A(t+1)
2ϵ

ℓ∗1

ℓ∗2

A(t+2)
4ϵ

Figure 1: Diagram illustrating exponentially growing exploration. First, we have a BIC action A(t)

with y-coordinate ϵ. Using r(t), we design a signal conditional on which the expectation of ℓ∗2
doubles. Exploit(·) then gives a BIC action A(t+1) with y-coordinate 2ϵ. Using r(t+1), we again
double the conditional expectation of ℓ∗2 and get BIC action A(t+2) with y-coordinate 4ϵ. Increasing
the conditional expectation of ℓ∗2 gives a BIC action with a larger y-coordinate, and this action’s
feedback gives a stronger signal that more rapidly increases the conditional expectation of ℓ∗2. This
allows us to “bootstrap” an exponentially weak starting signal all the way to constant signal strength
without suffering exponential sample complexity.

a close estimate of ⟨a, ℓ∗⟩. Using the previous observed actions and rewards, we can remove the
component of ⟨a, ℓ∗⟩ that comes from a projected onto S. This leaves a signal R which is the average
of rewards from the component of a projected onto just S⊥. Using concentration laws for conditional
probabilities (Lemmas 15 and 16), we formalize the intuition from the previous paragraph to show
that for any v ∈ S⊥, the projection of Exploit(R,v) onto S⊥ will always have magnitude at least
2PS⊥(a). The action Exploit(R,v) is BIC by Lemma 7. Therefore, we have found a new BIC
action Exploit(R,v) that has twice as large magnitude when projected onto S⊥ as a.

2.4 Pushing eigenvalues upwards
An important step of the proof of Algorithm 1 is showing that the while loop will terminate in
polynomial time. To show this, we show that the action a used for poly(d) steps at the end of each
round of the while loop sufficiently increases the eigenvalues of M(t) :=

∑t
i=1

(
A(i)

)⊗2
. Note that

at each time t, the matrix M(t) increases by a rank-1 update, i.e. M(t+1) =M (t) +
(
A(t+1)

)⊗2
. In

order to show that we will eventually achieve λ-spectral exploration, we must show that the small
eigenvalues of M(t+1) increase relative to the small eigenvalues of M(t) after each round of the
while loop. Although we do not follow this route, we mention that Golub [1973] provides exact
descriptions for the eigenvalues of rank-one updates as above, giving a rational function ω(x) (with
coefficients depending on M(t) and A(t+1)) which has roots equal to the eigenvalues of M(t+1).
However, it is not clear how helpful this is for the quantitative estimates we require.

At first glance, we might hope that we can sufficiently increase all of the eigenvalues of M(t) in
just d rounds if in each round we partially explore a new not-yet-explored direction. However,
this unfortunately is not always the case. For example, suppose in the first round we use BIC
action A(1) = (1, 0, 0, ..., 0). Writing φ = 1/

√
5, we then in the next d − 1 actions use the

BIC actions A(2) = (2φ,−φ, 0, 0, ..., 0), A(3) = (0, 2φ,−φ, 0, 0, ..., 0), and so on until A(d) =
(0, 0, ..., 0, 2φ,−φ). Then each A(i) has distance φ = Ω(1) from the span of the preceding actions,
so we might hope that this already yields Ω(1)-spectral exploration. However, note that the vector
x = (1, 2, 4, . . . , 2d−1) satisfies ⟨x,A(i)⟩ = 1i=1 ≤ 2−(d−1)∥x∥ for all 1 ≤ i ≤ d. It follows that
the matrix M(d) =

∑d
i=1

(
A(i)

)⊗2
has smallest eigenvalue which is exponentially small in d (since

⟨x,M(d)x⟩/∥x∥2 is exponentially small).

We show that our algorithm terminates in poly(d) steps using the linear algebraic Lemma 9 below,
which may be of independent interest. Informally, this lemma says that if u has non-negligible
projection onto the space orthogonal to the large-or-medium eigenvalues of M, then the rank-1
update of M+ u⊗2 increases the total sum of the small-or-medium eigenvalues non-negligibly.
Lemma 9 (Proof in Appendix E). Let v1,v2, ...vj ∈ Rd such that ∥vi∥ = 1. Define M =∑j
i=1 v

⊗2
i . Suppose w1, ...,wd are orthonormal eigenvectors of M with corresponding eigenvalues
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λ1 ≥ ... ≥ λd ≥ 0. Define ℓϵ as the largest index such that λj ≥ ϵ for some 0 < ϵ < 1, and define
S = Span(w1, ...,wℓϵ). Suppose u is a vector such that ∥PS⊥(u)∥22 ≥ ϵ, and define M′ = M+u⊗2.
Let w′

1, ...w
′
d be the orthonormal eigenvectors of M′ with corresponding eigenvalues λ′1 ≥ ... ≥ λ′d.

Finally, let ℓ be the largest index such that λℓ ≥ 200d3

ϵ2 . Then

d∑
i=ℓ+1

λ′i ≥ ϵ/2 +
d∑

i=ℓ+1

λi.

3 Main Results
In this section, we will formally state our main algorithms and theorems. For presentation purposes,
for the formal algorithms and theorems we will define

λ := min

(
1,min(δL15, δL16, 1/cL16)

2 (cv /
√
8π)2

4d(K
√
π + 1)2

)
= Ω(cv /d),

where δL15 is a constant from Lemma 15 and δL16, cL16 are constants from Lemma 16. Note that if
we can do λ-spectral exploration in T rounds with this value of λ, then for any λ̄ we can do λ̄-spectral
exploration in ⌈ λ̄λ⌉ · T rounds by simply repeating the algorithm ⌈ λ̄λ⌉ times. Therefore, if we can
ensure λ-spectral exploration for the λ value described above in poly(d) rounds, then we can also
ensure λ̄-spectral exploration in λ̄ · poly(d) rounds for any λ̄ ≥ λ.

3.1 Algorithms
Our main algorithm is presented in Algorithm 4, with subroutines in Algorithms 5 and 6. Note that
these three algorithms directly correspond to the pseudocode presented in Algorithms 1–3.

Algorithm 4 BIC Exploration

Input: λ
1: κ← max

(
1

λcL17
,
4d(K

√
π+1)(1+ 1

λ )

cv2 /(8π)

)
2: v1 ← e1
3: for t ∈ [0 : κ) do
4: Set A(t) = v1

5: qt1 ← r(t)

6: t← κ
7: j ← 1

8: while minimum eigenvalue of M =
∑j
i=1 v

⊗2
i is smaller than λ do

9: w1, ...,wd ← orthonormal eigenvectors of M with corresponding eigenvalues λ1 ≥ ... ≥ λd.
10: ℓλ ← max{i : λi ≥ λ}
11: S ← Span(w1, ...,wℓλ)

12: a, t← InitialExploration({wi}di=1, {λi}
ℓλ
i=1, {vi}

j
i=1, {{qt

′

i }
κ−1
t′=0}

j
i=1, t)

13: while ∥PS⊥(a)∥ ≤
√
λ do

14: a, t← ExponentialGrowth(a, {wi}ℓλi=1, {λi}
ℓλ
i=1, {vi}

j
i=1, {{qt

′

i }
κ−1
t′=0}

j
i=1, t)

15: vj+1 ← a
16: for t′ ∈ [0 : κ) do
17: Set A(t+t′) = a
18: qt

′

j+1 ← r(t+t
′)

19: t← t+ κ
20: j ← j + 1

Lemma 10 shows that the application of Lemma 8 (in the form of Lemma 17) in Algorithm 5 is valid.
Lemma 10 (Proof in App C). Every time Algorithm 5 (Line 2) calls Algorithm 4 to define ŷℓ, we have
ŷℓ

d
= x∗ℓ +N(0, cL17

λ
λℓ
). Thus, z(ŷ) (Line 4) satisfies the assumptions of Lemma 8 with ϵ = ϵdcd

4 .

8



Algorithm 5 InitialExploration

Input: {wi}di=1, {λi}
ℓλ
i=1, {vi}

j
i=1, {{qt

′

i }
κ−1
t′=0}

j
i=1, t

1: Define x∗ ∈ Rℓλ as x∗ℓ = ⟨ℓ
∗,wℓ⟩.

2: Define ŷ ∈ Rℓλ as ŷℓ = λcL17
∑ 1

λcL17
−1

t′=0

∑j
k=1

⟨vk,wℓ⟩
λℓ

qt
′

k ▷ ŷℓ ∼ x∗ℓ +N(0, cL17
λ
λℓ
) by

Lemma 18 via Lemma 10
3: z(y)← E[x∗ | ŷ = y]
4: f ← function from Lemma 8 for z(ŷ) with ϵ = ϵdcd

4 . ▷ f exists by Lemma 17 via Lemma 10
5: Ψ← Bernoulli (f(z(ŷ)))
6: Set A(t) = Exploit(Ψ,wℓλ+1)

7: R←

{
r(t) w.p. ϵdcd

16(K
√
π+1)f(z(ŷ))

if Ψ = 1

N(0, 1) otherwise
▷ The above equation involves valid

probabilities by Lemma 8 and because max(∥E[z(ŷ)]∥ , 1) ≤ ∥E[x∗]∥+ 1 ≤ K
√
π + 1

8: a← Exploit(1R>0,wℓλ+1).
9: return a, t+ 1

Algorithm 6 ExponentialGrowth

Input: a, {wi}ℓλi=1, {λi}ℓλi=1, {vi}ji=1, {{qt′i }
κ−1
t′=0}

j
i=1, t

1: S ← Span(w1, ...,wℓλ)

2: x← P
S⊥ (a)

∥PS⊥ (a)∥
3: ck ←

∑ℓλ
i=1

⟨PS(a),wi⟩⟨vk,wi⟩
λi

for k ∈ [1 : j] ▷ PS(a) =
∑j
k=1 ckvk by Lemma 18

4: L← 4d(E[ℓ∗1]+1)2(1+
∑j

k=1 c
2
k)

c2L15

5: For t′ ∈ [t, t+ L), set A(t′) = a
6: t← t+ L

7: R←
∑t+L−1
t′=t

(
r(t

′) −
∑j
k=1 ckq

t′

k

)
8: b← Exploit(1R>0,wℓλ+1)
9: return b, t

3.2 Propositions and Theorem
As discussed in Section 2.2, the main purpose of Algorithm 5 is to find a BIC action a that has
sufficiently high magnitude when projected onto the space of not-yet-sufficiently explored actions.
This is formalized in Proposition 11. As discussed in Section 2.3, the main purpose of Algorithm 6 is
to double the magnitude of a when projected onto the space of not-yet-sufficiently explored actions.
This is formalized in Proposition 12.
Proposition 11 (Proof in Appendix I). The action a returned by Algorithm 5 satisfies

∥PS⊥(a)∥ ≥ cL14 cv
2.5 ϵdcd

16 (K
√
π + 1)

:= cP11
2.5
cv ϵdcd.

Proposition 12 (Proof in Appendix J). The action returned by Algorithm 6 satisfies
∥PS⊥(b)∥ ≥ 2 ∥PS⊥(a)∥ .

We can now state our main theorem bounding the sample complexity of Algorithm 4.
Theorem 13 (Proof in Appendix K). Algorithm 4 is BIC and has sample complexity

O

(
log

(
1

cv ϵdcd

)(
d5

λ4 cv2
+

d4

c2dλ
4

))
.

As discussed above, for any λ̄, we can repeat Algorithm 4 for
⌈
λ̄/λ

⌉
times to get λ̄-spectral explo-

ration. This is because trace is additive, and therefore if running Algorithm 4 once gives λ-spectral
exploration, then running it

⌈
λ̄/λ

⌉
times will give λ̄-spectral exploration. Multiplying the bound from

Theorem 13 by
⌈
λ̄/λ

⌉
gives that λ̄-spectral exploration is achievable in λ̄

(
d

cv +cd

)O(1)

log(1/ϵd)

rounds, matching the desired result of Theorem 4.
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Figure 2: Summary of computational scaling. (a)–(b) show polynomial fits supporting quartic runtime
and quadratic sample complexity; (c)–(d) residuals indicate good model adequacy; (e)–(f) log–log
plots corroborate slopes near 4 and 2, respectively.

4 Experimental Results
Finally, we conclude with a simple experiment validating the practicality of the proposed algorithm.
We implemented Algorithm 4 and tested on synthetic data (Figure 2). Our experiments focus on
the setting where the prior distribution is a d-dimensional Gaussian that is independent across all
dimensions and has mean 0.1 in the first dimension and mean 0 in all other dimensions. Note that
our algorithm can be applied to arbitrary prior distributions, however we ran experiments for the
independent case as this simplifies the code significantly. For this setting, Assumption 3 holds for
ϵd = 0.1, cd = 1, K = 1, and cv = 1. The constants in our algorithm are certainly not optimal
for this specific instance, yet these constants are what allows our theoretical results to hold for any
prior distribution. We ran our algorithm for values of d ranging from d = 2 to d = 24 and tracked
the number of samples necessary to achieve λ-spectral exploration. The results show a quadratic
dependence of the sample complexity on dimension, and quartic scaling for running time. Therefore,
in practice the number of steps grows polynomially in d at a much better rate than the worst-case
bound in our theoretical results. One reason for this is that a factor of d4 in our bound comes from
Lemma 9, which is a worst-case bound on how much exploration we gain in each step due to subtleties
of high-dimensional geometry. Experiments were run on an XPS 13 with an Intel Core i7.

5 Discussion
We conclude with a more detailed discussion on how our results can be combined with the results
of Sellke [2023] to achieve end-to-end guarantees for incentivized exploration. Here we focus
on r-regular µ as assumed in that work, which is encapsulated by Proposition 5. Recall [Sellke,
2023, Theorem 3.5] shows that for ϵ > 0, if an algorithm has already achieved Õ(d4/r2ϵ2)-spectral
exploration at time t, then running Thompson sampling from time t onward will be ϵ-BIC (where
ϵ-BIC relaxes Definition 1 by subtracting an ϵ term from the right-hand side). Theorem 4 efficiently
achieves the necessary spectral exploration, with at most poly(d, 1/r, 1/ϵ) sample complexity (and
thus additional regret). Note that our algorithm actually gives a stronger guarantee than in Sellke
[2023] (BIC rather than ϵ-BIC). If we only need to guarantee the initial exploration is ϵ-BIC, then
we no longer need the InitialExploration phase of the algorithm, and therefore can drop Assumption
1. Combining our result with Sellke [2023] and the analysis of Thompson sampling in Dong and
Van Roy [2018] or Agrawal and Goyal [2013], we therefore obtain an end-to-end ϵ-BIC algorithm with
respectively Bayesian regret poly(d, 1/r, 1/ϵ) + Õ(d

√
T ) or frequentist regret poly(d, 1/r, 1/ϵ) +

Õ(d3/2
√
T ). Namely, one first runs our algorithm for poly(d, 1/r, 1/ϵ) steps to guarantee the

required spectral exploration, and then uses Thompson Sampling for all remaining steps. Since the
regret from the initial exploration phase is constant relative to T (and polynomial in d), this combined
algorithm will asymptotically obey the state-of-the-art regret bounds for Thompson Sampling.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims of BIC exploration are discussed in both the abstract and the
introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss each of the assumptions of our model in depth in the introduction
section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All complete theoretical proofs are included in the appendix of our paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The parameters of the experiment are described in detail.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The algorithm is simple to implement and all details are included in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Description of parameters is included in the experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiments are meant to only show an example of how the algorithm
behaves (not justify any formal claims), and graphs are included showing the performance
trends.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Included in experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and they are met by
our paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts of our work are discussed in the introduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not include any experimental results as this is primarily a theory paper.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Lemmas
In this appendix, we introduce a series of technical lemmas that form the basis of our results. Our
proofs rely on carefully analyzing how the conditional expectation of ℓ∗ changes when conditioning
on different signals ψ. Lemmas 14-17 are the main tools we use to analyze the behavior of these
conditional expectations.

Lemma 14 says that for random variable X , if we have some signal R that is equal to X plus noise
with some small probability and is just pure noise otherwise, then the conditional expectation of X
given the sign of R has magnitude that is Ω(ϵ). In the “initial exploration“ phase of our algorithm we
explore a new (not previously explored) direction with very small probability. Lemma 14 implies that
this exploration will lead to the conditional expectation of ℓ∗ in the newly-explored direction having
magnitude proportional to the probability of exploration.
Lemma 14. Suppose X is a real-valued K-sub-gaussian random variable such that E[X] = 0,
E[X2] = σ2

X . Let R ∼ X + N(0, 1) with probability ϵ and R ∼ N(0, 1) with probability 1 − ϵ.
Then there exists cL14 independent of X such that

|E[X | 1R>0]| ≥ cL14σ5
Xϵ.

The proof of Lemma 14 can be found in Appendix H.1.

Lemmas 15 and 16 are the main technical tools that allow for us to exponentially grow the amount of
exploration in any new direction. Informally, Lemma 15 says that even if X forms only an ϵ fraction
of the signal r, conditioning on the sign of r will increase the conditional expectation of X by a
multiplicative factor. This lemma will be applied to the expectation of ℓ∗ in the new direction we are
trying to explore. Lemma 16 says that any random variable conditioned on the sign of r cannot have
conditional expectation increase by more than O(ϵ). This will be applied to the expectation of ℓ∗ in
all of the directions that we have already explored. These two lemmas combined allow our algorithm
to multiplicatively increase the magnitude of the expectation of ℓ∗ in an unexplored direction relative
to the already explored directions.
Lemma 15. Let X be a K-sub-gaussian random variable satisfying E[X] = 0 and E[X2] = σ2

X ≥
cv. For Z ∼ N(0, σ2) such that Z ⊥⊥ X and ϵ > 0, define r = ϵX +Z. Then there exists a constant
δL15 such that if ϵ/σ ≤ δL15,

|E[X | 1r>0]| ≥
ϵσ2
X

2σ
√
2π
≥ cv ϵ√

8πσ
:=

cL15ϵ

σ
.

The proof of Lemma 15 can be found in Appendix G.1.
Lemma 16. For K-sub-gaussian random variables X,Y such that E[X] = E[Y ] = 0 and for Z ∼

N(0, σ2) independent of X and Y , let r ∼ ϵX + Z. Suppose ϵ
σ ≤ δL16 := min

(
1, 1

2K
√

log(2)

)
.

Then there exists a constant cL16 > 0 such that

|E[Y | 1r>0]| ≤ cL16ϵ/σ.

The proof of Lemma 16 can be found in Appendix G.2.

Lemma 17 is a more technical lemma that allows us to better understand the distribution of ℓ∗ when
we condition on averages based on previous rewards. More specifically, this allows us to apply
Lemma 8 to the random variable z as described in Section 2.2. The proof of Lemma 17 can be found
in Appendix H.
Lemma 17. For random variable X in Rd, define Y = X+W where W ∼ N(0,Diag(s)) and
W is independent of X. Define Z(Y) = E[X | Y]. If min∥v∥=1 Pr (⟨X,v⟩ ≥ cd) ≥ ϵd and for all

i ∈ [1 : d], si ≤ cL17 :=
c2d/32

log(4/ϵd)
then

min
∥v∥=1

E[(⟨Z(Y),v⟩)+] ≥ ϵdcd
4
.

The final lemma for this section says that any vector in the span of the top eigenvectors of a positive
semi-definite matrix can be represented as a linear combination of these top eigenvectors with
coefficients that are not too large. The proof of Lemma 18 can be found in Appendix F.
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Lemma 18. Let v1,v2, ...vj ∈ Rd such that ∥vi∥ = 1. Define M =
∑j
i=1 v

⊗2
i . Suppose w1, ...,wd

are orthonormal eigenvectors of M with corresponding eigenvalues λ1 ≥ ... ≥ λd ≥ 0. Suppose
λℓ ≥ ϵ. Then for any u ∈ Span(w1, ...,wℓ) such that ∥u∥ ≤ 1, we have u =

∑j
i=1 civi, where

ci :=
∑ℓ
k=1

(
⟨u,wk⟩⟨vi,wk⟩

λk

)
. Furthermore,

∑j
i=1 c

2
i ≤ 1

ϵ .

We also note that any sub-gaussian random variable X satisfying P(|X| > t) ≤ 2e−t
2/K2

for all
t ≥ 0 (as in Condition 3) satisfies the following bounds on the moments of X:

E[X] ≤ E[|X|] =
∫ ∞

0

P (|X| > t) dt ≤
∫ ∞

0

2e−t
2/K2

dt = K
√
π, (2)

E[X2] =

∫ ∞

0

P(X2 > t)dt ≤
∫ ∞

0

2e−t/K
2

dt = 2K2. (3)

B Discussion on Assumptions
Here we illustrate the importance of Assumption 3 by presenting a series of propositions lower
bounding the number of samples needed in the worst-case for 1-spectral exploration in terms of the
different parameters of Assumption 3.
Lemma 19. There exist instances that require Ω(1/cv) samples for 1-spectral exploration.

proof. Consider the following example with d = 2 and where the coordinates of ℓ∗ are independent
(and assume that cd < 1, ϵd < 1, cv < 1):

ℓ∗1 =

{
−cd w.p. ϵd
1 w.p. 1− ϵd

, ℓ∗2 =

{
−cv w.p. 1/2
cv w.p. 1/2

Note that if E[ℓ∗1 | ψ] = 1−O(ϵd) ≥ 0.5 for sufficiently small ϵd, then no optimal action will ever
put weight more than O(cv) on the second coordinate because the magnitude of ℓ∗2 is bounded by cv .
This implies that we must need 1/cv steps in order to guarantee 1-spectral exploration.

Proposition 20. There exist instances that require Ω(cd) samples for 1-spectral exploration.

proof. Consider the following example

ℓ∗1 =


−cd w.p. ϵd
2cd w.p. 2ϵd
1 w.p. 1− 3ϵd

, ℓ∗2 =

{
−cv w.p. 1/2
cv w.p. 1/2

Once again, the first action must be e1. Furthermore, in this case we need O(poly(1/cd)) actions
of e1 in order to decrease the conditional expectation of ℓ∗1 to be 0, as we need this many samples
to be able to effectively distinguish between ℓ∗1 = −cd and ℓ∗1 = 2cd. This implies that we require
O(poly(1/cd)) samples to explore the second dimension in this example.

Lemma 21. Let L = ±c be uniformly random for some |c| ≤ 1. Suppose we receive noisy
observations ri = siL + Zi for a sequence r1, ... that is adapted to the filtration Ft generated by
(s1, r1, s2, r2, ..., st, rt). (I.e. the signal strengths si may depend on the past.) Let Tt =

∑t
i=1 s

2
i .

Then the expected information gain on L is at most O(E[Tt]).

proof. This is a special case of observing Brownian motion with drift L up to the random stopping
time Tt. (Since observing ri = siL+Zi is equivalent to observing Brownian motion with drift L for
time s2i , up to rescaling.) Let Q±(Tt) be the laws of Brownian motion with drifts ±c up to time Tt.
By symmetry the expected information gain can be computed assuming L = c, and is bounded by
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E[KL(Q+(Tt), [Q+(Tt) +Q−(Tt)]/2)]

Convexity of KL
≤ E[KL(Q+(Tt), Q+(Tt))]︸ ︷︷ ︸

0

+E[KL(Q+(Tt), Q−(Tt))]

≤ E[Tt].

Here we used E[KL(Q+(Tt)|Q−(Tt))] = c2 E[Tt] ≤ E[Tt] by Girsanov’s theorem.

Corollary 21.1. In the setting of Lemma 21, let Ct = E[L|Ft] = E[L|(s1, ..., st, r1, ..., rt)]. Then
E[C2

t ] ≤ O(E[Tt]).

proof. This follows from the previous lemma: the expected relative entropy between the prior and
posterior distributions of L is precisely the information gain. In turn, the relative entropy is a strictly
convex and even function of Ct which is Ω(C2

t ).

Proposition 22. There exist instances that require Ω(log(1/ϵd)) samples for 1-spectral exploration.

Proof of Proposition 22. This proof is more subtle and requires inductive control of the information
gain on the 2nd coordinate.

We now return to the first example prior from the cv lower bound, and apply Corollary 21.1 to the
observations of the 2nd coordinate. To make the application direct, whenever an action (a1,t, a2,t)
is played, we replace the noisy reward observation with separate observations for both (a1,t, 0) and
(0, a2,t) (with half the noise level, which only affects constant factors in the argument). This gives
strictly more information since the two separate observations can be added to recover the original
observation. We let Ct,Ft from above correspond to observations in the second coordinate.

At each time t, by Jensen’s inequality on the convex function f(x) = (1/3− x)+, we see that for
any signal ψ:

P [E[ℓ1|ψ] ≤ 1/2] ≤ O(E[f(E[ℓ1|ψ])]) ≤ O(E[f(ℓ1)]) ≤ O(ϵd).

On the main high-probability event that E[ℓ1|ψ] ≥ 1/2, the 2nd coordinate of Exploit(ψ) has
absolute value at most O(|Ct|). Via the Lemma and Corollary above, it follows that

E[Tt+1]− E[Tt] ≤ O(E[Tt] + ϵd).

Namely the case {E[ℓ1|ψ] ≤ 1/2} contributes O(ϵd) while the remaining case contributes
O(E[C2

t ]) ≤ O(E[Tt]).

Since T0 = 0, this implies by induction that

E[Tt] ≤ eO(t)ϵd.

Finally note that we need Tt ≥ 1 for 1-spectral exploration. Indeed, 1-spectral exploration requires
that the actions a1, . . . , at satisfy

t∑
i=1

⟨a⊤t ,Mat⟩ ≥ Tr(M)

for all positive semi-definite matrices M , and taking M =

(
0 0
0 1

)
recovers the claim. In all this

gives the desired log(1/ϵd) lower bound.
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C Proof of Lemma 10
Proof of Lemma 10. Recall that the input parameters from Algorithm 5 come from their use in
Algorithm 4. We compute as follows, with d

= indicating equality in distribution.

ŷℓ = λcL17

1
λcL17

−1∑
t′=0

j∑
k=1

⟨vk,wℓ⟩
λℓ

qt
′

k

d
= λcL17

1
λcL17

−1∑
t′=0

j∑
k=1

⟨vk,wℓ⟩
λℓ

⟨vk, ℓ∗⟩+ λcL17

1
λcL17

−1∑
t′=0

j∑
k=1

⟨vk,wℓ⟩
λℓ

N(0, 1)

d
=

〈
ℓ∗,

λcL17
1

λcL17
−1∑

t′=0

j∑
k=1

⟨vk,wℓ⟩
λℓ

vk

〉+N

(
0, λcL17

j∑
k=1

⟨vk,wℓ⟩2

λ2ℓ

)

d
=

〈
ℓ∗,

λcL17
1

λcL17
−1∑

t′=0

wℓ

〉+N

(
0,
λcL17
λ2ℓ

w⊤
ℓ Mwℓ

)
[Lemma 18 (u = wℓ)]

d
= x∗ℓ +N

(
0, cL17

λ

λℓ

)
.

We will apply Lemma 17 with X = x∗, Y = ŷ, and Z(Y) = z(ŷ). As shown above, (and using that
λ
λℓ
≤ 1 for all ℓ ≤ ℓλ) we have that Y −X has the appropriate distribution. The last thing we need

to show is that

min
∥q∥=1

Pr (⟨X,q⟩ ≥ cd) = min
∥q∥=1

Pr

(
ℓλ∑
ℓ=1

⟨ℓ∗,wℓ⟩qℓ ≥ cd

)

= min
∥q∥=1

Pr

(〈
ℓ∗,

(
ℓλ∑
ℓ=1

qℓwℓ

)〉
≥ cd

)
≥ min

∥v∥=1
Pr (⟨ℓ∗,v⟩ ≥ cd)

≥ ϵd. [Assumption 1].

This means we can apply Lemma 17 to get that

min
∥v∥=1

E[⟨z(ŷ),v⟩+] ≥ ϵdcd
4
.

We have therefore shown that z(ŷ) satisfies the assumptions of Lemma 8 with ϵ = ϵdcd
4 .

D Proof of Lemma 7
Proof of Lemma 7. The BIC optimal action given ψ is

A∗ = argmax
A∈Sd−1

E[⟨A, ℓ∗⟩ | ψ]

= argmax
A∈Sd−1

⟨A,E[ℓ∗ | ψ]⟩.

Therefore, the BIC action is A∗ = E[ℓ∗|ψ]
∥E[ℓ∗|ψ]∥ if ∥E[ℓ∗ | ψ]∥ ̸= 0. If ∥E[ℓ∗ | ψ]∥ = 0, then any action

is BIC including v.

E Proof of Lemma 9
We will prove the following equivalent lemma.
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Lemma 23. In the setting of Lemma 9,

ℓ∑
i=1

λ′i ≤ (1− ϵ/2) +
ℓ∑
i=1

λi

We first observe that Lemma 23 implies the desired Lemma 9.

Proof of Lemma 9. By linearity of trace,

d∑
i=1

λ′i = 1 +

d∑
i=1

λi.

Therefore, Lemma 23 implies the desired result that

d∑
i=ℓ+1

λ′i ≥ ϵ/2 +
d∑

i=ℓ+1

λi.

Proof of Lemma 23. First, note the following, where the max is over x1, ...,xℓ that are orthonormal.

ℓ∑
i=1

λ′i = max
x1,...,xℓ

ℓ∑
i=1

xTi M
′xi = max

x1,...,xℓ

(
ℓ∑
i=1

x⊤
i Mxi +

ℓ∑
i=1

⟨xi,u⟩2
)
.

Define

x∗
1, ...,x

∗
ℓ = argmax

x1,...,xℓ

ℓ∑
i=1

x⊤
i M

′xi. (5)

We will now prove (by contradiction) that for all i ≤ ℓ, ∥PS⊥(x∗
i )∥

2
2 ≤

ϵ2

100d2 . Suppose that there
exists some i′ ∈ 1, ..., ℓ such that ∥PS⊥(x∗

i′)∥
2
2 >

ϵ2

100d2 . Then we find

ℓ∑
i=1

(x∗
i )

⊤M′x∗
i =

ℓ∑
i=1

(x∗
i )

⊤Mx∗
i +

ℓ∑
i=1

⟨x∗
i ,u⟩2

≤ 1 +

ℓ∑
i=1

(x∗
i )

⊤Mx∗
i [x∗

i orthonormal so
ℓ∑
i=1

⟨x∗
i ,u⟩2 ≤ ∥u∥

2 ≤ 1]

= 1 +

ℓ∑
i=1

(
PS⊥(x∗

i )
⊤MPS⊥(x∗

i ) + PS(x∗
i )

⊤MPS(x∗
i )
)

= 1 +

ℓ∑
i=1

PS⊥(x∗
i )

⊤MPS⊥(x∗
i ) +

ℓ∑
i=1

PS(x∗
i )

⊤MPS(x∗
i )

= 1 + dϵ+

ℓ∑
i=1

PS(x∗
i )

⊤MPS(x∗
i ) [S⊥ = span of evectors with evalues ≤ ϵ]

= 1 + dϵ+

ℓ∑
i=1

(
ℓϵ∑
k=1

⟨x∗
i ,wk⟩wk

)⊤

M

(
ℓϵ∑
k=1

⟨x∗
i ,wk⟩wk

)

= 1 + dϵ+

ℓ∑
i=1

ℓϵ∑
k=1

⟨x∗
i ,wk⟩2w⊤

k Mwk

= 1 + dϵ+

ℓ∑
i=1

ℓϵ∑
k=1

⟨x∗
i ,wk⟩2λk. (6)
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Because x∗
i are orthonormal, we know that

∑ℓ
i=1⟨x∗

i ,wk⟩2 ≤ ∥wk∥22 = 1. Because we assumed
that ∥PS⊥(x∗

i′)∥
2
2 >

ϵ2

100d2 , we know that
∑ℓ
i=1

∑ℓϵ
k=1⟨x∗

i ,wk⟩2 =
∑ℓ
i=1 ∥PS(x∗

i )∥
2 ≤ ℓ− ϵ2

100d2 .
Combining these two statements with the fact that λk is decreasing in k,

ℓ∑
i=1

ℓϵ∑
k=1

⟨x∗
i ,wk⟩2λk =

ℓϵ∑
k=1

ℓ∑
i=1

⟨x∗
i ,wk⟩2λk ≤

(
1− ϵ2

100d2

)
λℓ +

ℓ−1∑
i=1

λi.

Continuing where we left off with Equation (6), we have that

= 1 + dϵ+

ℓ∑
i=1

ℓϵ∑
k=1

⟨x∗
i ,wk⟩2λk ≤ 1 + dϵ+

(
1− ϵ2

100d2

)
λℓ +

ℓ−1∑
i=1

λi

≤ 1 + dϵ− ϵ2

100d2
λℓ +

ℓ∑
i=1

λi

≤ 1 + dϵ− 2d+

ℓ∑
i=1

λi [λℓ ≥
200d3

ϵ2
]

<

ℓ∑
i=1

λi [ϵ < 1]

=

ℓ∑
i=1

w⊤
i Mwi ≤

ℓ∑
i=1

w⊤
i M

′wi.

Therefore, we have a contradiction, as x∗
1, ...,x

∗
ℓ cannot be a solution to Equation (5) because these

vectors are strictly beaten by w1, ...,wℓ.

Therefore, we have shown that ∥PS⊥(x∗
i )∥

2
2 ≤

ϵ2

100d2 for all i.

In the following equation, we define PS as the projection matrix for projecting a vector onto S. Now,
we have that
ℓ∑
i=1

λ′i =

ℓ∑
i=1

(x∗
i )

⊤Mx∗
i +

ℓ∑
i=1

⟨x∗
i ,u⟩2

≤
ℓ∑
i=1

λi +

ℓ∑
i=1

⟨x∗
i ,u⟩2

≤
ℓ∑
i=1

λi +

ℓ∑
i=1

(
⟨PS(x∗

i ),PS(u)⟩+ ⟨PS⊥(x∗
i ),PS⊥(u)⟩

)2
≤

ℓ∑
i=1

λi +

ℓ∑
i=1

(|⟨PS(x∗
i ),PS(u)⟩|+

ϵ

10d
)2 [∥PS⊥(x∗

i )∥
2
2 ≤

ϵ2

100d2
]

=

ℓ∑
i=1

λi +

ℓ∑
i=1

(
⟨PS(x∗

i ),PS(u)⟩2 +
ϵ

5d
|⟨PS(x∗

i ),PS(u)⟩|+
ϵ2

100d2

)

≤
ℓ∑
i=1

λi +

ℓ∑
i=1

(
⟨PS(x∗

i ),PS(u)⟩2 +
ϵ

5d
+

ϵ2

100d2

)

≤
ℓ∑
i=1

λi +
ϵ

5
+

ϵ2

100d
+

ℓ∑
i=1

⟨PS(x∗
i ),PS(u)⟩2

=

ℓ∑
i=1

λi +
ϵ

5
+

ϵ2

100d
+

ℓ∑
i=1

(
(x∗
i )

⊤P⊤
S PSu

)2
=

ℓ∑
i=1

λi +
ϵ

5
+

ϵ2

100d
+

ℓ∑
i=1

(
(x∗
i )

⊤PSu
)2
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=

ℓ∑
i=1

λi +
ϵ

5
+

ϵ2

100d
+

ℓ∑
i=1

⟨x∗
i ,PS(u)⟩2

≤
ℓ∑
i=1

λi +
ϵ

5
+

ϵ2

100d
+ ∥PS(u)∥22

≤
ℓ∑
i=1

λi +
ϵ

5
+

ϵ2

100d
+ 1− ϵ

≤
ℓ∑
i=1

λi + (1− ϵ/2).

This completes the proof of Lemma 23.

F Proof of Lemma 18
Proof of Lemma 18. Define A ∈ Rj×d with rows corresponding to v1, ...,vj . Then M = A⊤A.
We want to write u = A⊤c for c ∈ Rj .
Because w1, ...,wℓ are orthonormal and u ∈ Span(w1, ...,wℓ), we have that

u =

ℓ∑
i=1

⟨u,wi⟩wi

Because wi is an eigenvector of M with eigenvalue λi, we know that for any i ≤ ℓ
λiwi = Mwi = A⊤Awi

Rearranging terms and multiplying both sides by ⟨u,wi⟩, we have that for any i ≤ ℓ

⟨u,wi⟩wi = A⊤
(
⟨u,wi⟩Awi

λi

)
.

Therefore, we have that

u =

ℓ∑
i=1

⟨u,wi⟩wi =

ℓ∑
i=1

A⊤
(
⟨u,wi⟩Awi

λi

)
= A⊤

ℓ∑
i=1

(
⟨u,wi⟩Awi

λi

)
.

Now, we can define

c =

ℓ∑
i=1

(
⟨u,wi⟩Awi

λi

)
= A

ℓ∑
i=1

⟨u,wi⟩wi

λi
.

This implies that

∥c∥22 =

∥∥∥∥∥A
ℓ∑
i=1

⟨u,wi⟩wi

λi

∥∥∥∥∥
2

2

=

(
ℓ∑
i=1

⟨u,wi⟩wi

λi

)⊤

M

(
ℓ∑
i=1

⟨u,wi⟩wi

λi

)

=

ℓ∑
i=1

λi

(
⟨u,wi⟩
λi

)2

[w⊤
i Mwi = λi]

=

ℓ∑
i=1

⟨u,wi⟩2

λi

≤
∥u∥22
ϵ

≤ 1

ϵ
.

This vector c therefore satisfies the desired properties.
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G Proof of Lemma 8
We begin by proving the following lemma.
Lemma 24. Let µ be a probability distribution on Rd with finite first moment and suppose

min
∥v∥=1

Ex∼µ[⟨v,x⟩+] ≥ ϵ.

Then for any w with ∥w∥ < ϵ there is a [0, 1]-valued measurable function f such that E[xf(x)] = w.

Proof of Lemma 24. Let K be the set of possible vectors E[xf(x)] where f is a a [0, 1]-valued
measurable function. Then for any a,b ∈ K, there exist corresponding [0, 1]-valued functions fa and
f b such that E[xfa(x)] = a and E[xf b(x)] = b. Therefore for any t ∈ [0, 1], ta+ (1− t)b ∈ K
because E[xf t(x)] = ta + (1 − t)b for f t(x) = tfa(x) + (1 − t)f b(x). This implies that K is
convex.

We will now prove the desired result by contradiction. Suppose w ̸∈ K. Because K is convex, if
w /∈ K then there is a “separating hyperplane” unit vector v such that

sup
u∈K
⟨v,u⟩ ≤ ⟨v,w⟩.

(Note that we do not argue here that K is closed.) Because by assumption we have that ∥w∥ < ϵ,
this implies that

sup
u∈K
⟨v,u⟩ < ϵ.

For any v, by definition of K and linearity of expectation we have that

sup
u∈K
⟨v,u⟩ = sup

f :Rd→[0,1]

⟨v,Ex∼µ[xf(x)]⟩

= sup
f :Rd→[0,1]

Ex∼µ[f(x)⟨v,x⟩]

= Ex∼µ[⟨v,x⟩+]
≥ ϵ.

where the last line followed from the assumption of the lemma. This gives a contradiction, and
therefore w ∈ K must be true.

Proof of Lemma 8. Applying the above lemma with w = 0, there exists f0 : Rd → [0, 1] such that
E[xf0(x)] = 0. Define the function f ′ as f ′(x) = f0(x)+2ϵ

4max(∥E[x]∥,1) . By this construction,

∥E[xf ′(x)]∥ =
∥∥∥∥E[xf0(x)] + 2ϵE[x]

4max(∥E[x]∥ , 1)

∥∥∥∥ =
2ϵ ∥E[x]∥

4max(∥E[x]∥ , 1)
≤ ϵ

2
.

Therefore, w := −E[xf ′(x)] satisfies ∥w∥ < ϵ. Applying the above lemma again, there exists
fw : Rd → [0, 1] such that E[xfw(x)] = −E[xf ′(x)]. Now define f(x) = f ′(x)+fw(x)

2 . By

construction, we have that 1 ≥ f(x) ≥ f ′(x)
2 ≥ ϵ

4max(∥E[x]∥,1) . Furthermore, by linearity of
expectation and the construction of fw we have that

E[xf(x)] = E
[
x
f ′(x) + fw(x)

2

]
=

1

2
(E[xf ′(x)] + E[xfw(x)]) =

1

2
(E[xf ′(x)]− E[xf ′(x)]) = 0.

Therefore, f(x) is a
[

ϵ
4max(∥E[x]∥,1) , 1

]
-valued function that satisfies E[xf(x)] = 0 as desired.

G.1 Proof of Lemma 15
Lemma 25. Let ΦC(x) = P(Z > x) for Z ∼ N(0, 1). Then for |x| ≤ 1,∣∣∣∣ΦC(x)− (1

2
− 1√

2π
x

)∣∣∣∣ ≤ |x3|/15.
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Proof of Lemma 25. A third order Taylor expansion shows the error is at most

|x3| ·
sup|y|≤1 |(ΦC)′′′(y)|

6
.

For |y| ≤ 1 we easily compute

|(ΦC)′′′(y)| = |y
2 − 1| e−y2/2√

2π
≤ 1/

√
2π ≤ 2/5.

Lemma 26. If X is K-sub-gaussian, then for any event E and any P(E) ≥ a > 0, we have

E[X21E ] ≤ K2 Pr(E) log(2/a) +K2a,

E[X1E ] ≤ O(Pr(E) log(1/a)). (7)

Proof of Lemma 26. We prove both estimates using the tail-sum formula. For the truncated second
moment,

E[X21E ] =

∫ ∞

0

Pr(|X21E | ≥ t)dt

≤
∫ ∞

0

min(Pr(E),Pr(X2 ≥ t))dt

≤
∫ ∞

0

min(Pr(E), 2e−t/K
2

)dt

≤ Pr(E) log(2/a)K2 +

∫ ∞

log(2/a)K2

2e−t/K
2

dt

= K2 Pr(E) log(2/a) +K2a.

Similarly for the truncated first moment,

E[X1E ] =

∫ ∞

0

Pr(|X1E | ≥ t)dt

≤
∫ ∞

0

min(Pr(E),Pr(X ≥ t))dt

≤
∫ ∞

0

min(Pr(E), 2e−t
2/K2

)dt

≤ Pr(E)
√
log(3/a)K +

∫ ∞

√
log(3/a)K

2e−t
2/K2

dt

= O(Pr(E) log(1/a)).

Proof of Lemma 15. Let dµX be the law of X and dµX|r>0 be the conditional law of X given the
event r > 0. Then by Bayes rule,

dµX|r>0(x) =
Pr(r > 0 | X = x)dµX(x)

Pr(r > 0)

=
Pr
(
N(ϵx, σ2) > 0

)
dµX(x)

Pr(r > 0)

=
ΦC(−ϵx/σ)dµX(x)

Pr(r > 0)
.

Note that

E[X | r > 0] =

∫ ∞

−∞
xdµX|r>0(x) =

1

Pr(r > 0)

∫ ∞

−∞
xΦC(−ϵx/σ)dµX(x).
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Since Pr(r > 0) ≤ 1 it suffices to lower-bound the latter integral by a suitable positive value. As
long as ϵ/σ ≤ δL15 ≤

√
1

4σ2
X

√
2π

, we have∫ ∞

−∞
xΦC(−ϵx/σ)dµX(x)

=

∫ ∞

−∞
x

(
1

2
+

1√
2π

ϵx

σ

)
dµX(x)

+

∫ ∞

−∞
x

(
ΦC(
−ϵx
σ

)− 1

2
− 1√

2π

ϵx

σ

)
dµX(x)

=

(
ϵE[X2]

σ
√
2π

+

∫ ∞

−∞
x

(
ΦC(
−ϵx
σ

)− 1

2
− 1√

2π

ϵx

σ

)
dµX(x)

)
[E[X] = 0]

≥
(
ϵσ2
X

σ
√
2π
− 2E[X4]ϵ3

σ3

)
[Inequality (9) Below]

≥ ϵσ2
X

2σ
√
2π
. [

ϵ2

σ2
≤ σ2

X

4E[X4]
√
2π

]

Above we used the following estimate (9). For sufficiently small δL15,∫ ∞

−∞
x

(
ΦC(
−ϵx
σ

)− 1

2
− 1√

2π

ϵx

σ

)
dµX(x)

=

∫
|x|≤ σ

10ϵ

x

(
ΦC(
−ϵx
σ

)− 1

2
− 1√

2π

ϵx

σ

)
dµX(x) +

∫
|x|> σ

10ϵ

x

(
ΦC(
−ϵx
σ

)− 1

2
− 1√

2π

ϵx

σ

)
dµX(x)

≥
∫
|x|≤ σ

10ϵ

x

(
ΦC(
−ϵx
σ

)− 1

2
− 1√

2π

ϵx

σ

)
dµX(x)−

∫
|x|> σ

10ϵ

(
|x|
2

+
ϵx2

σ
√
2π

)
dµX(x)

≥ −
∫
|x|≤ σ

10ϵ

|x|
∣∣∣ϵx
σ

∣∣∣3 dµX(x)−
∫
|x|> σ

10ϵ

(
|x|
2

+
ϵx2

σ
√
2π

)
dµX(x) [Lemma 25]

= −E[X4]ϵ3

σ3
−
∫
|x|> σ

10ϵ

(
|x|
2

+
ϵx2

σ
√
2π

)
dµX(x)

≥ −E[X4]ϵ3

σ3
−
∫
|x|> σ

10ϵ

x2dµX(x) [if ϵ/σ ≤ δL15 ≤ 1/10]

≥ −E[X4]ϵ3

σ3
−
(
K2 Pr(E) log(2/a) +K2a

)
[Lemma 26, E := {|x| > σ

10ϵ
}, a = 2e−

σ2

100ϵ2K2 ]

≥ −E[X4]ϵ3

σ3
− 2K2e−

σ2

100K2ϵ2

(
σ2

100ϵ2K2
+ 1

)
[Pr(E) ≤ 2e−σ

2/(100ϵ2K2)]

≥ −2E[X4]ϵ3

σ3
[2K2e−

σ2

100K2ϵ2

(
σ2

100ϵ2K2
+ 1

)
≤ (σ2

X)2ϵ3

σ3
≤ E[X4]ϵ3

σ3
]

(9)

where the second to last line holds for sufficiently small ϵ/σ.

G.2 Proof of Lemma 16
Proof of Lemma 16. First, we observe that E[Y | r > 0] = E[Y 1{r>0}]

P(r>0) . If ϵ
σK
√
log(4) ≤ 1/2, we

also have that

Pr(r > 0)

≥ Pr(r > 0 | X ≥ −K
√
log(4)) Pr(X ≥ −K

√
log(4))

≥ ΦC(
ϵ

σ
K
√
log(4)) Pr(X ≥ −K

√
log(4))

≥ ΦC(
ϵ

σ
K
√
log(4))

(
1− 2e−K

2 log(4)/K2
)
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≥ ΦC(1/2)1/2 [
ϵ

σ
K
√

log(4) ≤ 1/2]

≥ 1/8.

Therefore, it is sufficient to upper bound |E[Y 1{r > 0}]|. By law of total expectation,

E[Y 1{r > 0}] = E[E[Y 1{r > 0} | X]] = E
[
E[Y | X]P(Z > − ϵ

σ
X)
]
.

Define Q(X) = E[Y | X]. Because Y is sub-gaussian, the random variable Q(X) must also be sub-
gaussian with parameter

√
18K (see [Van Handel, 2014, Exercise 3.1]). Furthermore, E[Q(X)] =

E[E[Y | X]] = E[Y ] = 0. Now, we have the following

|E[Y 1{r > 0}]|

=
∣∣∣E [E[Y | X]P(Z > − ϵ

σ
X)
]∣∣∣

=

∣∣∣∣∫ ∞

−∞
Q(x)ΦC(−ϵx

σ
)dµX(x)

∣∣∣∣
=

∣∣∣∣∫ ∞

−∞

1

2
Q(x)dµX(x) +

∫ ∞

−∞
Q(x)

(
ΦC(−ϵx

σ
)− 1

2

)
dµX(x)

∣∣∣∣
=

∣∣∣∣12 E[Q(X)] +

∫ ∞

−∞
Q(x)

(
ΦC(−ϵx

σ
)− 1

2

)
dµX(x)

∣∣∣∣
=

∣∣∣∣∫ ∞

−∞
Q(x)

(
ΦC(−ϵx

σ
)− 1

2

)
dµX(x)

∣∣∣∣
≤
∫
|x|≤ σ

10ϵ

|Q(x)|
(
|ϵx|
σ
√
2π

+
∣∣∣ϵx
σ

∣∣∣3) dµX(x)

+

∫
|x|> σ

10ϵ

Q(x)

(
ΦC(−ϵx

σ
)− 1

2

)
dµX(x) [Lemma 25]

≤ ϵ

σ

∫ ∞

−∞
|Q(x)|

(
|x|√
2π

+ |x3|
)
dµX(x) +

1

2

∫
|x|> σ

10ϵ

|Q(x)|dµX(x) [ϵ/σ ≤ 1]

≤ ϵ

σ

√√√√E[Q(X)2]E

[(
|x|√
2π

+ |x3|
)2
]
+

1

2
O
( σ

10ϵK
(2e−

σ2

100ϵ2K2 )
)

[Lemma 26 Equation (7)]

≤ O(ϵ/σ).

where in the second to last line we used that Pr(|X| > σ
10ϵ ) ≤ 2e−

σ2

100ϵ2K2 and that Q(X) is
K
√
18-sub-gaussian. The last line again uses that both X and Q(X) are sub-gaussian.

Therefore, we have shown that

|E[Y | r > 0]| =
∣∣∣∣E[Y 1{r > 0}]

P(r > 0)

∣∣∣∣ ≤ 8 |E[Y 1{r > 0}]| = O(ϵ/σ).

By symmetric arguments to the ones above, we have the same bound on |E[Y | r ≤ 0]|.

H Proof of Lemma 17
Proof of Lemma 17. Fix any v such that ∥v∥ = 1. First, we will show that

Pr(|v · (Z(Y)−X)| ≥ cd/2) ≤ ϵd/2.

To do this, we will show that ⟨v, (Z(Y)−X)⟩ is a sub-gaussian random variable. Let X̂ be a draw
from the distribution of X | Y. Then we have that

⟨v, X̂−X⟩ = ⟨v, X̂−Y⟩+ ⟨v,Y −X⟩.
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By standard properties of posterior samples, ⟨v, X̂−Y⟩ and ⟨v,Y −X⟩ are identically distributed
with distribution N(0, σ2) for σ2 =

∑d
i=1 v

2
i si (here one averages over all randomness). Therefore,

we have that

E [exp (t⟨v,Z(Y)−X⟩)]

= E
[
exp

(
t⟨v,E[X̂]−X⟩

)]
≤ E

[
exp

(
t⟨v, X̂−X⟩

)]
[Jensen]

= E
[
exp

(
t⟨v, X̂−Y +Y −X⟩

)]
≤
√
E
[
exp

(
2t⟨v, X̂−Y⟩

)]
E [exp (2t⟨v,Y −X⟩)] [Cauchy-Schwarz]

≤ e2t
2σ2

.

Therefore, ⟨v, (Z(Y)−X)⟩ is sub-gaussian and satisfies the tail bound

Pr(|⟨v, (Z(Y)−X)⟩| > t) ≤ 2e−t
2/(8σ2).

Taking t = cd/2, because σ2 =
∑d
i=0 v

2
i si ≤ maxi si ≤ c2d/32

log(4/ϵd)
, we have that

Pr(|⟨v, (Z(Y)−X)⟩| > cd
2
) ≤ 2e−c

2
d/(32σ

2) = ϵd/2. (10)

Now, we can prove the desired result that

E[(⟨Z(Y),v⟩)+]

≥ E
[
(⟨Z(Y),v⟩)+

∣∣∣|⟨v, (Z(Y)−X)⟩| ≤ cd
2
, ⟨X,v⟩ ≥ cd

]
Pr
(
|⟨v, (Z(Y)−X)⟩| ≤ cd

2
, ⟨X,v⟩ ≥ cd

)
≥ E

[cd
2

∣∣∣|⟨v, (Z(Y)−X)⟩| ≤ cd
2
, ⟨X,v⟩ ≥ cd

]
Pr
(
|⟨v, (Z(Y)−X)⟩| ≤ cd

2
, ⟨X,v⟩ ≥ cd

)
=
cd
2
Pr
(
|⟨v, (Z(Y)−X)⟩| ≤ cd

2
, ⟨X,v⟩ ≥ cd

)
≥ cd

2

(
Pr (⟨X,v⟩ ≥ cd)− Pr

(
⟨v, (Z(Y)−X)⟩| > cd

2

))
≥ cd

2

(
ϵd −

ϵd
2

)
[Eq (10) and lemma assum]

=
cdϵd
4
.

H.1 Proof of Lemma 14

Proof of Lemma 14. Let B be a Bernoulli random variable such that Pr(B = 1) = ϵ and let
Z ∼ N(0, 1) be independent of B and X . Then we can write R ∼ X ·B + Z.

Then we have that

E[X | R > 0]

= E[X | R > 0, B = 1]Pr(B = 1 | R > 0) + E[X | R > 0, B = 0]Pr(B = 0 | R > 0)

= E[X | X + Z > 0] Pr(B = 1 | R > 0)

= E[X | X + Z > 0]
Pr(R > 0 | B = 1)Pr(B = 1)

Pr(R > 0)

≥ E[X | X + Z > 0] Pr(R > 0 | B = 1)Pr(B = 1)

= E[X | X + Z > 0] Pr(X + Z > 0)ϵ. (11)
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Next, we need to lower bound E[X | X + Z > 0] Pr(X + Z > 0). Applying Baye’s rule gives

E[X | X + Z > 0] Pr(X + Z > 0)

= Pr(X + Z > 0)

∫ ∞

−∞
xdµX|X+Z>0(x)

=

∫ ∞

−∞
x
(
ΦC(−x)

)
dµX(x)

=

∫ ∞

−∞
x
(
ΦC(−x)− 1/2

)
dµX(x) [E[X] = 0]

Note that
(
ΦC(−x)− 1/2

)
has the same sign as x and has magnitude increasing in |x|. Therefore,

≥
∫
x≥ σX√

10

σX√
10

P
(
0 ≤ Z ≤ σX√

10

)
dµX(x) +

∫
x≤− σX√

10

σX√
10

P
(
0 ≤ Z ≤ σX√

10

)
dµX(x)

=
σXP(0 ≤ Z ≤ σX√

10
)

√
10

P(|X| > σX√
10

)

≥
σXP(0 ≤ Z ≤ σX√

10
)

√
10

 4σ2
X

5K2 log
(

20K2

σ2
X

)
 . [Equation (13) below]

≥ Ω(σ5
X). (12)

Combining Equations (11) and (12) gives the desired result of the lemma.

It remains to show the lower bound on P(|X| > σX√
10
) used in the penultimate line above.

Define a = K2 log
(

20K2

σ2
X

)
≥ σ2

X log(10)/2 > σ2
X/10 (using Equation (3) ). Next, we observe that

E[X2]

=

∫ ∞

0

P(X2 > t)dt

=

∫ ∞

0

P(X >
√
t)dt

=

∫ σ2
X/10

0

P(X >
√
t)dt+

∫ a

σ2
X/10

P(X >
√
t)dt+

∫ ∞

a

P(X >
√
t)dt

≤ σ2
X/10 +

∫ a

σ2
X/10

P(X >
√
t)dt+

∫ ∞

a

2e−t/K
2

dt

= σ2
X/10 +

∫ a

σ2
X/10

P(X >
√
t)dt+ 2K2e−a/K

2

= σ2
X/5 +

∫ a

σ2
X/10

P(X >
√
t)dt [Def of a]

≤ σ2
X/5 +

(
a− σ2

X

10

)
P
(
X >

σX√
10

)
. [P(X >

√
t) monotone decr.]

Since E[X2] = σ2
X , this implies that(

a− σ2
X

10

)
P
(
X >

σX√
10

)
≥ 4σ2

X

5
.

Therefore, we can conclude that
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P
(
X >

σX√
10

)
≥ 4σ2

X/5

a− σ2
X/10

≥ 4σ2
X/5

a
=

4σ2
X

5K2 log
(

20K2

σ2
X

) . (13)

By symmetry, identical logic as above gives the desired upper bound on E[X | R ≤ 0].

I Proof of Proposition 11
Proof of Proposition 11. We first show that A(t) on Line 6 satisfies A(t) ∈ S⊥ when Ψ = 1. Recall
x∗ defined as x∗ℓ = ⟨ℓ

∗,wℓ⟩ and recall that z(y) = E[x∗ | ŷ = y]. By construction,

E[x∗ | Ψ = 1]

=

∫
E[x∗ | Ψ = 1, ŷ = y]dµŷ|Ψ=1(y)

=

∫
E[x∗ | ŷ = y]

Pr(Ψ = 1 | ŷ = y)

Pr(Ψ = 1)
dµŷ(y) [Ψ = 1 is a function of ŷ]

=
1

Pr(Ψ = 1)

∫
E[x∗ | ŷ = y]f (z(y)) dµŷ(y)

=
1

Pr(Ψ = 1)

∫
z(y)f(z(y))dµŷ(y)

=
1

Pr(Ψ = 1)
E [z(ŷ)f(z(ŷ))]

= 0. [Definition of f ]

Because x∗ℓ = ⟨ℓ
∗,wℓ⟩ for ℓ ≤ ℓλ, this implies that E[⟨ℓ∗,wℓ⟩ | Ψ = 1] = 0 for ℓ ≤ ℓλ. Therefore,

we must have that E[ℓ∗ | Ψ = 1] ∈ S⊥. By construction of A(t) in Line 6, this implies that
A(t) ∈ S⊥ when Ψ = 1.

Define

A =

{
E[ℓ∗|Ψ=1]

∥E[ℓ∗|Ψ=1]∥2
if E[ℓ∗ | Ψ = 1] ̸= 0

wℓλ+1 otherwise,

in other words A is equal to A(t) when Ψ = 1.

By the choice of f , we have that P(Ψ = 1) ≥ ϵdcd
16max(∥E[z(ŷ)]∥,1) ≥

ϵdcd
16(K

√
π+1)

, where in the last

line we used that Equation (A) implies

max(∥E[z(ŷ)]∥ , 1) = max(∥E[x∗]∥ , 1) ≤ max (∥E[ℓ∗]∥ , 1) ≤ max
(
K
√
π, 1
)
≤ K
√
π + 1.

By construction, we therefore have that for any realization of z(ŷ), the probability that R = r(t) =
⟨ℓ∗,A(t)⟩+ wt = ⟨ℓ∗,A⟩+ wt is exactly ϵdcd

16(K
√
π+1)

and otherwise R ∼ N(0, 1).

We can now apply Lemma 14 with X = ⟨ℓ∗,A⟩, and ϵ = ϵdcd
16(K

√
π+1)

to get that either a = wℓλ+1

or

|⟨A,a⟩| = |⟨A,E[ℓ∗ | 1R>0]⟩| = |E[⟨ℓ∗,A⟩ | 1R>0]| ≥
cL14ϵdcdVar(⟨ℓ∗,A⟩)2.5

16 (K
√
π + 1)

≥ cL14ϵdcd cv
2.5

16 (K
√
π + 1)

,

where in the last inequality we used Assumption 2.

Because A ∈ S⊥ and ∥A∥ = 1, the previous equation implies the desired result that ∥PS⊥(a)∥ ≥
cL14ϵdcd cv

2.5

16(K
√
π+1)

.

J Proof of Proposition 12
Proof of Proposition 12. The first step is to rewrite R from Algorithm 6 Line 7 so that we can apply
Lemmas 15 and 16.
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Define

W :=

t+L−1∑
t′=t

(
wt′ −

j∑
k=1

(ckq
t′

k − ck⟨vk, ℓ
∗⟩)

)
=

t+L−1∑
t′=t

(
wt′ −

j∑
k=1

ckq
t′

k

)
+ L

j∑
k=1

ck⟨vk, ℓ∗⟩.

Note that W is normally distributed with mean 0 and variance σ2
W := L(1 +

∑j
k=1 c

2
k). By

construction, we can rewrite R as

R =

t+L−1∑
t′=t

(
r(t

′) −
j∑

k=1

ckq
t′

k

)

=

t+L−1∑
t′=t

(
(⟨a, ℓ∗⟩+ wt′)−

j∑
k=1

ckq
t′

k

)

=

t+L−1∑
t′=t

⟨a, ℓ∗⟩ − L
j∑

k=1

ck⟨vk, ℓ∗⟩+W

= L⟨a, ℓ∗⟩ − L⟨PS(a), ℓ∗⟩+W [Lemma 18 implies PS(a) =
j∑

k=1

ckvk]

= L⟨(a− PS(a)), ℓ∗⟩+W

= L⟨PS⊥(a), ℓ∗⟩+W

= L ∥PS⊥(a)∥ ⟨x, ℓ∗⟩+W. (14)

Therefore, R is exactly in the form necessary to apply Lemmas 15 and 16. In order to apply these

lemmas, we need that
L∥PS⊥ (a)∥

σW
≤ δL15 and

L∥PS⊥ (a)∥
σW

≤ δL16 respectively.

To see this, note that PS⊥(a) ≤
√
λ (as otherwise ExponentialGrowth would not have been called),

and therefore

L ∥PS⊥(a)∥
σW

≤ L
√
λ√

L(1 +
∑j
k=1 c

2
k)

=

√
4λd(E[ℓ∗1] + 1)2

c2L15

≤

√
4λd(K

√
π + 1)2

(cv /
√
8π)2

[Equation (A), Assum 2]

≤ min(δL15, δL16, 1/cL16), (15)

where in the last line we used λ ≤ min(δL15, δL16, 1/cL16)
2 (cv /

√
8π)2

4d(K
√
π+1)2

by our assumption on λ.

Applying Lemmas 15 and 16 gives the following two bounds. Define y = E[ℓ∗ | 1R>0]. The first is a
lower bound on |⟨x,y⟩|. Importantly, we can apply Lemma 15 for X = ⟨x, ℓ∗⟩ because of Equations
(14) and (15).

|⟨x,y⟩| = |⟨x,E[ℓ∗ | 1R>0]⟩|
= |E[⟨x, ℓ∗⟩ | 1R>0]|

≥ cL15L ∥PS⊥(a)∥
σW

[Lemma 15]

=
cL15
√
L ∥PS⊥(a)∥√

1 +
∑j
k=1 c

2
k

= cL15

√
4d(E[ℓ∗1] + 1)2

c2L15
∥PS⊥(a)∥
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=
√
4d(E[ℓ∗1] + 1)2 ∥PS⊥(a)∥

= 2
√
d(E[ℓ∗1] + 1) ∥PS⊥(a)∥ . (16)

The next equation is an upper bound on ∥yi∥ for all i ∈ [d]:

|yi| = E[ℓ∗i | 1R>0]

≤ E[ℓ∗i] + cL16L ∥PS⊥(a)∥ /σW [Lemma 16]
≤ E[ℓ∗i] + 1. [Equation (15)]

Using the above equation, we can bound ∥y∥2 as follows. Because E[ℓ∗1] ≥ E[ℓ∗i] for all i,

∥y∥2 ≤

√√√√ d∑
i=1

(E[ℓ∗i] + 1)
2 ≤
√
d(E[ℓ∗1] + 1).

Equation (16) implies that y ̸= 0. This implies by construction that b = Exploit(1R>0,wℓλ+1) =
y

∥y∥ . Putting everything together, we have that

|⟨x,b⟩| = |⟨x,y⟩|
∥y∥2

≥ 2
√
d(E[ℓ∗1] + 1)) ∥PS⊥(a)∥√

d(E[ℓ∗1] + 1)
≥ 2 ∥PS⊥(a)∥ .

Finally, because x ∈ S⊥, this implies the desired result that

∥PS⊥(b)∥ ≥ |⟨x,b⟩| ≥ 2 ∥PS⊥(a)∥ .

K Proof of Theorem 13
Proof of Theorem 13. We begin by proving that Algorithm 4 is BIC. There are four places where we
set A(t). The first is in the Line 4 of Algorithm 4, where we set A(t) = e1. This is BIC because we
assumed (without loss of generality) that E[ℓ∗i] = 0 for all i > 1 and E[ℓ∗1] ≥ 0.

The second place we set A(t) is in Line 6 of Algorithm 5. This choice of A(t) is BIC with the signal
Ψ by construction and Lemma 7.

The third place we set A(t) is in Line 5 of Algorithm 6. In order for this to be BIC, we must show
that every input a to Algorithm 3 is BIC. The first time Algorithm 6 is used for any fixed value of j,
the input action a is the action returned by Algorithm 5. This is BIC for signal R defined on Line 7
of Algorithm 5 by construction. Each subsequent call to Algorithm 6 for a fixed value of j uses an
action a that is returned by the previous call to Algorithm 6. This is BIC for signal R defined on Line
7 of Algorithm 6.

The final time we set an action is on Line 17 of Algorithm 4 This action is again an action returned
by the last call to Algorithm 6, which as argued above is BIC for signal R.

The rest of the proof will focus on bounding the sample complexity of Algorithm 4.

First, we will bound the number of times the inner while loop (Line 13) calls Algorithm 6 for
each value of j. By Proposition 11, the action returned by Algorithm 5 satisfies ∥PS⊥(a)∥ ≥
cP11 cv

2.5 ϵdcd. Furthermore, by Proposition 12, ∥PS⊥(a)∥ doubles with each call to Algorithm 6.
Therefore, ∥PS⊥(a)∥ ≥

√
λ will be satisfied after at most log2

( √
λ

cP11 cv2.5 ϵdcd

)
= O

(
log( 1

cv ϵdcd
)
)

calls to Algorithm 6.

Next we will bound the number of steps in each call to Algorithm 6, which is equivalent to bounding
the L defined on Line 4 of Algorithm 6. To do this, we note that the ci in Algorithm 6 are the same as
the ci in Lemma 18 with ϵ = λ, ℓ = ℓλ, u = PS⊥(a), and v1, ...,vj . This implies that

j∑
k=1

c2k ≤
1

λ
. [Lemma 18]
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Therefore, we can bound L as follows:

L =
4d(E[ℓ∗1] + 1)(1 +

∑j
k=1 c

2
k)

c2L15
≤

4d(E[ℓ∗1] + 1)(1 + 1
λ )

c2L15

≤
4d(K

√
π + 1)(1 + 1

λ )

cv2 /(8π)
[Assum 2, Eq (A)]

= O

(
d

λ cv2

)
.

For each loop of the while loop on Line 8, we also have κ = O( log(1/ϵd)
λc2d

+ d
λ cv2 ) steps in the loop

on Line 16. All together, this gives that each iteration of the loop on Line 8 takes at most

O

(
d log( 1

cv ϵdcd
)

λ cv2
+

log(1/ϵd)

λc2d

)
= O

(
log

(
1

cv ϵdcd

)(
d

λ cv2
+

1

λc2d

))
steps. Next, we will bound the number of iterations of the while loop on Line 8.

For each j, we will apply Lemma 9 with ϵ = λ, u = vj+1, and the vectors v1, ...,vj . By
construction of the algorithm, S⊥ is non-empty because the algorithm has not yet terminated,
and ∥PS⊥(vj+1)∥2 ≥ λ by the termination condition of the while loop on Line 13 of Algorithm
4. Therefore, this satisfies the assumption of Lemma 9. Define λj1, ..., λ

j
d as the eigenvalues of

Mj :=
∑j
i=1 v

⊗2
i and define ℓj as the largest index such that λjℓj ≥ 200d3/λ2 (and ℓj = 0 if all

eigenvalues of Mj are less than 200d3/λ2). Now define

∆j =

d∑
i=ℓj+1

(
200d3

λ2
− λi

)
.

Note that for any fixed i, the ith eigenvalue does not decrease between Mj and Mj+1. Because of
this monotonicity, Lemma 9 implies that for every round j, either

ℓj+1 ≥ ℓj + 1 or ∆j+1 ≤ ∆j − λ

2
.

Because ℓ1 ≥ 0 and ∆1 ≤ 200d3

λ2 · d = 200d4

λ2 , this implies that after
200d4

λ2

λ/2 + d applications of Lemma

9, either ℓj = d or ∆j = 0. This means that after 400d4

λ2 + d applications of Lemma 9, the smallest
eigenvalue of Mj must be at least 200d3/λ2 ≥ λ. However, this means that the algorithm must
terminate before round 400d4/λ3+d. Therefore, the number of iterations of the while loop on Line 8
is less than O(d4/λ3). Putting everything together, the total number of steps needed for λ-exploration
is upper bounded by

O

(
log

(
1

cv ϵdcd

)(
d

λ cv2
+

1

λc2d

))
·O
(
d4

λ3

)
= O

(
log

(
1

cv ϵdcd

)(
d5

λ4 cv2
+

d4

c2dλ
4

))
.

L Proof of Proposition 5
Proof of Proposition 5. First, for any unit vector v, we have Br/3(2rv/3) ⊆ K ⊆ B1(0). Therefore

µ(Br/3(2rv/3)) = Vol(Br/3(2rv/3))/Vol(K) ≥ Vol(Br/3(2rv/3))/Vol(B1(0)) = (r/3)d.

Since ⟨x,v⟩ ≥ r/3 for all x ∈ Br/3(2rv/3), this confirms the values (cd, ϵd) = (r/3, (r/3)d).

The bound on cv follows by [Sellke, 2023, Lemma 3.2] and Jensen’s inequality since K has width at
least 2r in any direction. The bound on K is trivial since 2e−(t/1.25)2 ≥ 1 for |t| ≤ 1.

M Proof of Proposition 6
We first recall several useful facts on log-concave distributions. Throughout we take µ to be α-log-
concave and β-log-smooth with mode x∗ and mean x̄, possibly in dimension 1. (The proof will use
1-dimensional projections of the original measure µ.) We will write x ∼ µ instead of ℓ∗ ∼ µ.
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Fact 27 ([Dwivedi et al., 2019, Lemma 5], [Durmus and Moulines, 2019, Theorem 1]). For x ∼ µ,
we have E[∥x− x∗∥2] ≤ 1/α and with probability 1− δ:

∥x− x∗∥2 ≤ 2α−1/2

(
1 +

√
log(1/δ)

d
+

4

√
log(1/δ)

d

)
.

Fact 28 ([Chewi and Pooladian, 2023, Lemma 2]). We have the covariance bounds

Id
αd
⪰ Cov(µ) ⪰ Id

βd
. (18)

Fact 29. Any 1-dimensional projection of µ is also αd-log-concave and βd-log-smooth.

Proof. Preservation of strong log-concavity under projection is well known, see e.g. [Saumard and
Wellner, 2014, Theorem 3.8]. For log-smoothness, supposing for convenience that the projection
is onto the first coordinate axis, the claim is proved by the following standard computation. With
e−f(x) the density of µ and e−g(x) the density of the projection of µ to the first coordinate axis, one
may compute as in [Saumard and Wellner, 2014, Proof of Proposition 7.1] that

g′′(x) = Eµ[∂1,1f(x)|x1 = x]− Varµ[∂1f(x)|x1 = x] ≤ Eµ[∂1,1f(x)|x1 = x] ≤ βd.

This completes the proof.

Proof of Proposition 6. We have cv ≥ 1
βd directly from (18).

For ϵd, let x̄ be the mean under µ and note that from (18), we find

∥x̄− x∗∥ = sup
∥w∥=1

⟨x̄− x∗,w⟩

= sup
∥w∥=1

Ex∼µ[⟨x− x∗,w⟩]

≤
√

sup
∥w∥=1

Ex∼µ[⟨x− x∗,w⟩2]

≤
√
⟨Cov(µ),w⊗2⟩

≤ 1/
√
αd.

Fixing a unit vector v as in Assumption 3, we consider the projection P onto the 1-dimensional
subspace spanned by v, and let P (µ) be the pushforward of µ under the projection (to which Fact 29
applies). Identifying P (Rd) isometrically with R, let x̂ be the mode of P (µ). Then the same argument
as above applies to P (µ) shows ∥P (x̄)− x̂∥ ≤ 1/

√
αd, and so

∥x̂∥ ≤ ∥x∗∥+ 2√
αd
≤ γ +

2√
αd
.

(Note that if x̄ = 0 then this shows ∥x̂∥ ≤ 1/
√
αd, which following the arguments below leads to

ϵd ≥ Ω(1) as mentioned below Proposition 6.)

Write f : R → R+ for the density of P (µ), and g(x) = log f(x). We have f ′(x̂) = 0 and so
g′(x̂) = 0 also. By Fact 29, we have g′′(x) ∈ [−βd,−αd] for all x, so for x ≥ x̂ we have:

g′(x) = g′(x)− g′(x̂) =
∫ x

x̂

g′′(y)dy ∈ [−βd(x− x̂),−αd(x− x̂)].

Integrating again, we find

g(x)− g(x̂) =
∫ x

x̂

g′(y)dy ∈ [−βd(x− x̂)2/2,−αd(x− x̂)2/2].

Identical reasoning gives the same conclusion for x ≤ x̂. Translating back to f = eg, we conclude
that for each x ∈ R:

e−βd|x−x̂|
2/2 ≤ f(x)

f(x̂)
≤ e−αd|x−x̂|

2/2.
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It follows that for x = ℓ∗ ∼ µ and x ∼ P (µ):

Pr[⟨v,x⟩ ≥ cd] ≥ Pr[x ≥ γ +
2√
αd

+ cd].

Letting J = γ + 2√
αd

+ cd, the latter probability is at least∫∞
J
e−βdz

2/2dz∫
R e

−αdz2/2dz
=
√
α/β · ΦC(J

√
βd) ≥ Je−J

2βd/2
√
αd

(1 + J2βd)
√
2π
.

The last inequality follows from the classical bound ΦC(κ) ≥ φ(κ)κ
1+κ2 where φ is the standard Gaussian

density Gordon [1941]. This confirms the value of ϵd.

For K we consider a similar projection, and note that by Fact 29 and the Bakry-Emery theory for
strongly log-concave measures (see e.g. [Anderson et al., 2010, Lemma 2.3.3], we have

E[eλ⟨v,x−x̄⟩] ≤ eλ
2αd/2, ∀λ ∈ R.

Thus with J0 = γ + 1√
αd
≥ ∥⟨x̄,v⟩∥, we have (using λJ0 ≤ 1+λ2J2

0

2 ):

E[eλ⟨v,x⟩] ≤ e(λ
2αd/2)+λJ0 ≤ e0.5 · eλ

2(J2
0+αd)/2 ≤ 2eλ

2(J2
0+αd)/2.

It follows by the usual Markov inequality arguments that

Pr[|⟨v,x⟩| ≥ t] ≤ 4e
− t2

2(J2
0+αd) .

Since probabilities are at most 1 and a ≤
√
a for a ≤ 1 we find

Pr[|⟨v,x⟩| ≥ t] ≤ 2e
− t2

4(J2
0+αd)

which completes the verification of K since (J2
0 + αd)1/2 ≤ J0 +

√
αd .

For the counterexample, we may take (α, β) = (1, 2) and let ν be the distribution on R with density
proportional to e−dx

2·(1+1x≥0)/2. Then let µ = ν⊗d, so that x ∼ µ has IID coordinates with law ν.
Then the mode x∗ is indeed zero but the mean of ν is non-zero, so taking v = (1, 1, . . . , 1)/

√
d, a

Chernoff estimate shows Prx∼µ[⟨x,v⟩ ≥ 0] ≤ e−Ω(d).
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