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Abstract

We introduce Enchant v2, a large-scale multi-modal transformer for predict-
ing molecular, biochemical, and pharmacological properties from heterogeneous
biomedical data. The model addresses a core challenge in drug discovery: gener-
alizing under extreme data sparsity and across incompatible modalities. Diverse
inputs including molecular graphs, protein sequences, assay measurements, and
free text are represented as unified token sequences processed by a single trans-
former. Pretraining on a large, curated corpus is followed by parameter-efficient
fine-tuning for molecule property prediction. We show that Enchant v2 follows
established transformer scaling laws, with performance improving predictably as
pretraining compute increases. On public and proprietary benchmarks including
drug property prediction and internal pharmacology datasets, it consistently outper-
forms TxGemma and Enchant v1. Crucially, in real-world applications, Enchant
v2 surpasses the current industry standard of in vitro screening: for example, it
achieves an AUROC of 0.74 in classifying high versus low in vivo rat clearance,
compared to just 0.51 when extrapolating from measured in vitro clearance values.
In addition, the model produces calibrated uncertainty estimates that closely track
observed hit rates in virtual screening tasks, enabling reliable hit identification and
efficient prioritization of compounds in early discovery workflows. These findings
suggest that scalable, modality-agnostic transformers can deliver robust general-
ization and substantial performance gains in real-world low-data drug discovery
settings.

1 Introduction

Modern drug discovery is fundamentally constrained by a pronounced data asymmetry: while in
vitro and in silico studies generate large volumes of data across chemical, biological, and biophysical
modalities; human clinical data, especially on pharmacokinetics, safety, and efficacy, remains
extremely scarce. This disparity limits the utility of early discovery models, as many pivotal
development decisions must be made without direct access to the endpoints that ultimately determine
clinical success, such as drug exposure in humans, tolerability across diverse patient populations, and
therapeutic benefit in disease-relevant settings. The result is a costly and high-attrition pipeline, where
late-stage failures often stem from shortcomings in translatability across the lab-to-clinic boundary™.

Prior efforts to address this challenge have included modality-specific models targeting properties
such as bioactivity, ADME, or toxicity, often using fingerprints, graph neural networks, or pretrained
chemical language models#*. These approaches, while effective within narrow tasks, tend to falter
when generalizing across endpoints or integrating diverse experimental contexts. Recent advances
in deep learning have introduced the idea of large-scale, pre-trained models spanning biomedical
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Figure 1: Enchant shows predictable performance improvements through increased model scale. The
x-axis is the compute needed to train the foundation model, normalized to Enchant v1’s cost. Each
point represents a compute-optimal foundation model trained at a given scale, and then fine-tuned,
reporting the mean across three benchmarks (described in Section [2.2.1) of the median performance
on the tasks within the benchmarks. Errors bars correspond to standard error of the mean over five
finetuning runs with different initializations. Enchant vl and Enchant v2 are highlighted.

domains*®. The most promising of these approaches train on broad collections of multi-source data
to support predictions in multi-task settings.

Despite this progress, key challenges persist. Existing models remain limited by narrow modal-
ity coverage, overreliance on curated datasets, or architectural constraints that restrict scalability
across endpoints or organizations. Furthermore, general-purpose language models, even when fine-
tuned, struggle to match the predictive accuracy of specialized models trained on domain-specific
molecular data®!¥. Critically, few approaches have demonstrated strong performance in zero- and
few-shot settings across diverse pharmacokinetic and safety-related tasks, which are often the most
underrepresented but decision-critical endpoints in real-world programs-'12,

To address these challenges, we extend the Enchant v1¥ model by significantly scaling both the

model and pretraining corpus. Figure|l|shows performance on downstream benchmarks improves
predictably with increasing scale, consistent with established transformer scaling laws. Additionally,
we introduce an integrated uncertainty quantification module to support probabilistic reasoning in
drug discovery tasks. This enhanced framework yields consistent performance improvements across
a broad range of endpoints, achieves state-of-the-art results on established molecular benchmarks
relative to recent transformer-based models'#, and exhibits strong zero-shot capabilities. Beyond
benchmarks, we validate its practical relevance through case studies in real-world drug discovery
pipelines, where it offers actionable insights and robust generalization under data-sparse conditions.

2 Methodology

Our approach is centered on training a large-scale, multi-modal transformer model to perform
regression and classification tasks across a broad spectrum of molecular, biochemical, and clinical
endpoints. This section outlines the key components of the training workflow, including the data
pipeline used to aggregate and standardize heterogeneous biomedical data, the model architecture,
scaling studies, tokenization, fine-tuning, and uncertainty quantification procedures that enable
learning from diverse modalities.

2.1 Data pipeline

To support training at scale across a wide range of drug discovery tasks, we base our unified
data pipeline on that of Enchant v11%. Our pipeline ingests, standardizes, and transforms raw
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biomedical data into structured token sequences suitable for transformer-based modeling. This
section summarizes the pipeline, and highlights key additions and changes made for Enchant v2.

2.1.1 Data Sources

The pipeline begins with the large-scale aggregation of raw biomedical sources spanning chemi-
cal, biological, textual, and experimental domains. These data are drawn from a combination of
public resources including compound databases, assay repositories, protein structure archives, and
biomedical literature, as well as proprietary internal sources. Key public datasets include ChEMBL?
for bioactivity assays, the Protein Data Bank'™ for structural biology, and the Therapeutics Data
Commons for curated ML-ready benchmarks'”. Additional sources include open-access text corpora
relevant to drug discovery such as bioRxiv1® and ClinicalTrials'”. For Enchant v2, we add text
from ChemRxiv'¥ (including only CC-BY-4.0 licensed publications) and Fineweb-edu'?, molecular
catalog prices from eMolecules®” and an internal database of reagents, and assay data from PK-DB%L.
All incoming data are ingested in their original formats and staged in a unified object store, enabling
subsequent normalization and processing at scale.

2.1.2 Data processing

Once raw data are collected, they undergo standardized preprocessing to normalize entity formats,
harmonize metadata, and unify units and representations across sources. Each data instance is
first categorized by type such as molecular structure, protein sequence, or assay measurement and
converted into a consistent format (e.g., SMILES for molecules, FASTA for sequences, tabular
for assays). Named entity recognition and structured metadata are used to extract and tag key
biological and chemical entities, including small molecules, proteins, genes, tissues, cell lines, and
assay endpoints. Biomedical entities in text are annotated using Kazu?Z, All numerical quantities
(e.g., ICsp, solubility, clearance rates) are first standardized into SI units and then transformed into
distributions appropriate for model training using linear, logarithmic, or logit transforms.

2.1.3 Tokenization

Following standardization, each data modality is transformed into a modality-specific representation
and serialized into a one-dimensional token stream. All modalities are processed using a shared
tokenizer, ensuring that heterogeneous signals are expressed within a unified vocabulary while still
preserving modality identity and local structure. For Enchant v2, we adapt the tokenizer originally
used to train GPT-4%°, modifying the tiktoken_gpt4 implementation from TIKTOKEN“# to incorporate
special tokens for numerical quantities, standardized data fields, and modality-specific sentinels. The
resulting vocabulary for Enchant v2 comprises 102,400 tokens. For each training sample, token
sequences corresponding to associated entities (e.g., a drug molecule and its measured assay results)
are concatenated, with special delimiter tokens marking the beginning and end of each modality
stream. Entity holdouts are applied during sample construction such that no entities appearing in
benchmark test sets are used in pretraining.

2.2 Enchant v2 Model

Enchant v2 is a large-scale transformer based on the LLaMA-2 architecture''’2>. The Enchant v2
architecture is the same as the architecture as Enchant v113, except the context length is doubled
to 8,192 tokens and the model size is increased significantly following a series of scaling studies
discussed in2.2.11

2.2.1 Scaling Studies

To determine the optimal model size and training tokens for Enchant v2, we perform an isoFLOP
scaling study following the protocol of the second Chinchilla approach?®, We differ from the original
approach by evaluating models using held-out assay value validation loss on high-quality assays
from Biogen ADMEY, Kinase200%Z, TDC ADMETY, and internal data. Assay value validation
loss is defined as the cross-entropy loss averaged over the tokens representing assay values (e.g.,
measurements such as logD, IC50, or clearance) when these values are tokenized into discrete
sequences. For example, the assay value validation loss for the sequence "The LogD of aspirin is
1.19" is the averaged loss computed over the tokens for "1.19". A lower loss indicates the model
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more accurately captures the distribution of experimentally measured assay values. Enchant v2 is
trained with the optimal number of tokens and model size estimated from these scaling laws, with
~10 times the compute used to train Enchant v1. To further validate Enchant scaling laws apply to
downstream assay value prediction, we fine-tune the compute-optimal model from each isoFLOP
curve on assay benchmarks from Biogen ADME, Kinase200, and TDC ADMET using the procedure
described in[2.2.3] For each benchmark, a separate multi-task model ensemble is fine-tuned using the
same base model and fine-tuning hyperparameters described in[2.2.3]

2.2.2 Pretraining

Enchant v2 is pre-trained from scratch on trillions of tokens, determined from@ curated from a
large corpus of data covering a diverse set of modalities described in[2.T] The model was trained with
the next token prediction objective®232% using FSDP on 112 H100 NVIDIA GPUs. For efficient
sharded data loading, we use MOSAICML STREAMING=Y with a global batch size of approximately
one million tokens. We use the AdamW optimizer®! with 8; = 0.9 and B, = 0.95, gradient clipping
of 1.0 and weight decay of 0.1. The cosine annealing scheduler!' was used with a maximum learning
rate of 1.5 * 104 after an initial linear warm up of approximately 3% of the total training tokens.

2.2.3 Fine-tuning

After pretraining, the model is fine-tuned for regression tasks. We apply low-rank adaptation
(LoRA)*? using the PEFT library"~, replacing the language modeling head with a fully connected
regression head that outputs a single scalar value representing the assay value prediction. The LoRA
weights and regression head are trained using mean squared error (MSE) loss. Each fine-tuning
instance is conditioned on prompts that incorporate relevant context, such as the assay description and
molecular SMILES, and the model is trained to predict the corresponding assay value. Task-specific
datasets are split into training and validation sets, and the checkpoint with the lowest validation loss
is selected. This approach supports both single-task and multi-task fine-tuning, and we ensemble the
models by combining the base model with five independently trained LoRA adapters, each fine-tuned
on the same data using different random initializations.

2.2.4 Uncertainty Quantification

Following fine-tuning, an auxiliary uncertainty quantification (UQ) module is calibrated on the vali-
dation data for each model in the ensemble. The UQ model assumes normal probability distributions,
and predicts the variance of the test sample based on the distance from the test embedding to those of
the training set. The UQ model is trained to minimizing the error between the predicted variances
and the squared errors of the fine-tuned model’s predictions on the validation set.

2.2.5 Benchmarking

We compare the performance of Enchant v2, Enchant v1, and TxGemma 14 a recent open-source
therapeutic transformer, on two benchmarks: the Biogen ADME benchmark!!' and proprietary
in-house assays. The best of the three published TxGemma prediction models was used, namely
TxGemma-9B-predict. TxGemma was fine-tuned using Google DeepMind’s published notebook"<.
Prompts were manually adapted to match the prompting style used in TxGemma’s provided examples.
Consistent with TxGemma’s training protocol, regression values were discretized into bins ranging
from O to 1000, and the base model was fine-tuned using LoRA with cross-entropy loss on the binned
targets. The Biogen ADME benchmark includes six experimentally measured pharmacokinetic
properties including solubility, plasma protein binding, and microsomal clearance. Our in-house
benchmark is made up of experimentally measured endpoints that reflect real-world discovery settings
including cellular permeability, biochemical enzyme inhibition, cellular pharmacodynamics, and
physiochemical properties.

2.2.6 Drug Discovery Applications

Beyond benchmark performance, we assess the model’s real-world impact through case studies in
active drug discovery programs: hit identification and pharmacokinetics.

Hit identification is the first critical decision point in small-molecule drug discovery, where com-
pounds with measurable activity against a biological target are selected from large chemical libraries.
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Effective hit finding is essential for efficient use of experimental resources: false positives consume
synthesis and assay capacity, while false negatives risk missing promising chemical matter. In this
setting, we evaluate the calibration of Enchant’s UQ to score candidate hits.

Pharmacokinetics (PK) is a key determinant of a drug candidate’s efficacy and safety, describing
how drug concentrations in the body change over time. Accurate early prediction of PK properties
such as clearance can reduce costly late-stage failures and guide compound optimization before
resource-intensive animal studies. We assess the model’s ability to classify compounds as having
high or low in vivo clearance in rat PK studies by performing multi-task fine-tuning on combined in
vitro and in vivo PK assay data. As a baseline, we use the standard industry approach of synthesizing
compounds and measuring clearance in rat liver microsome assays. Compounds are binned into high
or low clearance categories from in vitro results using the same thresholds applied to in vivo data.
For both methods, predictions are evaluated against experimentally measured in vivo clearance in
rats, with classification performance quantified using receiver operating characteristic (ROC) analysis
and the area under the curve (AUC) as the primary metric.

3 Results & discussion

3.1 Scaling laws
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Figure 2: Enchant isoFLOP scaling curves. Each curve shows the performance of different model
sizes for a fixed compute budget relative to the Enchant v1 training cost in FLOPs. The y-axis is the
cross entropy loss averaged over assay value number tokens in the Biogen ADME, Kinase200, TDC
ADMET, and internal assay validation sets. The compute-optimal model for each compute budget is
highlighted in red.

We first assess how the proposed model’s performance changes with increased training compute by
examining the scaling of both validation loss and downstream predictive accuracy. Figure 2] shows
isoFLOP scaling curves in which the averaged assay value validation loss (defined in[2.2.1)) is plotted
against training compute for different numbers of training tokens and model parameters. As expected,
our model improves with increasing compute. When compute is limited, it’s more efficient to use that
budget to train smaller models on a larger number of tokens, the optimal point on the curve favors
more tokens seen. As compute capacity grows, the optimum shifts, and it becomes better to invest
the additional compute in training larger models on relatively fewer tokens.

To connect these loss trends to downstream utility, Figure [T]reports performance of fine-tuned models
as a function of relative compute for compute-optimal pre-training. Here, we observe predictable
improvements in both Pearson correlation and mean absolute error aggregated across a panel of
benchmarks described in 2.2.1] with larger models pre-trained with more compute consistently
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outperforming smaller ones. Notably, with a tenfold increase in pretraining compute over Enchant v1,
Enchant v2 achieves an aggregate Pearson R of 0.78 and a mean absolute error of 0.43, compared to
Enchant v1’s aggregate Pearson R of 0.71 and mean absolute error of 0.46. These results indicate
that the model adheres to well-established scaling laws and that increased compute investment yields
tangible benefits in real-world predictive tasks.

3.2 Benchmarks
3.2.1 Biogen ADME
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& TxGemma
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HLM HPPB ER RLM RPBB Solubility

Figure 3: Spearman R of Enchant v2, Enchant v1 and fine-tuned TxGemma-9B-predict for prediction
of Biogen ADME properties. Here, HLM = human liver microsomal clearance, HPPB = human
plasma protein binding, ER = MDR1- MDCK efflux ratio, RLM = rat microsomal stability, and
RPPB = rat plasma protein binding.

Figure [3]reports the Spearman correlation for prediction of the six in vitro ADME properties in a
random held-out test split of the Biogen ADME benchmark™. Across all six endpomts Enchant v2
achieves higher Spearman R than both baselines, with particularly pronounced gains on human and
rat plasma protein binding. Specifically, the proposed model achieves a Spearman R of 0.85 on HLM,
0.93 on HPPB, 0.82 on ER, 0.87 on RLM, 0.89 on RPPB, and 0.65 on solubility, outperforming
Enchant vl and TxGemma on each property. These results demonstrate that the model’s increased
scale, multi-modal architecture, and pretraining strategy translate effectively to pharmacokinetic
endpoints that are critical for early-stage compound prioritization.

3.2.2 In-house Assays
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Figure 4: Benchmarks on in-house-generated experimental data across a range of drug discovery
endpoints. Papp(MDRI1) and Papp(MDCK) are cellular permeabilities in MDCK cells with and
without overexpression of MDRI1 (P-gp). CDK4 IC50 refers to biochemical enzyme inhibition
of CDK4. MCF-7 PD is a cellular pharmacodynamics endpoint. Solubility is kinetic solubility
in simulated gut fluid. Even without fine-tuning, Enchant v2 considerably outperforms fine-tuned
TxGemma-9B-predict. Negative Pearson R coefficients are not shown.

Figured]compares the performance of Enchant v2, Enchant v1, and Tx-Gemma on four drug-discovery
endpoints central to compound optimization: cellular permeability, biochemical enzyme inhibition of
CDKA4, a cellular pharmacodynamics endpoint, and kinetic solubility in simulated gut fluid. For each
property, Pearson correlation is computed between model predictions and experimentally measured
values. Across all endpoints, fine-tuned Enchant v2 achieves higher Pearson R than both baselines.
The Enchant v2 foundation model also demonstrates strong zero-shot predictive capability, predictions
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made without any fine-tuning. In several benchmarks, its zero-shot accuracy even surpasses that
of fine-tuned baselines such as TxGemma. For example, although Enchant v2 was only exposed
to MCF-7 PD measurements for 12 unique molecules during pretraining, zero-shot inference on
held-out compounds achieved a Pearson correlation of 0.45. This capacity to generate meaningful
predictive signal on previously unseen assays highlights the model’s utility in low-data regimes and
underscores its potential to provide immediate value for emerging discovery programs.

3.3 Applications in drug discovery

To assess the utility of our model in real drug discovery applications, we evaluate its performance
on a set of proprietary benchmarks. These tasks are chosen to reflect the kinds of decision-making
challenges encountered in practice, including hit-identification and compound optimization efforts.
By testing across both well-established datasets and internal experimental measurements, we aim to
quantify the model’s ability to generalize from heterogeneous pretraining to the specific predictive
problems that guide lead selection and optimization in active discovery programs.

3.3.1 Hit Identification

—8— Enchant — — Perfect Calibration

True Fraction of Actives

0 0.2 0.4 0.6 0.8 1
Predicted Fraction of Actives

Figure 5: Calibration plot for classifying active compounds against a protein target with uncertainty
quantification for an in-house hit identification campaign. Compounds are binned based on predicted
probability to be active (pICy> 5) and compared to the true fraction of active compounds within that
bin. Enchant UQ shows good calibration to observed hit rates.

We evaluated our model on a hit identification task designed to mimic early-stage screening workflows.
In this setup, the model ranks compounds in a virtual chemical library according to their predicted
activity against a protein target, using both assay value predictions and associated uncertainty
estimates. Figure [5]illustrates how well these predicted probabilities align with observed hit rates
when compounds are grouped into bins by predicted probability. The uncertainty-aware model is well
calibrated across a wide probability range. Among the 12 compounds with the highest predicted hit
probability, 10 were experimentally confirmed as hits, an observed hit rate of 83%, closely matching
the 86% mean predicted rate for that bin. Conversely, of the 89 compounds with the lowest predicted
hit probability, 7 were hits, an observed hit rate of 8% versus a projected rate of 10%. Additionally,
Enchant UQ calibration is confirmed in hit-scaffold hopping experiments, leading to a 25% hit rate
in real-world scaffold hopping exercises in our internal drug discovery programs. These results
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demonstrate that the model produces reliable enrichment estimates, enabling more efficient allocation
of experimental resources in high-throughput screening campaigns to maximize true positive recovery
while limiting false positives and negatives.

3.3.2 Pharmacokinetics
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Figure 6: ROC plot for the classification of compounds as having high or low in vivo clearance in
rat pharmacokinetics experiments. Here, Enchant v2 (AUC = 0.74, 95% CI: 0.60-0.89) is better at
predicting in vivo clearance than the standard approach of testing in an in vitro microsome assay (AUC
=0.51, 95% CI: 0.31-0.70). Confidence intervals were estimated using 1,000 bootstrap iterations.

Figure [6] shows the ability of Enchant v2 to classify compounds as having high versus low in
vivo clearance in rats. Enchant v2 achieves an area under the receiver operating characteristic
curve (AUROC) of 0.74 (95% CI: 0.60-0.89), demonstrating meaningful discriminative power. By
contrast, extrapolating in vivo clearance from in vitro rat microsome assays yields an AUROC
of 0.51 (95% CI: 0.31-0.70). Across 1,000 bootstrap iterations, Enchant v2 outperforms in vitro
screening with 90% confidence. These results demonstrate how Enchant v2 can overcome the
in vitro—in vivo disconnect that frequently limits drug discovery programs, by achieving more
accurate predictions of in vivo clearance on new molecules than would be obtained from synthesizing
and testing them experimentally in vitro. This capability could enable more informed compound
prioritization decisions before committing resources to in vivo studies.

4 Conclusions

In this work, we presented Enchant v2, a large-scale, multi-modal transformer model designed to
predict diverse biochemical, pharmacological, and pharmacokinetic endpoints relevant to real-world
drug discovery. By unifying heterogeneous data types into a harmonized token-based representation
and leveraging large-scale pretraining with parameter-efficient fine-tuning, the model delivers consis-
tent gains over strong baselines across public benchmarks and proprietary in-house tasks. We further
showed that our model follows established transformer scaling laws, with performance improving
predictably as pretraining compute increases. Results demonstrate benefits in settings ranging from hit
prediction to compound property estimation and pharmacokinetic classification, with improvements
observed in both low-data and zero-shot scenarios. These findings suggest that modality-agnostic,
scalable transformer architectures can play a central role in guiding decision-making throughout
the discovery process, enabling more efficient prioritization of compounds and potentially reducing
experimental burden. Future work will explore further scaling to larger model capacities, expanding
modality coverage, and integrating generative capabilities for compound design.
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