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ABSTRACT

We present a neural network architecture based on bidirectional LSTMs to com-
pute representations of words in the sentential contexts. These context-sensitive
word representations are suitable for, e.g., distinguishing different word senses
and other context-modulated variations in meaning. To learn the parameters of
our model, we use cross-lingual supervision, hypothesizing that a good represen-
tation of a word in context will be one that is sufficient for selecting the correct
translation into a second language. We evaluate the quality of our representations
as features in three downstream tasks: prediction of semantic supersenses (which
assign nouns and verbs into a few dozen semantic classes), low resource machine
translation, and a lexical substitution task, and obtain state-of-the-art results on all
of these.

1 INTRODUCTION

Distributed representations of words, which represent each word as a vector in a low-dimensional
space, can be learned from unannotated text corpora using a variety of techniques (Mikolov et al.,
2013; Pennington et al., 2014; Landauer & Dumais, 1997). The value of such representations owes
to their ability to capture intuitive notions of syntactic and semantic similarity as geometric local-
ity. Despite their empirically proven value as a source of features in many downstream applica-
tions (Turian et al., 2010), the “one word type, one vector” assumption made by most word repre-
sentation models is problematic because words may have multiple meanings.

Two standard solutions to this problem exist. The first to treat each word as a collection of discrete,
mutually exclusive senses which are individually represented as vectors (Tian et al., 2014; Neelakan-
tan et al., 2014; Wu & Giles, 2015; Huang et al., 2012; Jauhar et al., 2015). However, identifying the
appropriate sense granularity in such models is difficult in practice and in theory (Kilgarriff, 1997;
Erk et al., 2013). The second solution, which is the basis of this work, eschews sense inventories
(whether latent or explicit) and says that lexical meaning is a function of word and its context (Erk
& Padó, 2008; Kintsch, 2001; Mitchell & Lapata, 2008). While previous work has hinted at the
promise of this solution, only a small number of hand-crafted word–context composition functions
have been considered thus far in the literature on semantic representation learning. This is surprising
given the success of learning composition functions for computing phrase and sentence representa-
tions (Socher et al., 2011; Kalchbrenner et al., 2014).

There are two central challenges faced by learning to represent words in context. The first is to
identifying a suitable function class for the composition function. Such a function must be able to
account for the fact that a single word type may have both several completely unreleated meanings
as well as a several more or less distinct but still related meanings (Cruse, 2000). For an example of
the former, the word plant may refer, depending on context, to a factory or to a living organism that
photosynthesizes. For an example of the latter, the word bank may refer to a financial institution or
the building housing a financial institution. Since bidirectional RNN-LSTMs have been shown to be
able to learn both compositional (Bahdanau et al., 2014) as well as more arbitrary relationships (Ling
et al., 2015), we use these as our composition function class (§2).
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The second challenge is to identify an appropriate supervisory signal that will be used to fit the
parameters of the function. Our motivating hypothesis—which follows a long line of work in using
parallel data as a source of information about semantics (Bannard & Callison-Burch, 2005; Resnik
& Yarowsky, 1999; Diab, 2003; Faruqui & Dyer, 2014; Hermann & Blunsom, 2014)—is that a good
representation of a word in context will be one that predicts how that word (in its sentential context)
translates into a second language (§3). We show that word-in-context representations can be learned
efficiently from pairs of words-in-context and single word translations into a second language which
are extracted from parallel corpora using a word alignment model.

To evaluate our proposed model and training criterion, we evaluate our learned representations as
features in three tasks: supersense tagging, low-resource machine translation (i.e., translation where
limited parallel data is available), and a lexical substitution task. Success in each of these requires
models that can effectively capturing the meaning of a word in context, and in each, we show our
model obtains state-of-the-art performance (§4). Additionally, the feedforward neural net model
we use as a baseline for supersense tagging outperforms existing baselines even without our new
word-in-context model.

2 MODEL

Our model for contextual words is a bidirectional sequence model based on recurrent neural net-
works (Chan et al., 2015; Bahdanau et al., 2014; 2015, inter alia). Intuitively, this model allows
us to condition on arbitrarily long dependencies while having an implicit bias toward more local
contexts.

Let w = (w1, w2, . . . , wn) be the words in a sentence with length n. We also project all words
into a fixed d-dimensional vectors x = (x1,x2, . . . ,xn), using a (one-word-per-type) word lookup
table.

The model encodes each token of the sentence from left to right according to the standard Long-short
term memory recurrences:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ot � tanh(ct)

This yields a representation
−→
ht for each position in the sentence t which can be interpreted as the

representation of word with its left context w1, w2, . . . , wt. The same process is repeated from right
to left, yielding a vector

←−
ht. The concatenation of these two vectors

ht = [
−→
ht;
←−
ht],

is our word-in-context representation.

2.1 MODEL INTUITION

Type-level word embeddings must necessarily represent information about multiple senses in a sin-
gle vector, and our task is to obtain. To obtain a representation of a word in its context, we want to
apply functions which mask or scale some dimensions of the vector according to its context. Thus,
functions which apply same scaling function even the word and context are different, average and
multi-layer perceptron for example, may not be suitable. The input gate in Long-short term memory
is considered to be a suitable scaling function which take target word and its context (xt,ht, ct−1).
Figure 1 show a simplified version of operation to modulate one sense (vegetable plant) from am-
biguous type level vector with semantic mask which is conditioned on word and context.

3 MEANING AND TRANSLATION

We now require a training objective that provides supervision for learning the parameters of this
model. The question we want to answer is: what is a suitable proxy (or “grounding”) for the mean-
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semantic mask word in context

Green plant

type level word representation

×

Figure 1: Description of the operation to modulate sense from ambiguous type level vector.

ings of words in context that we can use to construct token-level (rather than type-level) word repre-
sentations?

To illustrate the problem we wish to solve, consider the meaning of the token bank in the following
sentences:

• I went to the bank to deposit my paycheck.

• I went to the river bank to eat some lunch.

One very productive strategy for learning semantic word embeddings is to rely on the distributional
hypothesis (Harris, 1954), according to which semantically similar items occur in similar contexts.
The distributional hypothesis is, furthermore, practically appealing since it enables semantics to be
learned from large, unannotated text corpora.

Despite the empirical success of the distributional hypothesis at obtaining representations of word
types, creating a representation of word tokens in terms of context is conceptually unappealing since
both the item being embedding and its context potentially share material. One possible solution
would be an autoencoding objective, or one might also distinguish between “narrow” and “wide”
context (i.e., one that determines the item being embedding and one that provides supervision).1

However, we instead advocate using an alternative proxy for meaning: how words translate. Con-
sider the two examples from above as they might be translated into French.

• Je suis allé à la banque pour déposer mon chèque de paie.

• Je suis allé sur la rive pour le déjeuner.

The homonymous (i.e., having two completely unrelated senses) word bank has been translated into
two different words banque and rive in French.

Finally, while not quite so copious as monolingual corpora, parallel data exist in convenient elec-
tronic form in abundance, and this provides a rich resource for learning about the semantics of
natural language.

3.1 OBJECTIVE & PARAMETER LEARNING

To operationalize our hypothesis that translation provides a good supervisory signal for learning
semantic representations, we learn the parameters of source language word type embeddings and
the composition function (i.e., the parameters of the bidirectional LSTMs) by using the computed
representation to compute the lexical translation probability of a word in context. That is, we use
the computed token embedding to define a probability estimate that a source language word et in
context c = (e1, . . . , et−1, et+1 . . . , en) translates into a second language as f in vocabulary F . i.e.,
p(f | et, c).

1For example, Mikolv et al. (2013) showed that short multiword expressions could be embedding by using
the “wider” context that they occur in.
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This is done by performing a softmax over the target vocabulary with the representation of the word
ht, as defined in the previous section. That is, we compute

u = Rht + b′

p(f | et, c) =
exp(uf )∑

f ′∈F exp(uf ′)
,

where parameters R and b′ define the projection of the source word with context representation ht

onto the target vocabulary F .

To obtain pairs of words in context and their lexical translations into a second language, we use un-
supervised word alignment techniques (Dyer et al., 2013), to obtain high precision word alignments
from a parallel corpus. While modeling alignments as latent variables, or using a soft attention
mechanism would be a reasonable alternative, word alignment is fast and the proposed training
objective to be easily scaled to large corpora.

Figure 2 illustrates the pre-training architecture.

<s> The plant grows </s>

…..

pla
nte

entreprise

Word in Context  (        ) 

~~
~ ~

Lexical Translation ( FR )

ht

Figure 2: Description of cross lingual pre-training model.

3.2 PARAMETER LEARNING

The model parameters W and b as well as the word projection parameters Ve are first pre-trained
with the objective function:

L = −
∑
(f ,e)

log p(f | e, c)

That is, we wish to find the parameters that maximize the lexical translation log probability over the
whole parallel corpus of lexical translations (f ) of a source word (e) in context (c).

When we want to transfer the model to another supervised task to predict label s ∈ S for a word e in
context c, the final values of the W and b parameters are transferred and formulate a similar model
to predict label s. Using the transformation matrix S ∈ R|S|×dh and the biases b′′ ∈ R|S|, we may
define the label probability as

u′ = Sht + b′′

p(s | et, c) =
exp(u′s)∑

s′∈S exp(u
′
s′)
.

the model is training by maximizing the log likelihood of the observed label in the task.

L′ = −
∑
(s,e)

log p(s | e, c) (1)
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Table 1: Summary of parallel data.

Dataset Data Source Vocabulary Token Sentence
Source Target Source Target

EN-FR europarl-v7 93,393 139,934 50,586,497 52,900,470 1,835,733
EN-DE europarl-v7 93,033 323,367 48,625,466 46,484,368 1,763,744
EN-CS europarl-v7 51,833 164,770 16,150,983 13,785,699 594,158
EN-FI europarl-v7 91568 630184 48,584,379 34,819,783 1,779,397
EN-MG CMU 57,668 76,469 1,592,66 2,023,336 80,306
EN-UR NIST MT08 43,524 44,566 1,055,030 1,180,031 161,173

4 EXPERIMENTS

We now turn to a series of experiments to show the value of learning representations of words in
context according to the objective above. Our paradigm will be to pre-train using the objective
above the parameters of a word-in-context model, and then use these (without further fine tuning)
in downstream tasks: prediction of semantic supersenses (which assign nouns and verbs into a few
dozen semantic classes), low resource machine translation, and a lexical substitution task.

4.1 MODEL CONFIGURATION AND PRE-TRAINING

To pre-train our model, we extracted words (e) in contexts and translations (f ) from the Europ-
erl parallel corpus (Koehn, 2005). We conducted experiments with the following four languages:
French (FR), German (DE), Czech (CS), Finnish (FI) which are quite typologically diverse. Table1
shows the numbers of parallel sentences and the numbers of words. For each language pairs, we
used 2000 sentences for development and the rest were used for training.

After normal tokenization, we obtained alignments with fast-align tool (Dyer et al., 2013). Since
we are modeling single word translations and want high-quality training instances, we run the align-
ment model in both directions and obtained symmetric alignments by taking intersection between
forwards and backward alignments. To control the size of vocabulary, we took 30,000 most com-
mon words. For target languages, we removed 10 most common words. The words not in the
vocabularies are replaced with 〈unk〉 token. We used sentences which have more than 10 words in a
sentence.

We used 300 dimension embeddings for source language, and bi-directional LSTMs have 300 hidden
units. The trained parameters are source embedding, weights and bias in the model.

We randomly initialized source word embeddings sampled from uniform distribution from −0.08
to 0.08. All recurrent materices with orthogonal initialization (Saxe et al., 2013), and non-recurrent
weights are initialized from scaled uniform distribution (Glorot & Bengio, 2010). Mini-batches of
size 128 are used. We used Adam algorithm for optimization (Kingma & Ba, 2014). We trained
models with early-stopping. The perplexities on development data for English to French, German,
Czech and Finnish are 3.80, 6.49, 6.30, 19.25 respectively.

4.2 SUPERSENSE TAGGING

Supersenses can be thought of a generalization of words senses into a universal inventory of seman-
tic types. That is, as the number of word senses tend to be too numerous for existing models to
generalize properly with the small amounts of data available, supersenses address this problem by
clustering all senses into a tractable set of tags. Table 4.2 show examples of supersense tags and
its definition. As such, these are generally used in semantically oriented downstream tasks such as
co-reference resolution (O’Connor & Heilman, 2013) and question answering (Pasca & Harabagiu,
2001).

Following previous work, we trained our supersense tagger for nouns and verbs on the Semcor
dataset. The Semcor datasets consists of three parts, brown1, brown2, and brownv. We mixed
these three parts and trained supersense tagger on randomly split 4/5 of data and the rest were used
as a development set. We evaluated our model on the held-out SensEval-3 all-words task (Mihalcea
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et al., 2004), as done in previous work on supersense tagging (Ciaramita & Altun, 2006; Yuret &
Yatbaz, 2010). Since some tokens are annotated with two labels in ambiguous cases, we followed
the heuristics of only using the first sense in the data as the correct synset/supersense (Ciaramita &
Altun, 2006). To extract supersenses from the Semcor data, we used WordNet version 2.0 synsets.

To avoid the computational overhead of reading extremely wide contexts, we used sliding window
to delimit the range of contexts as in (Collobert et al., 2011), that is, each token wt is embedded
using a context window of words wt−n/2, . . . , wt, . . . , wt+n/2. The window size n was fixed to 20.

We use the pre-trained parameters and we put a new task specific softmax leyer on top of the hidden
units (Fig.2). We updated all parameters including pre-trained parameters. The weights in the
softmax layer were initialized from the scaled uniform distribution (Glorot & Bengio, 2010). Mini-
batches of size 128 were used with the Adam update rule (Kingma & Ba, 2014).

Since this task has not previously been studied using neural networks, we also report several novel
baselines: (1) multi-layer perceptron model which uses a concatenation of a source word type vector
and the average of all word type vectors in its context; (2) a forward-only LSTM model; and (3)
a bi-directional LSTM with random initialization (rather than cross-lingual pretraining). For fair
comparison in terms of the size of word in context representation, we double the hidden unit size of
the forward LSTM model.

Supersense Nouns denoting Supersense Verbs denoting
act acts or actions change size, temperature change
artifact man-made objects communication telling, asking, ordering, singing
feeling feelings and emotions possession buying, selling, owning
group groupings of people or objects plant plants
location spatial position social political and social activities

Table 2: Examples of Noun and Verb Supersenses

4.3 LEXICAL TRANSLATION IN LOW RESOURCE LANGUAGE

We investigate the benefit to transfer cross lingually pre-trained word-in-context representation to
translation in low-resource language. Since low-resource languages do not have enough data to
adequate estimate translation probabilities, we hope that we can learn more effective mappings with
pre-trained word-in-context embeddings (Chahuneau et al., 2013).

We trained lexical translation model, which predict translation of aligned English sentence, for low
resource languages, Malagasy and Urdu on top of the pre-trained word in context model. Table 1
shows the numbers of parallel sentences and the number of words. We used a dataset used in (Dou
et al., 2014) for Malagasy and the Urdu data we used is a part of NIST MT evaluation in 2008-20122.
We used 2000 sentences for development and hold-out test set. We filtered out sentences which have
less than 3 words for pre-training and words occur less then 1 time are replaced with 〈unk〉 token.

We trained our baseline system with cdec (Dyer et al., 2010) and obtained synchronous context-free
grammars rules to translate sentences. We added features, translation probability and log translation
probability from our translation model and optimized the parameters of a machine translation system
with MIRA, Margin-Infused Relaxed Algorithm (Crammer & Singer, 2003).

4.4 LEXICAL SUBSTITUTION

Lexical substitution is the problem of identifying meaning-preserving substitutes for a target word
given a sentential context. The task was introduced in SemEval-2007 (McCarthy & Navigli, 2007)
involves both finding the synonyms and disambiguating the context. As such, it is an ideal test case
for our representations.

Models are evaluated on their ability to predict the substitutes in the gold standard of the LS-SE
test-set. We evaluated our model on best and best-mode task which evaluate the quality of the best
predictions. The original task allow to make multiple predictions but we only predict only one

2https://catalog.ldc.upenn.edu/LDC2010T21
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Table 3: Summary of results for supersense tagging.

Semcor Senseval3
Method Precision Recall F1 Precision Recall F1
Random 38.2 43.0 40.4 35.8 42.1 38.7
Baseline 63.9 69.3 66.5 60.1 68.7 64.1
HMM 76.7 70.5 77.7 67.6 73.7 70.5
CRF 80.3 80.2 80.2 - - -
MLP 82.0 81.9 81.6 83.6 79.7 81.2
LSTM 82.1 82.6 82.1 83.8 81.9 82.5
bi-LSTM 83.5 84.2 83.6 84.6 82.9 83.3
bi-LSTM (FR) 84.8 85.0 84.7 85.8 82.8 84.0
bi-LSTM (DE) 85.2 85.2 85.0 86.2 82.7 84.1
bi-LSTM (CS) 84.9 85.0 84.7 85.9 82.8 84.1
bi-LSTM (FI) 85.0 85.1 84.8 85.9 82.4 83.9
bi-LSTM (average) 85.0 85.1 84.8 86.0 82.7 84.0

Table 4: Summary of results for Translation in low resource Languages.

MG UR
Method Perplexity ↓ BLEU ↑ Perplexity ↓ BLEU ↑
bi-LSTM (random init) 16.17 21.7 30.87 21.2
bi-LSTM (FR) 12.80 21.9 26.84 21.7
bi-LSTM (DE) 12.97 21.9 26.38 21.4
bi-LSTM (CS) 13.05 22.0 26.21 21.4
bi-LSTM (FI) 13.07 22.0 25.96 21.5
bi-LSTM (average) 12.97 22.0 26.34 21.5

substitution following (Melamud et al., 2015). This task is challenging, since it requires to find the
best substitutes from entire word vocabulary.

The way to make prediction is the following. Given a target word and it’s context, we infer word in
context representation of all possible substitutions. Then take one of the most similar words which
have highest cosine similarity with target word in context vector as prediction.

For our experiments, we used a simple word alignment base candidate generation to reduce inference
time. For a target word in English, we collect all possible French translations from word alignment
and took English words 90% most frequently aligned to the French words as candidates. We used
same candidates for all our experiments including baseline for fair comparison.

5 RESULT

5.1 SUPERSENSE TAGGING

Table 3 shows frequency weighted Precision, Recall F1 score3 on Semcor test set and Senseval3
all-words task. Our bidirectional LSTM model (bi-LSTM) outperformed the first sense heuristic
baseline, the perceptron trained Hidden Markov Model proposed in (Ciaramita & Altun, 2006). And
our new word-in-context pre-training model result in further improvements with all language pairs.
The averaged score of 4 cross lingually pre-trained models, as in bi-LSTM (average), shows signifi-
cant improvements over bi-LSTM. The model pre-trained with German achieved best result F1 84.1
on senseval3. Additionally, the baseline neural network models outperforms existing baselines even
without cross lingual supervision.

3it can result in an F-score that is not between precision and recall.
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Table 5: Summary of results for Lexical Substitution.

Method best ↑ best mode ↑
Base 7.81 13.41
Mult 6.64 10.89
BalMult 8.09 13.41
Add 7.37 12.11
BalAdd 8.14 13.41
Skipgram (baseline) 7.77 13.16
bi-LSTM (FR) 9.54 15.79
bi-LSTM (DE) 10.63 18.09
bi-LSTM (CS) 9.74 16.04
bi-LSTM (FI) 8.51 12.99
bi-LSTM (average) 9.60 15.73

Table 6: Disambiguation with multilingual supervision.

Sentence Translation candidate for plant
They built a large plant to manufacture automobiles. usine, installation, plante, centrale
Let’s plant flowers in the garden. plantes, planter, végétal, végétale, cultiver

5.2 LEXICAL TRANSLATION IN LOW RESOURCE LANGUAGE

Table 4 shows results on machine translation in low resource language. We report the averaged
BLEU score of 5 runs to avoid optimizer randomness Clark et al. (2011). The result show large
improvement on perplexity and consistent improvement on BLEU in all language pairs. The average
score of 4 cross lingually trained model improved perplexity by around 3 points and BLEU score by
0.3.

5.3 LEXICAL SUBSTITUTION

Table 5 shows results on lexical substitution task. Since our word-in-context representations are
build only on Europerl parallel corpora, the baseline system is Skipgram word embedding trained
on English side of EN-FR parallel corpora, which is the largest in the corpus. The Skipgram model
which take most similar word as prediction is context in-sensitive baseline. Also we compared our
results with various context sensitive models, which take arithmetic mean (as in Add and BalAdd)
and a geometrical mean (as in Mult and BalMult) of embeddings, proposed by (Melamud et al.,
2015). They trained their baseline embeddings (as in Base) on a two billion word web corpus,
ukWaC (Ferraresi et al., 2008).

The model achieved best measures4 10.63, best mode measure 18.90 with German supervision. And
the second best result was obtained with Czech. As for comparison with Melamud et al. (2015), we
cannot compare score directly since we used different corpus and candidate generation. We should
compare performance gain by taking into account context. Their best model (BalAdd) achieved 0.33
performance gain with context where our model achieved 2.9 performance gain on best evaluation.

6 DISCUSSION

We proposed the model to predict lexical translation to build word-in-context representation. Ta-
ble. 6 shows example of disambiguation with translation model in order of translation pribability.
The model correctly disambiguate industrial plant (usine in French), and vegetable plant (plantes
in French). Figure 3 shows the effect of pre-trained word-in-context representation for downstream
tasks. Pre-trained model start from low perplexities at the first update and converged earlier, in two
epochs, for low resource machine translation.

4evaluation was done by a script provided by the task organizer.
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Figure 3: Effect of cross-lingual pre-training for supersense tagging (left) and for low resource
machine translation (right). Orange lines are the result from the model pre-trained with French.

We investigated the effect of 4 linguistically diverse language. The results shows the benefit of
cross-lingual pre-training in all languages, but overall the model trained with German have stable
results and the model trained with Finnish tend to underperform others, especially on lexical substi-
tution task where we do not have supervised fine-tuning process. This is probably because the large
vocabulary of Finnish which is two times bigger than German.

7 RELATED WORK

Word representation. Distributed word representations were successfully applied to several
downstream tasks such as chunking, parsing, sentiment analysis and paraphrase detection. Most
of the tasks requires to use not only word representation but representation of phrases or documents.
In the previous works, many architectures were proposed to learn and use word representation. In
the sequence modeling problems such as BIO chunking, conditional random fields and recurrent
neural networks are applied to represent a sequence of word representations (Turian et al., 2010;
Mesnil et al., 2013). For classification tasks such as document classification, sentiment analysis,
paraphrase detection, summation of word embeddings (Lauly et al., 2014), convolutional neural net-
works (Kalchbrenner et al., 2014) and recursive networks (Socher et al., 2013; Cheng & Kartsaklis,
2015) were proposed to represent compositionality function of words.

Learning semantics from parallel data. Previous works show methods to improve word or doc-
ument level representation by incorporating multilingual context. Faruqui & Dyer (2014) proposed
canonical correlation analysis (CCA) based method to improve the quality of type level representa-
tion by projecting word representations of translation pairs (obtained by automatic word alignments)
to be maximally correlated in common vector space. Hermann & Blunsom (2013) propose compo-
sitional vector space model (CVM) to build sentence representation. They represent a sentence as
the sum of its word representations and they train word representation by constraining the represen-
tations of parallel sentences to be close. Coulmance et al. (2015) shows that predicting context in
target language is an effective way to train word representation shared across languages. Hill et al.
(2014) investigated the quality of word embedding learned by neural machine translation model and
show its benefit on tasks that require modeling word similarity.

Compositional vector models. Most prior work on compositional vector models has looked pri-
marily at the problem of computing representations of complete phrases rather than specifically
words in context. Furthermore, one can learn reasonable generalizations from models that condition
on and the generate text using an autoencoding objective (Socher et al., 2011). Dhillon et al. (2012)
make the intriguing proposition that left- and right- contexts can be used to supervise each other.
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