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Abstract

We introduce Enchant v2, a large-scale multi-modal transformer for predict-1

ing molecular, biochemical, and pharmacological properties from heterogeneous2

biomedical data. The model addresses a core challenge in drug discovery: gener-3

alizing under extreme data sparsity and across incompatible modalities. Diverse4

inputs including molecular graphs, protein sequences, assay measurements, and5

free text are represented as unified token sequences processed by a single trans-6

former. Pretraining on a large, curated corpus is followed by parameter-efficient7

fine-tuning for molecule property prediction. We show that Enchant v2 follows8

established transformer scaling laws, with performance improving predictably as9

pretraining compute increases. On public and proprietary benchmarks including10

drug property prediction and internal pharmacology datasets, it consistently outper-11

forms TxGemma and Enchant v1. Crucially, in real-world applications, Enchant12

v2 surpasses the current industry standard of in vitro screening: for example, it13

achieves an AUROC of 0.74 in classifying high versus low in vivo rat clearance,14

compared to just 0.51 when extrapolating from measured in vitro clearance values.15

In addition, the model produces calibrated uncertainty estimates that closely track16

observed hit rates in virtual screening tasks, enabling reliable hit identification and17

efficient prioritization of compounds in early discovery workflows. These findings18

suggest that scalable, modality-agnostic transformers can deliver robust general-19

ization and substantial performance gains in real-world low-data drug discovery20

settings.21

1 Introduction22

Modern drug discovery is fundamentally constrained by a pronounced data asymmetry: while in23

vitro and in silico studies generate large volumes of data across chemical, biological, and biophysical24

modalities; human clinical data, especially on pharmacokinetics, safety, and efficacy, remains25

extremely scarce. This disparity limits the utility of early discovery models, as many pivotal26

development decisions must be made without direct access to the endpoints that ultimately determine27

clinical success, such as drug exposure in humans, tolerability across diverse patient populations, and28

therapeutic benefit in disease-relevant settings. The result is a costly and high-attrition pipeline, where29

late-stage failures often stem from shortcomings in translatability across the lab-to-clinic boundary1.30

Prior efforts to address this challenge have included modality-specific models targeting properties31

such as bioactivity, ADME, or toxicity, often using fingerprints, graph neural networks, or pretrained32

chemical language models2–4. These approaches, while effective within narrow tasks, tend to falter33

when generalizing across endpoints or integrating diverse experimental contexts. Recent advances34

in deep learning have introduced the idea of large-scale, pre-trained models spanning biomedical35
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Figure 1: Enchant shows predictable performance improvements through increased model scale. The
x-axis is the compute needed to train the foundation model, normalized to Enchant v1’s cost. Each
point represents a compute-optimal foundation model trained at a given scale, and then fine-tuned,
reporting the mean across three benchmarks (described in Section 2.2.1) of the median performance
on the tasks within the benchmarks. Errors bars correspond to standard error of the mean over five
finetuning runs with different initializations. Enchant v1 and Enchant v2 are highlighted.

domains5–8. The most promising of these approaches train on broad collections of multi-source data36

to support predictions in multi-task settings.37

Despite this progress, key challenges persist. Existing models remain limited by narrow modal-38

ity coverage, overreliance on curated datasets, or architectural constraints that restrict scalability39

across endpoints or organizations. Furthermore, general-purpose language models, even when fine-40

tuned, struggle to match the predictive accuracy of specialized models trained on domain-specific41

molecular data9;10. Critically, few approaches have demonstrated strong performance in zero- and42

few-shot settings across diverse pharmacokinetic and safety-related tasks, which are often the most43

underrepresented but decision-critical endpoints in real-world programs11;12.44

To address these challenges, we extend the Enchant v113 model by significantly scaling both the45

model and pretraining corpus. Figure 1 shows performance on downstream benchmarks improves46

predictably with increasing scale, consistent with established transformer scaling laws. Additionally,47

we introduce an integrated uncertainty quantification module to support probabilistic reasoning in48

drug discovery tasks. This enhanced framework yields consistent performance improvements across49

a broad range of endpoints, achieves state-of-the-art results on established molecular benchmarks50

relative to recent transformer-based models14, and exhibits strong zero-shot capabilities. Beyond51

benchmarks, we validate its practical relevance through case studies in real-world drug discovery52

pipelines, where it offers actionable insights and robust generalization under data-sparse conditions.53

2 Methodology54

Our approach is centered on training a large-scale, multi-modal transformer model to perform55

regression and classification tasks across a broad spectrum of molecular, biochemical, and clinical56

endpoints. This section outlines the key components of the training workflow, including the data57

pipeline used to aggregate and standardize heterogeneous biomedical data, the model architecture,58

scaling studies, tokenization, fine-tuning, and uncertainty quantification procedures that enable59

learning from diverse modalities.60

2.1 Data pipeline61

To support training at scale across a wide range of drug discovery tasks, we base our unified62

data pipeline on that of Enchant v113. Our pipeline ingests, standardizes, and transforms raw63
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biomedical data into structured token sequences suitable for transformer-based modeling. This64

section summarizes the pipeline, and highlights key additions and changes made for Enchant v2.65

2.1.1 Data Sources66

The pipeline begins with the large-scale aggregation of raw biomedical sources spanning chemi-67

cal, biological, textual, and experimental domains. These data are drawn from a combination of68

public resources including compound databases, assay repositories, protein structure archives, and69

biomedical literature, as well as proprietary internal sources. Key public datasets include ChEMBL270

for bioactivity assays, the Protein Data Bank15 for structural biology, and the Therapeutics Data71

Commons for curated ML-ready benchmarks7. Additional sources include open-access text corpora72

relevant to drug discovery such as bioRxiv16 and ClinicalTrials17. For Enchant v2, we add text73

from ChemRxiv18 (including only CC-BY-4.0 licensed publications) and Fineweb-edu19, molecular74

catalog prices from eMolecules20 and an internal database of reagents, and assay data from PK-DB21.75

All incoming data are ingested in their original formats and staged in a unified object store, enabling76

subsequent normalization and processing at scale.77

2.1.2 Data processing78

Once raw data are collected, they undergo standardized preprocessing to normalize entity formats,79

harmonize metadata, and unify units and representations across sources. Each data instance is80

first categorized by type such as molecular structure, protein sequence, or assay measurement and81

converted into a consistent format (e.g., SMILES for molecules, FASTA for sequences, tabular82

for assays). Named entity recognition and structured metadata are used to extract and tag key83

biological and chemical entities, including small molecules, proteins, genes, tissues, cell lines, and84

assay endpoints. Biomedical entities in text are annotated using Kazu22. All numerical quantities85

(e.g., IC50, solubility, clearance rates) are first standardized into SI units and then transformed into86

distributions appropriate for model training using linear, logarithmic, or logit transforms.87

2.1.3 Tokenization88

Following standardization, each data modality is transformed into a modality-specific representation89

and serialized into a one-dimensional token stream. All modalities are processed using a shared90

tokenizer, ensuring that heterogeneous signals are expressed within a unified vocabulary while still91

preserving modality identity and local structure. For Enchant v2, we adapt the tokenizer originally92

used to train GPT-423, modifying the tiktoken_gpt4 implementation from TIKTOKEN 24 to incorporate93

special tokens for numerical quantities, standardized data fields, and modality-specific sentinels. The94

resulting vocabulary for Enchant v2 comprises 102,400 tokens. For each training sample, token95

sequences corresponding to associated entities (e.g., a drug molecule and its measured assay results)96

are concatenated, with special delimiter tokens marking the beginning and end of each modality97

stream. Entity holdouts are applied during sample construction such that no entities appearing in98

benchmark test sets are used in pretraining.99

2.2 Enchant v2 Model100

Enchant v2 is a large-scale transformer based on the LLaMA-2 architecture10;25. The Enchant v2101

architecture is the same as the architecture as Enchant v113, except the context length is doubled102

to 8,192 tokens and the model size is increased significantly following a series of scaling studies103

discussed in 2.2.1.104

2.2.1 Scaling Studies105

To determine the optimal model size and training tokens for Enchant v2, we perform an isoFLOP106

scaling study following the protocol of the second Chinchilla approach26. We differ from the original107

approach by evaluating models using held-out assay value validation loss on high-quality assays108

from Biogen ADME11, Kinase20027, TDC ADMET7, and internal data. Assay value validation109

loss is defined as the cross-entropy loss averaged over the tokens representing assay values (e.g.,110

measurements such as logD, IC50, or clearance) when these values are tokenized into discrete111

sequences. For example, the assay value validation loss for the sequence "The LogD of aspirin is112

1.19" is the averaged loss computed over the tokens for "1.19". A lower loss indicates the model113
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more accurately captures the distribution of experimentally measured assay values. Enchant v2 is114

trained with the optimal number of tokens and model size estimated from these scaling laws, with115

∼10 times the compute used to train Enchant v1. To further validate Enchant scaling laws apply to116

downstream assay value prediction, we fine-tune the compute-optimal model from each isoFLOP117

curve on assay benchmarks from Biogen ADME, Kinase200, and TDC ADMET using the procedure118

described in 2.2.3. For each benchmark, a separate multi-task model ensemble is fine-tuned using the119

same base model and fine-tuning hyperparameters described in 2.2.3.120

2.2.2 Pretraining121

Enchant v2 is pre-trained from scratch on trillions of tokens, determined from 2.2.1, curated from a122

large corpus of data covering a diverse set of modalities described in 2.1. The model was trained with123

the next token prediction objective9;28;29 using FSDP on 112 H100 NVIDIA GPUs. For efficient124

sharded data loading, we use MOSAICML STREAMING 30 with a global batch size of approximately125

one million tokens. We use the AdamW optimizer31 with β1 = 0.9 and β2 = 0.95, gradient clipping126

of 1.0 and weight decay of 0.1. The cosine annealing scheduler31 was used with a maximum learning127

rate of 1.5 ∗ 10−4 after an initial linear warm up of approximately 3% of the total training tokens.128

2.2.3 Fine-tuning129

After pretraining, the model is fine-tuned for regression tasks. We apply low-rank adaptation130

(LoRA)32 using the PEFT library33, replacing the language modeling head with a fully connected131

regression head that outputs a single scalar value representing the assay value prediction. The LoRA132

weights and regression head are trained using mean squared error (MSE) loss. Each fine-tuning133

instance is conditioned on prompts that incorporate relevant context, such as the assay description and134

molecular SMILES, and the model is trained to predict the corresponding assay value. Task-specific135

datasets are split into training and validation sets, and the checkpoint with the lowest validation loss136

is selected. This approach supports both single-task and multi-task fine-tuning, and we ensemble the137

models by combining the base model with five independently trained LoRA adapters, each fine-tuned138

on the same data using different random initializations.139

2.2.4 Uncertainty Quantification140

Following fine-tuning, an auxiliary uncertainty quantification (UQ) module is calibrated on the vali-141

dation data for each model in the ensemble. The UQ model assumes normal probability distributions,142

and predicts the variance of the test sample based on the distance from the test embedding to those of143

the training set. The UQ model is trained to minimizing the error between the predicted variances144

and the squared errors of the fine-tuned model’s predictions on the validation set.145

2.2.5 Benchmarking146

We compare the performance of Enchant v2, Enchant v1, and TxGemma14, a recent open-source147

therapeutic transformer, on two benchmarks: the Biogen ADME benchmark11 and proprietary148

in-house assays. The best of the three published TxGemma prediction models was used, namely149

TxGemma-9B-predict. TxGemma was fine-tuned using Google DeepMind’s published notebook34.150

Prompts were manually adapted to match the prompting style used in TxGemma’s provided examples.151

Consistent with TxGemma’s training protocol, regression values were discretized into bins ranging152

from 0 to 1000, and the base model was fine-tuned using LoRA with cross-entropy loss on the binned153

targets. The Biogen ADME benchmark includes six experimentally measured pharmacokinetic154

properties including solubility, plasma protein binding, and microsomal clearance. Our in-house155

benchmark is made up of experimentally measured endpoints that reflect real-world discovery settings156

including cellular permeability, biochemical enzyme inhibition, cellular pharmacodynamics, and157

physiochemical properties.158

2.2.6 Drug Discovery Applications159

Beyond benchmark performance, we assess the model’s real-world impact through case studies in160

active drug discovery programs: hit identification and pharmacokinetics.161

Hit identification is the first critical decision point in small-molecule drug discovery, where com-162

pounds with measurable activity against a biological target are selected from large chemical libraries.163
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Effective hit finding is essential for efficient use of experimental resources: false positives consume164

synthesis and assay capacity, while false negatives risk missing promising chemical matter. In this165

setting, we evaluate the calibration of Enchant’s UQ to score candidate hits.166

Pharmacokinetics (PK) is a key determinant of a drug candidate’s efficacy and safety, describing167

how drug concentrations in the body change over time. Accurate early prediction of PK properties168

such as clearance can reduce costly late-stage failures and guide compound optimization before169

resource-intensive animal studies. We assess the model’s ability to classify compounds as having170

high or low in vivo clearance in rat PK studies by performing multi-task fine-tuning on combined in171

vitro and in vivo PK assay data. As a baseline, we use the standard industry approach of synthesizing172

compounds and measuring clearance in rat liver microsome assays. Compounds are binned into high173

or low clearance categories from in vitro results using the same thresholds applied to in vivo data.174

For both methods, predictions are evaluated against experimentally measured in vivo clearance in175

rats, with classification performance quantified using receiver operating characteristic (ROC) analysis176

and the area under the curve (AUC) as the primary metric.177

3 Results & discussion178

3.1 Scaling laws179
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Figure 2: Enchant isoFLOP scaling curves. Each curve shows the performance of different model
sizes for a fixed compute budget relative to the Enchant v1 training cost in FLOPs. The y-axis is the
cross entropy loss averaged over assay value number tokens in the Biogen ADME, Kinase200, TDC
ADMET, and internal assay validation sets. The compute-optimal model for each compute budget is
highlighted in red.

We first assess how the proposed model’s performance changes with increased training compute by180

examining the scaling of both validation loss and downstream predictive accuracy. Figure 2 shows181

isoFLOP scaling curves in which the averaged assay value validation loss (defined in 2.2.1) is plotted182

against training compute for different numbers of training tokens and model parameters. As expected,183

our model improves with increasing compute. When compute is limited, it’s more efficient to use that184

budget to train smaller models on a larger number of tokens, the optimal point on the curve favors185

more tokens seen. As compute capacity grows, the optimum shifts, and it becomes better to invest186

the additional compute in training larger models on relatively fewer tokens.187

To connect these loss trends to downstream utility, Figure 1 reports performance of fine-tuned models188

as a function of relative compute for compute-optimal pre-training. Here, we observe predictable189

improvements in both Pearson correlation and mean absolute error aggregated across a panel of190

benchmarks described in 2.2.1, with larger models pre-trained with more compute consistently191
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outperforming smaller ones. Notably, with a tenfold increase in pretraining compute over Enchant v1,192

Enchant v2 achieves an aggregate Pearson R of 0.78 and a mean absolute error of 0.43, compared to193

Enchant v1’s aggregate Pearson R of 0.71 and mean absolute error of 0.46. These results indicate194

that the model adheres to well-established scaling laws and that increased compute investment yields195

tangible benefits in real-world predictive tasks.196

3.2 Benchmarks197

3.2.1 Biogen ADME198

Figure 3: Spearman R of Enchant v2, Enchant v1 and fine-tuned TxGemma-9B-predict for prediction
of Biogen ADME properties. Here, HLM = human liver microsomal clearance, HPPB = human
plasma protein binding, ER = MDR1- MDCK efflux ratio, RLM = rat microsomal stability, and
RPPB = rat plasma protein binding.

Figure 3 reports the Spearman correlation for prediction of the six in vitro ADME properties in a199

random held-out test split of the Biogen ADME benchmark11. Across all six endpoints, Enchant v2200

achieves higher Spearman R than both baselines, with particularly pronounced gains on human and201

rat plasma protein binding. Specifically, the proposed model achieves a Spearman R of 0.85 on HLM,202

0.93 on HPPB, 0.82 on ER, 0.87 on RLM, 0.89 on RPPB, and 0.65 on solubility, outperforming203

Enchant v1 and TxGemma on each property. These results demonstrate that the model’s increased204

scale, multi-modal architecture, and pretraining strategy translate effectively to pharmacokinetic205

endpoints that are critical for early-stage compound prioritization.206

3.2.2 In-house Assays207

Figure 4: Benchmarks on in-house-generated experimental data across a range of drug discovery
endpoints. Papp(MDR1) and Papp(MDCK) are cellular permeabilities in MDCK cells with and
without overexpression of MDR1 (P-gp). CDK4 IC50 refers to biochemical enzyme inhibition
of CDK4. MCF-7 PD is a cellular pharmacodynamics endpoint. Solubility is kinetic solubility
in simulated gut fluid. Even without fine-tuning, Enchant v2 considerably outperforms fine-tuned
TxGemma-9B-predict. Negative Pearson R coefficients are not shown.

Figure 4 compares the performance of Enchant v2, Enchant v1, and Tx-Gemma on four drug-discovery208

endpoints central to compound optimization: cellular permeability, biochemical enzyme inhibition of209

CDK4, a cellular pharmacodynamics endpoint, and kinetic solubility in simulated gut fluid. For each210

property, Pearson correlation is computed between model predictions and experimentally measured211

values. Across all endpoints, fine-tuned Enchant v2 achieves higher Pearson R than both baselines.212

The Enchant v2 foundation model also demonstrates strong zero-shot predictive capability, predictions213
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made without any fine-tuning. In several benchmarks, its zero-shot accuracy even surpasses that214

of fine-tuned baselines such as TxGemma. For example, although Enchant v2 was only exposed215

to MCF-7 PD measurements for 12 unique molecules during pretraining, zero-shot inference on216

held-out compounds achieved a Pearson correlation of 0.45. This capacity to generate meaningful217

predictive signal on previously unseen assays highlights the model’s utility in low-data regimes and218

underscores its potential to provide immediate value for emerging discovery programs.219

3.3 Applications in drug discovery220

To assess the utility of our model in real drug discovery applications, we evaluate its performance221

on a set of proprietary benchmarks. These tasks are chosen to reflect the kinds of decision-making222

challenges encountered in practice, including hit-identification and compound optimization efforts.223

By testing across both well-established datasets and internal experimental measurements, we aim to224

quantify the model’s ability to generalize from heterogeneous pretraining to the specific predictive225

problems that guide lead selection and optimization in active discovery programs.226

3.3.1 Hit Identification227
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Figure 5: Calibration plot for classifying active compounds against a protein target with uncertainty
quantification for an in-house hit identification campaign. Compounds are binned based on predicted
probability to be active (pIC50> 5) and compared to the true fraction of active compounds within that
bin. Enchant UQ shows good calibration to observed hit rates.

We evaluated our model on a hit identification task designed to mimic early-stage screening workflows.228

In this setup, the model ranks compounds in a virtual chemical library according to their predicted229

activity against a protein target, using both assay value predictions and associated uncertainty230

estimates. Figure 5 illustrates how well these predicted probabilities align with observed hit rates231

when compounds are grouped into bins by predicted probability. The uncertainty-aware model is well232

calibrated across a wide probability range. Among the 12 compounds with the highest predicted hit233

probability, 10 were experimentally confirmed as hits, an observed hit rate of 83%, closely matching234

the 86% mean predicted rate for that bin. Conversely, of the 89 compounds with the lowest predicted235

hit probability, 7 were hits, an observed hit rate of 8% versus a projected rate of 10%. Additionally,236

Enchant UQ calibration is confirmed in hit-scaffold hopping experiments, leading to a 25% hit rate237

in real-world scaffold hopping exercises in our internal drug discovery programs. These results238
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demonstrate that the model produces reliable enrichment estimates, enabling more efficient allocation239

of experimental resources in high-throughput screening campaigns to maximize true positive recovery240

while limiting false positives and negatives.241

3.3.2 Pharmacokinetics242
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Figure 6: ROC plot for the classification of compounds as having high or low in vivo clearance in
rat pharmacokinetics experiments. Here, Enchant v2 (AUC = 0.74, 95% CI: 0.60-0.89) is better at
predicting in vivo clearance than the standard approach of testing in an in vitro microsome assay (AUC
= 0.51, 95% CI: 0.31-0.70). Confidence intervals were estimated using 1,000 bootstrap iterations.

Figure 6 shows the ability of Enchant v2 to classify compounds as having high versus low in243

vivo clearance in rats. Enchant v2 achieves an area under the receiver operating characteristic244

curve (AUROC) of 0.74 (95% CI: 0.60–0.89), demonstrating meaningful discriminative power. By245

contrast, extrapolating in vivo clearance from in vitro rat microsome assays yields an AUROC246

of 0.51 (95% CI: 0.31–0.70). Across 1,000 bootstrap iterations, Enchant v2 outperforms in vitro247

screening with 90% confidence. These results demonstrate how Enchant v2 can overcome the248

in vitro–in vivo disconnect that frequently limits drug discovery programs, by achieving more249

accurate predictions of in vivo clearance on new molecules than would be obtained from synthesizing250

and testing them experimentally in vitro. This capability could enable more informed compound251

prioritization decisions before committing resources to in vivo studies.252

4 Conclusions253

In this work, we presented Enchant v2, a large-scale, multi-modal transformer model designed to254

predict diverse biochemical, pharmacological, and pharmacokinetic endpoints relevant to real-world255

drug discovery. By unifying heterogeneous data types into a harmonized token-based representation256

and leveraging large-scale pretraining with parameter-efficient fine-tuning, the model delivers consis-257

tent gains over strong baselines across public benchmarks and proprietary in-house tasks. We further258

showed that our model follows established transformer scaling laws, with performance improving259

predictably as pretraining compute increases. Results demonstrate benefits in settings ranging from hit260

prediction to compound property estimation and pharmacokinetic classification, with improvements261

observed in both low-data and zero-shot scenarios. These findings suggest that modality-agnostic,262

scalable transformer architectures can play a central role in guiding decision-making throughout263

the discovery process, enabling more efficient prioritization of compounds and potentially reducing264

experimental burden. Future work will explore further scaling to larger model capacities, expanding265

modality coverage, and integrating generative capabilities for compound design.266
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