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Abstract
This paper considers the sample-efficiency of
preference learning, which models and pre-
dicts human choices based on comparative judg-
ments. The minimax optimal estimation error rate
Θ(d/n) in classical estimation theory requires
that the number of samples n scales linearly with
the dimensionality of the feature space d. How-
ever, the high dimensionality of the feature space
and the high cost of collecting human-annotated
data challenge the efficiency of traditional esti-
mation methods. To remedy this, we leverage
sparsity in the preference model and establish
sharp error rates. We show that under the sparse
random utility model, where the parameter of the
reward function is k-sparse, the minimax optimal
rate can be reduced to Θ(k/n log(d/k)). Further-
more, we analyze the ℓ1-regularized estimator and
show that it achieves near-optimal rate under mild
assumptions on the Gram matrix. Experiments on
synthetic data and LLM alignment data validate
our theoretical findings, showing that sparsity-
aware methods significantly reduce sample com-
plexity and improve prediction accuracy.

1. Introduction
1.1. Motivation

Preference learning focuses on modeling and predicting
subjective choices or priorities from empirical comparative
data to support tasks such as decision-making, ranking, and
recommendation. For example, commercial recommender
systems select items from a set of candidates based on user
preferences (Resnick & Varian, 1997; Rendle et al., 2009;
He et al., 2017). Similarly, information retrieval systems can
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leverage user clickthrough data from search-engine query
logs to improve the relevance of retrieved results (Joachims,
2002; Burges et al., 2005; Liu et al., 2009). More recently,
large language models (LLMs) are often pretrained on large-
scale internet data, which may contain harmful or biased
content, making direct deployment risky. Learning from hu-
man preferences is thus adopted to align pretrained models
with human values and objectives (Christiano et al., 2017;
Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022).

Preferences among alternatives can be represented by a
real-valued utility function, where a higher function value
corresponds to a more preferred option, provided that the
preference relation is complete, transitive, and continuous,
according to Debreu’s representation theorem (Debreu et al.,
1954). Moreover, to account for inconsistencies and random-
ness in human decision-making—arising from subjective
interpretations, ambiguous guidelines, and fluctuating fo-
cus—a deterministic utility function can be extended to a
stochastic utility model, in which the probability of choos-
ing one alternative is higher when its utility is greater. This
paper focuses on learning preferences by training a parame-
terized random utility model.

A major challenge in preference learning is the high cost of
collecting human preference data (Gao et al., 2023; Wang
et al., 2023; Mahan et al., 2024). For example, aligning
LLMs with human values requires a significant amount
of samples labeled by experienced human annotators who
select the most “helpful” and “harmless” response among
all candidates. This difficulty is compounded by the fact that
alternatives often lie in feature spaces whose dimensionality
d far exceeds the number of available samples n, leading
to high estimation error Θ(d/n) for prevalent maximum
likelihood methods (Shah et al., 2016; Faury et al., 2020;
Saha et al., 2023; Zhu et al., 2023).

While alternatives may have thousands of attributes (di-
mensions), human preferences are usually driven by only a
small set of critical factors in a given context. For instance,
when a user selects among smartphones, the decision might
hinge primarily on price, camera quality, and UI design,
whereas many other attributes (e.g., place of manufacture)
may have little influence for that user. Similarly, a reader’s
preference over articles may depend solely on the presence
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Table 1. Estimation error rates for preference learning in non-sparse and sparse settings with error metric
∥ · ∥2Σ. Notation: d is the ambient dimension, k is the sparsity level, and n is the sample size.

Non-Sparse Settings Minimax Optimal Θ
(
d
n

) †

Sparse Settings

Minimax Optimal Θ
(

k log(d/k)
n

)
Theorem 3.1 and 3.2

ℓ1-Regularized (Slow) O
(√

k log d
n

)
Theorem 3.3

ℓ1-Regularized (Fast) O
(

k log d
n

)
Theorem 3.4

†
(Shah et al., 2016; Faury et al., 2020; Saha et al., 2023; Zhu et al., 2023).

of a few key words. When the feature vector is a binary
indicator over a large vocabulary, the reward parameter is
naturally sparse. Moreover, in many modern applications,
such as LLM alignment or recommendation systems, feature
spaces often contain thousands to millions of dimensions,
rendering identifying relevant features beforehand imprac-
tical. The concept of sparsity offers a promising way to
address the above challenges. Building on this idea, the
well-established field of compressed sensing demonstrates
how leveraging sparsity can significantly reduce sample
complexity (Donoho, 2006; Candes & Tao, 2006; Tropp
& Gilbert, 2007; Ye & Zhang, 2010; Rigollet & Tsybakov,
2011; Raskutti et al., 2011; Verzelen, 2012; Candes & Dav-
enport, 2013), making sparsity-aware approaches particu-
larly promising for preference learning. Despite successes
in other domains, the theoretical and empirical foundations
of sparsity in preference learning remain underdeveloped,
pointing to a rich area for further study.

1.2. Contribution

In this paper, we focus on the problem of sample-efficient
estimation for preference learning models. Since the sam-
ple complexity scales linearly with the ambient dimension
(Shah et al., 2016; Faury et al., 2020; Saha et al., 2023;
Zhu et al., 2023), the high dimensionality of the ambient
space poses a bottleneck for accurate estimation. To ad-
dress this challenge, we consider the sparse RUM setting
(see Equation (5) below), where the model parameter is k-
sparse. Under this assumption, we show that the upper and
lower bounds on estimation error rates can be improved with
respect to d. To the best of our knowledge, this work is the
first to theoretically investigate sparsity in preference learn-
ing and analyze its impact on estimation rates. Specifically,
our contributions are as follows.

• Minimax lower bound. We establish an information-
theoretical lower bound of Ω ((k/n) log(d/k)) for the
empirical estimation error in the sparse RUM setting,

contrasting it with Ω(d/n) in the non-sparse setting.

• Minimax optimal rate. We show that an ℓ0-
constrained estimator achieves the minimax-optimal
rate under the common strong log-concavity assump-
tion that covers a class of popular models like Bradley-
Terry-Luce (BTL) model (Bradley & Terry, 1952; Luce,
1959) and Thurstone-Mosteller (TM) model (Thur-
stone, 1994; Mosteller, 2006).

• Upper bounds for the ℓ1-regularized estima-
tor. We show that, with a penalty of Θ(1/

√
n),

the ℓ1-regularized estimator achieves the rate
O
(√

(k/n) log d
)

. Furthermore, under certain as-
sumption on the spectrum of the Gram matrix, it at-
tains a sharper rate O ((k/n) log d), which is nearly
minimax optimal.

• Experimental evaluation. Our experimental evalua-
tions demonstrate that sparsity-aware estimators out-
perform widely used baselines in reward modeling,
evaluated on both synthetic datasets and LLM align-
ment datasets using popular language models.1 These
findings underscore the potential of sparsity-aware
approaches in preference-based tasks, including rein-
forcement learning from human feedback (RLHF).

We summarize the estimation error rates across different
settings in Table 1. In contrast to classical regression prob-
lems, which rely on cardinal labels of measurable quantities,
preference learning only has access to pairwise comparison
data, each providing at most one bit of information. Despite
these challenges, our upper and lower bounds on estima-
tion errors remain in the same order as those in classical
compressed sensing (Donoho, 2006; Candes & Tao, 2006;
Tropp & Gilbert, 2007).

1Code can be found at this link: https://github.com/
yaoyzh/SparsePreferenceLearning
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2. Preliminaries
2.1. Problem Formulation of Preference Learning

Let A be a set of alternatives, and let ϕ : A → Rd be a
fixed and known feature map, where ϕ(a) represents a d-
dimensional feature vector corresponding to a ∈ A. The
feature space of A induced by ϕ is defined as the image of ϕ,
denoted as D := ϕ(A) ⊂ Rd. A preference relation defined
on D satisfies Debreu’s representation theorem can be char-
acterized by a reward or utility function r∗. Specifically, for
two feature vectors x0, x1 ∈ D such that r∗(x0) < r∗(x1),
we state that x1 is preferred to x0, denoted as x0 ≺ x1.
The ground-truth reward function r∗ is fixed and unknown.
We assume that the feature map ϕ on A accounts for the
non-linearity, whereas r∗ is linear.

Consider a preference dataset comprising n pairs of samples
drawn from D, denoted as {ξi}ni=1, where each sample ξi is
represented as

ξi = (x0,i, x1,i, yi) ∈ D ×D × {0, 1}.

Here, x0,i := ϕ(a0,i) and x1,i := ϕ(a1,i) are the feature
vectors of the alternatives being compared. The binary vari-
able yi is the preference signal, with yi = 0 indicating x0,i

is observed to be preferred over x1,i, and yi = 1 indicat-
ing the opposite. In this paper, we consider a fixed design
setup, where {(x0,i, x1,i)}ni=1 is deterministic, and {yi}ni=1

is the realization of the set of random variables {Yi}ni=1.
Specifically, Yi conforms to the random utility model.

Random utility model (RUM). To account for potential
inconsistencies or randomness in human decision-making,
the random utility model assumes that the probability
of choosing x0 is higher than choosing x1 if r∗(x0) is
greater than r∗(x1). Specifically, the conditional distribu-
tion PY |(X0,X1) is

P (Y = 0 | x0, x1) = F

(
r∗(x0)− r∗(x1)

σ

)
(1)

where F : R → [0, 1] satisfies F (t) = 1 − F (−t), and
σ ∈ R+ is the randomness level of Y . If F (t) is the sigmoid
function, i.e., F (t) = 1

1+exp(−t) , then (1) corresponds to the
well-known Bradley-Terry-Luce (BTL) model (Bradley &
Terry, 1952; Luce, 1959). If F (t) is the cumulative distribu-
tion function of the standard Gaussian distribution, then (1)
becomes the Thurstone-Mosteller (TM) model (Thurstone,
1994; Mosteller, 2006).

We assume r∗ : D → R is parameterized by θ∗ ∈ Rd, i.e.,

r∗ (x) = ⟨θ∗, x⟩ . (2)

The goal of preference learning is to estimate the parameter
θ∗ of the reward function r∗, based on preference samples
{ξi}ni=1.

Maximum likelihood (ML) estimator. Given n samples
{ξi}ni=1, the negative log-likelihood for a parameter θ ∈ Rd

is defined as

L(θ; {ξi}ni=1) := − 1

n

n∑
i=1

logF

(
(−1)yi

⟨θ, x0,i⟩ − ⟨θ, x1,i⟩
σ

)

We suppose that θ∗ is bounded by a constant, i.e.,

θ∗ ∈ Θ := {θ ∈ Rd : ∥θ∥2 ≤ B}.

The maximum likelihood (ML) estimator θ̂ML is defined as

θ̂ML ∈ argmin
θ∈Θ

L(θ, {ξi}ni=1). (3)

Performance measure. We measure the performance of
an estimate θ̂ using the empirical error, defined as

1

n

n∑
i=1

((r̂(x0,i)− r̂(x1,i))− (r∗(x0,i)− r∗(x1,i)))
2

=
1

n

n∑
i=1

〈
θ̂ − θ∗, x0,i − x1,i

〉2
where r̂ is the estimated reward function associated with
θ̂. The Gram matrix Σ ∈ Rd×d, also called the data
covariance matrix, associated with

X := [(x0,1 − x1,1) , · · · , (x0,n − x1,n)]
⊤ ∈ Rn×d,

is defined by

Σ :=
1

n
X⊤X =

1

n

n∑
i=1

(x0,i − x1,i)(x0,i − x1,i)
⊤

The Gram matrix induces a semi-norm

∥θ∥Σ :=
√
θ⊤Σθ, θ ∈ Rd,

often called the data-induced semi-norm. The empirical
error is the estimation error in the squared data-induced
semi-norm, i.e.,

∥∥∥θ̂ − θ∗
∥∥∥2
Σ
=

1

n

n∑
i=1

〈
θ̂ − θ∗, x0,i − x1,i

〉2
. (4)

Evaluating the estimation error using the squared data-
induced semi-norm yields estimation error rates independent
of data distribution.

In the rest of the paper, we use the term reward, while noting
utility is often used interchangeably in related contexts. The
complete list of notations can be found in Appendix B.
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2.2. Preference Learning and RLHF

Preference learning serves as a foundational component of
Reinforcement Learning with Human Feedback (RLHF).
Here we focus on reward-based RLHF.

A preparatory step for RLHF is supervised fine-tuning
(SFT), which fine-tunes the pretrained model on high-
quality demonstration data, enabling the model to mimic
the provided examples (e.g., summarizations or dialogues).

Next, RLHF aligns the model’s behavior with human pref-
erences by using human feedback. Let S denote the prompt
(state) space and A represent the set of responses (actions
or alternatives). For reward-based RLHF, the first step is
to train a reward model to approximate the unknown re-
ward function reflecting human preferences from the human
preference data {si, a0,i, a1,i, yi}i, where yi ∈ {0, 1} indi-
cates whether a0,i or a1,i is chosen as the preferred response
given prompt si. This step is called reward modeling, and
is exactly the problem of preference learning formulated in
Section 2.1. To be specific, let ϕ be a known and fixed 2 fea-
ture mapping ϕ(s, a) : S ×A → Rd, typically a language
model with the last layer removed. For a given prompt
si ∈ S , the image ϕ(si,A) is the feature space D in prefer-
ence learning. With the feature map ϕ, the preference data
can be represented as {ϕ(si, a0,i), ϕ(si, a1,i), yi}i.

Once a reward model is trained, the remaining step of RLHF
is to further fine-tune the supervised fine-tuned (SFT) model
using reinforcement learning (RL) algorithms, leveraging
the reward model to optimize the policy for better alignment
with human preferences and objectives.

In this work, we focus exclusively on preference learning
(reward modeling), leaving other components of the RLHF
process, including SFT and RL, unmodified.

3. Theoretical Foundations of Sparse
Preference Learning

We propose sparse preference learning, wherein the ground-
truth parameter θ∗ in Equation (2), and accordingly the
RUM framework in (1), is k-sparse, with k potentially un-
known. Formally, we consider the sparse RUM as follows.

Sparse RUM

P (Y = 0 | x0, x1) = F

(
⟨θ∗, x0⟩ − ⟨θ∗, x1⟩

σ

)
θ∗ ∈ ΘB,k := {θ ∈Rd : ∥θ∥2 ≤ B, ∥θ∥0 ≤ k}. (5)

Furthermore, throughout the paper, we assume the feature

2We make this assumption for simplicity, while in Ouyang et al.
(2022), ϕ is also trainable.

space D is bounded, i.e., there is a constant L > 0 such that

∥x1 − x2∥2 ≤ L, ∀x1, x2 ∈ D. (6)

The parameters B and L, along with the function F and the
randomness level σ, determines a parameter ζ defined as

ζ :=
maxt∈[0,BL/σ] (F

′(t))
2

F (BL/σ) (1− F (BL/σ))
(7)

We observe that when B = L = σ = 1, the parameter
ζ = 1.99 in the BTL model and 1.19 in the TM model,
respectively. In practical scenarios, since the problem-
dependent parameters σ and ζ are generally independent of
d and n, the parameters B,L, σ, and ζ have O(1) values
(Negahban et al., 2017; Shah et al., 2016). We thus consider
these parameters to remain fixed.

In Section 3.1, we establishes an information-theoretical
lower bound for sparse preference learning. In Section 3.2.1,
we demonstrates that the ℓ0-constrained estimator achieves
the minimax optimal rate. In Section 3.2.2, we provides
two estimation error rates for the ℓ1-regularized estimator
under difference assumptions. All the proofs are presented
in Appendix E.

3.1. Minimax Lower Bound

To characterize the fundamental limits of sparse preference
learning, Theorem 3.1 establishes a minimax lower bound
for the empirical error (4).

Theorem 3.1 (Minimax lower bounds). Consider the sparse
RUM (5) with k ≤ rank(Σ)/8. For a sample size

n ≥ σ2

64B2ζλrank(Σ)
k log

(
1 +

rank(Σ)
2k

)
, (8)

where λrank(Σ) denotes the smallest non-zero eigenvalue of
Σ, any estimator θ̃ derived from n samples satisfies

inf
θ̃

sup
θ∗∈ΘB,k

E
[∥∥∥θ̃ − θ∗

∥∥∥2

Σ

]
≥ C

σ2

ζ

k log
(
1 + rank Σ

2k

)
n

, (9)

where ζ is defined in (7).

The proof of Theorem 3.1 is provided in Appendix E.1.

Corollary 3.1. Suppose the assumptions in Theorem 3.1
hold. For a nonsingular Gram matrix Σ, the minimax lower
bound is of the order Ω ((k/n) log(d/k)).

Remark 3.1. Theorem 3.1 shows that the order of the mini-
max lower bound depends on rank(Σ), rather than the am-
bient dimension d.

Compared to the non-sparse case which has a lower bound
of Ω(d) (Shah et al., 2016; Zhu et al., 2023), the lower
bound in Theorem 3.1 reduces the dimension dependency
to Ω(k log(d/k)).
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3.2. Upper Bounds

To derive upper bounds on the estimation errors of the esti-
mators under consideration, we assume that F in the sparse
RUM (5) is strongly log-concave in a neighborhood of the
origin.

Assumption 3.1 (Strong log-concavity). For the function
F in the sparse RUM (5), there exists γ > 0 such that for
any t ∈ [−BL/σ,BL/σ],

d2

dt2
(− logF (t)) ≥ 2γ. (10)

Assumption 3.1 is satisfied by the BTL (where F is the sig-
moid function) and TM models (where F is the cumulative
distribution function of the standard Gaussian distribution).
This assumption is common in prior works, such as Shah
et al. (2016) and Zhu et al. (2023).

Define the parameter ω as the supremum of the logarithmic
derivative of F over the interval [−BL/σ,BL/σ], i.e.,

ω := sup
t∈[−BL/σ,BL/σ]

d

dt
logF (t). (11)

ω represents the Lipschitz continuity constant of logF over
the given interval. Similar to B,L, σ, ζ , we treat γ and ω as
fixed. Specifically, when B = L = 1, γ = 0.10, ω = 0.73
in the BTL model and γ = 0.18, ω = 1.52 in the TM model.

3.2.1. ℓ0-CONSTRAINED ESTIMATOR

Now let us consider the ℓ0-constrained maximum likelihood
estimator θ̂kℓ0 , defined as

θ̂kℓ0 ∈ argmin
θ∈ΘB,k

L(θ, {ξi}ni=1). (12)

Finding such minimizers is computationally intractable in
general, as it involves searching over all possible k subset
out of d-dimensional vector, which takes

(
d
k

)
number of

maximum likelihood estimates. Nevertheless, we are inter-
ested in its estimation error rate as a theoretical benchmark.

To provide an upper bound on the estimation error of the
ℓ0-constrained estimator, we begin by introducing some
notation. For an index set S ⊂ [d] := {1, 2, . . . , d} and
a vector x ∈ Rd, we denote xS ∈ R|S| as the vector of
x consisting of the elements indexed by S, and |S| the
cardinality of S. We then define the principal submatrix of
Σ accordingly, i.e.,

ΣS :=
1

n

n∑
i=1

(x0,i − x1,i)S(x0,i − x1,i)
⊤
S ∈ R|S|×|S|. (13)

We then make the following assumption.

Assumption 3.2 (Nonsingularity of submatrices). For each
S such that k ≤ |S| ≤ 2k , rank(ΣS) = |S|.

Assumption 3.2 does not impose a full-rank requirement
on the Gram matrix Σ. Moreover, if {x0,i, x1,i}ni=1 are ran-
domly sampled from an absolutely continuous probability
measure, Assumption 3.2 is satisfied with probability 1.
Remark 3.2. Assumption 3.2 is not required if (4) is replaced
with the regularized metric

∥θ̂ − θ∗∥2Σ+λI (14)

where λ > 0 is fixed, and I is the d × d identity matrix.
Adding the regularization term λI to Σ ensures that the
semi-norm ∥ · ∥Σ becomes a norm ∥ · ∥Σ+λI . However,
adopting (14) as the metric introduces an additive constant
term λB2 to the upper bound, similar to Lemma 3.1 in Zhu
et al. (2023). We note that this constant term does not affect
the order of the bound, as λ can be made arbitrarily small.
For simplicity, we adopt (4) as the metric in this paper.

Theorem 3.2 (Minimax optimal rate for the ℓ0-constrained
estimator). Consider the sparse RUM (5) with k ≤ d/2.
Suppose Assumption 3.1 and 3.2 hold. With probability at
least 1− δ,∥∥∥θ̂kℓ0 − θ∗

∥∥∥2
Σ
≤ 24ω2σ2

γ2

k log
(
d
k

)
+ log(1/δ)

n
(15)

where ω is defined in (11).

The proof of Theorem 3.2 is provided in Appendix E.2.

From Theorem 3.1 and 3.2, it follows that the ℓ0-constrained
estimator defined in (12) achieves minimax optimality over
ΘB,k with respect to k and n, and with the full-rank assump-
tion on Σ, also with respect to d.

For sparse preference learning under Assumption 3.1, the
sample complexity is of the same order as that of sparse lin-
ear regression under sub-Gaussian noise (Vershynin, 2015;
Rigollet & Hütter, 2023).

3.2.2. ℓ1-REGULARIZED ESTIMATOR

One widely adopted approach to overcoming the computa-
tional intractability of ℓ0-norm constrained problems is to
relax the ℓ0-norm constraint by incorporating a weighted
ℓ1-norm term into the objective function, as seen in meth-
ods like LASSO (Tibshirani, 1996). Motivated by this ap-
proach, this subsection focuses on evaluating the perfor-
mance of estimating the sparse parameter θ∗ by minimizing
the maximum likelihood loss with a regularization term
β∥θ∥1. We refer to this ℓ1-norm penalized estimator as the
ℓ1-regularized estimator, formally defined as:

θ̂ℓ1 ∈ argmin
θ∈ΘB

L(θ, {ξi}ni=1) + β∥θ∥1. (16)

Since the ℓ1-norm is the convex envelope of the ℓ0-norm, the
transformed problem becomes convex and can be efficiently
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solved using methods such as coordinate descent (Boyd
et al., 2011; Peng & Vidal, 2023) and proximal gradient
algorithms (Tseng, 2008; Beck & Teboulle, 2009; Becker
et al., 2011). Notably, this approach does not require the
prior knowledge of k.

We define H to characterize the boundedness of the columns
of the feature matrix X , i.e.,

H :=
maxj ∥Xj∥2√

n
(17)

where Xj denotes the j-th column of X . We note that the
parameter H always exists and satisfies H ≤ L, as the
feature space D is bounded (see Equation (6)).

Theorem 3.3 (Slow rate for the ℓ1-regularized estimator).
Consider the sparse RUM (5). Suppose Assumption 3.1
holds. With probability at least 1 − δ, the ℓ1-regularized
estimator (16) with

β =

√
2ωH

σ

√
log 2d+ log(1/δ)

n
(18)

satisfies

∥∥∥θ̂ℓ1 − θ∗
∥∥∥2

Σ
≤ 2

√
2 ωH

γ
σ ∥θ∗∥1

√
log 2d+ log(1/δ)

n
, (19)

where ω is defined in (11), and H in (17).

The proof of Theorem 3.3 is provided in Appendix E.3.

According to (5), we have ∥θ∗∥1 ≤ B
√
k. The estima-

tion error rate in Theorem 3.3 is thus O
(√

(k/n) log d
)

,
which has a gap from the minimax optimal rate
Θ((k/n) log(d/k)) in Theorem 3.2. Next, we show that the
ℓ1-regularized estimator can achieve a nearly minimax opti-
mal rate under the following assumption on the spectrum of
Σ.

Assumption 3.3 (Restricted eigenvalue condition). We as-
sume that the Gram matrix Σ satisfies

inf
1≤|S|≤k

inf
θ∈CS

∥θ∥2Σ
∥θ∥22

≥ 1

2
(20)

where CS :=
{
θ ∈ Rd | θ ̸= 0, ∥θSc∥1 ≤ 3∥θS∥1

}
.

Assumption 3.3 implies that the smallest eigenvalue of ΣS

is lower bounded by a positive constant for all S of cardi-
nality no more than k. A stronger version of the assump-
tion requires Σ satisfies the incoherence condition, namely,
∥Σ− Id∥max ≤ 1/(32k), where ∥·∥max denotes the largest
absolute value among the elements of a matrix (Bickel et al.,
2009; Wainwright, 2019).

Theorem 3.4 (Fast rate for the ℓ1-regularized estimator).
Consider the sparse RUM (5). Suppose Assumption 3.1 and

3.3 hold. With probability at least 1− δ, the ℓ1-regularized
estimator (16) with

β =
4ω

σ

√
log 2d+ log(1/δ)

n
(21)

satisfies∥∥∥θ̂ℓ1 − θ∗
∥∥∥2
Σ
≤ 128ω2σ2

γ2

k log 2d+ log(1/δ)

n
(22)

and∥∥∥θ̂ℓ1 − θ∗
∥∥∥2
2
≤ 256ω2σ2

γ2

k log 2d+ log(1/δ)

n
. (23)

The proof of Theorem 3.4 is provided in Appendix E.4.

Theorem 3.4 establishes that a computationally tractable es-
timator achieves an estimation error rate of O ((k/n) log d)
under Assumption 3.3, which is nearly minimax optimal.
Remark 3.3. Theorem 3.3 and 3.4 suggest that, to achieve
the estimation error rate of the corresponding order, the
regularization parameter should scale as β ∼ n−0.5. Yet,
the optimal choice of β in practice remains unclear. To
investigate this, we conduct a hyperparameter search; imple-
mentation details are provided in Appendix C.1. As shown
in Figure 1, β is expected to decrease as the sample size n
increases. The red line represents log(β) as a linear function
of log(n) with a slope of −0.5. Notably, this line aligns with
the valley of the contour map, validating that our theoretical
results offer a reasonable guideline for picking β.

log(β)

1 2 3 4
3.5

3.0
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2.0

1.5
log( ) = 0.5×log(n) 0.7
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4.2
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1.2

0.6

0.0

0.6

log(n)

Figure 1. Contour of the estimation error of ∥θ̂ℓ1 − θ∗∥2Σ with
respect to β and n in the log space for d = 100, σ = 0.1. The
logarithm uses a base of 10.

4. Experimental Results
To demonstrate the sample efficiency of the proposed ℓ1-
regularized estimator, we conduct experiments on synthetic
data (Section 4.1) as well as on the task of LLM alignment

6



Leveraging Sparsity for Sample-Efficient Preference Learning: A Theoretical Perspective

(Section 4.2) in two settings: frozen backbone training and
full fine-tuning. We defer additional results and discussion
to Appendix D. The code can be found at this link3.

4.1. Numerical Evaluation on Synthetic Data

Experimental setting. The ground-truth parameter θ∗ is
sampled from the set {θ ∈ Rd−1 : ∥θ∥2 = 1, ∥θ∥0 = k}.
Specifically, k out of d coordinates are selected uniformly
at random. The value at each selected coordinate is i.i.d.
drawn from the standard Gaussian distribution. Finally,
the resulting vector is normalized to have a unit Euclidean
norm. Each x0,i and x1,i in {(x0,i, x1,i)}ni=1 are indepen-
dently sampled from the uniform distribution U([0, 1]d).
The observed preference signal yi with respect to x0,i and
x1,i is generated according to the random utility model, as
shown in (1), where F (t) = 1

1+exp(−t) is the sigmoid func-
tion. Specifically, yi is a Bernoulli random variable with
parameter p derived from the random utility model. Both
the maximum likelihood estimator and the ℓ1-regularized es-
timator are implemented using the SciPy package (Virtanen
et al., 2020) with the SLSQP optimization method (Kraft,
1988). To ensure convergence, we set the maximum number
of iterations to 1000.

Results. Figure 2 compares the ℓ1-regularized estimator
and the maximum likelihood estimator under varying spar-
sity ratios (k/d) and sample sizes (n). The estimation error
is evaluated using the semi-norm ∥ · ∥Σ, defined in (4).
In Figure 2a, as the ground-truth parameter θ∗ is increas-
ingly sparse (the ratio k/d decreases), the ℓ1-regularized
estimator demonstrates superior performance compared to
the maximum likelihood estimator, which is agnostic to
sparsity level. Similarly, in Figure 2b, the ℓ1-regularized
estimator consistently exhibits greater sample efficiency,
particularly when the sample size n is small. Note that the
penalization parameter β is selected based on the theoretical
results presented in Section 3.2.2 and the outcomes of our
hyperparameter search described in Appendix C.1.

4.2. Empirical Evaluation

We present proof-of-concept results on real-world datasets
to assess the performance of the sparsity-aware methods in
reward learning, which is a critical component of RLHF.
The performance of a reward model is evaluated based on
prediction accuracy on the test dataset. A prediction is
considered correct for a given prompt-response pair if the
reward model assigns a higher reward to the chosen response
than to the rejected response.

3https://github.com/yaoyzh/
SparsePreferenceLearning

Data. We train reward models using the rm-static
dataset (Bai et al., 2022)4 and SHP dataset (Ethayarajh et al.,
2022)5. rm-static is a curated dataset specifically de-
signed for training reward models. The dataset consists of
76.3K samples, each comprising a prompt and a pair of
responses, where one response is marked as chosen and the
other as rejected, based on annotations provided by human
evaluators. An example is shown in Appendix C.2.

Models and Methods. We employ the pretrained lan-
guage models Pythia-70M (Biderman et al., 2023) and
Llama-3.2-1B (Dubey et al., 2024) as the foundation for
reward modeling. To adapt such a model, the final layer is
replaced with a scalar head to produce reward values for in-
put responses. For the ℓ1-regularized method, we add β∥θ∥1
to the original loss function, where θ represents the param-
eter of the final layer. As a baseline for comparison, we
set β = 0, namely removing the regularization term. The
code is based on Deepspeed-Chat (Yao et al., 2023).
Detailed parameter settings can be found in Appendix C.3.

Results for full fine-tuning. To mitigate the influence of
randomness from different random seeds, we fit a quadratic
model to capture the relationship between accuracy and the
ℓ1-norm regularization parameter β, as shown in Figure 3.
The results indicate that applying ℓ1 regularization to the
last layer leads to a 0.9% improvement in accuracy for
both models examined. Furthermore, the ℓ1-regularized
models (gray curve) consistently outperforms the baseline
models (dashed line) across a wide range of β values. The
empirical results validate the effectiveness of the proposed
sparse-aware reward modeling approach, demonstrating its
potential value in RLHF.

Frozen backbone training In frozen backbone training,
only the last layer is trained, while all other parameters (the
backbone) remain frozen—a method often referred to as lin-
ear probing or feature-based fine-tuning. Since LLMs have
billions of parameters, full fine-tuning can be extremely ex-
pensive. By updating only the last layer, memory usage and
computation time are drastically reduced. This approach is
widely used when computational resources are constrained,
data is scarce, or as a baseline before full fine-tuning.

Results for frozen backbone training Figure 4 compares
the test accuracy of ℓ1-regularized reward modeling (or-
ange curve) and the baseline (blue curve). The underlying
model is Llama-3.2-1B, where the dimensionality of
the second-last layer output is d = 2048, and the dataset
is rm-static. Our results show that leveraging spar-

4https://huggingface.co/datasets/Dahoas/
rm-static

5https://huggingface.co/datasets/
stanfordnlp/SHP
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Figure 2. Estimation error of θ̂ℓ1 and θ̂ML. Results are based on 20 repetitions of experiments conducted with dimension d = 100.
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Figure 3. Full fine-tuning: accuracy versus ℓ1 regularization parameter β. Each gray dot represents the accuracy for a specific value of β
from a single trial. The gray curve in each sub-figure illustrates the average accuracy over five trials (five gray dots) for each specific β.
The red curve represents the quadratic fit across all trials (all gray dots), with the maximum accuracy of the fit curve highlighted. The
black dashed line indicates the average accuracy obtained without any regularization. The dataset is rm-static.
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Figure 4. Frozen backbone training: test accuracy vs. n. The backbone model is Llama-3.2-1B, of which the dimensionality of the
second-last layer output is d = 2048. We set β = 0.5× n−0.5 for the ℓ1-regularization. Each setting is evaluated over 5 trials.

sity can improve accuracy by at least 3%. Notably, we
do not manually tune the hyperparameter β; instead, we
set β = 0.5 × n−0.5 for the ℓ1-regularized method. In

both datasets, the ℓ1-regularized method (orange curve)
consistently outperforms the baseline (β = 0, blue curve)
across all values of n. Furthermore, we observe that for
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the rm-static dataset, the learned parameters has spar-
sity ratio k/d ≈ 4.5% if n = 800 and k/d ≈ 7.5% if
n = 3200; for the SHP dataset: k/d ≈ 4.2% if n = 800
and k/d ≈ 7.2% if n = 3200. These results show that
ℓ1 regularization selects a small and informative subset of
features, and sparsity regularization is beneficial for reward
modeling, leading to higher test accuracy.

5. Related Works
Expected utility, originating from mathematical economics,
posits that rational agents maximize their utility under uncer-
tainty (Ramsey, 1926; Von Neumann & Morgenstern, 1947).
Debreu et al. (1954) established the preference representa-
tion theorem, which asserts that any complete, transitive,
and continuous preference relation can be represented by
a continuous ordinal utility function. This deterministic
model is extended to the Random Utility Model (RUM)
(McFadden, 1974; 1978; Rosenfeld et al., 2020; Azar et al.,
2024; Samuelson, 2024; Sun et al., 2024), incorporating ele-
ments such as Gaussian noise (Thurstone, 1994), Gumbel
noise (Luce, 1959), and others (Tesauro, 1988; Crammer
& Singer, 2003; Chajewska et al., 2001). Furthermore, the
RUM can be extended to incorporate multiple utility func-
tions (Moulin, 1985; Eliaz & Ok, 2006; Benson et al., 2018;
Pfannschmidt & Hüllermeier, 2020; Benavoli et al., 2023),
non-linear utility models based on Gaussian processes (Be-
navoli & Azzimonti, 2024), and context-dependent models
(Seshadri et al., 2019; Bower & Balzano, 2020; Tomlinson
& Benson, 2021; 2024).

Apart from utility-based methods, preference learning can
be achieved through preference ranking (Haddawy et al.,
2003; Fürnkranz & Hüllermeier, 2003; Brazdil et al., 2003;
Negahban et al., 2012; Wauthier et al., 2013; Hajek et al.,
2014; Rajkumar & Agarwal, 2014; Park et al., 2015; Shah
et al., 2016; Seshadri et al., 2020; Chen et al., 2022a) with-
out explicitly modeling utility functions, or by framing it
as a classification problem in machine learning contexts
(Fürnkranz & Hüllermeier, 2011; Van Cranenburgh et al.,
2022). Other closely related fields include ranking learning
and ordinal regression, which involve predicting ordered
classes for each sample (Frank & Hall, 2001; Kramer et al.,
2001; Chu & Keerthi, 2005).

Powerful large language models (LLMs) trained through
next-token prediction can generate unhelpful and unsafe
content that is misaligned with human instructions (Leike
et al., 2018). To address this, a popular approach is to align
pretrained models with human instructions through Rein-
forcement Learning from Human Feedback (RLHF) (Ziegler
et al., 2019; Ouyang et al., 2022; Wu et al., 2024). Based
on whether an explicit reward function is employed, RLHF
methods primarily fall into two categories: reward-based ap-
proaches and reward-free approaches. Reward-based RLHF

typically involves two main steps: first, training a reward
model based on user feedback to capture human intentions,
and second, training a policy using reinforcement learning to
optimize the learned reward model. Various enhancements
to RLHF have been proposed to improve its efficiency and
effectiveness, including accelerated training methods (He
et al., 2024) and self-play techniques (Wu et al., 2024). No-
tably, Direct Preference Optimization (DPO), a reward-free
approach, has been demonstrated to yield the same solu-
tions as reward-based RLHF (Rafailov et al., 2024; Xu et al.,
2024; Shi et al., 2024), incorporating methods such as re-
ject sampling (Liu et al., 2024). Iterative DPO approaches,
as explored by Xiong et al. (2024) and Yuan et al. (2024),
leverage the LLM itself as the reward model to provide
preference signals, a strategy referred to as self-rewarding.
Moreover, Zhu et al. (2023) introduces a pessimistic max-
imum likelihood estimation (MLE) approach for training
policies. The theoretical foundations of these methods of-
ten draw from dueling bandit frameworks (Lu et al., 2010;
Yue et al., 2012; Saha, 2021; Bengs et al., 2021), with on-
line RLHF approaches initially developed for finite and
small state spaces (Xu et al., 2020; Novoseller et al., 2020;
Pacchiano et al., 2021) and subsequently generalized to
approximate complex functions (Chen et al., 2022b).

Sparse linear models have become a cornerstone of high-
dimensional statistics, leveraging the assumption that only
a few predictors significantly influence the response. It has
been shown that ℓ1-based methods, such as LASSO (Tibshi-
rani, 1996) and the Dantzig Selector (Candes & Tao, 2007),
can achieve O((k/n) log(d)) (Candes & Tao, 2006; Bickel
et al., 2009) under incoherence conditions, which is close to
the minimax rate Θ((k/n) log(d/k)) (Ye & Zhang, 2010;
Rigollet & Tsybakov, 2011; Raskutti et al., 2011; Verzelen,
2012; Candes & Davenport, 2013; Reeves & Gastpar, 2013).
Later, Bellec et al. (2018) has shown that the minimax rate
is achievable by polynomial time methods. Due to the vast
literature on sparsity, we refer readers to Hastie et al. (2015)
and Wright & Ma (2022) for comprehensive discussions.

6. Conclusion and Future Work
In this paper, we address the challenge of sample-efficient
preference learning in high-dimensional settings. Lever-
aging the sparse random utility model, we establish the
minimax optimal rate and propose efficient ℓ1-regularized
estimators to reduce the sample complexity. Experimental
results on synthetic data and LLM alignment datasets vali-
date these theoretical insights, demonstrating that sparsity-
aware methods not only reduce sample complexity but also
enhance prediction accuracy. For future work, we aim to
investigate the optimality of RLHF policies induced by
such sparse reward models and further extend the sparsity-
induced sample-efficient estimation framework to DPO.
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A. Structure of the Appendix
The appendix is structured as follows:

• Appendix B lists all notations used in the main text.

• Appendix C provides detailed experimental settings.

• Appendix D presents additional experimental results for reward modeling with real data in full fine-tuning.

• Appendix E contains proofs for all theorems.

B. List of Notations
The list of notations applies exclusively to the main text and does not include those used in the proofs in the appendix.

Symbol Description

A Set of alternatives, action space, response space.

a0, a1, a0,i, a1,i ∈ A Element in A.

ϕ : A → Rd Feature map from A to Rd.

D ⊂ Rd Feature space, ϕ(A) or ϕ(si,A).

x0, x1, x0,i, x1,i ∈ D Element in D, x0,i := ϕ(a0,i).

y, yi ∈ {0, 1} Preference signal indicating the preferred feature vector.

ξi := (x0,i, x1,i, yi) Data sample.

r∗ : D → R Ground-truth reward function.

θ∗ ∈ R Ground-truth parameter of the reward function r∗.

k Number of non-zero elements of θ∗, i.e., ∥θ∗∥0.

d Ambient dimension of the feature space D.

n Number of samples.

PY |(X0,X1) Conditional distribution of y ∈ {0, 1} given (x0, x1).

σ ∈ R+ Randomness level of y or temperature parameter.

F : R → [0, 1] Function of the random utility model, and F (t) = 1− F (−t).

⟨·, ·⟩ Euclidean inner product.

L(θ; {ξi}ni=1), L(θ) Negative log-likelihood function with respect to dataset {ξi}ni=1.

Θ Parameter space.
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Symbol Description

B Radius of the parameter space, or norm constraint bound.

θ̂ML Maximum likelihood estimator in parameter space Θ.

θ̂, θ̃ Estimate of θ∗.

r̂ Estimated reward function associated with θ̂.

X Matrix with the i-th row being (x0,i − x1,i).

Σ Gram matrix, or data covariance matrix, Σ = 1
nX

⊤X .

∥ · ∥Σ Semi-norm induced by positive semi-definite matrix Σ, i.e., ∥x∥Σ =
√
x⊤Σx.

S Prompt space, or state space.

si ∈ S Prompt.

ϕ(·, ·) : S ×A → Rd Feature mapping, or feature embedding of a given prompt-response pair (s, a).

ΘB Parameter space with radius B.

ΘB,k ΘB,k := {θ ∈ Rd : ∥θ∥2 ≤ B, ∥θ∥0 ≤ k}..

L Diameter of the feature space D.

ζ See definition (7).

λrank(Σ) Smallest non-zero eigenvalue of Σ.

γ See definition (3.1).

ω See definition (11).

θ̂kℓ0 Maximum likelihood estimator in parameter space ΘB,k.

[d] [d] := {1, . . . , d}.

S ⊂ [d] Index set.

Sc ⊂ [d] The set complement of S.

|S| Cardinality of set S.

xS ∈ R|S| Vector of elements in x indexed by S.

ΣS Principal submatrix of Σ with respect to S; see definition (13).

I, Id ∈ Rd×d Identity matrix.

θ̂ℓ1 ℓ1-regularized estimator in parameter space ΘB ; see definition (16).
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Symbol Description

∥ · ∥max The largest absolute value among the elements of a matrix.

H See definition (17).

C. Experimental Details
C.1. Hyperparameter Search

We use hyperopt package (Bergstra et al., 2013) to conduct a hyperparameter search for β with n varying from 10 to
105. Figure 1 is a contour of estimation errors ∥θ̂ℓ1 − θ∗∥2Σ over a series of experiments with different choices of n, β, and
random seeds, extrapolated through cubic polynomials. The red line in the figure represents log(β) as a linear function of
log(n) with slope −0.5. Our results show that β given by the theoretical results β ∼ n−0.5 in Theorem 3.3 and 3.4 does
lead to the valley in the contour surface. All experiments are repeated for 20 times.

C.2. Illustrative Examples for Datasets

An illustrative example for a data sample in rm-static

Prompt:
Human: Can you describe the steps to clean fingerprints and smudges from a laptop screen Assistant: Yes, certainly.
To clean your screen, you first need to use a microfiber cloth or soft, damp cloth to gently wipe down the surface of
the screen. Next, you’ll want to grab a soft, lint-free, microfiber cleaning cloth and gently rub it back and forth across
the screen to remove fingerprints and smudges. Human: Can I spray isopropyl alcohol onto the cloth and clean it that
way? Assistant:

Chosen response:
Yes, you can do that to help the cloth pick up even more dirt from the screen. Be sure to always use a clean, soft cloth,
not a piece of scratchy, roughened, or textured material, and make sure it’s lint-free.

Rejected response:
Yes, you can spray it directly onto the cloth.

In addition to rm-static mentioned in Section 4.2, we also use the dataset SHP (Ethayarajh et al., 2022)6. As noted by
the authors of Ethayarajh et al. (2022):

Most notably, all the data in SHP is naturally occurring and human-written, whereas the responses in rm-static
are machine-written, giving us two very different distributions that can complement each other.

C.3. Parameter Setting for Real-Data Experiments

The learning rate is set to 10−5, and the weight decay is set to 0.1. The batch size is 8 for Pythia-70M, 16 for
Llama-3.2-1B and 32 for Llama-3.2-3B, and the training runs for 1 epoch. The regularization hyperparameter β for
the ℓ1-regularized method is selected from the range 10[−4.5:0.5:0] ∪ {2, 4, 8}. Each β value, including β = 0, is evaluated
across 5 trials with random seeds in {0, 1, 2, 3, 4} for Pythia-70M and Llama-3.2-1B, and 3 trials with random seeds
in {0, 1, 2} for Llama-3.2-3B.

D. Additional Experimental Results for Reward Modeling
D.1. Full Fine-Tuning

This section presents additional results for full fine-tuning, where all backbone model parameters are fine-tuned, consistent
with Section 4.2.

6https://huggingface.co/datasets/stanfordnlp/SHP
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We conduct experiments using three base models: Pythia-70M, Llama-3.2-1B, and Llama-3.2-3B. The results
are summarized in Table 3 for rm-static and in Table 4 for SHP. Each reported value represents the average over five
trials for Pythia-70M and Llama-3.2-1B, and three trials for Llama-3.2-3B. For the ℓ1-regularized estimator, the
displayed value corresponds to the regularization parameter that achieved the highest average accuracy. From the tables, we
observe that: 1) larger models consistently produce more accurate predictions, which is expected, and 2) the ℓ1-regularized
models consistently outperforms baseline models, demonstrating its sample efficiency.

Table 3. Test accuracy on rm-static

Model Baseline (%) ℓ1-Regularized (%)

Pythia-70M 60.5 61.8

Llama-3.2-1B 66.8 67.7

Llama-3.2-3B 68.4 69.4

Table 4. Test accuracy on SHP

Model Baseline (%) ℓ1-Regularized (%)

Pythia-70M 60.8 62.1

Llama-3.2-1B 64.4 65.5

Llama-3.2-3B 66.5 67.3

E. Proofs
E.1. Proof of Theorem 3.1

Before proceeding, we first prepare some ingredients.

Lemma E.1 (Sparse Varshamov-Gilbert, Lemma 4.14 in Rigollet & Hütter (2023)). For any two integers k and d such that
1 ≤ k ≤ d/8 and Hamming distance Ham(·, ·), there exist binary vectors w1, . . . , wM ∈ {0, 1}d such that

1. Ham(wi, wj) ≥ k
2 for all i ̸= j;

2. log(M) ≥ k
8 log

(
1 + d

2k

)
;

3. ∥wj∥0 = k for all j ∈ [M ].

Lemma E.2 (Upper bound for pairwise KL divergence). For any pair of θ1, θ2 ∈ ΘB := {θ ∈ Rd : ∥θ∥2 ≤ B}, we have

DKL (Pθ1 ({ξi}ni=1) ∥ Pθ2 ({ξi}ni=1)) ≤
nζ

σ2
∥θ1 − θ2∥2Σ

where Pθj ({ξi}ni=1) = Πn
i=1F

(
⟨θj ,x0,i−x1,i⟩

σ

)(1−yi) (
1− F

(
⟨θj ,x0,i−x1,i⟩

σ

))yi

is the joint distribution of Y1, . . . , Yn

given {(x0,i, x1,i)}ni=1 with parameter θj .

See Appendix E.5 for the proof of Lemma E.2.
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Lemma E.3 (Pairwise Fano minimax lower bound, The local Fano method in Duchi (2024)). We call a subset of vectors
{θ1, . . . , θM} ⊂ Θ a (ν, η)-packing of Θ in a pseudo-metric ρ if

min
i,j∈[M ]

i ̸=j

ρ (θi − θj) ≥ ν, and
1(
M
2

) ∑
i,j∈[M ]

i̸=j

DKL (P (θi) ∥ P (θj)) ≤ η.

If we can construct a (ν, η)-packing with cardinality M , then the minimax risk in the square of the pseudo-metric ρ is lower
bounded as

inf
θ̃

sup
θ∗∈Θ

E
[
ρ
(
θ̃ − θ∗

)2]
≥ ν2

2

(
1− η + log 2

logM

)
(24)

With the above three lemmas at hand, we can now cook up the lower bound in Theorem 3.1 as follows. We first apply
Lemma E.1 by replacing d in Lemma E.1 with rank(Σ) to obtain a subset of binary vectors {v1, . . . , vM} ∈ {0, 1}rank(Σ) as
such. Then for each j ∈ [M ], append (d− rank(Σ)) zeros to the bottom of vj and get a d-dimensional binary vector wj , i.e.,

wj = [v⊤j 0 . . . 0] ∈ {0, 1}d (25)

Since Σ is symmetric and positive semi-definite, it has an orthogonal diagonalization Σ = U⊤ΛU , where U ∈ Rd×d is
an orthogonal matrix, and Λ is a diagonal matrix with non-negative elements in descending order. Let diagonal matrix Λ†

denote the Moore-Penrose pseudo-inverse of Λ. Let θ1, . . . , θM be such that for each j ∈ [M ],

θj =
σ

8
√
ζ

√√√√ log
(
1 + rank(Σ)

2k

)
n

U⊤
√
Λ† wj

Then,

∥θj∥2 =
σ

8
√
ζ

√√√√ log
(
1 + rank(Σ)

2k

)
n

∥∥∥U⊤
√
Λ† wj

∥∥∥
2

=
σ

8
√
ζ

√√√√ log
(
1 + rank(Σ)

2k

)
n

∥∥∥√Λ† wj

∥∥∥
2

≤ σ

8
√
ζ

√√√√k log
(
1 + rank(Σ)

2k

)
n

max
(
diag(

√
Λ†)
)
≤ B

The last inequality holds as we assume

n ≥ σ2

64B2ζλrank(Σ)
k log

(
1 +

rank(Σ)
2k

)
=

σ2 max
(
diag(Λ†)

)
64B2ζ

k log

(
1 +

rank(Σ)
2k

)
Furthermore, we have

∥θi − θj∥2Σ = (θi − θj)
⊤Σ(θi − θj)

=
σ2

64ζ

log
(
1 + rank(Σ)

2k

)
n

(wi − wj)
⊤
√
Λ†UU⊤ΛUU⊤

√
Λ†(wi − wj)

=
σ2

64ζ

log
(
1 + rank(Σ)

2k

)
n

(wi − wj)
⊤
√
Λ†Λ

√
Λ†(wi − wj)

=
σ2

64ζ

log
(
1 + rank(Σ)

2k

)
n

∥wi − wj∥22
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where the last equality holds because the last d− rank(Σ) entries of wi, wj are zeros according to the way we construct w’s
(c.f. (25)), and each of the first rank(Σ) diagonal elements in Λ is non-zero. Furthermore, by Lemma E.1, each element of
(wi − wj) is in {−1, 0, 1}, and hence the Hamming distance between wi and wj can be bounded as

k

2
≤ Ham(wi, wj) = ∥wi − wj∥22 = ∥wi − wj∥0 ≤ ∥wi∥0 + ∥wj∥0 = 2k

Then,

σ

8
√
ζ

√
k log

(
1 + d

2k

)
2n

≤ ∥θi − θj∥Σ ≤ σ

8
√
ζ

√
2k log

(
1 + d

2k

)
n

By Lemma E.2, we have constructed a (ν, η)-packing of cardinality M with

ν =
σ

8
√
ζ

√√√√k log
(
1 + rank(Σ)

2k

)
2n

, η =
k log

(
1 + rank(Σ)

2k

)
32

, logM ≥ k

8
log

(
1 +

rank(Σ)
2k

)
Apply Lemma E.3, and we get

inf
θ̃

sup
θ∗∈ΘB,k

E
[∥∥∥θ̃ − θ∗

∥∥∥2
Σ

]
≥ ν2

2

(
1− η + log 2

logM

)

=
1

128ζ
σ2

k log
(
1 + rank(Σ)

2k

)
2n

3

4
− 8 log 2

k log
(
1 + rank(Σ)

2k

)


>
1

128ζ
σ2

k log
(
1 + rank(Σ)

2k

)
2n

1

4

=
σ2

1024ζ

k log
(
1 + rank(Σ)

2k

)
n

where the last inequality holds if k ≥ 7. To see it, notice that as 1 ≤ k ≤ rank(Σ)
8 , it holds that log(1 + rank(Σ)

2k ) ≥ log(5). If
k ≥ 7, then k log(1 + rank(Σ)

2k ) ≥ 7 log(5) > 16 log(2), and hence 8 log 2

k log(1+ rank(Σ)
2k )

> 1
2 .

For 1 ≤ k ≤ 6, let W ⊂ Rd be a set of vectors of cardinality 2rank(Σ) such that for wj ∈ W , ∥wj∥0 = 1, 1⊤wj ∈ {±1},
and the last (d − rank(Σ)) elements of wj are all zeros. This means wj ∈ W only has one non-zero element, this
element is either 1 or −1, and this non-zero element can only appear in the first rank(Σ) entries. In this way, for any
pair wi, wj ∈ W such that wi ̸= wj , it holds that 2 ≤ ∥wi − wj∥22 ≤ 4. We construct a (ν′, η′)-packing by letting

θj =
σ

8
√
ζ

√
log(1+ rank(Σ)

2k )
n U⊤

√
Λ† wj . Then, for the same reason as above, we have ∥θj∥2 ≤ B by our assumption on n.

Also,
σ

8
√
ζ

√
2 log(1 + rank(Σ)/2k)

n
≤ ∥θi − θj∥Σ ≤ σ

8
√
ζ

√
4 log(1 + rank(Σ)/2k)

n

Hence, ν′ = σ
8
√
ζ

√
2 log(1+rank(Σ)/2k)

n , η′ = 1
16 log(1 + rank(Σ)/2k), logM ′ = rank(Σ) log 2. Apply Lemma E.3, and we

get a lower bound

σ2 log(1 + rank(Σ)/2k)
64ζn

(
7

8
− log(1 + rank(Σ)/2k)

rank(Σ)16 log 2

)
≥ 3σ2

256ζ

log(1 + rank(Σ)/2k)
n

because log(1+rank(Σ)/2k)
rank(Σ)16 log 2 ≤ 1

2 . We can rewrite this lower bound as

Cσ2

ζ

k log(1 + rank(Σ)/2k)
n

as k is Θ(1), and this lower bound is of the same order as the one for k ≥ 7.
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E.2. Proof of Theorem 3.2

For simplicity, we denote L(θ) := L(θ; {ξi}ni=1). Before proceeding, we define ℓS(θ; {ξi}ni=1) for an index set S ⊂ [d] as

ℓS(θ) = ℓS(θ; {ξi}ni=1) :=− 1

n

n∑
i=1

log

(
1{yi=0} · F

(
⟨θS , (x0,i − x1,i)S⟩

σ

)
+1{yi=1} · F

(
−⟨θS , (x0,i − x1,i)S⟩

σ

))
Then, for any θ such that supp(θ) ⊂ S, it holds that ∥θ∥Σ = ∥θS∥ΣS

, L(θ) = ℓS(θ), and (∇ℓS(θ))S = (∇L(θ))S . For θ∗,
we define S := {S ⊂ [d] : |S| ≤ 2k, supp(θ∗) ⊂ S}.

The following two lemmas play a role in the upper bounds in this paper. More specific versions of these two lemmas are
used for upper bounding the estimation error of the maximum likelihood estimator with discrete D in Shah et al. (2016). For
completeness, we put the proof of Lemma E.4 in Appendix E.6 and the proof of Lemma E.5 in Appendix E.7.

Lemma E.4. If F satisfies the strong log-concavity assumption (10), then for any non-empty index set S ⊂ [d],

ℓS(θ
∗ + θ′)− ℓS(θ

∗)− ⟨∇ℓS(θ
∗), θ′⟩ ≥ γ

σ2
∥θ′S∥2ΣS

∀θ′S ∈ Rd such that θ∗ + θ′ ∈ ΘB

Lemma E.5. For any non-empty index set S ⊂ [d], (∇ℓS(θ
∗))S = − 1

nσX
⊤
S VS , where

XS := [(x0,1 − x1,1)S , · · · , (x0,n − x1,n)S ]
⊤ ∈ Rn×|S|

and VS ∈ Rn is a random vector with independent components such that E[VS ] = 0, and ∥VS∥∞ ≤ ζ.

By the definition of the ℓ0-constrained estimator,

L(θ̂kℓ0) = min
θ∈ΘB,k

L(θ) ≤ L(θ∗)

Let Ŝ := supp(θ̂kℓ0) ∪ supp(θ∗). Then, |Ŝ| ≤ 2k, and Ŝ ∈ S. Notice that Ŝ is a function of {ξi}ni=1, and hence a random
variable. Moreover,

ℓŜ

(
θ̂kℓ0

)
≤ ℓŜ(θ

∗), and
(
∇ℓŜ(θ

∗)
)
Ŝc = 0

By Lemma E.4, since F satisfies (10), we have

γ

σ2

∥∥∥(θ̂kℓ0 − θ∗
)
Ŝ

∥∥∥2
ΣŜ

≤
∣∣∣〈∇ℓŜ(θ

∗), θ̂kℓ0 − θ∗
〉∣∣∣

=
∣∣∣〈(∇ℓŜ(θ

∗)
)
Ŝ
,
(
θ̂kℓ0 − θ∗

)
Ŝ

〉∣∣∣
≤
∥∥∥(θ̂kℓ0 − θ∗

)
Ŝ

∥∥∥
ΣŜ

∥∥(∇ℓŜ(θ
∗)
)
Ŝ

∥∥
Σ−1

Ŝ

where the last inequality is by the Cauchy-Schwarz inequality for dual norms. Hence,∥∥∥(θ̂kℓ0 − θ∗
)
Ŝ

∥∥∥2
ΣŜ

≤ σ4

γ2

∥∥(∇ℓŜ(θ
∗)
)
Ŝ

∥∥2
Σ−1

Ŝ

We now need to upper bound
∥∥(∇ℓŜ(θ

∗)
)
Ŝ

∥∥2
Σ−1

S

. By Lemma E.5,
(
∇ℓŜ(θ

∗)
)
Ŝ
= − 1

nσX
⊤
Ŝ
VŜ , where

XŜ :=
[
(x0,1 − x1,1)Ŝ , · · · , (x0,n − x1,n)Ŝ

]⊤ ∈ Rn×|Ŝ|

and VŜ ∈ Rn is a random vector with independent components defined as

(VŜ)i :=


F ′(⟨θŜ ,(x0,i−x1,i)Ŝ⟩/σ)
F(⟨θŜ ,(x0,i−x1,i)Ŝ⟩/σ)

, w.p. F
(〈
θŜ , (x0,i − x1,i)Ŝ

〉
/σ
)

−F ′(⟨θŜ ,(x0,i−x1,i)Ŝ⟩/σ)
1−F(⟨θŜ ,(x0,i−x1,i)Ŝ⟩/σ)

, w.p. 1− F
(〈
θŜ , (x0,i − x1,i)Ŝ

〉
/σ
)
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Then, E[(VŜ)i] = 0 and |(VŜ)i| ≤ ω by the definition (11). Define

MŜ :=
σ2

γ2n2
XŜΣ

−1

Ŝ
X⊤

Ŝ
∈ Rd×d

Then,
∥∥(∇ℓŜ(θ

∗)
)
Ŝ

∥∥2
Σ−1

S

= 1
n2σ2V

⊤
Ŝ
XŜΣ

−1

Ŝ
X⊤

Ŝ
VŜ = 1

n2σ2
γ2n2

σ2 V ⊤
Ŝ
MŜVŜ = γ2

σ4V
⊤
Ŝ
MŜVŜ , and

∥∥∥(θ̂kℓ0 − θ∗
)
Ŝ

∥∥∥2
ΣŜ

≤ V ⊤
Ŝ
MŜVŜ

Since ΣŜ ∈ R|Ŝ|×|Ŝ| is positive definite by assumption, it has an orthogonal diagonalization ΣŜ = U⊤
Ŝ
ΛŜUŜ = 1

nX
⊤
Ŝ
XŜ ,

where UŜ ∈ R|Ŝ|×|Ŝ| is an orthogonal matrix, and ΛŜ is a diagonal matrix with positive diagonal elements. Then,
XŜ =

√
nΛ

1/2

Ŝ
UŜ , and

MŜ =
σ2

γ2n
Λ
1/2

Ŝ
UŜ

(
U⊤
Ŝ
ΛŜUŜ

)−1
U⊤
Ŝ
Λ
1/2

Ŝ
=

σ2

γ2n
I|Ŝ|

Therefore,

tr(MŜ) =
|Ŝ|σ2

γ2n
≤ 2kσ2

nγ2
, tr(M2

Ŝ
) =

|Ŝ|σ4

γ4n2
≤ 2kσ4

n2γ4
, ∥MŜ∥2 = λmax(MŜ) =

σ2

γ2n

We then apply Lemma E.6 to get a high probability upper bound for V ⊤
Ŝ
MŜVŜ .

Lemma E.6 (Bernstein’s inequality for sub-Gaussian in quadratic form, Theorem 2.1 in Hsu et al. (2012)). Let A ∈ Rd×d

be a matrix, and Σ = A⊤A. Suppose that x = (x1, . . . , xn) is a random vector such that, for some µ ∈ Rn and σ ≥ 0, it
holds for all α ∈ Rn that E[exp(α⊤(x− µ))] ≤ exp(∥α∥22σ2/2). For any t > 0,

P

[
∥Ax∥2 > σ2

(
tr(Σ) + 2

√
tr(Σ2)t+ 2∥Σ∥2t

)
+ tr(Σµµ⊤)

(
1 + 2

(
∥Σ∥22
tr(Σ2)

t

) 1
2

)]
≤ e−t

Since VŜ is sub-Gaussian with parameter ω2, by Lemma E.6,

P
[
V ⊤
Ŝ
MŜVŜ > ω2

(
tr(MŜ) + 2

√
tr(M2

Ŝ
)t+ 2∥MŜ∥2t

)]
≤ e−t

=⇒ P

[
V ⊤
Ŝ
MŜVŜ > ω2

(
2kσ2

nγ2
+ 2

√
2kσ4

n2γ4
t+ 2

σ2

γ2n
t

)]
≤ e−t

Equivalently, with probability at least 1− δ′,

∥∥∥(θ̂kℓ0 − θ∗
)
Ŝ

∥∥∥2
ΣŜ

≤ V ⊤
Ŝ
MŜVŜ ≤ 2ω2σ2

γ2

(√
k +

√
log(1/δ′)

)2
n

:= t′

We notice that for any deterministic S ∈ S and θ̂ ∈ ΘB,k such that S = supp(θ̂) ∪ supp(θ∗) and L(θ̂) ≤ L(θ∗), the above
reasoning holds by replacing Ŝ and θ̂kℓ0 with S and θ̂, respectively. In other words, for any index set Sk such that |Sk| ≤ k,
for any θ̂ ∈ ΘB,k such that Sk = supp(θ̂) and L(θ̂) ≤ L(θ∗), let S = Sk ∪ supp(θ∗) ∈ S, and then

P
[∥∥∥(θ̂ − θ∗

)
S

∥∥∥2
ΣS

≥ t′
]
≤ δ′

The cardinality of S is
∑k

i=0

(
d−k
i

)
, and

∑k
i=0

(
d−k
i

)
≤
(
de
k

)k
because k ≤ d/2. Since Ŝ ∈ S is a random variable, we
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apply the union bound for all possible Ŝ, and get

P
[∥∥∥(θ̂kℓ0 − θ∗

)
Ŝ

∥∥∥2
ΣŜ

≥ t′
]
≤ P

[
max
S∈S

∥∥∥θ̂S − θ∗S

∥∥∥2
ΣS

≥ t′
]

≤
∑
S∈S

P
[∥∥∥θ̂S − θ∗S

∥∥∥2
ΣS

≥ t′
]

≤
∑
S∈S

δ′ ≤
(
de

k

)k

δ′

Let δ =
(
de
k

)k
δ′, and we get log(1/δ′) = k log d

k + k + log(1/δ). Then,
√
k +

√
log(1/δ′) ≤ 2

√
log(1/δ′), and

t′ ≤ 2ω2σ2

γ2

(
2
√
log(1/δ′)

)2
n

=
8ω2σ2

γ2

k log(d/k) + k + log(1/δ)

n

≤ 24ω2σ2

γ2

k log(d/k) + log(1/δ)

n
=: t

Hence,

P
[∥∥∥θ̂kℓ0 − θ∗

∥∥∥2
Σ
≥ t

]
= P

[∥∥∥(θ̂kℓ0)
Ŝ
− θ∗

Ŝ

∥∥∥2
ΣŜ

≥ t

]
≤ P

[∥∥∥(θ̂kℓ0)
Ŝ
− θ∗

Ŝ

∥∥∥2
ΣŜ

≥ t′
]
≤ δ

E.3. Proof of Theorem 3.3

For simplicity, we denote L(θ, {ξi}ni=1) as L(θ). By the definition of the ℓ1-regularized estimator, we have

L(θ̂ℓ1) + β∥θ̂ℓ1∥1 ≤ L(θ∗) + β∥θ∗∥1 ⇐⇒ β∥θ∗∥1 − β∥θ̂ℓ1∥1 ≥ L(θ̂ℓ1)− L(θ∗)

By the strong log-concavity of F and Lemma E.4, we have

L(θ̂ℓ1)− L(θ∗)−
〈
∇L(θ∗), θ̂ℓ1 − θ∗

〉
≥ γ

σ2
∥θ̂ℓ1 − θ∗∥2Σ

Thus,

γ

σ2
∥θ̂ℓ1 − θ∗∥2Σ ≤ β∥θ∗∥1 − β∥θ̂ℓ1∥1 −

〈
∇L(θ∗), θ̂ℓ1

〉
+ ⟨∇L(θ∗), θ∗⟩

≤ β∥θ∗∥1 − β∥θ̂ℓ1∥1 + ∥∇L(θ∗)∥∞∥θ̂ℓ1∥1 + ∥∇L(θ∗)∥∞∥θ∗∥1
= (∥∇L(θ∗)∥∞ + β) ∥θ∗∥1 + (∥∇L(θ∗)∥∞ − β) ∥θ̂ℓ1∥1

where the second inequality is by Hölder’s inequality. Next, we upper bound ∥∇L(θ∗)∥∞. We construct a random
vector V = VS as in Lemma E.5 with S = [d], and then 1

nσX
⊤
j V = 1

nσ

∑n
i=1 XijVi is sub-Gaussian with parameter

ω2∥Xj∥2
2

n2σ2 ≤ H2ω2

nσ2 under the assumption that max1≤j≤d ∥Xj∥2 ≤ H
√
n. Hence,

P [∥∇L(θ∗)∥∞ ≥ t] = P
[
max
1≤j≤d

1

nσ
|X⊤

j V | ≥ t

]
≤ 2d exp

(
− t2nσ2

2ω2H2

)
Let δ = 2d exp

(
− t2nσ2

2ω2H2

)
, and we get t =

√
2ωH
σ

√
log 2d+log(1/δ)

n = β. Thus, with probability at least 1− δ, we have

γ

σ2
∥θ̂ℓ1 − θ∗∥2Σ ≤ (∥∇L(θ∗)∥∞ + β) ∥θ∗∥1 + (∥∇L(θ∗)∥∞ − β) ∥θ̂ℓ1∥1

≤ 2β∥θ∗∥1

=⇒ ∥θ̂ℓ1 − θ∗∥2Σ ≤ 2σ2

γ
β∥θ∗∥1
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E.4. Proof of Theorem 3.4

For simplicity, we denote L(θ, {ξi}ni=1) as L(θ). By the definition of the ℓ1-regularized estimator,

L(θ̂ℓ1) + β∥θ̂ℓ1∥1 ≤ L(θ∗) + β∥θ∗∥1 ⇐⇒ β∥θ∗∥1 − β∥θ̂ℓ1∥1 ≥ L(θ̂ℓ1)− L(θ∗)

By the strong log-concavity of F and Lemma E.4, we have

γ

σ2
∥θ̂ℓ1 − θ∗∥2Σ ≤ L(θ̂ℓ1)− L(θ∗)−

〈
∇L(θ∗), θ̂ℓ1 − θ∗

〉
≤ β∥θ∗∥1 − β∥θ̂ℓ1∥1 −

〈
∇L(θ∗), θ̂ℓ1 − θ∗

〉
≤ β∥θ∗∥1 − β∥θ̂ℓ1∥1 + ∥∇L(θ∗)∥∞∥θ̂ℓ1 − θ∗∥1

where the last inequality is by Hölder’s inequality. By assumption, ∥Σ− Id∥max ≤ 1
32k ; equivalently,

∥∥∥X⊤X
n − Id

∥∥∥
max

≤
1

32k . Hence, ∥Xj∥22 ≤ n+ 1/(32k) ≤ 2n for any j ∈ [d]. We construct a random vector V = VS as in Lemma E.5 with

S = [d], and then 1
nσX

⊤
j V is sub-Gaussian with parameter ω2∥Xj∥2

2

n2σ2 ≤ 2ω2

nσ2 . Thus,

P [∥∇L(θ∗)∥∞ ≥ t] = P
[
max
1≤j≤d

1

nσ
|X⊤

j V | ≥ t

]
≤ 2d exp

(
− t2nσ2

4ω2

)

Let δ = 2d exp
(
− t2nσ2

4ω2

)
, and then, t = 2ω

σ

√
log 2d+log(1/δ)

n . Let β = 2t, and then, with probability at least 1− δ, it holds

that ∥∇L(θ∗)∥∞ ≤ β
2 . Therefore, with probability at least 1− δ,

γ

σ2
∥θ̂ℓ1 − θ∗∥2Σ ≤ β∥θ∗∥1 − β∥θ̂ℓ1∥1 + ∥∇L(θ∗)∥∞∥θ̂ℓ1 − θ∗∥1

≤ β∥θ∗∥1 − β∥θ̂ℓ1∥1 +
β

2
∥θ̂ℓ1 − θ∗∥1

Denote S := supp(θ∗), and then,

γ

σ2
∥θ̂ℓ1 − θ∗∥2Σ +

β

2
∥θ̂ℓ1 − θ∗∥1 ≤ β∥θ∗∥1 − β∥θ̂ℓ1∥1 + β∥θ̂ℓ1 − θ∗∥1

≤ β(∥θ∗∥1 − ∥θ̂ℓ1∥1) + β∥(θ̂ℓ1)S − (θ∗)S∥1 + β∥(θ̂ℓ1)Sc∥1
= β(∥(θ∗)S∥1 − ∥(θ̂ℓ1)S∥1) + β∥(θ̂ℓ1)S − (θ∗)S∥1
≤ 2β∥(θ̂ℓ1)S − (θ∗)S∥1

where the last inequality is due to ∥(θ∗)S∥1−∥(θ̂ℓ1)S∥1 ≤ ∥(θ̂ℓ1)S−(θ∗)S∥1 by triangle inequality. Since γ
σ2 ∥θ̂ℓ1−θ∗∥2Σ ≥

0, and

β

2
∥θ̂ℓ1 − θ∗∥1 =

β

2
∥(θ̂ℓ1)S − (θ∗)S∥1 +

β

2
∥(θ̂ℓ1)Sc∥1

=
β

2
∥(θ̂ℓ1)S − (θ∗)S∥1 +

β

2
∥(θ̂ℓ1)Sc − (θ∗)Sc∥1

it holds that

β

2
∥(θ̂ℓ1)S − (θ∗)S∥1 +

β

2
∥(θ̂ℓ1)Sc − (θ∗)Sc∥1 ≤ 2β∥(θ̂ℓ1)S − (θ∗)S∥1

=⇒ ∥(θ̂ℓ1)Sc − (θ∗)Sc∥1 ≤ 3∥(θ̂ℓ1)S − (θ∗)S∥1

Thus,

∥(θ̂ℓ1)S − (θ∗)S∥1 ≤
√

|S|∥(θ̂ℓ1)S − (θ∗)S∥2 ≤
√
k∥θ̂ℓ1 − θ∗∥2 ≤

√
2k∥θ̂ℓ1 − θ∗∥Σ
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where the first inequality is by the Cauchy-Schwarz ⟨a, b⟩ ≤ ∥a∥2∥b∥2 by taking a = 1, and the last is by Assumption 3.2.
Then,

γ

σ2
∥θ̂ℓ1 − θ∗∥2Σ ≤ 2β∥(θ̂ℓ1)S − (θ∗)S∥1 ≤ 2β

√
2k∥θ̂ℓ1 − θ∗∥Σ

=⇒ ∥θ̂ℓ1 − θ∗∥Σ ≤ 2β
√
2k

σ2

γ

=⇒ ∥θ̂ℓ1 − θ∗∥2Σ ≤ 8
σ4

γ2
β2k

Again by Assumption 3.2, we have ∥θ̂ℓ1 − θ∗∥22 ≤ 16 σ4

γ2 β
2k.

E.5. Proof of Lemma E.2

The proof of Lemma E.2 has the same idea of the proof of Lemma 8 in Shah et al. (2016) with finite D.

Given {(x0,i, x1,i)}ni=1, for any θ1, θ2 ∈ ΘB ⊃ ΘB,k, the KL divergence between the two distributions Pθ1 ({ξi}ni=1) and
Pθ2 ({ξi}ni=1) of n preference samples with parameters θ1, θ2, respectively, is

DKL (Pθ1 ({ξi}ni=1) ∥ Pθ2 ({ξi}ni=1)) =

n∑
i=1

F

(
⟨θ1, x0,i − x1,i⟩

σ

)
log

F
(

⟨θ1,x0,i−x1,i⟩
σ

)
F
(

⟨θ2,x0,i−x1,i⟩
σ

)
+

(
1− F

(
⟨θ1, x0,i − x1,i⟩

σ

))
log

1− F
(

⟨θ1,x0,i−x1,i⟩
σ

)
1− F

(
⟨θ2,x0,i−x1,i⟩

σ

)


Since for any a, b ∈ (0, 1), a log a
b ≤ (a− b)ab , we have

DKL (Pθ1 ({ξi}ni=1) ∥ Pθ2 ({ξi}ni=1))

≤
n∑

i=1

(F ( ⟨θ1, x0,i − x1,i⟩
σ

)
− F

(
⟨θ2, x0,i − x1,i⟩

σ

)) F
(

⟨θ1,x0,i−x1,i⟩
σ

)
F
(

⟨θ2,x0,i−x1,i⟩
σ

)
−
(
F

(
⟨θ1, x0,i − x1,i⟩

σ

)
− F

(
⟨θ2, x0,i − x1,i⟩

σ

)) 1− F
(

⟨θ1,x0,i−x1,i⟩
σ

)
1− F

(
⟨θ2,x0,i−x1,i⟩

σ

)


=

n∑
i=1

(
F
(

⟨θ1,x0,i−x1,i⟩
σ

)
− F

(
⟨θ2,x0,i−x1,i⟩

σ

))2
F
(

⟨θ2,x0,i−x1,i⟩
σ

)(
1− F

(
⟨θ2,x0,i−x1,i⟩

σ

))
Since ∥θ1∥2, ∥θ2∥2 ≤ B, ∥x0,i − x1,i∥2 ≤ L for all i ∈ [n], by the mean value theorem and ζ’s definition (7),

DKL (Pθ1 ({ξi}ni=1) ∥ Pθ2 ({ξi}ni=1)) ≤
n∑

i=1

ζ

(
⟨θ1, x0,i − x1,i⟩

σ
− ⟨θ2, x0,i − x1,i⟩

σ

)2

=
nζ

σ2
(θ1 − θ2)

⊤Σ(θ1 − θ2)

=
nζ

σ2
∥θ1 − θ2∥2Σ
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E.6. Proof of Lemma E.4

The gradient of ℓS is of the form

(∇ℓS(θ))S = − 1

nσ

n∑
i=1

(
1{yi=0} ·

F ′ (⟨θS , (x0,i − x1,i)S⟩ /σ)
F (⟨θS , (x0,i − x1,i)S⟩ /σ)

+1{yi=1} ·
−F ′ (⟨θS , (x0,i − x1,i)S⟩ /σ)
1− F (⟨θS , (x0,i − x1,i)S⟩ /σ)

)
(x0,i − x1,i)S

(∇ℓS(θ))Sc = 0

The sub-matrix of the Hessian of ℓS indexed by S × S is

(
∇2L(θ)

)
SS

=
1

nσ2

n∑
i=1

(
1{yi=0} · T0,i + 1{yi=1} · T1,i

)
(x0,i − x1,i)S(x0,i − x1,i)

⊤
S

where

T0,i =
(F ′ (⟨θS , (x0,i − x1,i)S⟩ /σ))2 − F (⟨θS , (x0,i − x1,i)S⟩ /σ)F ′′ (⟨θS , (x0,i − x1,i)S⟩ /σ)

(F (⟨θS , (x0,i − x1,i)S⟩ /σ))2

= ∇2 logF (⟨θS , (x0,i − x1,i)S⟩ /σ) ≥ 2γ

T1,i =
(F ′ (⟨θS , (x0,i − x1,i)S⟩ /σ))2 + (1− F (⟨θS , (x0,i − x1,i)S⟩ /σ))F ′′ (⟨θS , (x0,i − x1,i)S⟩ /σ)

(1− F (⟨θS , (x0,i − x1,i)S⟩ /σ))2

= ∇2 log(1− F (⟨θS , (x0,i − x1,i)S⟩ /σ))
= ∇2 log(F (−⟨θS , (x0,i − x1,i)S⟩ /σ)) ≥ 2γ

and zero at the entries in the complement of S × S. Hence, for any v ∈ Rd, we have for any θ ∈ ΘB ,

v⊤∇2L(θ)v = v⊤S
(
∇2L(θ)

)
SS

vS ≥ 2γ

σ2
∥vS∥2ΣS

Thus, for any θ′ ∈ Rd such that θ∗ + θ′ ∈ ΘB , it holds that

ℓS(θ
∗ + θ′)− ℓS(θ

∗)− ⟨∇ℓS(θ
∗), θ′⟩ ≥ γ

σ2
∥θ′S∥2ΣS

E.7. Proof of Lemma E.5

(∇ℓS(θ
∗))S = − 1

nσ

n∑
i=1

(
1{yi=0} ·

F ′ (⟨θ∗S , (x0,i − x1,i)S⟩ /σ)
F (⟨θ∗S , (x0,i − x1,i)S⟩ /σ)

+1{yi=1} ·
−F ′ (⟨θ∗S , (x0,i − x1,i)S⟩ /σ)
1− F (⟨θ∗S , (x0,i − x1,i)S⟩ /σ)

)
(x0,i − x1,i)S

Define VS as

(VS)i :=


F ′(⟨θ∗

S ,(x0,i−x1,i)S⟩/σ)
F(⟨θ∗

S ,(x0,i−x1,i)S⟩/σ) , w.p. F (⟨θ∗S , (x0,i − x1,i)S⟩ /σ)
−F ′(⟨θ∗

S ,(x0,i−x1,i)S⟩/σ)
1−F(⟨θ∗

S ,(x0,i−x1,i)S⟩/σ) , w.p. 1− F (⟨θ∗S , (x0,i − x1,i)S⟩ /σ)

Then, (∇ℓS(θ
∗))S = − 1

nσX
⊤
S VS . Notice that E[VS ] = 0, and by the definition (7) of ω,

|(VS)i| ≤ sup
z∈[−2BL/σ,2BL/σ]

{
F ′(z)

F (z)
,

F ′(z)

1− F (z)

}
= ω
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