Geometry Meets Incentives: Sample-Efficient Incentivized Exploration with Linear Contexts

Benjamin Schiffer

Department of Statistics
Harvard University
1 Oxford St
bschiffer1@g.harvard.edu

Mark Sellke

Department of Statistics Harvard University 1 Oxford St msellke@fas.harvard.edu

Abstract

In the incentivized exploration model, a principal aims to explore and learn over time by interacting with a sequence of self-interested agents. It has been recently understood that the main challenge in designing incentive-compatible algorithms for this problem is to gather a moderate amount of initial data, after which one can obtain near-optimal regret via posterior sampling. With high-dimensional contexts, however, this *initial exploration* phase requires exponential sample complexity in some cases, which prevents efficient learning unless initial data can be acquired exogenously. We show that these barriers to exploration disappear under mild geometric conditions on the set of available actions, in which case incentive-compatibility does not preclude regret-optimality. Namely, we consider the linear bandit model with actions in the Euclidean unit ball, and give an incentive-compatible exploration algorithm with sample complexity that scales polynomially with the dimension and other parameters.

1 Introduction

The exploration/exploitation trade-off is fundamental to online decision making. This trade-off is classically exemplified by the multi-armed bandit problem, where a single agent chooses actions sequentially and learns to improve over time. In this setting, the agent has clear justification for early exploration because they can reap future rewards by exploiting the knowledge gained by exploration. But what if agents are unable to reap these future rewards, and so each decision must be justifiable on its own terms without taking into account future rewards? This may occur when actions are *recommendations* made to different agents by a central platform based on user feedback, as in e-commerce, traffic routing, movies, restaurants, etc. In these settings, the agents may have a prior for the rewards of the actions in addition to the recommendation made by the platform. Therefore, while the platform makes recommendations with the goal of learning over time, individual myopic agents will decline to follow any recommendations which seem suboptimal based on their individual priors.

The *incentivized exploration* problem was introduced in Kremer et al. [2014], Che and Hörner [2018] to understand this fundamental tension, and extends the well-studied problem of *Bayesian Persuasion* in information design Bergemann and Morris [2019], Kamenica [2019]. The model adopted in these early works consists of a finite set of actions, each with a (publicly shared) Bayesian prior distribution for rewards. A sequence of agents arrives one by one, and each agent is recommended an action by a central planner. The central planner's recommendations are made using a (publicly known) randomized algorithm, and the agents are assumed to be selfish and rational, aiming only to maximize their own expected reward. Given the planner's recommendation, each agent computes and chooses the posterior-optimal action (using Bayes' rule). As observed in the original works, thanks to the revelation principle of Myerson [1986], the latter step is equivalent to assuming that the planner's recommendations are *Bayesian incentive-compatible* (BIC) so that rational agents will always follow the recommendations (at least under the assumption of agent homogeneity).

Initially, most work on incentivized exploration dealt with small finite sets of actions Mansour et al. [2020, 2022], exploring economic aspects of the problem such as exogenous payments for exploration Frazier et al. [2014], Kannan et al. [2017], Wang and Huang [2018], Agrawal and Tulabandhula [2020], Wang et al. [2023], partial data disclosure Immorlica et al. [2020], and agent heterogeneity Immorlica et al. [2019]. See also the surveys [Slivkins, 2019, Chapter 11] and [Immorlica et al., 2023, Chapter 31]. More recently, extensions to combinatorial action sets, multi-stage reinforcement learning, and linear contexts were also considered in Hu et al. [2022], Simchowitz and Slivkins [2024], Sellke [2023]. In these more complex machine learning settings, a fundamental question is how the regret scales with problem parameters such as the size of the action space.

This quantitative dependence was studied in Sellke and Slivkins [2023], which provided a new two-stage algorithm. The algorithm first obtains a constant number of samples from each arm, and then switches permanently to Thompson sampling. The initial stage enjoys sample-efficiency thanks to a carefully tuned "exponential exploration" strategy, and Thompson sampling is BIC after this constant amount of initial exploration (see Gur et al. [2024] for a more general perspective on the latter property). This yielded polynomial regret dependence on the number of actions and other natural parameters, and ensured the "price of incentivization" in the regret is only additive relative to Thompson sampling, which is known to exhibit near-optimal performance Kaufmann et al. [2012], Bubeck and Liu [2013], Agrawal and Goyal [2017], Russo and Van Roy [2014, 2016], Zimmert and Lattimore [2019], Bubeck and Sellke [2022]. Importantly, however, all of these results require that the rewards for the actions are independent under the prior.

A natural setting to consider dependent actions is the linear bandit model, where Thompson sampling remains a gold-standard algorithm Agrawal and Goyal [2013], Dong and Van Roy [2018]. For this setting, Sellke [2023] showed that Thompson sampling is again BIC after an initial data collection stage under mild conditions, but that the sample complexity of *collecting* initial data can scale exponentially with the dimension. In some applications, using exogenous payments for initial exploration can bypass this exponential barrier, but such workarounds are contingent on problem-specific regulatory and ethical constraints. In our work, we show that the exponential barrier disappears when the action set is the *d*-dimensional unit ball, and we provide an incentive-compatible initial exploration algorithmic with polynomial sample complexity.

1.1 Our Results

We consider a linear bandit problem where the set A of possible actions is the d-dimensional unit ball. In this model, the observed reward for agent t using action $A^{(t)} \in A$ in round t is

$$r^{(t)} = \langle \mathbf{A}^{(t)}, \boldsymbol{\ell}^* \rangle + w_t,$$

where $w_t \sim N(0,1)$ and $w_{t_1} \perp \!\!\! \perp w_{t_2}$ for all $t_1 \neq t_2$. We assume that ℓ^* is drawn from a known prior distribution μ on \mathbb{R}^d (known both to agents and to the algorithm). As our model and algorithm will be rotationally invariant, we assume for convenience (without loss of generality) that $\mathbb{E}[\ell^*_i] = 0$ for all i > 1 and $\mathbb{E}[\ell^*_1] \geq 0$. Importantly, unlike in Sellke and Slivkins [2023], we do *not* require that ℓ^*_i is independent of ℓ^*_j for $i \neq j$.

At each time step $t \geq 1$, the algorithm recommends an action $\mathbf{A}^{(t)} \in \mathcal{A}$ to agent t. We study Bayesian Incentive Compatible (BIC) algorithms, which means that the algorithm will make recommendations such that rational expectation-maximizing agents will always be incentivized to follow the algorithm's recommendation. More formally, BIC actions can be defined as follows:

Definition 1. An action $A^{(t)}$ at time $t \ge 1$ is Bayesian Incentive Compatible (BIC) if for all $A \in A$:

$$\mathbb{E}[\langle \boldsymbol{\ell}^*, A \rangle \mid \mathbf{A}^{(t)} = A] = \sup_{A' \in \mathcal{A}} \mathbb{E}[\langle \boldsymbol{\ell}^*, A' \rangle \mid \mathbf{A}^{(t)} = A].$$

Similarly, a bandit algorithm is BIC if for all $t \in [1, T]$, the algorithm recommends a BIC action $\mathbf{A}^{(t)}$.

For the rest of this paper, we will only consider BIC algorithms and rational expectation-maximizing agents, which means that the recommended action $\mathbf{A}^{(t)}$ will always be the action chosen by agent t. Our main goal is to develop BIC algorithms that incentivize the agents to explore the entire action space using $\operatorname{poly}(d)$ samples. More precisely, given the linear reward structure, we ask our algorithm to recommend actions $\mathbf{A}^{(1)},...,\mathbf{A}^{(T)}$ such that for some (possibly large) constant $\lambda>0$ we have

almost surely:

$$\sum_{t=1}^{T} (\mathbf{A}^{(t)})^{\otimes 2} \succeq \lambda \mathbf{I}. \tag{1}$$

(Here we use the standard notation that $M \leq M'$ if M' - M is positive semi-definite; (1) is equivalent to all eigenvalues of $\sum_{t=1}^T (\mathbf{A}^{(t)})^{\otimes 2}$ being at least λ .) This was termed λ -spectral exploration in Sellke [2023], and shown to imply Thompson Sampling is BIC after time T under mild conditions.

Therefore, our problem can informally be summarized as the following:

Problem 2. In the linear bandit setting, can we design BIC algorithms that guarantee λ -spectral exploration of the action space in only a polynomial in d number of steps?

For some priors, it is impossible to explore the action space with a BIC algorithm (see e.g. [Mansour et al., 2020, Section 4] or [Sellke and Slivkins, 2023, Section 8]). Thus we will require mild non-degeneracy assumptions on the prior. Roughly speaking, ℓ^* should not be confined to any half-space and should have neither minuscule nor enormous fluctuations in any direction.

Assumption 3. There exist constants c_d , ϵ_d , c_v , K > 0 such that:

- 1. ℓ^* is not confined to any half-space: $\min_{\|\mathbf{v}\|=1} \Pr(\langle \mathbf{v}, \ell^* \rangle \geq c_d) \geq \epsilon_d$.
- 2. ℓ^* has non-degenerate covariance: $\min_{\|\mathbf{v}\|=1} \mathrm{Var}(\langle \mathbf{v}, \ell^* \rangle) \geq c_v$.
- 3. ℓ^* is sub-gaussian: $\max_{\|\mathbf{v}\|=1} \mathbb{P}(|\langle \mathbf{v}, \ell^* \rangle| \ge t) \le 2e^{-t^2/K^2}$ for all t > 0.

The first two conditions above are both necessary in some form; see Appendix B. The third is a standard condition on the fluctuations of μ . Our main result is as follows.

Theorem 4. Under Assumption 3, there exists a BIC algorithm (Algorithm 1) which almost surely achieves $\bar{\lambda}$ -spectral exploration in sample complexity

$$\bar{\lambda} \left(\frac{d}{c_{v} + c_{d}} \right)^{O(1)} \log(1/\epsilon_{d}). \tag{2}$$

Note that (2) depends polynomially on c_d , c_v but only logarithmically on ϵ_d . This is important because in typical high-dimensional settings, ϵ_d will be exponentially small in the dimension while the other parameters will not. The next two propositions give illustrative but not exhaustive examples of such high-dimensional distributions. In the first, we take μ to be uniform on a convex body $\mathcal K$ with $B_r(0)\subseteq\mathcal K\subseteq B_1(0)$ for some 0< r<1, and say such μ is r-regular. This is the main setting considered in Sellke [2023], and as explained in Section 5, combining Sellke [2023] with our results yields an end-to-end low-regret algorithm which is ϵ -BIC (i.e. with ϵ subtracted from the right-hand side in Definition 1) with initial sample complexity poly $(d,1/r,1/\epsilon)$. (The combination only satisfies ϵ -BIC because Sellke [2023] only shows Thompson sampling is ϵ -BIC unless actions are well-separated.)

Proposition 5 (Proof in Appendix L). Any r-regular μ satisfies Assumption 3 with $c_d = r/3$ and $\epsilon_d = (r/3)^d$ and $c_v = \Omega(r^2/d^2)$ and K = 1.25.

The second example consists of log-concave distributions (e.g. Gaussians). We say a density $d\mu(x) \propto e^{-V(x)} dx$ is α -log-concave and β -log-smooth for $0 < \alpha \le \beta$ if

$$-\beta I_d \prec \nabla^2 V(\mathbf{x}) \prec -\alpha I_d, \quad \forall \mathbf{x} \in \mathbb{R}^d.$$

Proposition 6 (Proof in Appendix M). Let μ be αd -log-concave and βd -log-smooth with mode \mathbf{x}^* satisfying $\|\mathbf{x}^*\| \leq \gamma$. Then Assumption 3 holds with $\epsilon_d \geq \frac{Je^{-J^2\beta d/2}\sqrt{\alpha d}}{(1+J^2\beta d)\sqrt{2\pi}}$ for $J = \gamma + \frac{2}{\sqrt{\alpha d}} + c_d$ and any $c_d > 0$. Further, we may take $c_v = \frac{1}{\beta d}$ and $K = 2(\gamma + \sqrt{\alpha d} + (\alpha d)^{-1/2})$. Conversely, there exists such μ with $\|\mathbf{x}^*\| = 0$ and $(\alpha, \beta) = (1, 2)$ in which $\min_{\|\mathbf{v}\|=1} \Pr\left(\langle \mathbf{v}, \boldsymbol{\ell}^* \rangle \geq 0\right) \leq e^{-\Omega(d)}$.

We note that if μ has mean 0, then $\|\mathbf{x}^*\| \le \alpha^{-1/2}$ so the above results apply (see Fact 27 in the Appendix). In fact when μ has mean 0, one will always have $\epsilon_d \ge \Omega(1)$ for $c_d = 1$ (as noted within the proof of Proposition 6). Proposition 6 represents the typical case in that μ can be "mildly off-centered", for example by centering around a point \mathbf{x} drawn from μ itself (see again Fact 27).

In Appendix B, we show tightness of the dependency of Equation (2) on the parameters of Assumption 3. More formally, we prove three lower bounds, one corresponding to each of the parameters c_d , c_v , ϵ_d .

In doing so, we show that there exist instances of the problem such that no algorithm can achieve 1-spectral exploration with fewer than $\Omega(1/c_d)$ samples, $\Omega(1/c_v)$ samples, and $\Omega(\log(1/\epsilon_d))$ samples. Therefore, we can conclude that Theorem 4 is tight in terms of these three parameters up to polynomial factors. Furthermore, for the distributions discussed in Propositions 5 and 6, these results imply a lower bound on the number of samples that is superlinear in d. Whether or not tight lower bounds exist that exactly match the sample complexity in Equation (2) remains an open question.

On the Smoothness of the Action Space in Online Optimization and Learning Our positive results are in contrast with [Sellke, 2023, Proposition 3.9], which shows that $e^{\Omega(d)}$ time can be necessary for BIC exploration for r-regular μ . We believe that our results are not specific to the unit ball, but that the fundamental distinction between these two examples is the smoothness of the action set. In [Sellke, 2023, Proposition 3.9], the action set is a non-smooth polytope with corners, and the optimal action under the prior distribution is one of the corners. This means that given a small amount of new information, the posterior-optimal action will not change at all. By contrast our main algorithm crucially relies on expansiveness of the function

$$\ell^* \mapsto \underset{\mathbf{x} \in \mathcal{A}}{\operatorname{arg\,max}} \langle \ell^*, \mathbf{x} \rangle.$$

In our setting \mathcal{A} is the unit ball and so this function is simply $\ell^*/\|\ell^*\|$. However we expect our methods to generalize to other smooth bodies, and plan to pursue this in future work.

It is worth mentioning that the geometry of the action set has long been understood to play an important role in high-dimensional learning and optimization. This was exemplified by the interplay between self-concordant barrier functions Nesterov and Nemirovskii [1994] and linear bandits via online stochastic mirror descent Abernethy et al. [2008], Bubeck et al. [2012a,b, 2018], Bubeck and Eldan [2019], Kerdreux et al. [2021b]. Geometric properties of the action space are also known to yield acceleration for full-information online learning and offline optimization Garber and Hazan [2015], Huang et al. [2017], Levy and Krause [2019], Kerdreux et al. [2021a], Mhammedi [2022], Molinaro [2023], Tsuchiya and Ito [2024].

1.2 Additional Notation

We will use the following notation throughout the paper. Unless otherwise specified, $\|\cdot\|$ will refer to the ℓ_2 norm. We will use \mathbf{e}_i to refer to the ith vector of the standard basis. For a random variable X, we say that X is K-sub-gaussian if $\mathbb{P}(X \geq t) \leq 2e^{-t^2/K^2}$. We use the standard f(d) = O(g(d)) (and corresponding Ω) to mean that there exists some constant C > 0 such that $f(d) \leq C \cdot g(d)$ for all sufficiently large d. We often write $x^{\otimes 2}$ for xx^{\top} . We also use $\mathcal{P}_S(\mathbf{u})$ to represent the projection of the vector \mathbf{u} onto the space S.

1.3 Outline

The rest of the paper will be organized as follows. In Section 2, we present sketches of our main algorithms and discuss the three key technical ideas behind the algorithm and analysis. In Section 3, we give the detailed main algorithm, present the two key technical propositions, and formally state our main theorem bounding the sample complexity of the algorithm.

2 Algorithm and Technical Overview

In this section, we present pseudocode for the main algorithm and give informal intuition for the key technical ideas used to show that this algorithm is BIC and satisfies the sample complexity bound of Theorem 4.

2.1 Algorithm Sketch

Before presenting the algorithm, we first state Lemma 7, which is the key observation used by the algorithm to select BIC actions. Informally, this lemma says that for any ψ that is a function of historical actions and rewards and possibly external randomness (but not on future information), the action $\mathbf{A}^{(t)}$ in the direction of $\mathbb{E}[\ell^* \mid \psi]$ is BIC (or any action is BIC if $\mathbb{E}[\ell^* \mid \psi] = \mathbf{0}$). Thus to prove an action $\mathbf{A}^{(t)}$ is BIC, it suffices to find such a ψ so that $\mathbf{A}^{(t)}$ is in the direction of $\mathbb{E}[\ell^* \mid \psi]$ whenever $\mathbb{E}[\ell^* \mid \psi] \neq \mathbf{0}$.

Lemma 7 (Proof in Appendix D). Suppose that ψ is a function of the history before time t and potentially some external independent randomness ξ , i.e. $\psi = \psi(\mathbf{A}^{(1)}, r^{(t-1)}, \mathbf{A}^{(t-1)}, r^{(t-1)}, \xi)$.

Let **v** be any vector in \mathbb{R}^d . Define

$$\text{Exploit}(\psi, \mathbf{v}) := \begin{cases} \frac{\mathbb{E}[\boldsymbol{\ell}^* | \psi]}{\|\mathbb{E}[\boldsymbol{\ell}^* | \psi]\|} & \textit{if } \|\mathbb{E}[\boldsymbol{\ell}^* | \psi]\| \neq \boldsymbol{0} \\ \mathbf{v} & \textit{otherwise}. \end{cases}$$

Then $A^{(t)} = \text{Exploit}(\psi, \mathbf{v})$ is BIC at time t.

Algorithm 1, together with Algorithms 2-3, presents a high-level sketch of the procedure used to prove Theorem 4. The algorithm first uses the prior-based BIC action (e_1) for poly(d) steps. In order to explore the rest of the action space, Algorithm 1 runs a single loop that repeatedly checks if λ -spectral exploration has been achieved. If λ -spectral exploration has not yet been achieved, then Algorithm 1 uses the subroutine InitialExploration to find a BIC action a that has magnitude at least $\Omega(\epsilon_d)$ when projected onto the space of not-yet-sufficiently explored actions. Algorithm 1 then gives a as input to the subroutine ExponentialGrowth. ExponentialGrowth returns another BIC action that has at least twice as large of a magnitude when projected onto the not-yet-sufficiently explored space of actions. Algorithm 1 repeatedly passes the action a through ExponentialGrowth until the BIC action a has magnitude of at least $\sqrt{\lambda}$ when projected onto the space of not-yet-sufficiently explored actions. Algorithm 1 then uses this action for poly(d) steps. If λ -spectral exploration has still not been achieved, then Algorithm 1 explores a new direction by repeating the process of calling InitialExploration followed by repeated calls to ExponentialGrowth. In Sections 2.2 and 2.3, we discuss the main intuition of the subroutines InitialExploration and ExponentialGrowth respectively.

Algorithm 1 BIC Exploration Pseudocode

```
1: Set \mathbf{A}^{(t)} = \mathbf{e}_1 for poly(d) steps
```

- 2: while λ -spectral exploration has not yet been achieved do
- $S \leftarrow$ space of actions that have already been sufficiently explored
- \triangleright BIC-vector with $\Omega(\epsilon_d)$ -magnitude when projected onto S^{\perp} 4: $\mathbf{a} \leftarrow \text{InitialExploration}(\cdot)$
- while magnitude of a when projected onto S^{\perp} is less than $\sqrt{\lambda}$ do 5:
- $\mathbf{a} \leftarrow \text{ExponentialGrowth}(\mathbf{a})$ > new BIC-vector with double the magnitude when 6: projected onto S^{\perp}
- Set $\mathbf{A}^{(t)} = \mathbf{a}$ for poly(d) steps

Algorithm 2 InitialExploration Pseudocode

- 1: $\mathbf{M} \leftarrow \sum_{i=1}^{t-1} \left(\mathbf{A}^{(i)}\right)^{\otimes 2}$ 2: $\mathbf{w}_1, ..., \mathbf{w}_{\ell_{\lambda}} \leftarrow$ orthonormal eigenvectors of \mathbf{M} with corresponding eigenvalues greater than λ
- 3: $S \leftarrow \operatorname{Span}(\mathbf{w}_1, ..., \mathbf{w}_{\ell_{\lambda}})$
 - ▶ Space of already-sufficiently explored actions
- 4: $\hat{y}_i \leftarrow \text{empirical estimate of } \langle \ell^*, \mathbf{w}_i \rangle \text{ for } i < \ell_{\lambda}$
- 5: $\mathbf{z} \leftarrow \mathbb{E}[\boldsymbol{\ell}^* \mid \hat{\mathbf{y}}]$
- 6: $f \leftarrow \text{function of } \mathbf{z} \text{ such that } \mathbb{E}[\mathbf{z}f(\mathbf{z})] = 0 \text{ and } f(\mathbf{z}) \in [\Omega(\epsilon_d), 1].$
- 7: $E \leftarrow \{\text{Bernoulli}(f(\mathbf{z})) = 1\}$
- 8: Set $\mathbf{A}^{(t)} = \text{Exploit}(1_E, \mathbf{v})$ for $\mathbf{v} \in S^{\perp} \triangleright \mathbf{A}^{(t)}$ explores a new direction with probability $f(\mathbf{z})$
- 9: $r \leftarrow r^{(t)}$ if we explored and otherwise $r \leftarrow N(0,1)$
- 10: **return** Exploit(sign(r), \mathbf{v})

 \triangleright where v is in S^{\perp}

Algorithm 3 Exponential Growth Pseudocode

- 1: $S \leftarrow$ space of actions that have already been sufficiently explored
- 2: Set $\mathbf{A}^{(t)} = \mathbf{a}$ for poly(d) steps to observe a set of rewards $\{r^{(t)}\}$.
- 3: $R \leftarrow$ average of rewards from the component of a projected onto the space of not-yet-sufficiently explored actions (S^{\perp})
- 4: **return** Exploit(sign(R), \mathbf{v})

 \triangleright where v is in S^{\perp}

2.2 Initial Exploration

The goal of the InitialExploration routine (Algorithm 2) is to find a BIC action that has sufficient magnitude when projected onto the not-yet-sufficiently explored space of actions S^{\perp} . To do this, we

first design an event E based on the historical actions and rewards H_t and external randomness such that $\mathbb{P}(E \mid H_t) \geq \Omega(\epsilon_d)$ for all histories H_t and such that conditional on E, ℓ^* has 0 expectation when projected onto any direction in S. We then choose the BIC action $A^{(t)}$ in Line 8 so that $A^{(t)}$ explores S^\perp whenever event E holds. More concretely, the second condition on E implies that the action $A^{(t)} = \operatorname{Exploit}(1_E, \mathbf{v})$ for any $\mathbf{v} \in S^\perp$ will satisfy $A^{(t)} \in S^\perp$ whenever event E holds, and $A^{(t)}$ is BIC by Lemma 7. Using this BIC action on Line 8 therefore explores S^\perp whenever event E holds. We define the signal F as the reward at time F if event F holds and otherwise as independent F holds. We next show that, conditional on the sign of F, the expectation of F always has sufficient magnitude when projected onto F (see Lemma 14). This implies that for any F as desired. Therefore, we can return the action F by which is BIC by Lemma 7.

All that remains is to define the event E from the previous paragraph. Formally, we want an event E that is a function of the historical actions and rewards and independent random variable ξ such that $\mathbb{E}[\langle \boldsymbol{\ell}^*, \mathbf{w}_i \rangle \mid E] = 0$ for all $i \leq \ell_\lambda$ and such that $\mathbb{P}(E \mid H_t) \geq \Omega(\epsilon_d)$ for all histories H_t . The key to constructing E is Lemma 8, which implies that for any random variable \mathbf{x} not confined to any half-spaces, there exists a function f such that \mathbf{x} has expectation equal to $\mathbf{0}$ conditional on the event $\{\text{Bernoulli}(f(\mathbf{x})) = 1\}$

Lemma 8 (Proof in Appendix G). Let μ be a probability distribution on \mathbb{R}^d with finite first moment and suppose for $0 < \epsilon \le 1/2$ we have that

$$\min_{\|\mathbf{v}\|=1} \mathbb{E}^{\mathbf{x} \sim \mu}[\langle \mathbf{v}, \mathbf{x} \rangle_{+}] \geq \epsilon.$$

Then there exists a Borel measurable function $f: \mathbb{R}^d \to \left[\frac{\epsilon}{4\max(\|\mathbb{E}[\mathbf{x}]\|, 1)}, 1\right]$ with $\mathbb{E}[\mathbf{x}f(\mathbf{x})] = \mathbf{0}$.

If we knew the exact values of the vector $\mathbf{x} := (\langle \ell^*, \mathbf{w}_1 \rangle, ..., \langle \ell^*, \mathbf{w}_{\ell_\lambda} \rangle)$, then we could directly apply Lemma 8 to \mathbf{x} and use the resulting function f to define the event $E = \{\text{Bernoulli}(f(\mathbf{x})) = 1\}$. This event E would satisfy the desired property that $\mathbb{E}[\langle \ell^*, \mathbf{w}_i \rangle \mid E] = 0$ for $i \leq \ell_\lambda$ and that $\Pr(E \mid H_t) = \Omega(\epsilon_d)$ for all H_t . However, we do not know the exact values of $\langle \ell^*, \mathbf{w}_1 \rangle, ..., \langle \ell^*, \mathbf{w}_{\ell_\lambda} \rangle$ because we do not know ℓ^* , and therefore this event E is not a function of historical actions and rewards. Instead, we can estimate $\langle \ell^*, \mathbf{w}_i \rangle$ as \hat{y}_i using the historical actions and returns. These estimates will be relatively accurate because these directions are already well-explored. Defining $\mathbf{z} = \mathbb{E}[\ell^* \mid \hat{\mathbf{y}}]$, we show that \mathbf{z} also satisfies the assumption of Lemma 8 (Lemma 17). Therefore, applying Lemma 8 to \mathbf{z} gives a function f such that $f(\mathbf{z}) \geq \Omega(\epsilon_d)$ for all \mathbf{z} . \mathbf{z} is a function of historical actions and rewards and external randomness as desired. Defining the event $E = \{\text{Bernoulli}(f(\mathbf{z})) = 1\}$, we have as desired that $\mathbb{E}[\langle \ell^*, \mathbf{w}_i \rangle \mid E] = 0$ for all $i \leq \ell_\lambda$ and that $\mathbb{P}(E \mid H_t) = \Omega(\epsilon_d)$ for all H_t .

2.3 Exponential Growth

The goal of the ExponentialGrowth routine (Algorithm 3) is to take a BIC action $\bf a$ and return a new BIC action that has twice as large of a magnitude when projected onto the not-yet-sufficiently explored space of actions S^{\perp} . Using Lemma 7, we will find a signal R such that for any $\bf v \in S^{\perp}$, the action ${\rm Exploit}(R, \bf v)$ will have twice as large magnitude when projected onto S^{\perp} as $\bf a$ has.

The key intuition is that because the action space is curved, conditioning on noisy information about the sign of ℓ^* in a specific direction will increase the magnitude of the expectation of ℓ^* projected in that direction. Consider the following simplified example. Suppose that d=2. Also suppose we already know ℓ^*_1 , and the goal is to explore ℓ^*_2 . Furthermore, assume that the initial BIC action is $\mathbf{A}^{(t)}$ shown in the left-most diagram of Figure 1 that has ϵ as the y-coordinate. Using this action gives a rewards $r^{(t)}$. Because we know the value of ℓ^*_1 , we can remove this component of the reward $r^{(t)}$, and we are left with a signal $r=\epsilon\ell^*_2+N(0,\sigma^2)$ for some $\sigma^2>0$. If we take $\mathbf{A}^{(t+1)}$ to be the unit vector in the direction of $\mathbb{E}[\ell^*\mid r]$, then we will have that the new y-coordinate is 2ϵ . By Lemma 7, this choice of $\mathbf{A}^{(t+1)}$ is BIC, which is an important consequence of the curved action space. We then observe $r^{(t+1)}$, and we can repeat this process again to find a BIC action $\mathbf{A}^{(t+2)}$ that has y-coordinate of 4ϵ . Therefore, in this simplified example we are able to exponentially grow the y-coordinate for BIC actions, which is a consequence of the curvature of the action space. This process is demonstrated in Figure 1.

Equipped with the intuition of the previous paragraph, we now analyze Algorithm 3. Recall that S is the space of actions that have already been sufficiently explored. Algorithm 3 first uses the action $\mathbf{A}^{(t)} = \mathbf{a}$ for poly(d) steps. Taking an average of the rewards $\{r^{(t)}\}$ from these actions gives

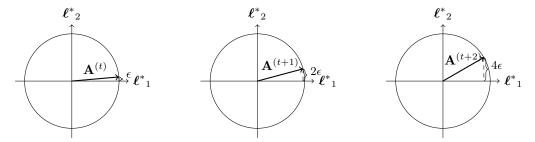


Figure 1: Diagram illustrating exponentially growing exploration. First, we have a BIC action $\mathbf{A}^{(t)}$ with y-coordinate ϵ . Using $r^{(t)}$, we design a signal conditional on which the expectation of ℓ^*_2 doubles. Exploit(·) then gives a BIC action $A^{(t+1)}$ with y-coordinate 2ϵ . Using $r^{(t+1)}$, we again double the conditional expectation of ℓ^*_2 and get BIC action $A^{(t+2)}$ with y-coordinate 4ϵ . Increasing the conditional expectation of ℓ^*_2 gives a BIC action with a larger y-coordinate, and this action's feedback gives a stronger signal that more rapidly increases the conditional expectation of ℓ^*_2 . This allows us to "bootstrap" an exponentially weak starting signal all the way to constant signal strength without suffering exponential sample complexity.

a close estimate of $\langle \mathbf{a}, \ell^* \rangle$. Using the previous observed actions and rewards, we can remove the component of $\langle \mathbf{a}, \ell^* \rangle$ that comes from a projected onto S. This leaves a signal R which is the average of rewards from the component of a projected onto just S^\perp . Using concentration laws for conditional probabilities (Lemmas 15 and 16), we formalize the intuition from the previous paragraph to show that for any $\mathbf{v} \in S^\perp$, the projection of $\operatorname{Exploit}(R, \mathbf{v})$ onto S^\perp will always have magnitude at least $2\mathcal{P}_{S^\perp}(\mathbf{a})$. The action $\operatorname{Exploit}(R, \mathbf{v})$ is BIC by Lemma 7. Therefore, we have found a new BIC action $\operatorname{Exploit}(R, \mathbf{v})$ that has twice as large magnitude when projected onto S^\perp as \mathbf{a} .

2.4 Pushing eigenvalues upwards

An important step of the proof of Algorithm 1 is showing that the while loop will terminate in polynomial time. To show this, we show that the action a used for $\operatorname{poly}(d)$ steps at the end of each round of the while loop sufficiently increases the eigenvalues of $\mathbf{M}^{(t)} := \sum_{i=1}^t \left(\mathbf{A}^{(i)}\right)^{\otimes 2}$. Note that at each time t, the matrix $\mathbf{M}^{(t)}$ increases by a rank-1 update, i.e. $\mathbf{M}^{(t+1)} = M^{(t)} + \left(\mathbf{A}^{(t+1)}\right)^{\otimes 2}$. In order to show that we will eventually achieve λ -spectral exploration, we must show that the small eigenvalues of $\mathbf{M}^{(t+1)}$ increase relative to the small eigenvalues of $\mathbf{M}^{(t)}$ after each round of the while loop. Although we do not follow this route, we mention that Golub [1973] provides exact descriptions for the eigenvalues of rank-one updates as above, giving a rational function $\omega(x)$ (with coefficients depending on $\mathbf{M}^{(t)}$ and $\mathbf{A}^{(t+1)}$) which has roots equal to the eigenvalues of $\mathbf{M}^{(t+1)}$. However, it is not clear how helpful this is for the quantitative estimates we require.

At first glance, we might hope that we can sufficiently increase all of the eigenvalues of $\mathbf{M}^{(t)}$ in just d rounds if in each round we partially explore a new not-yet-explored direction. However, this unfortunately is not always the case. For example, suppose in the first round we use BIC action $\mathbf{A}^{(1)}=(1,0,0,...,0)$. Writing $\varphi=1/\sqrt{5}$, we then in the next d-1 actions use the BIC actions $\mathbf{A}^{(2)}=(2\varphi,-\varphi,0,0,...,0)$, $\mathbf{A}^{(3)}=(0,2\varphi,-\varphi,0,0,...,0)$, and so on until $\mathbf{A}^{(d)}=(0,0,...,0,2\varphi,-\varphi)$. Then each $\mathbf{A}^{(i)}$ has distance $\varphi=\Omega(1)$ from the span of the preceding actions, so we might hope that this already yields $\Omega(1)$ -spectral exploration. However, note that the vector $\mathbf{x}=(1,2,4,\ldots,2^{d-1})$ satisfies $\langle \mathbf{x},\mathbf{A}^{(i)}\rangle=1_{i=1}\leq 2^{-(d-1)}\|\mathbf{x}\|$ for all $1\leq i\leq d$. It follows that the matrix $\mathbf{M}^{(d)}=\sum_{i=1}^d \left(\mathbf{A}^{(i)}\right)^{\otimes 2}$ has smallest eigenvalue which is *exponentially small* in d (since $\langle \mathbf{x},\mathbf{M}^{(d)}\mathbf{x}\rangle/\|\mathbf{x}\|^2$ is exponentially small).

We show that our algorithm terminates in poly(d) steps using the linear algebraic Lemma 9 below, which may be of independent interest. Informally, this lemma says that if \mathbf{u} has non-negligible projection onto the space orthogonal to the large-or-medium eigenvalues of \mathbf{M} , then the rank-1 update of $\mathbf{M} + \mathbf{u}^{\otimes 2}$ increases the total sum of the small-or-medium eigenvalues non-negligibly. Lemma 9 (Proof in Appendix E). Let $\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_j \in \mathbb{R}^d$ such that $\|\mathbf{v}_i\| = 1$. Define $\mathbf{M} = \sum_{i=1}^j \mathbf{v}_i^{\otimes 2}$. Suppose $\mathbf{w}_1, ..., \mathbf{w}_d$ are orthonormal eigenvectors of \mathbf{M} with corresponding eigenvalues

 $\lambda_1 \geq ... \geq \lambda_d \geq 0$. Define ℓ_{ϵ} as the largest index such that $\lambda_j \geq \epsilon$ for some $0 < \epsilon < 1$, and define $S = \operatorname{Span}(\mathbf{w}_1, ..., \mathbf{w}_{\ell_{\epsilon}})$. Suppose \mathbf{u} is a vector such that $\|P_{S^{\perp}}(\mathbf{u})\|_2^2 \geq \epsilon$, and define $\mathbf{M}' = \mathbf{M} + \mathbf{u}^{\otimes 2}$. Let $\mathbf{w}'_1, ... \mathbf{w}'_d$ be the orthonormal eigenvectors of \mathbf{M}' with corresponding eigenvalues $\lambda'_1 \geq ... \geq \lambda'_d$. Finally, let ℓ be the largest index such that $\lambda_{\ell} \geq \frac{200d^3}{\epsilon^2}$. Then

$$\sum_{i=\ell+1}^d \lambda_i' \ge \epsilon/2 + \sum_{i=\ell+1}^d \lambda_i.$$

3 Main Results

In this section, we will formally state our main algorithms and theorems. For presentation purposes, for the formal algorithms and theorems we will define

$$\lambda := \min \left(1, \min(\delta_{L15}, \delta_{L16}, 1/c_{L16})^2 \frac{(c_v / \sqrt{8\pi})^2}{4d(K\sqrt{\pi} + 1)^2} \right) = \Omega(c_v / d),$$

where δ_{L15} is a constant from Lemma 15 and δ_{L16}, c_{L16} are constants from Lemma 16. Note that if we can do λ -spectral exploration in T rounds with this value of λ , then for any $\bar{\lambda}$ we can do $\bar{\lambda}$ -spectral exploration in $\lceil \frac{\bar{\lambda}}{\lambda} \rceil \cdot T$ rounds by simply repeating the algorithm $\lceil \frac{\bar{\lambda}}{\lambda} \rceil$ times. Therefore, if we can ensure λ -spectral exploration for the λ value described above in poly(d) rounds, then we can also ensure $\bar{\lambda}$ -spectral exploration in $\bar{\lambda} \cdot \text{poly}(d)$ rounds for any $\bar{\lambda} \geq \lambda$.

3.1 Algorithms

Our main algorithm is presented in Algorithm 4, with subroutines in Algorithms 5 and 6. Note that these three algorithms directly correspond to the pseudocode presented in Algorithms 1–3.

Algorithm 4 BIC Exploration

```
Input: \lambda
  1: \kappa \leftarrow \max\left(\frac{1}{\lambda c_{L17}}, \frac{4d(K\sqrt{\pi}+1)(1+\frac{1}{\lambda})}{c_v^2/(8\pi)}\right)
  3: for t \in [0:\kappa) do
4: Set \mathbf{A}^{(t)} = \mathbf{v}_1
5: q_1^t \leftarrow r^{(t)}
  6: t \leftarrow \kappa
  7: j \leftarrow 1
  8: while minimum eigenvalue of \mathbf{M} = \sum_{i=1}^{j} \mathbf{v}_{i}^{\otimes 2} is smaller than \lambda do
9: \mathbf{w}_{1}, ..., \mathbf{w}_{d} \leftarrow orthonormal eigenvectors of \mathbf{M} with corresponding eigenvalues \lambda_{1} \geq ... \geq \lambda_{d}.
10: \ell_{\lambda} \leftarrow \max\{i : \lambda_{i} \geq \lambda\}
10:
                     S \leftarrow \operatorname{Span}(\mathbf{w}_1, ..., \mathbf{w}_{\ell_{\lambda}})
                     \mathbf{a}, t \leftarrow \text{InitialExploration}(\{\mathbf{w}_i\}_{i=1}^d, \{\lambda_i\}_{i=1}^{\ell_{\lambda}}, \{\mathbf{v}_i\}_{i=1}^j, \{\{q_i^{t'}\}_{t'=0}^{\kappa-1}\}_{i=1}^j, t)
                     while \|\mathcal{P}_{S^{\perp}}(\mathbf{a})\| \leq \sqrt{\lambda} \, \mathbf{do}
13:
                                \mathbf{a}, t \leftarrow \text{ExponentialGrowth}(\mathbf{a}, \{\mathbf{w}_i\}_{i=1}^{\ell_{\lambda}}, \{\lambda_i\}_{i=1}^{\ell_{\lambda}}, \{\mathbf{v}_i\}_{i=1}^{j}, \{\{q_i^{t'}\}_{t'=0}^{\kappa-1}\}_{i=1}^{j}, t)
14:
15:
                      \mathbf{v}_{j+1} \leftarrow \mathbf{a}
                     for t' \in [0:\kappa) do
16:
                               \mathbf{Set} \ \mathbf{A}^{(t+t')} = \mathbf{a}
q_{j+1}^{t'} \leftarrow r^{(t+t')}
18:
19:
                     t \leftarrow t + \kappa
20:
                     j \leftarrow j + 1
```

Lemma 10 shows that the application of Lemma 8 (in the form of Lemma 17) in Algorithm 5 is valid. **Lemma 10** (Proof in App C). Every time Algorithm 5 (Line 2) calls Algorithm 4 to define \hat{y}_{ℓ} , we have $\hat{y}_{\ell} \stackrel{d}{=} x_{\ell}^* + N(0, c_{L17} \frac{\lambda}{\lambda_{\ell}})$. Thus, $\mathbf{z}(\hat{\mathbf{y}})$ (Line 4) satisfies the assumptions of Lemma 8 with $\epsilon = \frac{\epsilon_d c_d}{4}$.

Algorithm 5 InitialExploration

Input:
$$\{\mathbf{w}_i\}_{i=1}^d, \{\lambda_i\}_{i=1}^{\ell_{\lambda}}, \{\mathbf{v}_i\}_{i=1}^j, \{\{q_i^{t'}\}_{t'=0}^{\kappa-1}\}_{i=1}^j, t$$

1: Define $\mathbf{x}^* \in \mathbb{R}^{\ell_{\lambda}}$ as $x_\ell^* = \langle \boldsymbol{\ell}^*, \mathbf{w}_{\ell} \rangle$.

2: Define $\hat{\mathbf{x}} \in \mathbb{R}^{\ell_{\lambda}}$ as $\hat{x}_\ell = \lambda_{CLT} \sum_{i=1}^{1} \frac{1}{\lambda_{CLT}} \sum_{i=1}^{j} \frac{\langle \mathbf{v}_k, \mathbf{w}_{\ell} \rangle_{\mathbf{g}^{t'}}}{\lambda_{CLT}} = \lambda_{CLT} \sum_{i=1}^{j} \frac{\langle \mathbf{v}_k, \mathbf{w}_{\ell} \rangle_{\mathbf{g}^{t'}}}$

2: Define
$$\hat{\mathbf{y}} \in \mathbb{R}^{\ell_{\lambda}}$$
 as $\hat{y}_{\ell} = \lambda c_{L17} \sum_{t'=0}^{\frac{1}{\lambda c_{L17}} - 1} \sum_{k=1}^{j} \frac{\langle \mathbf{v}_{k}, \mathbf{w}_{\ell} \rangle}{\lambda_{\ell}} q_{k}^{t'}$ $\triangleright \hat{y}_{\ell} \sim x_{\ell}^{*} + N(0, c_{L17} \frac{\lambda}{\lambda_{\ell}})$ by Lemma 18 via Lemma 10

3:
$$\mathbf{z}(\mathbf{y}) \leftarrow \mathbb{E}[\mathbf{x}^* \mid \hat{\mathbf{y}} = \mathbf{y}]$$

4:
$$f \leftarrow \text{function from Lemma 8 for } \mathbf{z}(\hat{\mathbf{y}}) \text{ with } \epsilon = \frac{\epsilon_d c_d}{4}. \Rightarrow f \text{ exists by Lemma 17 via Lemma 10}$$

5:
$$\Psi \leftarrow \text{Bernoulli}(f(\mathbf{z}(\hat{\mathbf{y}})))$$

6: Set
$$\mathbf{A}^{(t)} = \text{Exploit}(\Psi, \mathbf{w}_{\ell_{\lambda}+1})$$

6: Set
$$\mathbf{A}^{(t)} = \operatorname{Exploit}(\Psi, \mathbf{w}_{\ell_{\lambda}+1})$$
7: $R \leftarrow \begin{cases} r^{(t)} & \text{w.p. } \frac{\epsilon_{d}c_{d}}{16(K\sqrt{\pi}+1)f(\mathbf{z}(\hat{\mathbf{y}}))} \text{ if } \Psi = 1 \\ N(0,1) & \text{otherwise} \end{cases}$ > The above equation involves valid

probabilities by Lemma 8 and because $\max(\|\mathbb{E}[\mathbf{z}(\hat{\mathbf{y}})]\|, 1) \leq \|\mathbb{E}[\mathbf{x}^*]\| + 1 \leq K\sqrt{\pi} + 1$

8:
$$\mathbf{a} \leftarrow \text{Exploit}(1_{R>0}, \mathbf{w}_{\ell_{\lambda}+1}).$$

9: **return**
$$a, t + 1$$

Algorithm 6 ExponentialGrowth

Input:
$$\mathbf{a}, \{\mathbf{w}_i\}_{i=1}^{\ell_{\lambda}}, \{\lambda_i\}_{i=1}^{\ell_{\lambda}}, \{\mathbf{v}_i\}_{i=1}^{j}, \{\{q_i^{t'}\}_{t'=0}^{\kappa-1}\}_{i=1}^{j}, t$$

1:
$$S \leftarrow \operatorname{Span}(\mathbf{w}_1, ..., \mathbf{w}_{\ell_{\lambda}})$$

2:
$$\mathbf{x} \leftarrow \frac{\mathcal{P}_{S^{\perp}}(\mathbf{a})}{\|\mathcal{P}_{S^{\perp}}(\mathbf{a})\|}$$

Input:
$$\mathbf{a}, \{\mathbf{w}_i\}_{i=1}^{\ell_{\lambda}}, \{\lambda_i\}_{i=1}^{\ell_{\lambda}}, \{\mathbf{v}_i\}_{i=1}^{j}, \{q_i^{t'}\}_{t'=0}^{\kappa-1}\}_{i=1}^{j}, t$$

1: $S \leftarrow \operatorname{Span}(\mathbf{w}_1, ..., \mathbf{w}_{\ell_{\lambda}})$

2: $\mathbf{x} \leftarrow \frac{\mathcal{P}_{S^{\perp}}(\mathbf{a})}{\|\mathcal{P}_{S^{\perp}}(\mathbf{a})\|}$

3: $c_k \leftarrow \sum_{i=1}^{\ell_{\lambda}} \frac{\langle \mathcal{P}_{S}(\mathbf{a}), \mathbf{w}_i \rangle \langle \mathbf{v}_k, \mathbf{w}_i \rangle}{\lambda_i}$ for $k \in [1:j]$

4: $L \leftarrow \frac{4d(\mathbb{E}[\ell^*_1]+1)^2(1+\sum_{k=1}^{j}c_k^2)}{c_{L15}^2}$

5: For $t' \in [t, t+L)$, set $\mathbf{A}^{(t')} = \mathbf{a}$

6: $t \leftarrow t+L$

7: $R \leftarrow \sum_{t'=t}^{t+L-1} \left(r^{(t')} - \sum_{k=1}^{j}c_kq_k^{t'}\right)$

8: $\mathbf{b} \leftarrow \operatorname{Exploit}(1_{R^{\lambda}} \circ \mathbf{w}_{\ell+1})$

4:
$$L \leftarrow \frac{4d(\mathbb{E}[\ell^*_1]+1)^2(1+\sum_{k=1}^j c_k^2)}{c_{r+r}^2}$$

5: For
$$t' \in [t, t + L)$$
, set $\mathbf{A}^{(t')} = \mathbf{a}$

6:
$$t \leftarrow t + L$$

7:
$$R \leftarrow \sum_{t'=t}^{t+L-1} \left(r^{(t')} - \sum_{k=1}^{j} c_k q_k^{t'} \right)$$

8:
$$\mathbf{b} \leftarrow \text{Exploit}(1_{R>0}, \mathbf{w}_{\ell_{\lambda}+1})$$

9: **return b**, *t*

3.2 Propositions and Theorem

As discussed in Section 2.2, the main purpose of Algorithm 5 is to find a BIC action a that has sufficiently high magnitude when projected onto the space of not-yet-sufficiently explored actions. This is formalized in Proposition 11. As discussed in Section 2.3, the main purpose of Algorithm 6 is to double the magnitude of a when projected onto the space of not-yet-sufficiently explored actions. This is formalized in Proposition 12.

Proposition 11 (Proof in Appendix I). The action a returned by Algorithm 5 satisfies

$$\|\mathcal{P}_{S^{\perp}}(\mathbf{a})\| \ge \frac{c_{L14} \, c_{\mathbf{v}}^{2.5} \, \epsilon_d c_d}{16 \, (K\sqrt{\pi} + 1)} := c_{P11} \, c_{\mathbf{v}}^{2.5} \, \epsilon_d c_d.$$

Proposition 12 (Proof in Appendix J). The action returned by Algorithm 6 satisfies

$$\|\mathcal{P}_{S^{\perp}}(\mathbf{b})\| \geq 2 \|\mathcal{P}_{S^{\perp}}(\mathbf{a})\|$$
.

We can now state our main theorem bounding the sample complexity of Algorithm 4. **Theorem 13** (Proof in Appendix K). Algorithm 4 is BIC and has sample complexity

$$O\left(\log\left(\frac{1}{c_{v} \epsilon_{d} c_{d}}\right) \left(\frac{d^{5}}{\lambda^{4} c_{v}^{2}} + \frac{d^{4}}{c_{d}^{2} \lambda^{4}}\right)\right).$$

As discussed above, for any $\bar{\lambda}$, we can repeat Algorithm 4 for $[\bar{\lambda}/\lambda]$ times to get $\bar{\lambda}$ -spectral exploration. This is because trace is additive, and therefore if running Algorithm 4 once gives λ -spectral exploration, then running it $[\lambda/\lambda]$ times will give λ -spectral exploration. Multiplying the bound from

Theorem 13 by $\lceil \bar{\lambda}/\lambda \rceil$ gives that $\bar{\lambda}$ -spectral exploration is achievable in $\bar{\lambda} \left(\frac{d}{c_v + c_d}\right)^{O(1)} \log(1/\epsilon_d)$ rounds, matching the desired result of Theorem 4.

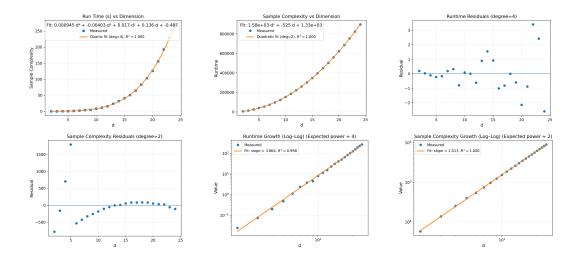


Figure 2: Summary of computational scaling. (a)–(b) show polynomial fits supporting quartic runtime and quadratic sample complexity; (c)–(d) residuals indicate good model adequacy; (e)–(f) log–log plots corroborate slopes near 4 and 2, respectively.

4 Experimental Results

Finally, we conclude with a simple experiment validating the practicality of the proposed algorithm. We implemented Algorithm 4 and tested on synthetic data (Figure 2). Our experiments focus on the setting where the prior distribution is a d-dimensional Gaussian that is independent across all dimensions and has mean 0.1 in the first dimension and mean 0 in all other dimensions. Note that our algorithm can be applied to arbitrary prior distributions, however we ran experiments for the independent case as this simplifies the code significantly. For this setting, Assumption 3 holds for $\epsilon_d = 0.1$, $c_d = 1$, K = 1, and $c_v = 1$. The constants in our algorithm are certainly not optimal for this specific instance, yet these constants are what allows our theoretical results to hold for any prior distribution. We ran our algorithm for values of d ranging from d = 2 to d = 24 and tracked the number of samples necessary to achieve λ -spectral exploration. The results show a quadratic dependence of the sample complexity on dimension, and quartic scaling for running time. Therefore, in practice the number of steps grows polynomially in d at a much better rate than the worst-case bound in our theoretical results. One reason for this is that a factor of d in our bound comes from Lemma 9, which is a worst-case bound on how much exploration we gain in each step due to subtleties of high-dimensional geometry. Experiments were run on an XPS 13 with an Intel Core i7.

5 Discussion

We conclude with a more detailed discussion on how our results can be combined with the results of Sellke [2023] to achieve end-to-end guarantees for incentivized exploration. Here we focus on r-regular μ as assumed in that work, which is encapsulated by Proposition 5. Recall [Sellke, 2023, Theorem 3.5] shows that for $\epsilon > 0$, if an algorithm has already achieved $\tilde{O}(d^4/r^2\epsilon^2)$ -spectral exploration at time t, then running Thompson sampling from time t onward will be ϵ -BIC (where ϵ -BIC relaxes Definition 1 by subtracting an ϵ term from the right-hand side). Theorem 4 efficiently achieves the necessary spectral exploration, with at most $poly(d, 1/r, 1/\epsilon)$ sample complexity (and thus additional regret). Note that our algorithm actually gives a stronger guarantee than in Sellke [2023] (BIC rather than ϵ -BIC). If we only need to guarantee the initial exploration is ϵ -BIC, then we no longer need the InitialExploration phase of the algorithm, and therefore can drop Assumption 1. Combining our result with Sellke [2023] and the analysis of Thompson sampling in Dong and Van Roy [2018] or Agrawal and Goyal [2013], we therefore obtain an end-to-end ϵ -BIC algorithm with respectively Bayesian regret poly $(d, 1/r, 1/\epsilon) + \tilde{O}(d\sqrt{T})$ or frequentist regret poly $(d, 1/r, 1/\epsilon) +$ $\tilde{O}(d^{3/2}\sqrt{T})$. Namely, one first runs our algorithm for poly $(d,1/r,1/\epsilon)$ steps to guarantee the required spectral exploration, and then uses Thompson Sampling for all remaining steps. Since the regret from the initial exploration phase is constant relative to T (and polynomial in d), this combined algorithm will asymptotically obey the state-of-the-art regret bounds for Thompson Sampling.

References

- Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization. In *COLT*, pages 263–274. Citeseer, 2008.
- Priyank Agrawal and Theja Tulabandhula. Incentivising exploration and recommendations for contextual bandits with payments. In *Multi-Agent Systems and Agreement Technologies: 17th European Conference, EUMAS 2020, and 7th International Conference, AT 2020, Thessaloniki, Greece, September 14-15, 2020, Revised Selected Papers 17*, pages 159–170. Springer, 2020.
- Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In *International Conference on Machine Learning*, pages 127–135. PMLR, 2013.
- Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for Thompson Sampling. *Journal of the ACM (JACM)*, 64(5):1–24, 2017.
- Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. *An Introduction to Random Matrices*. Number 118. Cambridge university press, 2010.
- Dirk Bergemann and Stephen Morris. Information Design: A Unified Perspective. *Journal of Economic Literature*, 57(1):44–95, 2019.
- Sébastien Bubeck and Ronen Eldan. The entropic barrier: Exponential families, log-concave geometry, and self-concordance. *Mathematics of Operations Research*, 44(1):264–276, 2019.
- Sébastien Bubeck and Che-Yu Liu. Prior-free and prior-dependent regret bounds for Thompson Sampling. *Advances in neural information processing systems*, 26, 2013.
- Sébastien Bubeck and Mark Sellke. First-Order Bayesian Regret Analysis of Thompson Sampling. *IEEE Transactions on Information Theory*, 69(3):1795–1823, 2022.
- Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax policies for online linear optimization with bandit feedback. In *Conference on Learning Theory*, pages 41–1. JMLR Workshop and Conference Proceedings, 2012a.
- Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012b.
- Sébastien Bubeck, Michael Cohen, and Yuanzhi Li. Sparsity, variance and curvature in multi-armed bandits. In *Algorithmic Learning Theory*, pages 111–127. PMLR, 2018.
- Yeon-Koo Che and Johannes Hörner. Recommender systems as mechanisms for social learning. *The Quarterly Journal of Economics*, 133(2):871–925, 2018.
- Sinho Chewi and Aram-Alexandre Pooladian. An entropic generalization of Caffarelli's contraction theorem via covariance inequalities. *Comptes Rendus. Mathématique*, 361(G9):1471–1482, 2023.
- Shi Dong and Benjamin Van Roy. An Information-Theoretic Analysis for Thompson Sampling with Many Actions. *Advances in Neural Information Processing Systems*, 31, 2018.
- Alain Durmus and Éric Moulines. High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm. *Bernoulli*, 25(4A), 2019.
- Raaz Dwivedi, Yuansi Chen, Martin J Wainwright, and Bin Yu. Log-concave sampling: Metropolis-Hastings algorithms are fast. *Journal of Machine Learning Research*, 20(183):1–42, 2019.
- Peter Frazier, David Kempe, Jon Kleinberg, and Robert Kleinberg. Incentivizing exploration. In *Proceedings of the fifteenth ACM conference on Economics and computation*, pages 5–22, 2014.
- Dan Garber and Elad Hazan. Faster rates for the Frank-Wolfe method over strongly-convex sets. In *International Conference on Machine Learning*, pages 541–549. PMLR, 2015.
- Gene H Golub. Some modified matrix eigenvalue problems. SIAM review, 15(2):318–334, 1973.
- Robert D Gordon. Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. *Ann. Math. Stat.*, 12(3):364–366, 1941.

- Yonatan Gur, Anand Kalvit, and Aleksandrs Slivkins. Incentivized Exploration via Filtered Posterior Sampling. In *Proceedings of the 25th ACM Conference on Economics and Computation*, pages 1200–1200, 2024.
- Xinyan Hu, Dung Daniel Ngo, Aleksandrs Slivkins, and Zhiwei Steven Wu. Incentivizing Combinatorial Bandit Exploration. *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- Ruitong Huang, Tor Lattimore, András György, and Csaba Szepesvári. Following the leader and fast rates in online linear prediction: Curved constraint sets and other regularities. *Journal of Machine Learning Research*, 18(145):1–31, 2017.
- Nicole Immorlica, Jieming Mao, Aleksandrs Slivkins, and Zhiwei Steven Wu. Bayesian exploration with heterogeneous agents. In *The world wide web conference*, pages 751–761, 2019.
- Nicole Immorlica, Jieming Mao, Aleksandrs Slivkins, and Zhiwei Steven Wu. Incentivizing Exploration with Selective Data Disclosure. In *Proceedings of the 21st ACM Conference on Economics and Computation*, pages 647–648, 2020.
- Nicole Immorlica, Federico Echenique, and Vijay V Vazirani. *Online and Matching-Based Market Design*. Cambridge University Press, 2023.
- Emir Kamenica. Bayesian Persuasion and Information Design. *Annual Review of Economics*, 11: 249–272, 2019.
- Sampath Kannan, Michael Kearns, Jamie Morgenstern, Mallesh Pai, Aaron Roth, Rakesh Vohra, and Zhiwei Steven Wu. Fairness incentives for myopic agents. In *Proceedings of the 2017 ACM Conference on Economics and Computation*, pages 369–386, 2017.
- Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: An asymptotically optimal finite-time analysis. In *International conference on algorithmic learning theory*, pages 199–213. Springer, 2012.
- Thomas Kerdreux, Alexandre d'Aspremont, and Sebastian Pokutta. Projection-free optimization on uniformly convex sets. In *International Conference on Artificial Intelligence and Statistics*, pages 19–27. PMLR, 2021a.
- Thomas Kerdreux, Christophe Roux, Alexandre d'Aspremont, and Sebastian Pokutta. Linear bandits on uniformly convex sets. *Journal of Machine Learning Research*, 22(284):1–23, 2021b.
- Ilan Kremer, Yishay Mansour, and Motty Perry. Implementing the "Wisdom of the Crowd". *Journal of Political Economy*, 122(5):988–1012, 2014.
- Kfir Levy and Andreas Krause. Projection Free Online Learning over Smooth Sets. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 1458–1466. PMLR, 2019.
- Yishay Mansour, Aleksandrs Slivkins, and Vasilis Syrgkanis. Bayesian Incentive-Compatible Bandit Exploration. *Operations Research*, 68(4):1132–1161, 2020. Preliminary version in *ACM EC 2015*.
- Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis, and Steven Wu. Bayesian exploration: Incentivizing exploration in Bayesian games. *Operations Research*, 70(2), 2022. Preliminary version in *EC 2016*.
- Zakaria Mhammedi. Exploiting the curvature of feasible sets for faster projection-free online learning. *arXiv preprint arXiv:2205.11470*, 2022.
- Marco Molinaro. Strong Convexity of Feasible Sets in Off-line and Online Optimization. *Mathematics of Operations Research*, 48(2):865–884, 2023. doi: 10.1287/moor.2022.1285.
- Roger B Myerson. Multistage games with communication. *Econometrica: Journal of the Econometric Society*, pages 323–358, 1986.
- Yurii Nesterov and Arkadii Nemirovskii. *Interior-point polynomial algorithms in convex programming*. SIAM, 1994.

- Daniel Russo and Benjamin Van Roy. Learning to Optimize via Posterior Sampling. *Mathematics of Operations Research*, 39(4):1221–1243, 2014.
- Daniel Russo and Benjamin Van Roy. An information-theoretic analysis of thompson sampling. *JMLR*, 17:68:1–68:30, 2016.
- Adrien Saumard and Jon A Wellner. Log-concavity and strong log-concavity: a review. *Statistics surveys*, 8:45, 2014.
- Mark Sellke. Incentivizing exploration with linear contexts and combinatorial actions. In *International Conference on Machine Learning*, pages 30570–30583. PMLR, 2023.
- Mark Sellke and Aleksandrs Slivkins. The Price of Incentivizing Exploration: A Characterization via Thompson Sampling and Sample Complexity. *Operations Research*, 71(5):1706–1732, 2023.
- Max Simchowitz and Aleksandrs Slivkins. Exploration and incentives in reinforcement learning. *Operations Research*, 72(3):983–998, 2024.
- Aleksandrs Slivkins. Introduction to multi-armed bandits. *Foundations and Trends*® *in Machine Learning*, 12(1-2):1–286, November 2019.
- Taira Tsuchiya and Shinji Ito. Fast rates in stochastic online convex optimization by exploiting the curvature of feasible sets. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- Ramon Van Handel. Probability in high dimension. *Lecture Notes (Princeton University)*, 2(3):2–3, 2014.
- Huazheng Wang, Haifeng Xu, Chuanhao Li, Zhiyuan Liu, and Hongning Wang. Incentivizing exploration in linear contextual bandits under information gap. In *Proceedings of the 17th ACM Conference on Recommender Systems*, pages 415–425, 2023.
- Siwei Wang and Longbo Huang. Multi-armed bandits with compensation. *Advances in Neural Information Processing Systems*, 31, 2018.
- Julian Zimmert and Tor Lattimore. Connections between mirror descent, Thompson sampling and the information ratio. *Advances in neural information processing systems*, 32, 2019.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Our main claims of BIC exploration are discussed in both the abstract and the introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss each of the assumptions of our model in depth in the introduction section.

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was
 only tested on a few datasets or with a few runs. In general, empirical results often
 depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best

judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: All complete theoretical proofs are included in the appendix of our paper.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The parameters of the experiment are described in detail.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.

- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: The algorithm is simple to implement and all details are included in the paper.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Description of parameters is included in the experiments section.

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.

The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiments are meant to only show an example of how the algorithm behaves (not justify any formal claims), and graphs are included showing the performance trends.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Included in experiment section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Ouestion: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and they are met by our paper.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts of our work are discussed in the introduction.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- · For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: We do not include any experimental results as this is primarily a theory paper.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Technical Lemmas

In this appendix, we introduce a series of technical lemmas that form the basis of our results. Our proofs rely on carefully analyzing how the conditional expectation of ℓ^* changes when conditioning on different signals ψ . Lemmas 14-17 are the main tools we use to analyze the behavior of these conditional expectations.

Lemma 14 says that for random variable X, if we have some signal R that is equal to X plus noise with some small probability and is just pure noise otherwise, then the conditional expectation of X given the sign of R has magnitude that is $\Omega(\epsilon)$. In the "initial exploration" phase of our algorithm we explore a new (not previously explored) direction with very small probability. Lemma 14 implies that this exploration will lead to the conditional expectation of ℓ^* in the newly-explored direction having magnitude proportional to the probability of exploration.

Lemma 14. Suppose X is a real-valued K-sub-gaussian random variable such that $\mathbb{E}[X] = 0$, $\mathbb{E}[X^2] = \sigma_X^2$. Let $R \sim X + N(0,1)$ with probability ϵ and $R \sim N(0,1)$ with probability $1 - \epsilon$. Then there exists c_{L14} independent of X such that

$$|\mathbb{E}[X \mid 1_{R>0}]| \ge c_{L14} \sigma_X^5 \epsilon.$$

The proof of Lemma 14 can be found in Appendix H.1.

Lemmas 15 and 16 are the main technical tools that allow for us to exponentially grow the amount of exploration in any new direction. Informally, Lemma 15 says that even if X forms only an ϵ fraction of the signal r, conditioning on the sign of r will increase the conditional expectation of X by a multiplicative factor. This lemma will be applied to the expectation of ℓ^* in the new direction we are trying to explore. Lemma 16 says that any random variable conditioned on the sign of r cannot have conditional expectation increase by more than $O(\epsilon)$. This will be applied to the expectation of ℓ^* in all of the directions that we have already explored. These two lemmas combined allow our algorithm to multiplicatively increase the magnitude of the expectation of ℓ^* in an unexplored direction relative to the already explored directions.

Lemma 15. Let X be a K-sub-gaussian random variable satisfying $\mathbb{E}[X] = 0$ and $\mathbb{E}[X^2] = \sigma_X^2 \ge c_V$. For $Z \sim N(0, \sigma^2)$ such that $Z \perp \!\!\! \perp X$ and $\epsilon > 0$, define $r = \epsilon X + Z$. Then there exists a constant δ_{L15} such that if $\epsilon/\sigma \le \delta_{L15}$,

$$|\mathbb{E}[X \mid 1_{r>0}]| \ge \frac{\epsilon \sigma_X^2}{2\sigma\sqrt{2\pi}} \ge \frac{c_v \epsilon}{\sqrt{8\pi}\sigma} := \frac{c_{L15}\epsilon}{\sigma}.$$

The proof of Lemma 15 can be found in Appendix G.1.

Lemma 16. For K-sub-gaussian random variables X,Y such that $\mathbb{E}[X] = \mathbb{E}[Y] = 0$ and for $Z \sim N(0,\sigma^2)$ independent of X and Y, let $r \sim \epsilon X + Z$. Suppose $\frac{\epsilon}{\sigma} \leq \delta_{L16} := \min\left(1,\frac{1}{2K\sqrt{\log(2)}}\right)$. Then there exists a constant $c_{L16} > 0$ such that

$$|\mathbb{E}[Y \mid 1_{r>0}]| < c_{L16}\epsilon/\sigma.$$

The proof of Lemma 16 can be found in Appendix G.2.

Lemma 17 is a more technical lemma that allows us to better understand the distribution of ℓ^* when we condition on averages based on previous rewards. More specifically, this allows us to apply Lemma 8 to the random variable z as described in Section 2.2. The proof of Lemma 17 can be found in Appendix H.

Lemma 17. For random variable \mathbf{X} in \mathbb{R}^d , define $\mathbf{Y} = \mathbf{X} + \mathbf{W}$ where $\mathbf{W} \sim N(\mathbf{0}, \operatorname{Diag}(\mathbf{s}))$ and \mathbf{W} is independent of \mathbf{X} . Define $\mathbf{Z}(\mathbf{Y}) = \mathbb{E}[\mathbf{X} \mid \mathbf{Y}]$. If $\min_{\|\mathbf{v}\|=1} \Pr(\langle \mathbf{X}, \mathbf{v} \rangle \geq c_d) \geq \epsilon_d$ and for all $i \in [1:d]$, $s_i \leq c_{L17} := \frac{c_d^2/32}{\log(4/\epsilon_d)}$ then

$$\min_{\|\mathbf{v}\|=1} \mathbb{E}[(\langle \mathbf{Z}(\mathbf{Y}), \mathbf{v} \rangle)^+] \ge \frac{\epsilon_d c_d}{4}.$$

The final lemma for this section says that any vector in the span of the top eigenvectors of a positive semi-definite matrix can be represented as a linear combination of these top eigenvectors with coefficients that are not too large. The proof of Lemma 18 can be found in Appendix F.

Lemma 18. Let $\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_j \in \mathbb{R}^d$ such that $\|\mathbf{v}_i\| = 1$. Define $\mathbf{M} = \sum_{i=1}^j \mathbf{v}_i^{\otimes 2}$. Suppose $\mathbf{w}_1, ..., \mathbf{w}_d$ are orthonormal eigenvectors of \mathbf{M} with corresponding eigenvalues $\lambda_1 \geq ... \geq \lambda_d \geq 0$. Suppose $\lambda_\ell \geq \epsilon$. Then for any $\mathbf{u} \in \mathrm{Span}(\mathbf{w}_1, ..., \mathbf{w}_\ell)$ such that $\|\mathbf{u}\| \leq 1$, we have $\mathbf{u} = \sum_{i=1}^j c_i \mathbf{v}_i$, where $c_i := \sum_{k=1}^\ell \left(\frac{\langle \mathbf{u}, \mathbf{w}_k \rangle \langle \mathbf{v}_i, \mathbf{w}_k \rangle}{\lambda_k} \right)$. Furthermore, $\sum_{i=1}^j c_i^2 \leq \frac{1}{\epsilon}$.

We also note that any sub-gaussian random variable X satisfying $\mathbb{P}(|X| > t) \le 2e^{-t^2/K^2}$ for all $t \ge 0$ (as in Condition 3) satisfies the following bounds on the moments of X:

$$\mathbb{E}[X] \le \mathbb{E}[|X|] = \int_0^\infty \mathbb{P}(|X| > t) \, dt \le \int_0^\infty 2e^{-t^2/K^2} dt = K\sqrt{\pi},\tag{2}$$

$$\mathbb{E}[X^2] = \int_0^\infty \mathbb{P}(X^2 > t)dt \le \int_0^\infty 2e^{-t/K^2}dt = 2K^2.$$
 (3)

B Discussion on Assumptions

Here we illustrate the importance of Assumption 3 by presenting a series of propositions lower bounding the number of samples needed in the worst-case for 1-spectral exploration in terms of the different parameters of Assumption 3.

Lemma 19. There exist instances that require $\Omega(1/c_v)$ samples for 1-spectral exploration.

proof. Consider the following example with d=2 and where the coordinates of ℓ^* are independent (and assume that $c_d < 1, \epsilon_d < 1, c_v < 1$):

$$\ell_1^* = \begin{cases} -c_d & \text{w.p. } \epsilon_d \\ 1 & \text{w.p. } 1 - \epsilon_d \end{cases}, \qquad \ell_2^* = \begin{cases} -c_v & \text{w.p. } 1/2 \\ c_v & \text{w.p. } 1/2 \end{cases}$$

Note that if $\mathbb{E}[\ell_1^* \mid \psi] = 1 - O(\epsilon_d) \geq 0.5$ for sufficiently small ϵ_d , then no optimal action will ever put weight more than $O(c_v)$ on the second coordinate because the magnitude of ℓ_2^* is bounded by c_v . This implies that we must need $1/c_v$ steps in order to guarantee 1-spectral exploration.

Proposition 20. There exist instances that require $\Omega(c_d)$ samples for 1-spectral exploration.

proof. Consider the following example

$$\ell_1^* = \begin{cases} -c_d & \text{w.p. } \epsilon_d \\ 2c_d & \text{w.p. } 2\epsilon_d \\ 1 & \text{w.p. } 1 - 3\epsilon_d \end{cases}, \qquad \ell_2^* = \begin{cases} -c_v & \text{w.p. } 1/2 \\ c_v & \text{w.p. } 1/2 \end{cases}$$

Once again, the first action must be e_1 . Furthermore, in this case we need $O(poly(1/c_d))$ actions of e_1 in order to decrease the conditional expectation of ℓ_1^* to be 0, as we need this many samples to be able to effectively distinguish between $\ell_1^* = -c_d$ and $\ell_1^* = 2c_d$. This implies that we require $O(poly(1/c_d))$ samples to explore the second dimension in this example.

Lemma 21. Let $L = \pm c$ be uniformly random for some $|c| \le 1$. Suppose we receive noisy observations $r_i = s_i L + Z_i$ for a sequence $r_1, ...$ that is adapted to the filtration \mathcal{F}_t generated by $(s_1, r_1, s_2, r_2, ..., s_t, r_t)$. (I.e. the signal strengths s_i may depend on the past.) Let $T_t = \sum_{i=1}^t s_i^2$. Then the expected information gain on L is at most $O(\mathbb{E}[T_t])$.

proof. This is a special case of observing Brownian motion with drift L up to the random stopping time T_t . (Since observing $r_i = s_i L + Z_i$ is equivalent to observing Brownian motion with drift L for time s_i^2 , up to rescaling.) Let $Q_{\pm}(T_t)$ be the laws of Brownian motion with drifts $\pm c$ up to time T_t . By symmetry the expected information gain can be computed assuming L = c, and is bounded by

$$\begin{split} & \mathbb{E}[KL(Q_{+}(T_{t}),[Q_{+}(T_{t})+Q_{-}(T_{t})]/2)] \\ & \stackrel{\text{Convexity of KL}}{\leq} \underbrace{\mathbb{E}[KL(Q_{+}(T_{t}),Q_{+}(T_{t}))]}_{0} + \mathbb{E}[KL(Q_{+}(T_{t}),Q_{-}(T_{t}))] \\ & \leq \mathbb{E}[T_{t}]. \end{split}$$

Here we used $\mathbb{E}[KL(Q_+(T_t)|Q_-(T_t))] = c^2 \mathbb{E}[T_t] \leq \mathbb{E}[T_t]$ by Girsanov's theorem.

Corollary 21.1. In the setting of Lemma 21, let $C_t = \mathbb{E}[L|\mathcal{F}_t] = \mathbb{E}[L|(s_1,...,s_t,r_1,...,r_t)]$. Then $\mathbb{E}[C_t^2] \leq O(\mathbb{E}[T_t])$.

proof. This follows from the previous lemma: the expected relative entropy between the prior and posterior distributions of L is precisely the information gain. In turn, the relative entropy is a strictly convex and even function of C_t which is $\Omega(C_t^2)$.

Proposition 22. There exist instances that require $\Omega(\log(1/\epsilon_d))$ samples for 1-spectral exploration.

Proof of Proposition 22. This proof is more subtle and requires inductive control of the information gain on the 2nd coordinate.

We now return to the first example prior from the c_v lower bound, and apply Corollary 21.1 to the observations of the 2nd coordinate. To make the application direct, whenever an action $(a_{1,t},a_{2,t})$ is played, we replace the noisy reward observation with separate observations for both $(a_{1,t},0)$ and $(0,a_{2,t})$ (with half the noise level, which only affects constant factors in the argument). This gives strictly more information since the two separate observations can be added to recover the original observation. We let C_t , \mathcal{F}_t from above correspond to observations in the second coordinate.

At each time t, by Jensen's inequality on the convex function $f(x) = (1/3 - x)_+$, we see that for any signal ψ :

$$P[\mathbb{E}[\ell_1|\psi] \le 1/2] \le O(\mathbb{E}[f(\mathbb{E}[\ell_1|\psi])]) \le O(\mathbb{E}[f(\ell_1)]) \le O(\epsilon_d).$$

On the main high-probability event that $\mathbb{E}[\ell_1|\psi] \geq 1/2$, the 2nd coordinate of $Exploit(\psi)$ has absolute value at most $O(|C_t|)$. Via the Lemma and Corollary above, it follows that

$$\mathbb{E}[T_{t+1}] - \mathbb{E}[T_t] \le O(\mathbb{E}[T_t] + \epsilon_d).$$

Namely the case $\{\mathbb{E}[\ell_1|\psi] \leq 1/2\}$ contributes $O(\epsilon_d)$ while the remaining case contributes $O(\mathbb{E}[C_t^2]) \leq O(\mathbb{E}[T_t])$.

Since $T_0 = 0$, this implies by induction that

$$\mathbb{E}[T_t] < e^{O(t)} \epsilon_d.$$

Finally note that we need $T_t \ge 1$ for 1-spectral exploration. Indeed, 1-spectral exploration requires that the actions a_1, \ldots, a_t satisfy

$$\sum_{i=1}^{t} \langle a_t^{\top}, M a_t \rangle \ge Tr(M)$$

for all positive semi-definite matrices M, and taking $M=\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ recovers the claim. In all this gives the desired $\log(1/\epsilon_d)$ lower bound.

 \Box

C Proof of Lemma 10

Proof of Lemma 10. Recall that the input parameters from Algorithm 5 come from their use in Algorithm 4. We compute as follows, with $\stackrel{d}{=}$ indicating equality in distribution.

$$\hat{y}_{\ell} = \lambda c_{L17} \sum_{t'=0}^{\frac{1}{\lambda c_{L17}} - 1} \sum_{k=1}^{j} \frac{\langle \mathbf{v}_{k}, \mathbf{w}_{\ell} \rangle}{\lambda_{\ell}} q_{k}^{t'}$$

$$\stackrel{d}{=} \lambda c_{L17} \sum_{t'=0}^{\frac{1}{\lambda c_{L17}} - 1} \sum_{k=1}^{j} \frac{\langle \mathbf{v}_{k}, \mathbf{w}_{\ell} \rangle}{\lambda_{\ell}} \langle \mathbf{v}_{k}, \ell^{*} \rangle + \lambda c_{L17} \sum_{t'=0}^{\frac{1}{\lambda c_{L17}} - 1} \sum_{k=1}^{j} \frac{\langle \mathbf{v}_{k}, \mathbf{w}_{\ell} \rangle}{\lambda_{\ell}} N(0, 1)$$

$$\stackrel{d}{=} \left\langle \ell^{*}, \left(\lambda c_{L17} \sum_{t'=0}^{\frac{1}{\lambda c_{L17}} - 1} \sum_{k=1}^{j} \frac{\langle \mathbf{v}_{k}, \mathbf{w}_{\ell} \rangle}{\lambda_{\ell}} \mathbf{v}_{k} \right) \right\rangle + N \left(0, \lambda c_{L17} \sum_{k=1}^{j} \frac{\langle \mathbf{v}_{k}, \mathbf{w}_{\ell} \rangle}{\lambda_{\ell}^{2}} \right)$$

$$\stackrel{d}{=} \left\langle \ell^{*}, \left(\lambda c_{L17} \sum_{t'=0}^{\frac{1}{\lambda c_{L17}} - 1} \mathbf{w}_{\ell} \right) \right\rangle + N \left(0, \frac{\lambda c_{L17}}{\lambda_{\ell}^{2}} \mathbf{w}_{\ell}^{\mathsf{T}} \mathbf{M} \mathbf{w}_{\ell} \right) \qquad \text{[Lemma 18 } (\mathbf{u} = \mathbf{w}_{\ell}) \text{]}$$

$$\stackrel{d}{=} x_{\ell}^{*} + N \left(0, c_{L17} \frac{\lambda}{\lambda_{\ell}} \right).$$

We will apply Lemma 17 with $\mathbf{X} = \mathbf{x}^*$, $\mathbf{Y} = \hat{\mathbf{y}}$, and $\mathbf{Z}(\mathbf{Y}) = \mathbf{z}(\hat{\mathbf{y}})$. As shown above, (and using that $\frac{\lambda}{\lambda_{\ell}} \leq 1$ for all $\ell \leq \ell_{\lambda}$) we have that $\mathbf{Y} - \mathbf{X}$ has the appropriate distribution. The last thing we need to show is that

$$\min_{\|\mathbf{q}\|=1} \Pr\left(\langle \mathbf{X}, \mathbf{q} \rangle \ge c_d\right) = \min_{\|\mathbf{q}\|=1} \Pr\left(\sum_{\ell=1}^{\ell_{\lambda}} \langle \ell^*, \mathbf{w}_{\ell} \rangle q_{\ell} \ge c_d\right)$$

$$= \min_{\|\mathbf{q}\|=1} \Pr\left(\left\langle \ell^*, \left(\sum_{\ell=1}^{\ell_{\lambda}} q_{\ell} \mathbf{w}_{\ell}\right)\right\rangle \ge c_d\right)$$

$$\ge \min_{\|\mathbf{v}\|=1} \Pr\left(\langle \ell^*, \mathbf{v} \rangle \ge c_d\right)$$

$$\ge \epsilon_d. \qquad [Assumption 1].$$

This means we can apply Lemma 17 to get that

$$\min_{\|\mathbf{v}\|=1} \mathbb{E}[\langle \mathbf{z}(\hat{\mathbf{y}}), \mathbf{v} \rangle^{+}] \geq \frac{\epsilon_d c_d}{4}.$$

We have therefore shown that $\mathbf{z}(\hat{\mathbf{y}})$ satisfies the assumptions of Lemma 8 with $\epsilon = \frac{\epsilon_d c_d}{4}$.

D Proof of Lemma 7

Proof of Lemma 7. The BIC optimal action given ψ is

$$\mathbf{A}^* = \underset{\mathbf{A} \in S^{d-1}}{\arg \max} \mathbb{E}[\langle \mathbf{A}, \boldsymbol{\ell}^* \rangle \mid \psi]$$
$$= \underset{\mathbf{A} \in S^{d-1}}{\arg \max} \langle \mathbf{A}, \mathbb{E}[\boldsymbol{\ell}^* \mid \psi] \rangle.$$

Therefore, the BIC action is $\mathbf{A}^* = \frac{\mathbb{E}[\boldsymbol{\ell}^* \mid \psi]}{\|\mathbb{E}[\boldsymbol{\ell}^* \mid \psi]\|}$ if $\|\mathbb{E}[\boldsymbol{\ell}^* \mid \psi]\| \neq 0$. If $\|\mathbb{E}[\boldsymbol{\ell}^* \mid \psi]\| = 0$, then any action is BIC including \mathbf{v} .

E Proof of Lemma 9

We will prove the following equivalent lemma.

Lemma 23. In the setting of Lemma 9,

$$\sum_{i=1}^{\ell} \lambda_i' \le (1 - \epsilon/2) + \sum_{i=1}^{\ell} \lambda_i$$

We first observe that Lemma 23 implies the desired Lemma 9.

Proof of Lemma 9. By linearity of trace,

$$\sum_{i=1}^{d} \lambda_i' = 1 + \sum_{i=1}^{d} \lambda_i.$$

Therefore, Lemma 23 implies the desired result that

$$\sum_{i=\ell+1}^{d} \lambda_i' \ge \epsilon/2 + \sum_{i=\ell+1}^{d} \lambda_i.$$

Proof of Lemma 23. First, note the following, where the max is over $x_1, ..., x_\ell$ that are orthonormal.

$$\sum_{i=1}^{\ell} \lambda_i' = \max_{\mathbf{x}_1, \dots, \mathbf{x}_\ell} \sum_{i=1}^{\ell} \mathbf{x}_i^T \mathbf{M}' \mathbf{x}_i = \max_{\mathbf{x}_1, \dots, \mathbf{x}_\ell} \left(\sum_{i=1}^{\ell} \mathbf{x}_i^\top \mathbf{M} \mathbf{x}_i + \sum_{i=1}^{\ell} \langle \mathbf{x}_i, \mathbf{u} \rangle^2 \right).$$

Define

$$\mathbf{x}_{1}^{*},...,\mathbf{x}_{\ell}^{*} = \underset{\mathbf{x}_{1},...,\mathbf{x}_{\ell}}{\arg\max} \sum_{i=1}^{\ell} \mathbf{x}_{i}^{\top} \mathbf{M}' \mathbf{x}_{i}.$$
 (5)

We will now prove (by contradiction) that for all $i \leq \ell$, $\|\mathcal{P}_{S^{\perp}}(\mathbf{x}_i^*)\|_2^2 \leq \frac{\epsilon^2}{100d^2}$. Suppose that there exists some $i' \in 1, ..., \ell$ such that $\|\mathcal{P}_{S^{\perp}}(\mathbf{x}_{i'}^*)\|_2^2 > \frac{\epsilon^2}{100d^2}$. Then we find

$$\begin{split} &\sum_{i=1}^{\ell} (\mathbf{x}_{i}^{*})^{\top} \mathbf{M}' \mathbf{x}_{i}^{*} = \sum_{i=1}^{\ell} (\mathbf{x}_{i}^{*})^{\top} \mathbf{M} \mathbf{x}_{i}^{*} + \sum_{i=1}^{\ell} \langle \mathbf{x}_{i}^{*}, \mathbf{u} \rangle^{2} \\ &\leq 1 + \sum_{i=1}^{\ell} (\mathbf{x}_{i}^{*})^{\top} \mathbf{M} \mathbf{x}_{i}^{*} & [\mathbf{x}_{i}^{*} \text{ orthonormal so } \sum_{i=1}^{\ell} \langle \mathbf{x}_{i}^{*}, \mathbf{u} \rangle^{2} \leq \|\mathbf{u}\|^{2} \leq 1] \\ &= 1 + \sum_{i=1}^{\ell} (\mathcal{P}_{S^{\perp}} (\mathbf{x}_{i}^{*})^{\top} \mathbf{M} \mathcal{P}_{S^{\perp}} (\mathbf{x}_{i}^{*}) + \mathcal{P}_{S} (\mathbf{x}_{i}^{*})^{\top} \mathbf{M} \mathcal{P}_{S} (\mathbf{x}_{i}^{*})) \\ &= 1 + \sum_{i=1}^{\ell} \mathcal{P}_{S^{\perp}} (\mathbf{x}_{i}^{*})^{\top} \mathbf{M} \mathcal{P}_{S^{\perp}} (\mathbf{x}_{i}^{*}) + \sum_{i=1}^{\ell} \mathcal{P}_{S} (\mathbf{x}_{i}^{*})^{\top} \mathbf{M} \mathcal{P}_{S} (\mathbf{x}_{i}^{*}) \\ &= 1 + d\epsilon + \sum_{i=1}^{\ell} \mathcal{P}_{S} (\mathbf{x}_{i}^{*})^{\top} \mathbf{M} \mathcal{P}_{S} (\mathbf{x}_{i}^{*}) & [S^{\perp} = \text{span of evectors with evalues} \leq \epsilon] \\ &= 1 + d\epsilon + \sum_{i=1}^{\ell} \left(\sum_{k=1}^{\ell_{\epsilon}} \langle \mathbf{x}_{i}^{*}, \mathbf{w}_{k} \rangle \mathbf{w}_{k} \right)^{\top} \mathbf{M} \left(\sum_{k=1}^{\ell_{\epsilon}} \langle \mathbf{x}_{i}^{*}, \mathbf{w}_{k} \rangle \mathbf{w}_{k} \right) \\ &= 1 + d\epsilon + \sum_{i=1}^{\ell} \sum_{k=1}^{\ell_{\epsilon}} \langle \mathbf{x}_{i}^{*}, \mathbf{w}_{k} \rangle^{2} \mathbf{w}_{k}^{\top} \mathbf{M} \mathbf{w}_{k} \\ &= 1 + d\epsilon + \sum_{i=1}^{\ell} \sum_{k=1}^{\ell_{\epsilon}} \langle \mathbf{x}_{i}^{*}, \mathbf{w}_{k} \rangle^{2} \lambda_{k}. \end{split} \tag{6}$$

Because \mathbf{x}_i^* are orthonormal, we know that $\sum_{i=1}^{\ell} \langle \mathbf{x}_i^*, \mathbf{w}_k \rangle^2 \leq \|\mathbf{w}_k\|_2^2 = 1$. Because we assumed that $\|\mathcal{P}_{S^{\perp}}(\mathbf{x}_{i'}^*)\|_2^2 > \frac{\epsilon^2}{100d^2}$, we know that $\sum_{i=1}^{\ell} \sum_{k=1}^{\ell_\epsilon} \langle \mathbf{x}_i^*, \mathbf{w}_k \rangle^2 = \sum_{i=1}^{\ell} \|\mathcal{P}_S(\mathbf{x}_i^*)\|^2 \leq \ell - \frac{\epsilon^2}{100d^2}$. Combining these two statements with the fact that λ_k is decreasing in k,

$$\sum_{i=1}^{\ell} \sum_{k=1}^{\ell_{\epsilon}} \langle \mathbf{x}_{i}^{*}, \mathbf{w}_{k} \rangle^{2} \lambda_{k} = \sum_{k=1}^{\ell_{\epsilon}} \sum_{i=1}^{\ell} \langle \mathbf{x}_{i}^{*}, \mathbf{w}_{k} \rangle^{2} \lambda_{k} \leq \left(1 - \frac{\epsilon^{2}}{100d^{2}}\right) \lambda_{\ell} + \sum_{i=1}^{\ell-1} \lambda_{i}.$$

Continuing where we left off with Equation (6), we have that

$$\begin{split} &= 1 + d\epsilon + \sum_{i=1}^{\ell} \sum_{k=1}^{\ell_{\epsilon}} \langle \mathbf{x}_{i}^{*}, \mathbf{w}_{k} \rangle^{2} \lambda_{k} \leq 1 + d\epsilon + \left(1 - \frac{\epsilon^{2}}{100d^{2}}\right) \lambda_{\ell} + \sum_{i=1}^{\ell-1} \lambda_{i} \\ &\leq 1 + d\epsilon - \frac{\epsilon^{2}}{100d^{2}} \lambda_{\ell} + \sum_{i=1}^{\ell} \lambda_{i} \\ &\leq 1 + d\epsilon - 2d + \sum_{i=1}^{\ell} \lambda_{i} \\ &\leq \sum_{i=1}^{\ell} \lambda_{i} \\ &\leq \sum_{i=1}^{\ell} \lambda_{i} \\ &= \sum_{i=1}^{\ell} \mathbf{w}_{i}^{\top} \mathbf{M} \mathbf{w}_{i} \leq \sum_{i=1}^{\ell} \mathbf{w}_{i}^{\top} \mathbf{M}' \mathbf{w}_{i}. \end{split}$$

Therefore, we have a contradiction, as $\mathbf{x}_1^*,...,\mathbf{x}_\ell^*$ cannot be a solution to Equation (5) because these vectors are strictly beaten by $\mathbf{w}_1,...,\mathbf{w}_\ell$.

Therefore, we have shown that $\|\mathcal{P}_{S^{\perp}}(\mathbf{x}_i^*)\|_2^2 \leq \frac{\epsilon^2}{100d^2}$ for all i.

In the following equation, we define P_S as the projection matrix for projecting a vector onto S. Now, we have that

$$\begin{split} \sum_{i=1}^{\ell} \lambda_i' &= \sum_{i=1}^{\ell} (\mathbf{x}_i^*)^{\top} \mathbf{M} \mathbf{x}_i^* + \sum_{i=1}^{\ell} \langle \mathbf{x}_i^*, \mathbf{u} \rangle^2 \\ &\leq \sum_{i=1}^{\ell} \lambda_i + \sum_{i=1}^{\ell} \langle \mathbf{x}_i^*, \mathbf{u} \rangle^2 \\ &\leq \sum_{i=1}^{\ell} \lambda_i + \sum_{i=1}^{\ell} \left(\langle \mathcal{P}_S(\mathbf{x}_i^*), \mathcal{P}_S(\mathbf{u}) \rangle + \langle \mathcal{P}_{S^{\perp}}(\mathbf{x}_i^*), \mathcal{P}_{S^{\perp}}(\mathbf{u}) \rangle \right)^2 \\ &\leq \sum_{i=1}^{\ell} \lambda_i + \sum_{i=1}^{\ell} \left(\langle \mathcal{P}_S(\mathbf{x}_i^*), \mathcal{P}_S(\mathbf{u}) \rangle \right) + \frac{\epsilon}{10d})^2 \\ &= \sum_{i=1}^{\ell} \lambda_i + \sum_{i=1}^{\ell} \left(\langle \mathcal{P}_S(\mathbf{x}_i^*), \mathcal{P}_S(\mathbf{u}) \rangle^2 + \frac{\epsilon}{5d} |\langle \mathcal{P}_S(\mathbf{x}_i^*), \mathcal{P}_S(\mathbf{u}) \rangle \right) + \frac{\epsilon^2}{100d^2} \right) \\ &\leq \sum_{i=1}^{\ell} \lambda_i + \sum_{i=1}^{\ell} \left(\langle \mathcal{P}_S(\mathbf{x}_i^*), \mathcal{P}_S(\mathbf{u}) \rangle^2 + \frac{\epsilon}{5d} + \frac{\epsilon^2}{100d^2} \right) \\ &\leq \sum_{i=1}^{\ell} \lambda_i + \frac{\epsilon}{5} + \frac{\epsilon^2}{100d} + \sum_{i=1}^{\ell} \langle \mathcal{P}_S(\mathbf{x}_i^*), \mathcal{P}_S(\mathbf{u}) \rangle^2 \\ &= \sum_{i=1}^{\ell} \lambda_i + \frac{\epsilon}{5} + \frac{\epsilon^2}{100d} + \sum_{i=1}^{\ell} \left((\mathbf{x}_i^*)^{\top} \mathcal{P}_S^{\top} \mathcal{P}_S \mathbf{u} \right)^2 \\ &= \sum_{i=1}^{\ell} \lambda_i + \frac{\epsilon}{5} + \frac{\epsilon^2}{100d} + \sum_{i=1}^{\ell} \left((\mathbf{x}_i^*)^{\top} \mathcal{P}_S^{\top} \mathcal{P}_S \mathbf{u} \right)^2 \\ &= \sum_{i=1}^{\ell} \lambda_i + \frac{\epsilon}{5} + \frac{\epsilon^2}{100d} + \sum_{i=1}^{\ell} \left((\mathbf{x}_i^*)^{\top} \mathcal{P}_S^{\top} \mathcal{P}_S \mathbf{u} \right)^2 \end{split}$$

$$= \sum_{i=1}^{\ell} \lambda_i + \frac{\epsilon}{5} + \frac{\epsilon^2}{100d} + \sum_{i=1}^{\ell} \langle \mathbf{x}_i^*, \mathcal{P}_S(\mathbf{u}) \rangle^2$$

$$\leq \sum_{i=1}^{\ell} \lambda_i + \frac{\epsilon}{5} + \frac{\epsilon^2}{100d} + \|\mathcal{P}_S(\mathbf{u})\|_2^2$$

$$\leq \sum_{i=1}^{\ell} \lambda_i + \frac{\epsilon}{5} + \frac{\epsilon^2}{100d} + 1 - \epsilon$$

$$\leq \sum_{i=1}^{\ell} \lambda_i + (1 - \epsilon/2).$$

This completes the proof of Lemma 23.

F Proof of Lemma 18

Proof of Lemma 18. Define $\mathbf{A} \in \mathbb{R}^{j \times d}$ with rows corresponding to $\mathbf{v}_1, ..., \mathbf{v}_j$. Then $\mathbf{M} = \mathbf{A}^\top \mathbf{A}$. We want to write $\mathbf{u} = \mathbf{A}^\top \mathbf{c}$ for $\mathbf{c} \in \mathbb{R}^j$.

Because $\mathbf{w}_1,...,\mathbf{w}_\ell$ are orthonormal and $\mathbf{u} \in \mathrm{Span}(\mathbf{w}_1,...,\mathbf{w}_\ell)$, we have that

$$\mathbf{u} = \sum_{i=1}^{\ell} \langle \mathbf{u}, \mathbf{w}_i \rangle \mathbf{w}_i$$

Because \mathbf{w}_i is an eigenvector of \mathbf{M} with eigenvalue λ_i , we know that for any $i \leq \ell$

$$\lambda_i \mathbf{w}_i = \mathbf{M} \mathbf{w}_i = \mathbf{A}^{\top} \mathbf{A} \mathbf{w}_i$$

Rearranging terms and multiplying both sides by $\langle \mathbf{u}, \mathbf{w}_i \rangle$, we have that for any $i \leq \ell$

$$\langle \mathbf{u}, \mathbf{w}_i
angle \mathbf{w}_i = \mathbf{A}^{ op} \left(rac{\langle \mathbf{u}, \mathbf{w}_i
angle \mathbf{A} \mathbf{w}_i}{\lambda_i}
ight).$$

Therefore, we have that

$$\mathbf{u} = \sum_{i=1}^{\ell} \langle \mathbf{u}, \mathbf{w}_i \rangle \mathbf{w}_i = \sum_{i=1}^{\ell} \mathbf{A}^{\top} \left(\frac{\langle \mathbf{u}, \mathbf{w}_i \rangle \mathbf{A} \mathbf{w}_i}{\lambda_i} \right) = \mathbf{A}^{\top} \sum_{i=1}^{\ell} \left(\frac{\langle \mathbf{u}, \mathbf{w}_i \rangle \mathbf{A} \mathbf{w}_i}{\lambda_i} \right).$$

Now, we can define

$$\mathbf{c} = \sum_{i=1}^{\ell} \left(\frac{\langle \mathbf{u}, \mathbf{w}_i \rangle \mathbf{A} \mathbf{w}_i}{\lambda_i} \right) = \mathbf{A} \sum_{i=1}^{\ell} \frac{\langle \mathbf{u}, \mathbf{w}_i \rangle \mathbf{w}_i}{\lambda_i}.$$

This implies that

$$\begin{aligned} \|\mathbf{c}\|_{2}^{2} &= \left\|\mathbf{A} \sum_{i=1}^{\ell} \frac{\langle \mathbf{u}, \mathbf{w}_{i} \rangle \mathbf{w}_{i}}{\lambda_{i}} \right\|_{2}^{2} \\ &= \left(\sum_{i=1}^{\ell} \frac{\langle \mathbf{u}, \mathbf{w}_{i} \rangle \mathbf{w}_{i}}{\lambda_{i}}\right)^{\top} \mathbf{M} \left(\sum_{i=1}^{\ell} \frac{\langle \mathbf{u}, \mathbf{w}_{i} \rangle \mathbf{w}_{i}}{\lambda_{i}}\right) \\ &= \sum_{i=1}^{\ell} \lambda_{i} \left(\frac{\langle \mathbf{u}, \mathbf{w}_{i} \rangle}{\lambda_{i}}\right)^{2} \\ &= \sum_{i=1}^{\ell} \frac{\langle \mathbf{u}, \mathbf{w}_{i} \rangle^{2}}{\lambda_{i}} \\ &\leq \frac{\|\mathbf{u}\|_{2}^{2}}{\epsilon} \\ &\leq \frac{1}{\epsilon}. \end{aligned}$$

This vector **c** therefore satisfies the desired properties.

G Proof of Lemma 8

We begin by proving the following lemma.

Lemma 24. Let μ be a probability distribution on \mathbb{R}^d with finite first moment and suppose

$$\min_{\|\mathbf{v}\|=1} \mathbb{E}^{\mathbf{x} \sim \mu}[\langle \mathbf{v}, \mathbf{x} \rangle_{+}] \geq \epsilon.$$

Then for any w with $\|\mathbf{w}\| < \epsilon$ there is a [0,1]-valued measurable function f such that $\mathbb{E}[\mathbf{x}f(\mathbf{x})] = \mathbf{w}$.

Proof of Lemma 24. Let K be the set of possible vectors $\mathbb{E}[\mathbf{x}f(\mathbf{x})]$ where f is a a [0,1]-valued measurable function. Then for any $\mathbf{a}, \mathbf{b} \in K$, there exist corresponding [0,1]-valued functions f^a and f^b such that $\mathbb{E}[\mathbf{x}f^a(\mathbf{x})] = \mathbf{a}$ and $\mathbb{E}[\mathbf{x}f^b(\mathbf{x})] = \mathbf{b}$. Therefore for any $t \in [0,1]$, $t\mathbf{a} + (1-t)\mathbf{b} \in K$ because $\mathbb{E}[\mathbf{x}f^t(\mathbf{x})] = t\mathbf{a} + (1-t)\mathbf{b}$ for $f^t(\mathbf{x}) = tf^a(\mathbf{x}) + (1-t)f^b(\mathbf{x})$. This implies that K is convex

We will now prove the desired result by contradiction. Suppose $\mathbf{w} \notin K$. Because K is convex, if $\mathbf{w} \notin K$ then there is a "separating hyperplane" unit vector \mathbf{v} such that

$$\sup_{\mathbf{u} \in K} \langle \mathbf{v}, \mathbf{u} \rangle \le \langle \mathbf{v}, \mathbf{w} \rangle.$$

(Note that we do not argue here that K is closed.) Because by assumption we have that $\|\mathbf{w}\| < \epsilon$, this implies that

$$\sup_{\mathbf{u}\in K}\langle \mathbf{v},\mathbf{u}\rangle<\epsilon.$$

For any \mathbf{v} , by definition of K and linearity of expectation we have that

$$\begin{aligned} \sup_{\mathbf{u} \in K} \langle \mathbf{v}, \mathbf{u} \rangle &= \sup_{f : \mathbb{R}^d \to [0,1]} \langle \mathbf{v}, \mathbb{E}^{x \sim \mu} [\mathbf{x} f(\mathbf{x})] \rangle \\ &= \sup_{f : \mathbb{R}^d \to [0,1]} \mathbb{E}^{\mathbf{x} \sim \mu} [f(\mathbf{x}) \langle \mathbf{v}, \mathbf{x} \rangle] \\ &= \mathbb{E}^{x \sim \mu} [\langle \mathbf{v}, \mathbf{x} \rangle_+] \\ &\geq \epsilon. \end{aligned}$$

where the last line followed from the assumption of the lemma. This gives a contradiction, and therefore $\mathbf{w} \in K$ must be true.

Proof of Lemma 8. Applying the above lemma with $\mathbf{w} = \mathbf{0}$, there exists $f^0 : \mathbb{R}^d \to [0,1]$ such that $\mathbb{E}[\mathbf{x}f^0(\mathbf{x})] = \mathbf{0}$. Define the function f' as $f'(\mathbf{x}) = \frac{f^0(\mathbf{x}) + 2\epsilon}{4\max(\|\mathbb{E}[\mathbf{x}]\|,1)}$. By this construction,

$$\|\mathbb{E}[\mathbf{x}f'(\mathbf{x})]\| = \left\| \frac{\mathbb{E}[\mathbf{x}f^0(\mathbf{x})] + 2\epsilon\mathbb{E}[\mathbf{x}]}{4\max(\|\mathbb{E}[\mathbf{x}]\|, 1)} \right\| = \frac{2\epsilon \|\mathbb{E}[\mathbf{x}]\|}{4\max(\|\mathbb{E}[\mathbf{x}]\|, 1)} \le \frac{\epsilon}{2}.$$

Therefore, $\mathbf{w} := -\mathbb{E}[\mathbf{x}f'(\mathbf{x})]$ satisfies $\|\mathbf{w}\| < \epsilon$. Applying the above lemma again, there exists $f^w : \mathbb{R}^d \to [0,1]$ such that $\mathbb{E}[\mathbf{x}f^w(\mathbf{x})] = -\mathbb{E}[\mathbf{x}f'(\mathbf{x})]$. Now define $f(\mathbf{x}) = \frac{f'(\mathbf{x}) + f^w(\mathbf{x})}{2}$. By construction, we have that $1 \geq f(\mathbf{x}) \geq \frac{f'(\mathbf{x})}{2} \geq \frac{\epsilon}{4\max(\|\mathbb{E}[\mathbf{x}]\|,1)}$. Furthermore, by linearity of expectation and the construction of f^w we have that

$$\mathbb{E}[\mathbf{x}f(\mathbf{x})] = \mathbb{E}\left[\mathbf{x}\frac{f'(\mathbf{x}) + f^w(\mathbf{x})}{2}\right] = \frac{1}{2}\left(\mathbb{E}[\mathbf{x}f'(\mathbf{x})] + \mathbb{E}[\mathbf{x}f^w(\mathbf{x})]\right) = \frac{1}{2}\left(\mathbb{E}[\mathbf{x}f'(\mathbf{x})] - \mathbb{E}[\mathbf{x}f'(\mathbf{x})]\right) = 0.$$

Therefore, $f(\mathbf{x})$ is a $\left[\frac{\epsilon}{4\max(\|\mathbb{E}[\mathbf{x}]\|,1)},1\right]$ -valued function that satisfies $\mathbb{E}[\mathbf{x}f(\mathbf{x})]=0$ as desired. \square

G.1 Proof of Lemma 15

Lemma 25. Let $\Phi^C(x) = \mathbb{P}(Z > x)$ for $Z \sim N(0, 1)$. Then for $|x| \leq 1$,

$$\left| \Phi^C(x) - \left(\frac{1}{2} - \frac{1}{\sqrt{2\pi}} x \right) \right| \le |x^3|/15.$$

Proof of Lemma 25. A third order Taylor expansion shows the error is at most

$$|x^3| \cdot \frac{\sup_{|y| \le 1} |(\Phi^C)'''(y)|}{6}.$$

For $|y| \le 1$ we easily compute

$$|(\Phi^C)'''(y)| = \frac{|y^2 - 1|e^{-y^2/2}}{\sqrt{2\pi}} \le 1/\sqrt{2\pi} \le 2/5.$$

Lemma 26. If X is K-sub-gaussian, then for any event E and any $\mathbb{P}(E) \geq a > 0$, we have

$$\mathbb{E}[X^2 1_E] \le K^2 \Pr(E) \log(2/a) + K^2 a,$$

$$\mathbb{E}[X 1_E] \le O(\Pr(E) \log(1/a)). \tag{7}$$

Proof of Lemma 26. We prove both estimates using the tail-sum formula. For the truncated second moment.

$$\begin{split} \mathbb{E}[X^2 \mathbf{1}_E] &= \int_0^\infty \Pr(|X^2 \mathbf{1}_E| \geq t) dt \\ &\leq \int_0^\infty \min(\Pr(E), \Pr(X^2 \geq t)) dt \\ &\leq \int_0^\infty \min(\Pr(E), 2e^{-t/K^2}) dt \\ &\leq \Pr(E) \log(2/a) K^2 + \int_{\log(2/a)K^2}^\infty 2e^{-t/K^2} dt \\ &= K^2 \Pr(E) \log(2/a) + K^2 a. \end{split}$$

Similarly for the truncated first moment,

$$\mathbb{E}[X1_E] = \int_0^\infty \Pr(|X1_E| \ge t)dt$$

$$\le \int_0^\infty \min(\Pr(E), \Pr(X \ge t))dt$$

$$\le \int_0^\infty \min(\Pr(E), 2e^{-t^2/K^2})dt$$

$$\le \Pr(E)\sqrt{\log(3/a)}K + \int_{\sqrt{\log(3/a)}K}^\infty 2e^{-t^2/K^2}dt$$

$$= O(\Pr(E)\log(1/a)).$$

Proof of Lemma 15. Let $d\mu_X$ be the law of X and $d\mu_{X|r>0}$ be the conditional law of X given the event r>0. Then by Bayes rule,

$$\begin{split} d\mu_{X|r>0}(x) &= \frac{\Pr(r>0\mid X=x)d\mu_X(x)}{\Pr(r>0)} \\ &= \frac{\Pr\left(N(\epsilon x,\sigma^2)>0\right)d\mu_X(x)}{\Pr(r>0)} \\ &= \frac{\Phi^C(-\epsilon x/\sigma)d\mu_X(x)}{\Pr(r>0)}. \end{split}$$

Note that

$$\mathbb{E}[X\mid r>0] = \int_{-\infty}^{\infty} x d\mu_{X\mid r>0}(x) = \frac{1}{\Pr(r>0)} \int_{-\infty}^{\infty} x \Phi^{C}(-\epsilon x/\sigma) d\mu_{X}(x).$$

Since $\Pr(r>0) \le 1$ it suffices to lower-bound the latter integral by a suitable positive value. As long as $\epsilon/\sigma \le \delta_{L15} \le \sqrt{\frac{1}{4\sigma_X^2\sqrt{2\pi}}}$, we have

$$\begin{split} &\int_{-\infty}^{\infty} x \Phi^{C}(-\epsilon x/\sigma) d\mu_{X}(x) \\ &= \int_{-\infty}^{\infty} x \left(\frac{1}{2} + \frac{1}{\sqrt{2\pi}} \frac{\epsilon x}{\sigma}\right) d\mu_{X}(x) \\ &\quad + \int_{-\infty}^{\infty} x \left(\Phi^{C}(\frac{-\epsilon x}{\sigma}) - \frac{1}{2} - \frac{1}{\sqrt{2\pi}} \frac{\epsilon x}{\sigma}\right) d\mu_{X}(x) \\ &= \left(\frac{\epsilon \, \mathbb{E}[X^{2}]}{\sigma \sqrt{2\pi}} + \int_{-\infty}^{\infty} x \left(\Phi^{C}(\frac{-\epsilon x}{\sigma}) - \frac{1}{2} - \frac{1}{\sqrt{2\pi}} \frac{\epsilon x}{\sigma}\right) d\mu_{X}(x)\right) &\quad [\mathbb{E}[X] = 0] \\ &\geq \left(\frac{\epsilon \sigma_{X}^{2}}{\sigma \sqrt{2\pi}} - \frac{2 \, \mathbb{E}[X^{4}] \epsilon^{3}}{\sigma^{3}}\right) &\quad [\text{Inequality (9) Below]} \\ &\geq \frac{\epsilon \sigma_{X}^{2}}{2\sigma \sqrt{2\pi}}. &\quad [\frac{\epsilon^{2}}{\sigma^{2}} \leq \frac{\sigma_{X}^{2}}{4 \, \mathbb{E}[X^{4}] \sqrt{2\pi}}] \end{split}$$

Above we used the following estimate (9). For sufficiently small δ_{L15} ,

$$\begin{split} &\int_{-\infty}^{\infty} x \left(\Phi^{C}(\frac{-\epsilon x}{\sigma}) - \frac{1}{2} - \frac{1}{\sqrt{2\pi}} \frac{\epsilon x}{\sigma}\right) d\mu_{X}(x) \\ &= \int_{|x| \leq \frac{\sigma}{10\epsilon}} x \left(\Phi^{C}(\frac{-\epsilon x}{\sigma}) - \frac{1}{2} - \frac{1}{\sqrt{2\pi}} \frac{\epsilon x}{\sigma}\right) d\mu_{X}(x) + \int_{|x| > \frac{\sigma}{10\epsilon}} x \left(\Phi^{C}(\frac{-\epsilon x}{\sigma}) - \frac{1}{2} - \frac{1}{\sqrt{2\pi}} \frac{\epsilon x}{\sigma}\right) d\mu_{X}(x) \\ &\geq \int_{|x| \leq \frac{\sigma}{10\epsilon}} x \left(\Phi^{C}(\frac{-\epsilon x}{\sigma}) - \frac{1}{2} - \frac{1}{\sqrt{2\pi}} \frac{\epsilon x}{\sigma}\right) d\mu_{X}(x) - \int_{|x| > \frac{\sigma}{10\epsilon}} \left(\frac{|x|}{2} + \frac{\epsilon x^{2}}{\sigma\sqrt{2\pi}}\right) d\mu_{X}(x) \\ &\geq -\int_{|x| \leq \frac{\sigma}{10\epsilon}} |x| \left|\frac{\epsilon x}{\sigma}\right|^{3} d\mu_{X}(x) - \int_{|x| > \frac{\sigma}{10\epsilon}} \left(\frac{|x|}{2} + \frac{\epsilon x^{2}}{\sigma\sqrt{2\pi}}\right) d\mu_{X}(x) \\ &= -\frac{\mathbb{E}[X^{4}]\epsilon^{3}}{\sigma^{3}} - \int_{|x| > \frac{\sigma}{10\epsilon}} \left(\frac{|x|}{2} + \frac{\epsilon x^{2}}{\sigma\sqrt{2\pi}}\right) d\mu_{X}(x) \\ &\geq -\frac{\mathbb{E}[X^{4}]\epsilon^{3}}{\sigma^{3}} - \int_{|x| > \frac{\sigma}{10\epsilon}} x^{2} d\mu_{X}(x) \\ &\geq -\frac{\mathbb{E}[X^{4}]\epsilon^{3}}{\sigma^{3}} - (K^{2}\Pr(E)\log(2/a) + K^{2}a) \\ &\geq -\frac{\mathbb{E}[X^{4}]\epsilon^{3}}{\sigma^{3}} - 2K^{2}e^{-\frac{\sigma^{2}}{100K^{2}\epsilon^{2}}} \left(\frac{\sigma^{2}}{100\epsilon^{2}K^{2}} + 1\right) \\ &\geq -\frac{2\mathbb{E}[X^{4}]\epsilon^{3}}{\sigma^{3}} - 2K^{2}e^{-\frac{\sigma^{2}}{100K^{2}\epsilon^{2}}} \left(\frac{\sigma^{2}}{100\epsilon^{2}K^{2}} + 1\right) \\ &\geq -\frac{2\mathbb{E}[X^{4}]\epsilon^{3}}{\sigma^{3}} - 2K^{2}e^{-\frac{\sigma^{2}}{100K^{2}\epsilon^{2}}} \left(\frac{\sigma^{2}}{100\epsilon^{2}K^{2}} + 1\right) \\ &\geq -\frac{2\mathbb{E}[X^{4}]\epsilon^{3}}{\sigma^{3}} \\ &= [2K^{2}e^{-\frac{\sigma^{2}}{100K^{2}\epsilon^{2}}} \left(\frac{\sigma^{2}}{100\epsilon^{2}K^{2}} + 1\right) \leq \frac{(\sigma_{X}^{2})^{2}\epsilon^{3}}{\sigma^{3}} \leq \frac{\mathbb{E}[X^{4}]\epsilon^{3}}{\sigma^{3}} \\ &= (9) \end{aligned}$$

where the second to last line holds for sufficiently small ϵ/σ .

G.2 Proof of Lemma 16

Proof of Lemma 16. First, we observe that $\mathbb{E}[Y \mid r > 0] = \frac{\mathbb{E}[Y1\{r > 0\}]}{\mathbb{P}(r > 0)}$. If $\frac{\epsilon}{\sigma} K \sqrt{\log(4)} \le 1/2$, we also have that

$$\begin{split} & \Pr(r > 0) \\ & \geq \Pr(r > 0 \mid X \geq -K\sqrt{\log(4)}) \Pr(X \geq -K\sqrt{\log(4)}) \\ & \geq \Phi^C(\frac{\epsilon}{\sigma}K\sqrt{\log(4)}) \Pr(X \geq -K\sqrt{\log(4)}) \\ & \geq \Phi^C(\frac{\epsilon}{\sigma}K\sqrt{\log(4)}) \left(1 - 2e^{-K^2\log(4)/K^2}\right) \end{split}$$

$$\geq \Phi^C(1/2)1/2 \qquad \qquad [\frac{\epsilon}{\sigma}K\sqrt{\log(4)} \leq 1/2] \\ \geq 1/8.$$

Therefore, it is sufficient to upper bound $|\mathbb{E}[Y\mathbf{1}\{r>0\}]|$. By law of total expectation,

$$\mathbb{E}[Y\mathbf{1}\{r>0\}] = \mathbb{E}[\mathbb{E}[Y\mathbf{1}\{r>0\}\mid X]] = \mathbb{E}\left[\mathbb{E}[Y\mid X]\mathbb{P}(Z>-\frac{\epsilon}{\sigma}X)\right].$$

Define $Q(X) = \mathbb{E}[Y \mid X]$. Because Y is sub-gaussian, the random variable Q(X) must also be sub-gaussian with parameter $\sqrt{18}K$ (see [Van Handel, 2014, Exercise 3.1]). Furthermore, $\mathbb{E}[Q(X)] = \mathbb{E}[\mathbb{E}[Y \mid X]] = \mathbb{E}[Y] = 0$. Now, we have the following

$$\begin{split} &|\mathbb{E}[Y\mathbf{1}\{r>0\}]|\\ &= \left|\mathbb{E}\left[\mathbb{E}[Y\mid X]\mathbb{P}(Z>-\frac{\epsilon}{\sigma}X)\right]\right|\\ &= \left|\int_{-\infty}^{\infty}Q(x)\Phi^{C}(-\frac{\epsilon x}{\sigma})d\mu_{X}(x)\right|\\ &= \left|\int_{-\infty}^{\infty}\frac{1}{2}Q(x)d\mu_{X}(x)+\int_{-\infty}^{\infty}Q(x)\left(\Phi^{C}(-\frac{\epsilon x}{\sigma})-\frac{1}{2}\right)d\mu_{X}(x)\right|\\ &= \left|\frac{1}{2}\mathbb{E}[Q(X)]+\int_{-\infty}^{\infty}Q(x)\left(\Phi^{C}(-\frac{\epsilon x}{\sigma})-\frac{1}{2}\right)d\mu_{X}(x)\right|\\ &= \left|\int_{-\infty}^{\infty}Q(x)\left(\Phi^{C}(-\frac{\epsilon x}{\sigma})-\frac{1}{2}\right)d\mu_{X}(x)\right|\\ &\leq \int_{|x|\leq\frac{\pi}{10\epsilon}}|Q(x)|\left(\frac{|\epsilon x|}{\sigma\sqrt{2\pi}}+\left|\frac{\epsilon x}{\sigma}\right|^{3}\right)d\mu_{X}(x)\\ &+\int_{|x|>\frac{\pi}{10\epsilon}}Q(x)\left(\Phi^{C}(-\frac{\epsilon x}{\sigma})-\frac{1}{2}\right)d\mu_{X}(x) \end{split} \qquad \text{[Lemma 25]}\\ &\leq \frac{\epsilon}{\sigma}\int_{-\infty}^{\infty}|Q(x)|\left(\frac{|x|}{\sqrt{2\pi}}+|x^{3}|\right)d\mu_{X}(x)+\frac{1}{2}\int_{|x|>\frac{\pi}{10\epsilon}}|Q(x)|d\mu_{X}(x)\quad [\epsilon/\sigma\leq1]\\ &\leq \frac{\epsilon}{\sigma}\sqrt{\mathbb{E}[Q(X)^{2}]\mathbb{E}\left[\left(\frac{|x|}{\sqrt{2\pi}}+|x^{3}|\right)^{2}\right]}+\frac{1}{2}O\left(\frac{\sigma}{10\epsilon K}(2e^{-\frac{\sigma^{2}}{100\epsilon^{2}K^{2}}})\right) \quad \text{[Lemma 26 Equation (7)]}\\ &\leq O(\epsilon/\sigma). \end{split}$$

where in the second to last line we used that $\Pr(|X| > \frac{\sigma}{10\epsilon}) \le 2e^{-\frac{\sigma^2}{100\epsilon^2K^2}}$ and that Q(X) is $K\sqrt{18}$ -sub-gaussian. The last line again uses that both X and Q(X) are sub-gaussian.

Therefore, we have shown that

$$|\operatorname{\mathbb{E}}[Y\mid r>0]| = \left|\frac{\operatorname{\mathbb{E}}[Y\mathbf{1}\{r>0\}]}{\operatorname{\mathbb{P}}(r>0)}\right| \leq 8\left|\operatorname{\mathbb{E}}[Y\mathbf{1}\{r>0\}]\right| = O(\epsilon/\sigma).$$

By symmetric arguments to the ones above, we have the same bound on $|\mathbb{E}[Y \mid r \leq 0]|$.

H Proof of Lemma 17

Proof of Lemma 17. Fix any v such that $\|\mathbf{v}\| = 1$. First, we will show that

$$\Pr(|\mathbf{v} \cdot (\mathbf{Z}(\mathbf{Y}) - \mathbf{X})| \ge c_d/2) \le \epsilon_d/2.$$

To do this, we will show that $\langle \mathbf{v}, (\mathbf{Z}(\mathbf{Y}) - \mathbf{X}) \rangle$ is a sub-gaussian random variable. Let $\hat{\mathbf{X}}$ be a draw from the distribution of $\mathbf{X} \mid \mathbf{Y}$. Then we have that

$$\langle \mathbf{v}, \hat{\mathbf{X}} - \mathbf{X} \rangle = \langle \mathbf{v}, \hat{\mathbf{X}} - \mathbf{Y} \rangle + \langle \mathbf{v}, \mathbf{Y} - \mathbf{X} \rangle.$$

By standard properties of posterior samples, $\langle \mathbf{v}, \hat{\mathbf{X}} - \mathbf{Y} \rangle$ and $\langle \mathbf{v}, \mathbf{Y} - \mathbf{X} \rangle$ are identically distributed with distribution $N(0, \sigma^2)$ for $\sigma^2 = \sum_{i=1}^d \mathbf{v}_i^2 s_i$ (here one averages over all randomness). Therefore, we have that

$$\begin{split} & \mathbb{E}\left[\exp\left(t\langle\mathbf{v},\mathbf{Z}(\mathbf{Y})-\mathbf{X}\rangle\right)\right] \\ & = \mathbb{E}\left[\exp\left(t\langle\mathbf{v},\mathbb{E}[\hat{\mathbf{X}}]-\mathbf{X}\rangle\right)\right] \\ & \leq \mathbb{E}\left[\exp\left(t\langle\mathbf{v},\hat{\mathbf{X}}-\mathbf{X}\rangle\right)\right] & \text{[Jensen]} \\ & = \mathbb{E}\left[\exp\left(t\langle\mathbf{v},\hat{\mathbf{X}}-\mathbf{Y}+\mathbf{Y}-\mathbf{X}\rangle\right)\right] \\ & \leq \sqrt{\mathbb{E}\left[\exp\left(2t\langle\mathbf{v},\hat{\mathbf{X}}-\mathbf{Y}\rangle\right)\right]\mathbb{E}\left[\exp\left(2t\langle\mathbf{v},\mathbf{Y}-\mathbf{X}\rangle\right)\right]} & \text{[Cauchy-Schwarz]} \\ & \leq e^{2t^2\sigma^2}. \end{split}$$

Therefore, $\langle \mathbf{v}, (\mathbf{Z}(\mathbf{Y}) - \mathbf{X}) \rangle$ is sub-gaussian and satisfies the tail bound

$$\Pr(|\langle \mathbf{v}, (\mathbf{Z}(\mathbf{Y}) - \mathbf{X}) \rangle| > t) \le 2e^{-t^2/(8\sigma^2)}$$

Taking $t = c_d/2$, because $\sigma^2 = \sum_{i=0}^d \mathbf{v}_i^2 s_i \leq \max_i s_i \leq \frac{c_d^2/32}{\log(4/\epsilon_d)}$, we have that

$$\Pr(|\langle \mathbf{v}, (\mathbf{Z}(\mathbf{Y}) - \mathbf{X}) \rangle| > \frac{c_d}{2}) \le 2e^{-c_d^2/(32\sigma^2)} = \epsilon_d/2.$$
(10)

Now, we can prove the desired result that

$$\mathbb{E}[(\langle \mathbf{Z}(\mathbf{Y}), \mathbf{v} \rangle)^{+}]$$

$$\geq \mathbb{E}\left[(\langle \mathbf{Z}(\mathbf{Y}), \mathbf{v} \rangle)^{+} \middle| |\langle \mathbf{v}, (\mathbf{Z}(\mathbf{Y}) - \mathbf{X}) \rangle| \leq \frac{c_{d}}{2}, \langle \mathbf{X}, \mathbf{v} \rangle \geq c_{d}\right] \Pr\left(|\langle \mathbf{v}, (\mathbf{Z}(\mathbf{Y}) - \mathbf{X}) \rangle| \leq \frac{c_{d}}{2}, \langle \mathbf{X}, \mathbf{v} \rangle \geq c_{d}\right)$$

$$\geq \mathbb{E}\left[\frac{c_{d}}{2} \middle| |\langle \mathbf{v}, (\mathbf{Z}(\mathbf{Y}) - \mathbf{X}) \rangle| \leq \frac{c_{d}}{2}, \langle \mathbf{X}, \mathbf{v} \rangle \geq c_{d}\right] \Pr\left(|\langle \mathbf{v}, (\mathbf{Z}(\mathbf{Y}) - \mathbf{X}) \rangle| \leq \frac{c_{d}}{2}, \langle \mathbf{X}, \mathbf{v} \rangle \geq c_{d}\right)$$

$$= \frac{c_{d}}{2} \Pr\left(|\langle \mathbf{v}, (\mathbf{Z}(\mathbf{Y}) - \mathbf{X}) \rangle| \leq \frac{c_{d}}{2}, \langle \mathbf{X}, \mathbf{v} \rangle \geq c_{d}\right)$$

$$\geq \frac{c_{d}}{2} \left(\Pr\left(\langle \mathbf{X}, \mathbf{v} \rangle \geq c_{d}\right) - \Pr\left(\langle \mathbf{v}, (\mathbf{Z}(\mathbf{Y}) - \mathbf{X}) \rangle| > \frac{c_{d}}{2}\right)\right)$$

$$\geq \frac{c_{d}}{2} \left(\epsilon_{d} - \frac{\epsilon_{d}}{2}\right)$$

$$= \frac{c_{d}\epsilon_{d}}{4}.$$
[Eq (10) and lemma assum]

H.1 Proof of Lemma 14

Proof of Lemma 14. Let B be a Bernoulli random variable such that $\Pr(B=1)=\epsilon$ and let $Z\sim N(0,1)$ be independent of B and X. Then we can write $R\sim X\cdot B+Z$.

Then we have that

$$\mathbb{E}[X \mid R > 0]
= \mathbb{E}[X \mid R > 0, B = 1] \Pr(B = 1 \mid R > 0) + E[X \mid R > 0, B = 0] \Pr(B = 0 \mid R > 0)
= \mathbb{E}[X \mid X + Z > 0] \Pr(B = 1 \mid R > 0)
= \mathbb{E}[X \mid X + Z > 0] \frac{\Pr(R > 0 \mid B = 1) \Pr(B = 1)}{\Pr(R > 0)}
\geq \mathbb{E}[X \mid X + Z > 0] \Pr(R > 0 \mid B = 1) \Pr(B = 1)
= \mathbb{E}[X \mid X + Z > 0] \Pr(X + Z > 0) \epsilon.$$
(11)

Next, we need to lower bound $\mathbb{E}[X \mid X + Z > 0] \Pr(X + Z > 0)$. Applying Baye's rule gives

$$\mathbb{E}[X \mid X + Z > 0] \Pr(X + Z > 0)$$

$$= \Pr(X + Z > 0) \int_{-\infty}^{\infty} x d\mu_{X|X+Z>0}(x)$$

$$= \int_{-\infty}^{\infty} x \left(\Phi^{C}(-x)\right) d\mu_{X}(x)$$

$$= \int_{-\infty}^{\infty} x \left(\Phi^{C}(-x) - 1/2\right) d\mu_{X}(x) \qquad [\mathbb{E}[X] = 0]$$

Note that $(\Phi^C(-x) - 1/2)$ has the same sign as x and has magnitude increasing in |x|. Therefore,

$$\geq \int_{x \geq \frac{\sigma_X}{\sqrt{10}}} \frac{\sigma_X}{\sqrt{10}} \mathbb{P}\left(0 \leq Z \leq \frac{\sigma_X}{\sqrt{10}}\right) d\mu_X(x) + \int_{x \leq -\frac{\sigma_X}{\sqrt{10}}} \frac{\sigma_X}{\sqrt{10}} \mathbb{P}\left(0 \leq Z \leq \frac{\sigma_X}{\sqrt{10}}\right) d\mu_X(x)$$

$$= \frac{\sigma_X \mathbb{P}(0 \leq Z \leq \frac{\sigma_X}{\sqrt{10}})}{\sqrt{10}} \mathbb{P}(|X| > \frac{\sigma_X}{\sqrt{10}})$$

$$\geq \frac{\sigma_X \mathbb{P}(0 \leq Z \leq \frac{\sigma_X}{\sqrt{10}})}{\sqrt{10}} \left(\frac{4\sigma_X^2}{5K^2 \log\left(\frac{20K^2}{\sigma_X^2}\right)}\right). \quad \text{[Equation (13) below]}$$

$$\geq \Omega(\sigma_X^5). \quad (12)$$

Combining Equations (11) and (12) gives the desired result of the lemma.

It remains to show the lower bound on $\mathbb{P}(|X| > \frac{\sigma_X}{\sqrt{10}})$ used in the penultimate line above.

Define
$$a=K^2\log\left(\frac{20K^2}{\sigma_X^2}\right)\geq\sigma_X^2\log(10)/2>\sigma_X^2/10$$
 (using Equation (3)). Next, we observe that

$$\begin{split} &\mathbb{E}[X^2] \\ &= \int_0^\infty \mathbb{P}(X^2 > t) dt \\ &= \int_0^\infty \mathbb{P}(X > \sqrt{t}) dt \\ &= \int_0^\infty \mathbb{P}(X > \sqrt{t}) dt + \int_{\sigma_X^2/10}^a \mathbb{P}(X > \sqrt{t}) dt + \int_a^\infty \mathbb{P}(X > \sqrt{t}) dt \\ &\leq \sigma_X^2/10 + \int_{\sigma_X^2/10}^a \mathbb{P}(X > \sqrt{t}) dt + \int_a^\infty 2e^{-t/K^2} dt \\ &= \sigma_X^2/10 + \int_{\sigma_X^2/10}^a \mathbb{P}(X > \sqrt{t}) dt + 2K^2 e^{-a/K^2} \\ &= \sigma_X^2/5 + \int_{\sigma_X^2/10}^a \mathbb{P}(X > \sqrt{t}) dt \end{split} \qquad \qquad \text{[Def of a]} \\ &\leq \sigma_X^2/5 + \left(a - \frac{\sigma_X^2}{10}\right) \mathbb{P}\left(X > \frac{\sigma_X}{\sqrt{10}}\right). \qquad \qquad \mathbb{P}(X > \sqrt{t}) \text{ monotone decr.]} \end{split}$$

Since $\mathbb{E}[X^2] = \sigma_X^2$, this implies that

$$\left(a - \frac{\sigma_X^2}{10}\right) \mathbb{P}\left(X > \frac{\sigma_X}{\sqrt{10}}\right) \ge \frac{4\sigma_X^2}{5}.$$

Therefore, we can conclude that

$$\mathbb{P}\left(X > \frac{\sigma_X}{\sqrt{10}}\right) \ge \frac{4\sigma_X^2/5}{a - \sigma_X^2/10} \ge \frac{4\sigma_X^2/5}{a} = \frac{4\sigma_X^2}{5K^2 \log\left(\frac{20K^2}{\sigma_X^2}\right)}.$$
 (13)

By symmetry, identical logic as above gives the desired upper bound on $\mathbb{E}[X \mid R \leq 0]$.

I Proof of Proposition 11

Proof of Proposition 11. We first show that $\mathbf{A}^{(t)}$ on Line 6 satisfies $\mathbf{A}^{(t)} \in S^{\perp}$ when $\Psi = 1$. Recall \mathbf{x}^* defined as $x_{\ell}^* = \langle \ell^*, \mathbf{w}_{\ell} \rangle$ and recall that $\mathbf{z}(\mathbf{y}) = \mathbb{E}[\mathbf{x}^* \mid \hat{\mathbf{y}} = \mathbf{y}]$. By construction,

$$\begin{split} &\mathbb{E}[\mathbf{x}^* \mid \Psi = 1] \\ &= \int \mathbb{E}[\mathbf{x}^* \mid \Psi = 1, \hat{\mathbf{y}} = \mathbf{y}] d\mu_{\hat{\mathbf{y}} \mid \Psi = 1}(\mathbf{y}) \\ &= \int \mathbb{E}[\mathbf{x}^* \mid \hat{\mathbf{y}} = \mathbf{y}] \frac{\Pr(\Psi = 1 \mid \hat{\mathbf{y}} = \mathbf{y})}{\Pr(\Psi = 1)} d\mu_{\hat{\mathbf{y}}}(\mathbf{y}) \\ &= \frac{1}{\Pr(\Psi = 1)} \int \mathbb{E}[\mathbf{x}^* \mid \hat{\mathbf{y}} = \mathbf{y}] f(\mathbf{z}(\mathbf{y})) d\mu_{\hat{\mathbf{y}}}(\mathbf{y}) \\ &= \frac{1}{\Pr(\Psi = 1)} \int \mathbf{z}(\mathbf{y}) f(\mathbf{z}(\mathbf{y})) d\mu_{\hat{\mathbf{y}}}(\mathbf{y}) \\ &= \frac{1}{\Pr(\Psi = 1)} \mathbb{E}\left[\mathbf{z}(\hat{\mathbf{y}}) f(\mathbf{z}(\hat{\mathbf{y}}))\right] \\ &= 0. \end{split}$$
 [Definition of f]

Because $x_\ell^* = \langle \boldsymbol{\ell}^*, \mathbf{w}_\ell \rangle$ for $\ell \leq \ell_\lambda$, this implies that $\mathbb{E}[\langle \boldsymbol{\ell}^*, \mathbf{w}_\ell \rangle \mid \Psi = 1] = 0$ for $\ell \leq \ell_\lambda$. Therefore, we must have that $\mathbb{E}[\boldsymbol{\ell}^* \mid \Psi = 1] \in S^\perp$. By construction of $\mathbf{A}^{(t)}$ in Line 6, this implies that $\mathbf{A}^{(t)} \in S^\perp$ when $\Psi = 1$.

Define

$$\mathbf{A} = \begin{cases} \frac{\mathbb{E}[\boldsymbol{\ell}^*|\Psi=1]}{\|\mathbb{E}[\boldsymbol{\ell}^*|\Psi=1]\|_2} & \text{if } \mathbb{E}[\boldsymbol{\ell}^*\mid\Psi=1] \neq 0 \\ \mathbf{w}_{\ell_{\lambda}+1} & \text{otherwise,} \end{cases}$$

in other words **A** is equal to $\mathbf{A}^{(t)}$ when $\Psi = 1$.

By the choice of f, we have that $\mathbb{P}(\Psi=1) \geq \frac{\epsilon_d c_d}{16 \max(\|\mathbb{E}[\mathbf{z}(\hat{\mathbf{y}})]\|,1)} \geq \frac{\epsilon_d c_d}{16(K\sqrt{\pi}+1)}$, where in the last line we used that Equation (A) implies

$$\max(\|\mathbb{E}[\mathbf{z}(\hat{\mathbf{y}})]\|, 1) = \max(\|\mathbb{E}[\mathbf{x}^*]\|, 1) \le \max(\|\mathbb{E}[\boldsymbol{\ell}^*]\|, 1) \le \max(K\sqrt{\pi}, 1) \le K\sqrt{\pi} + 1.$$

By construction, we therefore have that for any realization of $\mathbf{z}(\hat{\mathbf{y}})$, the probability that $R = r^{(t)} = \langle \boldsymbol{\ell}^*, \mathbf{A}^{(t)} \rangle + w_t = \langle \boldsymbol{\ell}^*, \mathbf{A} \rangle + w_t$ is exactly $\frac{\epsilon_d c_d}{16(K\sqrt{\pi}+1)}$ and otherwise $R \sim N(0,1)$.

We can now apply Lemma 14 with $X = \langle \boldsymbol{\ell}^*, \mathbf{A} \rangle$, and $\epsilon = \frac{\epsilon_d c_d}{16 \left(K \sqrt{\pi} + 1\right)}$ to get that either $\mathbf{a} = \mathbf{w}_{\ell_{\lambda} + 1}$ or

$$|\langle \mathbf{A}, \mathbf{a} \rangle| = |\langle \mathbf{A}, \mathbb{E}[\boldsymbol{\ell}^* \mid 1_{R>0}] \rangle| = |\mathbb{E}[\langle \boldsymbol{\ell}^*, \mathbf{A} \rangle \mid 1_{R>0}]| \ge \frac{c_{L14} \epsilon_d c_d \operatorname{Var}(\langle \boldsymbol{\ell}^*, \mathbf{A} \rangle)^{2.5}}{16 (K \sqrt{\pi} + 1)} \ge \frac{c_{L14} \epsilon_d c_d \operatorname{c_v}^{2.5}}{16 (K \sqrt{\pi} + 1)},$$

where in the last inequality we used Assumption 2.

Because
$$\mathbf{A} \in S^{\perp}$$
 and $\|\mathbf{A}\| = 1$, the previous equation implies the desired result that $\|\mathcal{P}_{S^{\perp}}(\mathbf{a})\| \geq \frac{c_{L14}\epsilon_d c_d \, c_v^{2.5}}{16(K\sqrt{\pi}+1)}$.

J Proof of Proposition 12

Proof of Proposition 12. The first step is to rewrite R from Algorithm 6 Line 7 so that we can apply Lemmas 15 and 16.

Define

$$W := \sum_{t'=t}^{t+L-1} \left(w_{t'} - \sum_{k=1}^j (c_k q_k^{t'} - c_k \langle \mathbf{v}_k, \boldsymbol{\ell}^* \rangle) \right) = \sum_{t'=t}^{t+L-1} \left(w_{t'} - \sum_{k=1}^j c_k q_k^{t'} \right) + L \sum_{k=1}^j c_k \langle \mathbf{v}_k, \boldsymbol{\ell}^* \rangle.$$

Note that W is normally distributed with mean 0 and variance $\sigma_W^2 := L(1 + \sum_{k=1}^j c_k^2)$. By construction, we can rewrite R as

$$R = \sum_{t'=t}^{t+L-1} \left(r^{(t')} - \sum_{k=1}^{j} c_k q_k^{t'} \right)$$

$$= \sum_{t'=t}^{t+L-1} \left((\langle \mathbf{a}, \boldsymbol{\ell}^* \rangle + w_{t'}) - \sum_{k=1}^{j} c_k q_k^{t'} \right)$$

$$= \sum_{t'=t}^{t+L-1} \langle \mathbf{a}, \boldsymbol{\ell}^* \rangle - L \sum_{k=1}^{j} c_k \langle \mathbf{v}_k, \boldsymbol{\ell}^* \rangle + W$$

$$= L \langle \mathbf{a}, \boldsymbol{\ell}^* \rangle - L \langle \mathcal{P}_S(\mathbf{a}), \boldsymbol{\ell}^* \rangle + W \qquad \text{[Lemma 18 implies } \mathcal{P}_S(\mathbf{a}) = \sum_{k=1}^{j} c_k \mathbf{v}_k \text{]}$$

$$= L \langle (\mathbf{a} - \mathcal{P}_S(\mathbf{a})), \boldsymbol{\ell}^* \rangle + W$$

$$= L \langle \mathcal{P}_{S^{\perp}}(\mathbf{a}), \boldsymbol{\ell}^* \rangle + W$$

$$= L \langle \mathcal{P}_{S^{\perp}}(\mathbf{a}), \boldsymbol{\ell}^* \rangle + W. \qquad (14)$$

Therefore, R is exactly in the form necessary to apply Lemmas 15 and 16. In order to apply these lemmas, we need that $\frac{L\|\mathcal{P}_{S^{\perp}}(\mathbf{a})\|}{\sigma_W} \leq \delta_{L15}$ and $\frac{L\|\mathcal{P}_{S^{\perp}}(\mathbf{a})\|}{\sigma_W} \leq \delta_{L16}$ respectively.

To see this, note that $\mathcal{P}_{S^{\perp}}(\mathbf{a}) \leq \sqrt{\lambda}$ (as otherwise ExponentialGrowth would not have been called), and therefore

$$\frac{L \|\mathcal{P}_{S^{\perp}}(\mathbf{a})\|}{\sigma_{W}} \leq \frac{L\sqrt{\lambda}}{\sqrt{L(1+\sum_{k=1}^{j} c_{k}^{2})}}
= \sqrt{\frac{4\lambda d(\mathbb{E}[\ell^{*}_{1}]+1)^{2}}{c_{L15}^{2}}}
\leq \sqrt{\frac{4\lambda d(K\sqrt{\pi}+1)^{2}}{(c_{v}/\sqrt{8\pi})^{2}}}$$
[Equation (A), Assum 2]
$$\leq \min(\delta_{L15}, \delta_{L16}, 1/c_{L16}),$$
(15)

where in the last line we used $\lambda \leq \min(\delta_{L15}, \delta_{L16}, 1/c_{L16})^2 \frac{(c_v/\sqrt{8\pi})^2}{4d(K\sqrt{\pi}+1)^2}$ by our assumption on λ .

Applying Lemmas 15 and 16 gives the following two bounds. Define $\mathbf{y} = \mathbb{E}[\ell^* \mid 1_{R>0}]$. The first is a lower bound on $|\langle \mathbf{x}, \mathbf{y} \rangle|$. Importantly, we can apply Lemma 15 for $X = \langle \mathbf{x}, \ell^* \rangle$ because of Equations (14) and (15).

$$\begin{split} |\langle \mathbf{x}, \mathbf{y} \rangle| &= |\langle \mathbf{x}, \mathbb{E}[\boldsymbol{\ell}^* \mid 1_{R>0}] \rangle| \\ &= |\mathbb{E}[\langle \mathbf{x}, \boldsymbol{\ell}^* \rangle \mid 1_{R>0}]| \\ &\geq \frac{c_{L15}L \, \|\mathcal{P}_{S^{\perp}}(\mathbf{a})\|}{\sigma_W} \\ &= \frac{c_{L15}\sqrt{L} \, \|\mathcal{P}_{S^{\perp}}(\mathbf{a})\|}{\sqrt{1 + \sum_{k=1}^{j} c_k^2}} \\ &= c_{L15}\sqrt{\frac{4d(\mathbb{E}[\boldsymbol{\ell}^*_{1}] + 1)^2}{c_{L15}^2}} \, \|\mathcal{P}_{S^{\perp}}(\mathbf{a})\| \end{split}$$

$$= \sqrt{4d(\mathbb{E}[\boldsymbol{\ell}^*_1] + 1)^2} \| \mathcal{P}_{S^{\perp}}(\mathbf{a}) \|$$

$$= 2\sqrt{d}(\mathbb{E}[\boldsymbol{\ell}^*_1] + 1) \| \mathcal{P}_{S^{\perp}}(\mathbf{a}) \|.$$
(16)

The next equation is an upper bound on $\|\mathbf{y}_i\|$ for all $i \in [d]$:

$$\begin{aligned} |\mathbf{y}_{i}| &= \mathbb{E}[\boldsymbol{\ell}^{*}_{i} \mid 1_{R>0}] \\ &\leq \mathbb{E}[\boldsymbol{\ell}^{*}_{i}] + c_{L16}L \, \|\mathcal{P}_{S^{\perp}}(\mathbf{a})\| \, / \sigma_{W} \\ &\leq \mathbb{E}[\boldsymbol{\ell}^{*}_{i}] + 1. \end{aligned} \qquad [\text{Lemma 16}]$$

$$\leq \mathbb{E}[\boldsymbol{\ell}^{*}_{i}] + 1. \qquad [\text{Equation (15)}]$$

Using the above equation, we can bound $\|\mathbf{y}\|_2$ as follows. Because $\mathbb{E}[\boldsymbol{\ell}^*_1] \geq \mathbb{E}[\boldsymbol{\ell}^*_i]$ for all i,

$$\left\|\mathbf{y}\right\|_{2} \leq \sqrt{\sum_{i=1}^{d} \left(\mathbb{E}[\boldsymbol{\ell}^{*}_{i}]+1\right)^{2}} \leq \sqrt{d}(\mathbb{E}[\boldsymbol{\ell}^{*}_{1}]+1).$$

Equation (16) implies that $\mathbf{y} \neq \mathbf{0}$. This implies by construction that $\mathbf{b} = \operatorname{Exploit}(1_{R>0}, \mathbf{w}_{\ell_{\lambda}+1}) = \frac{\mathbf{y}}{\|\mathbf{y}\|}$. Putting everything together, we have that

$$|\langle \mathbf{x}, \mathbf{b} \rangle| = \frac{|\langle \mathbf{x}, \mathbf{y} \rangle|}{\|\mathbf{y}\|_2} \ge \frac{2\sqrt{d}(\mathbb{E}[\boldsymbol{\ell}^*_1] + 1)) \|\mathcal{P}_{S^{\perp}}(\mathbf{a})\|}{\sqrt{d}(\mathbb{E}[\boldsymbol{\ell}^*_1] + 1)} \ge 2 \|\mathcal{P}_{S^{\perp}}(\mathbf{a})\|.$$

Finally, because $\mathbf{x} \in S^{\perp}$, this implies the desired result that

$$\|\mathcal{P}_{S^{\perp}}(\mathbf{b})\| \ge |\langle \mathbf{x}, \mathbf{b} \rangle| \ge 2 \|\mathcal{P}_{S^{\perp}}(\mathbf{a})\|.$$

K Proof of Theorem 13

Proof of Theorem 13. We begin by proving that Algorithm 4 is BIC. There are four places where we set $\mathbf{A}^{(t)}$. The first is in the Line 4 of Algorithm 4, where we set $\mathbf{A}^{(t)} = \mathbf{e}_1$. This is BIC because we assumed (without loss of generality) that $\mathbb{E}[\boldsymbol{\ell}^*_{\ i}] = 0$ for all i > 1 and $\mathbb{E}[\boldsymbol{\ell}^*_{\ i}] \geq 0$.

The second place we set $A^{(t)}$ is in Line 6 of Algorithm 5. This choice of $A^{(t)}$ is BIC with the signal Ψ by construction and Lemma 7.

The third place we set $\mathbf{A}^{(t)}$ is in Line 5 of Algorithm 6. In order for this to be BIC, we must show that every input a to Algorithm 3 is BIC. The first time Algorithm 6 is used for any fixed value of j, the input action a is the action returned by Algorithm 5. This is BIC for signal R defined on Line 7 of Algorithm 5 by construction. Each subsequent call to Algorithm 6 for a fixed value of j uses an action a that is returned by the previous call to Algorithm 6. This is BIC for signal R defined on Line 7 of Algorithm 6.

The final time we set an action is on Line 17 of Algorithm 4 This action is again an action returned by the last call to Algorithm 6, which as argued above is BIC for signal R.

The rest of the proof will focus on bounding the sample complexity of Algorithm 4.

First, we will bound the number of times the inner while loop (Line 13) calls Algorithm 6 for each value of j. By Proposition 11, the action returned by Algorithm 5 satisfies $\|\mathcal{P}_{S^{\perp}}(\mathbf{a})\| \geq c_{P11} \, \mathrm{c_v}^{2.5} \, \epsilon_d c_d$. Furthermore, by Proposition 12, $\|\mathcal{P}_{S^{\perp}}(\mathbf{a})\|$ doubles with each call to Algorithm 6. Therefore, $\|\mathcal{P}_{S^{\perp}}(\mathbf{a})\| \geq \sqrt{\lambda}$ will be satisfied after at most $\log_2\left(\frac{\sqrt{\lambda}}{c_{P11} \, \mathrm{c_v}^{2.5} \, \epsilon_d c_d}\right) = O\left(\log\left(\frac{1}{\mathrm{c_v} \, \epsilon_d c_d}\right)\right)$ calls to Algorithm 6.

Next we will bound the number of steps in each call to Algorithm 6, which is equivalent to bounding the L defined on Line 4 of Algorithm 6. To do this, we note that the c_i in Algorithm 6 are the same as the c_i in Lemma 18 with $\epsilon = \lambda$, $\ell = \ell_{\lambda}$, $\mathbf{u} = \mathcal{P}_{S^{\perp}}(\mathbf{a})$, and $\mathbf{v}_1, ..., \mathbf{v}_i$. This implies that

$$\sum_{k=1}^{j} c_k^2 \le \frac{1}{\lambda}.$$
 [Lemma 18]

Therefore, we can bound L as follows:

$$\begin{split} L &= \frac{4d(\mathbb{E}[\boldsymbol{\ell}^*_{1}] + 1)(1 + \sum_{k=1}^{j} c_k^2)}{c_{L15}^2} \leq \frac{4d(\mathbb{E}[\boldsymbol{\ell}^*_{1}] + 1)(1 + \frac{1}{\lambda})}{c_{L15}^2} \\ &\leq \frac{4d(K\sqrt{\pi} + 1)(1 + \frac{1}{\lambda})}{c_{v}^2/(8\pi)} \\ &= O\left(\frac{d}{\lambda c_{v}^2}\right). \end{split} \tag{Assum 2, Eq (A)}$$

For each loop of the while loop on Line 8, we also have $\kappa = O(\frac{\log(1/\epsilon_d)}{\lambda c_d^2} + \frac{d}{\lambda c_v^2})$ steps in the loop on Line 16. All together, this gives that each iteration of the loop on Line 8 takes at most

$$O\left(\frac{d\log(\frac{1}{c_{v}\epsilon_{d}c_{d}})}{\lambda c_{v}^{2}} + \frac{\log(1/\epsilon_{d})}{\lambda c_{d}^{2}}\right) = O\left(\log\left(\frac{1}{c_{v}\epsilon_{d}c_{d}}\right)\left(\frac{d}{\lambda c_{v}^{2}} + \frac{1}{\lambda c_{d}^{2}}\right)\right)$$

steps. Next, we will bound the number of iterations of the while loop on Line 8.

For each j, we will apply Lemma 9 with $\epsilon = \lambda$, $\mathbf{u} = \mathbf{v}_{j+1}$, and the vectors $\mathbf{v}_1,...,\mathbf{v}_j$. By construction of the algorithm, S^{\perp} is non-empty because the algorithm has not yet terminated, and $\|\mathcal{P}_{S^{\perp}}(\mathbf{v}_{j+1})\|^2 \geq \lambda$ by the termination condition of the while loop on Line 13 of Algorithm 4. Therefore, this satisfies the assumption of Lemma 9. Define $\lambda_1^j,...,\lambda_d^j$ as the eigenvalues of $\mathbf{M}^j := \sum_{i=1}^j \mathbf{v}_i^{\otimes 2}$ and define ℓ^j as the largest index such that $\lambda_{\ell^j}^j \geq 200d^3/\lambda^2$ (and $\ell^j = 0$ if all eigenvalues of \mathbf{M}^j are less than $200d^3/\lambda^2$). Now define

$$\Delta^{j} = \sum_{i=\ell^{j}+1}^{d} \left(\frac{200d^{3}}{\lambda^{2}} - \lambda_{i} \right).$$

Note that for any fixed i, the ith eigenvalue does not decrease between \mathbf{M}^j and \mathbf{M}^{j+1} . Because of this monotonicity, Lemma 9 implies that for every round j, either

$$\ell^{j+1} \ge \ell^j + 1$$
 or $\Delta^{j+1} \le \Delta^j - \frac{\lambda}{2}$.

Because $\ell^1 \geq 0$ and $\Delta^1 \leq \frac{200d^3}{\lambda^2} \cdot d = \frac{200d^4}{\lambda^2}$, this implies that after $\frac{200d^4}{\lambda^2} + d$ applications of Lemma 9, either $\ell^j = d$ or $\Delta^j = 0$. This means that after $\frac{400d^4}{\lambda^2} + d$ applications of Lemma 9, the smallest eigenvalue of \mathbf{M}^j must be at least $200d^3/\lambda^2 \geq \lambda$. However, this means that the algorithm must terminate before round $400d^4/\lambda^3 + d$. Therefore, the number of iterations of the while loop on Line 8 is less than $O(d^4/\lambda^3)$. Putting everything together, the total number of steps needed for λ -exploration is upper bounded by

$$O\left(\log\left(\frac{1}{c_{v}\epsilon_{d}c_{d}}\right)\left(\frac{d}{\lambda c_{v}^{2}} + \frac{1}{\lambda c_{d}^{2}}\right)\right) \cdot O\left(\frac{d^{4}}{\lambda^{3}}\right) = O\left(\log\left(\frac{1}{c_{v}\epsilon_{d}c_{d}}\right)\left(\frac{d^{5}}{\lambda^{4} c_{v}^{2}} + \frac{d^{4}}{c_{d}^{2}\lambda^{4}}\right)\right). \quad \Box$$

L Proof of Proposition 5

Proof of Proposition 5. First, for any unit vector \mathbf{v} , we have $B_{r/3}(2r\mathbf{v}/3) \subseteq \mathcal{K} \subseteq B_1(0)$. Therefore

$$\mu(B_{r/3}(2r\mathbf{v}/3)) = \text{Vol}(B_{r/3}(2r\mathbf{v}/3))/\text{Vol}(\mathcal{K}) \ge \text{Vol}(B_{r/3}(2r\mathbf{v}/3))/\text{Vol}(B_1(0)) = (r/3)^d$$
.

Since $\langle \mathbf{x}, \mathbf{v} \rangle \geq r/3$ for all $\mathbf{x} \in B_{r/3}(2r\mathbf{v}/3)$, this confirms the values $(c_d, \epsilon_d) = (r/3, (r/3)^d)$.

The bound on c_v follows by [Sellke, 2023, Lemma 3.2] and Jensen's inequality since \mathcal{K} has width at least 2r in any direction. The bound on K is trivial since $2e^{-(t/1.25)^2} \geq 1$ for $|t| \leq 1$.

M Proof of Proposition 6

We first recall several useful facts on log-concave distributions. Throughout we take μ to be α -log-concave and β -log-smooth with mode \mathbf{x}^* and mean $\bar{\mathbf{x}}$, possibly in dimension 1. (The proof will use 1-dimensional projections of the original measure μ .) We will write $\mathbf{x} \sim \mu$ instead of $\ell^* \sim \mu$.

Fact 27 ([Dwivedi et al., 2019, Lemma 5], [Durmus and Moulines, 2019, Theorem 1]). For $x \sim \mu$, we have $\mathbb{E}[\|x - x^*\|^2] \leq 1/\alpha$ and with probability $1 - \delta$:

$$||x - x^*||_2 \le 2\alpha^{-1/2} \left(1 + \sqrt{\frac{\log(1/\delta)}{d}} + \sqrt[4]{\frac{\log(1/\delta)}{d}} \right).$$

Fact 28 ([Chewi and Pooladian, 2023, Lemma 2]). We have the covariance bounds

$$\frac{I_d}{\alpha d} \succeq Cov(\mu) \succeq \frac{I_d}{\beta d}.$$
 (18)

Fact 29. Any 1-dimensional projection of μ is also αd -log-concave and βd -log-smooth.

Proof. Preservation of strong log-concavity under projection is well known, see e.g. [Saumard and Wellner, 2014, Theorem 3.8]. For log-smoothness, supposing for convenience that the projection is onto the first coordinate axis, the claim is proved by the following standard computation. With $e^{-f(\mathbf{x})}$ the density of μ and $e^{-g(x)}$ the density of the projection of μ to the first coordinate axis, one may compute as in [Saumard and Wellner, 2014, Proof of Proposition 7.1] that

$$g''(x) = \mathbb{E}^{\mu}[\partial_{1,1}f(\mathbf{x})|x_1 = x] - \operatorname{Var}^{\mu}[\partial_1f(\mathbf{x})|x_1 = x] \le \mathbb{E}^{\mu}[\partial_{1,1}f(\mathbf{x})|x_1 = x] \le \beta d.$$

This completes the proof.

Proof of Proposition 6. We have $c_v \ge \frac{1}{\beta d}$ directly from (18).

For ϵ_d , let $\bar{\mathbf{x}}$ be the mean under μ and note that from (18), we find

$$\begin{split} \|\bar{\mathbf{x}} - \mathbf{x}^*\| &= \sup_{\|\mathbf{w}\| = 1} \langle \bar{\mathbf{x}} - \mathbf{x}^*, \mathbf{w} \rangle \\ &= \sup_{\|\mathbf{w}\| = 1} \mathbb{E}^{\mathbf{x} \sim \mu} [\langle \mathbf{x} - \mathbf{x}^*, \mathbf{w} \rangle] \\ &\leq \sqrt{\sup_{\|\mathbf{w}\| = 1} \mathbb{E}^{\mathbf{x} \sim \mu} [\langle \mathbf{x} - \mathbf{x}^*, \mathbf{w} \rangle^2]} \\ &\leq \sqrt{\langle \text{Cov}(\mu), \mathbf{w}^{\otimes 2} \rangle} \\ &< 1/\sqrt{\alpha d}. \end{split}$$

Fixing a unit vector \mathbf{v} as in Assumption 3, we consider the projection P onto the 1-dimensional subspace spanned by \mathbf{v} , and let $P(\mu)$ be the pushforward of μ under the projection (to which Fact 29 applies). Identifying $P(\mathbb{R}^d)$ isometrically with \mathbb{R} , let \hat{x} be the mode of $P(\mu)$. Then the same argument as above applies to $P(\mu)$ shows $\|P(\bar{\mathbf{x}}) - \hat{x}\| \leq 1/\sqrt{\alpha d}$, and so

$$\|\hat{x}\| \le \|\mathbf{x}^*\| + \frac{2}{\sqrt{\alpha d}} \le \gamma + \frac{2}{\sqrt{\alpha d}}.$$

(Note that if $\bar{\mathbf{x}} = 0$ then this shows $\|\hat{x}\| \le 1/\sqrt{\alpha d}$, which following the arguments below leads to $\epsilon_d \ge \Omega(1)$ as mentioned below Proposition 6.)

Write $f: \mathbb{R} \to \mathbb{R}_+$ for the density of $P(\mu)$, and $g(x) = \log f(x)$. We have $f'(\hat{x}) = 0$ and so $g'(\hat{x}) = 0$ also. By Fact 29, we have $g''(x) \in [-\beta d, -\alpha d]$ for all x, so for $x \ge \hat{x}$ we have:

$$g'(x) = g'(x) - g'(\hat{x}) = \int_{\hat{x}}^{x} g''(y) dy \in [-\beta d(x - \hat{x}), -\alpha d(x - \hat{x})].$$

Integrating again, we find

$$g(x) - g(\hat{x}) = \int_{\hat{x}}^{x} g'(y)dy \in [-\beta d(x - \hat{x})^{2}/2, -\alpha d(x - \hat{x})^{2}/2].$$

Identical reasoning gives the same conclusion for $x \leq \hat{x}$. Translating back to $f = e^g$, we conclude that for each $x \in \mathbb{R}$:

$$e^{-\beta d|x-\hat{x}|^2/2} \le \frac{f(x)}{f(\hat{x})} \le e^{-\alpha d|x-\hat{x}|^2/2}.$$

It follows that for $\mathbf{x} = \boldsymbol{\ell}^* \sim \mu$ and $x \sim P(\mu)$:

$$\Pr[\langle \mathbf{v}, \mathbf{x} \rangle \ge c_d] \ge \Pr[x \ge \gamma + \frac{2}{\sqrt{\alpha d}} + c_d].$$

Letting $J = \gamma + \frac{2}{\sqrt{\alpha d}} + c_d$, the latter probability is at least

$$\frac{\int_{J}^{\infty} e^{-\beta dz^{2}/2} dz}{\int_{\mathbb{R}} e^{-\alpha dz^{2}/2} dz} = \sqrt{\alpha/\beta} \cdot \Phi^{C}(J\sqrt{\beta d}) \ge \frac{J e^{-J^{2}\beta d/2} \sqrt{\alpha d}}{(1 + J^{2}\beta d)\sqrt{2\pi}}.$$

The last inequality follows from the classical bound $\Phi^C(\kappa) \geq \frac{\varphi(\kappa)\kappa}{1+\kappa^2}$ where φ is the standard Gaussian density Gordon [1941]. This confirms the value of ϵ_d .

For K we consider a similar projection, and note that by Fact 29 and the Bakry-Emery theory for strongly log-concave measures (see e.g. [Anderson et al., 2010, Lemma 2.3.3], we have

$$\mathbb{E}[e^{\lambda\langle \mathbf{v}, \mathbf{x} - \bar{\mathbf{x}} \rangle}] \le e^{\lambda^2 \alpha d/2}, \quad \forall \lambda \in \mathbb{R}.$$

Thus with $J_0 = \gamma + \frac{1}{\sqrt{\alpha d}} \ge \|\langle \bar{\mathbf{x}}, \mathbf{v} \rangle\|$, we have (using $\lambda J_0 \le \frac{1 + \lambda^2 J_0^2}{2}$):

$$\mathbb{E}[e^{\lambda \langle \mathbf{v}, \mathbf{x} \rangle}] \le e^{(\lambda^2 \alpha d/2) + \lambda J_0} \le e^{0.5} \cdot e^{\lambda^2 (J_0^2 + \alpha d)/2} \le 2e^{\lambda^2 (J_0^2 + \alpha d)/2}.$$

It follows by the usual Markov inequality arguments that

$$\Pr[|\langle \mathbf{v}, \mathbf{x} \rangle| \ge t] \le 4e^{-\frac{t^2}{2(J_0^2 + \alpha d)}}.$$

Since probabilities are at most 1 and $a \le \sqrt{a}$ for $a \le 1$ we find

$$\Pr[|\langle \mathbf{v}, \mathbf{x} \rangle| \ge t] \le 2e^{-\frac{t^2}{4(J_0^2 + \alpha d)}}$$

which completes the verification of K since $(J_0^2 + \alpha d)^{1/2} \leq J_0 + \sqrt{\alpha d}$.

For the counterexample, we may take $(\alpha,\beta)=(1,2)$ and let ν be the distribution on $\mathbb R$ with density proportional to $e^{-dx^2\cdot(1+1_{x\geq 0})/2}$. Then let $\mu=\nu^{\otimes d}$, so that $x\sim\mu$ has IID coordinates with law ν . Then the mode $\mathbf x^*$ is indeed zero but the mean of ν is non-zero, so taking $\mathbf v=(1,1,\dots,1)/\sqrt{d}$, a Chernoff estimate shows $\Pr^{\mathbf x\sim\mu}[\langle\mathbf x,\mathbf v\rangle\geq 0]\leq e^{-\Omega(d)}$.