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Abstract

With the rapid development of deep learning, the increasing complexity and scale
of parameters make training a new model increasingly resource-intensive. In this
paper, we start from the classic convolutional neural network (CNN) and explore a
paradigm that does not require training to obtain new models. Similar to the birth
of CNN inspired by receptive fields in the biological visual system, we draw inspi-
ration from the information subsystem pathways in the biological visual system and
propose Model Disassembling and Assembling (MDA). During model disassem-
bling, we introduce the concept of relative contribution and propose a component
locating technique to extract task-aware components from trained CNN classifiers.
For model assembling, we present the alignment padding strategy and parameter
scaling strategy to construct a new model tailored for a specific task, utilizing the
disassembled task-aware components. The entire process is akin to playing with
LEGO bricks, enabling arbitrary assembly of new models, and providing a novel
perspective for model creation and reuse. Extensive experiments showcase that
task-aware components disassembled from CNN classifiers or new models assem-
bled using these components closely match or even surpass the performance of the
baseline, demonstrating its promising results for model reuse. Furthermore, MDA
exhibits diverse potential applications, with comprehensive experiments exploring
model decision route analysis, model compression, knowledge distillation, and
more. The code is available at https://github.com/jiaconghu/Model-LEGO.

1 Introduction

Convolutional Neural Networks (CNNs), as the predominant architecture in deep learning, play
a crucial role in image, video, and audio processing [1, 2, 3]. CNNs were originally inspired by
the concept of receptive fields in the biological visual system [4], and our focus is to explore and
leverage similar characteristics within CNNs. Various studies [5, 6, 7] have delved into unraveling
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the intricacies of biological visual information processing systems. Notably, Livingstone et al. [6]
substantiated that the intermediate visual cortex comprises relatively independent subdivisions.

Some studies [8, 9, 10, 11, 12, 13, 14] have endeavored to visualize critical layers and neurons within
CNNs. These visualizations demonstrate that in the more shallow layers of CNNs, form, color,
texture, and edge features are processed by distinct convolutional kernels, whereas deeper layers
are responsible for category-aware features. The above phenomena of feature processing within
CNNs demonstrates the similarity to the parallel processing mechanism [5, 6] and the information
integration theory [7] proposed in biological visual systems. Consequently, this paper is dedicated to
the exploration and practical utilization of these distinct subsystems within CNNs.

In pursuit of this exploration, we introduce a pioneering task named Model Disassembling and As-
sembling (MDA), a novel approach to construct and combine subsystems with LEGO-like flexibility.
The conceptual framework behind MDA posits that, much like assembling and disassembling LEGO
structures, deep learning models can undergo such operations without incurring significant training
overhead or compromising performance. This task is designed to be universally applicable, spanning
various existing Deep Neural Networks (DNNs), such as Convolutional Neural Networks (CNNs),
Graph Neural Networks (GNNs), Transformers, and others.

However, constructing the MDA framework presents several challenges, notably in determining the
minimal disassembling unit and devising an assembly process with minimal impact on performance.
Existing works either require the predefinition of task units during the initial training stage, or the
disassembled unit cannot be directly used for inference or assembly [15, 16, 17]. In contrast, our
approach distinguishes itself as the inaugural attempt to directly disassemble a trained network into
task-aware components, avoiding the need for additional networks or fine-tuning. This ensures
efficiency and interpretability throughout the disassembling and assembling processes.

In this paper, we illustrate our approach using CNN classifiers, with the assurance that its applicability
extends to other Deep Neural Network (DNN) architectures. In the disassembling phase, we define
the task-aware component by introducing the concept of relative contribution and a mechanism
for contribution aggregation and allocation. This is seamlessly applied throughout the forward
propagation process of the network. Building on these principles, we introduce a component locating
technique that discerns and extracts task-aware components. In the assembling phase, we propose
a simple yet effective alignment padding strategy. This involves padding empty kernels onto each
convolutional filter to ensure uniform kernel counts across all filters in each layer. Additionally, to
account for varying feature magnitudes across different components, we implement a parameter
scaling strategy. The resulting MDA framework facilitates recombination among different pre-trained
models, providing a vital technique for model reuse.

Our contributions in this study are summarized as follows:

• We introduce a novel task, MDA, which aims to disassemble and assemble deep models in
an interpretable manner reminiscent of playing with LEGOs. This task is motivated by the
subdivision of the biological visual system [6].

• We present the inaugural method for MDA, specifically applied to CNN classifiers. In the
model disassembling phase, we introduce a component locating technique to disassemble
task-aware components from the models. For model assembling, we propose an alignment
padding strategy and a parameter scaling strategy to assemble task-aware components into a
new model.

• Extensive experiments validate the efficacy of our proposed MDA method, showing that the
performance of the disassembled and assembled models closely matches or even surpasses
that of the baseline models.

• MDA introduces a fresh perspective for model reuse. Additionally, we explore diverse
applications of MDA, including decision route analysis, model compression, knowledge
distillation, and more.

2 Model Disassembling and Assembling

In this section, we present the definition of Model Disassembling and Assembling (MDA). Let us
consider a set of N pre-trained deep learning models denoted as {M(n)}Nn=1. Each model M(n)

2



comprises K(n) subtasks, represented as {t(n)k }K(n)

k=1 . Our objective in model disassembling is to
extract the model components M[t

(n)
k ] corresponding to a specific subtask t

(n)
k from the source

model M(n). These extracted components M[t
(n)
k ] are intended to encapsulate only the parameters

critically relevant to the subtask t
(n)
k . In essence, the disassembled components M[t

(n)
k ] should

function as an independent model, preserving the full capability for the subtask t
(n)
k without redundant

capability for other subtasks. Furthermore, the assembling process involves combining disassembled
components from different models. For example, combining components M[t

(n1)
k1

, . . . , t
(n1)
k2

] from

M(n1) and M[t
(n2)
k3

, . . . , t
(n2)
k4

] from M(n2) results in a new model M(new). This assembled

model M(new) = M[t
(n1)
k1

, . . . , t
(n1)
k2

, t
(n2)
k3

, . . . , t
(n2)
k4

] is expected to retain full functionality for the

subtasks {t(n1)
k1

, . . . , t
(n1)
k2

} and {t(n2)
k3

, . . . , t
(n2)
k4

}.

MDA is applicable to various existing deep learning architectures, including Convolutional Neural
Networks (CNNs), Graph Neural Networks (GNNs), and Transformers. The focus of this paper is to
explore the implementation and efficacy of MDA specifically in the context of CNN classifiers.

3 Model Disassembling

3.1 Contribution Aggregation and Allocation
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Figure 1: Disassembling process at the l-th layer of a CNN
model, where the red solid line represents the contribution
aggregation process, and the black dashed line represents the
contribution allocation process.

Given a CNN classifier with K cate-
gories, each category is treated as an
individual subtask within the classi-
fier. Conventionally, a Softmax op-
eration is employed on the output
features of the final fully connected
layer, transforming these features into
a probabilistic distribution that sums
to unity. The feature with a relatively
higher value corresponds to a higher
probability, and the category with the
highest probability serves as the pre-
dicted result of the classifier. Con-
sequently, the feature exhibiting rela-
tively greater magnitude plays a de-
cisive role in determining the final
classification result. We term the rela-
tive degree to which features influence
the result as relative contribution. It
is crucial to note that the concept of
relative contribution is not confined
solely to the final layer of the network.
Features from preceding layers play a
pivotal role in shaping the features of
subsequent layers. Consequently, we
extend the concept of relative contribution to encompass all layers of the CNN classifier, thereby
establishing a comprehensive contribution system that spans the entirety of the network.

To illustrate this process more specifically, we focus on the l-th convolutional layer of a CNN (the
case of the fully connected layer is discussed in Appendix A). The l-th layer has P input channels
and Q output channels. Correspondingly, the l-th layer comprises Q convolution filters, denoted
as {C(l)

q }Q
q=1. Each filter C(l)

q consists of P convolution kernels, thus C(l)
q = {c(l)q,p}P

p=1. The input

feature maps for the l-th layer are represented as {a(l)p }P
p=1. With the convolution filter C(l)

q , the

hidden feature maps A(l)
q for the q-th channel in the l-th layer are computed as follows:

A(l)
q = {a(l)q,p}P

p=1, a(l)q,p = c(l)q,p ⊗ a(l)p , (1)
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where ⊗ denotes the convolution operation. From these hidden feature maps A(l)
q , the output feature

map a
(l+1)
q in the l-th layer (which serves as the input feature map a

(l+1)
q in the (l + 1)-th layer) is

determined as:

a(l+1)
q =

P∑
p=1

a(l)q,p + b(l)q , (2)

where b
(l)
q is the bias for the q-th channel. From Eqn.(2), it is evident that the output feature map

a
(l+1)
q is the summation of the hidden feature maps A(l)

q . This implies that the value of a(l+1)
q is

influenced by the value of each individual hidden feature map a
(l)
q,p. Similar to the Softmax operation

in the final layer, the larger the individual hidden feature map, the greater its contribution to the output
a
(l+1)
q .

3.1.1 Contribution Aggregation

The red solid line in Fig. 1 represents the contribution aggregation process. In this process, the
contributions from the input feature maps {a(l)p }P

p=1 are aggregated to the hidden feature maps A(l)
q

via the convolution filter C(l)
q of the q-th channel. To quantify the contribution of each hidden feature

map a
(l)
q,p to the output a(l+1)

q , we introduce a metric s
(l)
q,p defined as follows:

s(l)q,p =

H(l)∑
h=1

W (l)∑
w=1

a(l)q,p[h,w], (3)

where H(l) and W (l) denote the height and width, respectively, of the feature map a
(l)
q,p. The term

a
(l)
q,p[h,w] represents the pixel value at the h-th row and w-th column of a

(l)
q,p. Considering the

presence of activation functions such as ReLU, negative contributions are treated as having zero
impact on the result. Consequently, the contribution ŝ

(l)
q,p of the hidden feature map a

(l)
q,p is recalculated

as:
ŝ(l)q,p = max(s(l)q,p, 0). (4)

In line with the principle of the Softmax operation, the contribution of each hidden feature map is
relative. Hence, we employ min-max normalization to obtain the relative contribution r

(l)
q,p of each

hidden feature map a
(l)
q,p:

r(l)q,p =
ŝ
(l)
q,p −min({ŝ(l)q,p}P

p=1)

max({ŝ(l)q,p}P
p=1)−min({ŝ(l)q,p}P

p=1) + ε
, (5)

where ε is a small constant added to prevent division by zero. This normalization process ensures that
the contributions are scaled relative to each other, facilitating the identification of the most influential
hidden feature maps in the layer.

3.1.2 Contribution Allocation

The black dashed line in Fig. 1 represents the process of contribution allocation, where the contribution
from the feature map a

(l)
p is allocated to various hidden feature maps {a(l)q,p}Q

q=1 through different

convolution kernels {c(l)q,p}Q
q=1. Consequently, the overall contribution s

(l)
p of the feature map a

(l)
p is

calculated using the following equation:

s(l)p =

Q∑
q=1

r(l)q,p. (6)

In this calculation, similar to the previous steps, negative contributions are considered as zero:

ŝ(l)p = max(s(l)p , 0). (7)
Moreover, acknowledging that the significance of each feature map is relative, the relative contribution
r
(l)
p of the feature map a

(l)
p is computed as follows:

r(l)p =
ŝ
(l)
p −min({ŝ(l)p }P

p=1)

max({s(l)p }P
p=1)−min({ŝ(l)p }P

p=1) + ε
. (8)
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3.2 Component Locating Technique

Building upon the concept of relative contribution and the mechanism of contribution aggregation
and allocation, we introduce a novel approach termed the component locating technique. This method
is designed to identify task-aware components, that is, the parameters most relevant to a given
task, within a CNN. Taking the l-th layer as an example, the initial stage of this technique involves
identifying the most relevant feature maps for the targeted task. Subsequently, the next step is to
pinpoint the most relevant parameters by discerning which parameters are linked to the identified
most relevant feature maps. For a specific task, please refer to Appendix B.

3.2.1 Relevant Feature Identifying

In essence, the most relevant feature maps are those which exhibit a relatively larger contribution to
the result of the model. In the process of contribution aggregation, a threshold value denoted as α is
employed to discern whether a relative contribution r

(l)
q,p (calculated in Eqn. 5) is large or small:

r̂(l)q,p =

{
1 r(l)q,p ≥ α

0 r(l)q,p < α
, (9)

where α is a chosen value within the range (0,1]. Through the above equation, the soft relative
contribution r

(l)
q,p, which are continuous values indicating the degree of contribution, are transformed

into hard relative contribution r̂(l)q,p. The s(l)p in Eqn. 6 is now the sum over the hard relative contribution
r̂
(l)
q,p. Eqn.7 and Eqn.8 remain unchanged.

Further, a second threshold value β is used to determine whether the relative contribution r
(l)
p (as

defined in Eqn.8) of a feature map is large or small:

r̂(l)p =

{
1 r(l)p ≥ β

0 r(l)p < β
, (10)

where β is a chosen value within the range (0,1]. This equation transforms the soft relative contribution
r
(l)
p into hard relative contribution r̂

(l)
p , just as in the case of r̂(l)q,p.

3.2.2 Parameter Linking

In Eqn. 10, the hard relative contribution r̂
(l)
p , being either 0 or 1, indicates whether the feature map

a
(l)
p is most relevant to the predicted result. Similarly, the hard relative contribution r̂

(l+1)
q can also

reflect whether the feature map a
(l+1)
q is most relevant to the predicted result. Integrating Eqn.1 with

Eqn.2, we can represent the convolutional process as follows:

a(l+1)
q =

P∑
p=1

c(l)q,p ⊗ a(l)p + b(l)q , (11)

This equation signifies that the output feature map a
(l+1)
q is generated by the convolution operation of

the input feature maps {a(l)p }P
p=1 with the respective convolution kernels {c(l)q,p}P

p=1, which collectively

form the convolution filter C(l)
q . Thus, if the output feature map a

(l+1)
q is determined to be most

relevant to the predicted result, then it logically follows that the convolution filter C(l)
q and the

associated bias b(l)q are also most relevant to the predicted result. Furthermore, each input feature
map a

(l)
p engages in the convolution operation exclusively with the kernels {c(l)q,p}Q

q=1 across different

convolution filters. Therefore, if the feature map a
(l)
p is identified as most relevant to the predicted

result, then the convolution kernels {c(l)q,p}Q
q=1 associated with it are also deemed most relevant to

the predicted result. The component locating technique is also applicable to fully connected layers,
enabling the identification of the most relevant filters, kernels, and biases.

In summary, through the component locating technique, we can effectively identify and discriminate
the most relevant components to a specific task. This includes pinpointing the most relevant filters,
kernels, and biases. Subsequently, the identified parameters most relevant to a specific task can be
extracted from the source model through a process known as structure pruning [18].
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4 Model Assembling
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Figure 2: Assembling process at the l-th layer of CNN mod-
els: (a) and (b) represent two distinct disassembled models,
respectively; (c) illustrates the assembled model.

In the process of CNN model as-
sembling, our objective is to com-
bine disassembled, task-aware com-
ponents, typically derived from differ-
ent source models, into a new model.
This assembling is performed with-
out necessitating retraining or incur-
ring performance loss. To achieve
this goal, we propose an alignment
padding strategy and a parameter scal-
ing strategy. It is important to note
that the focus of this paper is specifi-
cally on assembling different models
that share isomorphic network archi-
tectures.

4.1 Alignment Padding Strategy

In the assembling of CNN models, we combine models layer by layer along the dimension of the
filters. A challenge in this process is that filters from different models may have varying numbers of
kernels. To address this, we introduce a simple yet effective alignment padding strategy. This strategy
involves padding empty kernels to each filter, ensuring that all filters in a given layer have a uniform
number of kernels.

Consider the l-th layer as an example. As depicted in Fig.2(a), a disassembled model consists of
J convolution filters, denoted as {C(l)

j }J
j=1. Each convolution filter C(l)

j comprises I convolutional

kernels, expressed as C(l)
j = {c(l)j,i}I

i=1. Another disassembled model, shown in Fig.2(b), contains V
convolution filters {C(l)

v }V
v=1, with each filter C(l)

v consisting of U convolutional kernels, expressed
as C(l)

v = {c(l)v,u}U
u=1. In the assembling process, illustrated in Fig.2(c), these two models are merged

into a new model with J + V convolution filters. Each filter in this new model is augmented with a
complementary number of empty kernels. Specifically, if a convolution filter Ĉ(l)

j originates from C(l)
j ,

it is padded with U empty kernels at the end, forming Ĉ(l)
j = {c(l)j,1, c

(l)
j,2, . . . , c

(l)
j,I , 01, 02, . . . , 0U}.

Conversely, if a convolution filter Ĉ(l)
v comes from C(l)

v , it is padded with I empty kernels at the
beginning, resulting in Ĉ(l)

v = {01, 02, . . . , 0I, c
(l)
v,1, c

(l)
v,2, . . . , c

(l)
v,U}. Through this alignment padding

strategy, every convolution filter in the assembled model is standardized to have the same total of
I + U convolution kernels.

The alignment padding strategy can be readily extended to incorporate multiple disassembled models
and applied across all layers of a CNN. A key feature of this approach is that the assembled model is
ready for inference immediately, without the need for any retraining.

4.2 Parameter Scaling Strategy

In addition to the alignment padding strategy, we address another critical issue in model assembling:
the potential disparity in the magnitude of features output by disassembled components from different
source models. If left unaddressed, this disparity could cause the assembled model to be biased
towards the disassembled components with larger feature magnitudes, impacting the balance and
effectiveness of the assembled model. To resolve this, we propose a parameter scaling strategy.

Taking the l-th layer as an example, as shown in Fig.2(a) and (b), let’s consider the output feature maps
in the l-th layer of the disassembled models, denoted as {a(l+1)

j }J
j=1 and {a(l+1)

v }V
v=1, respectively.

The magnitude of each feature map a
(l+1)
j is quantified as follows:

e
(l+1)
j =

H(l+1)∑
h=1

W (l+1)∑
w=1

a
(l+1)
j [h,w], (12)
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Table 1: Comparison of disassembling performance. In the classifier, each category corresponds to a
task. ‘Base.’ refers to the average accuracy for ‘Disassembled Task’ in the source model. In ‘Disa.’,
‘Score1 (+Score2)’ represents two metrics: ‘Score1’ is the accuracy and ‘Score2’ is the improved
accuracy compared to ‘Base.’ for the ‘Disassembled Task’ in the disassembled model.

Dataset Disassembled VGG-16 ResNet-50 GoogleNet

Task Base. (%) Disa. (%) Base. (%) Disa. (%) Base. (%) Disa. (%)

CIFAR-10

0 94.40 100.00 (+5.60) 96.10 100.00 (+3.90) 95.40 100.00 (+4.60)
1 96.50 100.00 (+3.50) 96.20 100.00 (+3.80) 97.40 100.00 (+2.60)

0-2 93.87 95.47 (+1.60) 94.93 97.43 (+2.50) 94.47 98.17 (+3.70)
3-9 92.49 92.27 (-0.22) 93.81 94.46 (+0.65) 93.46 93.17 (-0.29)

CIFAR-100

0 84.00 100.00 (+16.00) 92.00 100.00 (+8.00) 90.00 100.00 (+10.00)
1 87.00 100.00 (+13.00) 87.00 100.00 (+13.00) 85.00 100.00 (+15.00)

0-19 71.05 82.50 (+11.45) 75.55 77.15 (+1.60) 75.90 87.55 (+11.65)
20-69 72.74 79.66 (+6.92) 77.68 79.72 (+2.04) 76.60 82.42 (+5.82)

Tiny-ImageNet

0 82.00 100.0 (+18.00) 92.00 100.00 (+8.00) 88.00 100.00 (+12.00)
1 70.00 100.0 (+30.00) 80.00 100.00 (+20.00) 76.00 100.00 (+24.00)

0-69 50.17 55.49 (+5.32) 56.06 56.40 (+0.34) 52.89 59.40 (+6.51)
70-179 45.36 47.95 (+2.59) 51.27 53.42 (+2.15) 47.91 51.04 (+3.13)

Similarly, the magnitude e(l+1)
v for feature map a

(l+1)
v is calculated using the same equation. We then

compute the average magnitude of the feature maps from all disassembled models in the l-th layer:

ē(l+1) =
1

J + V

 J∑
j=1

e
(l+1)
j +

V∑
v=1

e(l+1)
v

 . (13)

Then, the convolution filter C(l)
j is scaled as follows:

C̃(l)
j = (ē(l+1)/e

(l+1)
j )C(l)

j . (14)

In practical applications, this parameter scaling strategy is particularly crucial in the last fully
connected layer to ensure that the magnitude differences in the final outputs of disassembled models
from different source models are not excessively large.

5 Experiments

5.1 Experimental Settings

Dataset and Network. We select three datasets and three mainstream CNN classifiers to evaluate
our MDA method. The datasets include CIFAR-10 [19], CIFAR-100 [19], and Tiny-ImageNet [20].
The chosen CNN classifiers are VGG-16 [21], ResNet-50 [22], and GoogleNet [23].

Parameter Configuration. In our MDA method, the key parameters are α and β, as defined in
Eqn.9 and Eqn.10, respectively. By default, we set α = 0.3 and β = 0.2 in convolutional layers,
and α = 0.4 and β = 0.3 in fully connected layers, unless specified otherwise. The model training
is conducted using the SGD optimizer, with a learning rate of 0.01. To ensure the reliability and
reproducibility of our results, we report the average of three independent experimental runs for each
result. Comprehensive details and the source code can be found in the Supplementary Material.

5.2 MDA Applied to CNN Models

5.2.1 Model Disassembling Results

We present the results of model disassembling in Table 1. The results in Table 1 reveal that both
single-task and multi-task disassembling, as executed by our method (denoted as ’Disa.’), exhibit
accuracies comparable to, or even surpassing, those of the source model (denoted as ’Base.’). Notably,
disassembling single tasks ’0’ or ’1’ from CIFAR-10 when using GoogleNet achieved a 100%
accuracy rate. Similarly, the accuracy for disassembling multiple tasks ’70-169’ from Tiny-ImageNet
on ResNet-50 showed an improvement of over 2.15% compared to the source model. What’s more, to
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Table 2: Comparison of assembling performance. ‘Base.’ indicates the average accuracy for the
‘Assembled Task’ in the source models. In ‘Asse.’, ‘Score1 / Score2’ represent the average accuracy
scores for the ‘Assembled Task’ in the assembled models without fine-tuning and with ten epochs of
fine-tuning, respectively.

Dataset Assembled VGG-16 ResNet-50 GoogleNet

Task Base. (%) Asse. (%) Base. (%) Asse. (%) Base. (%) Asse. (%)

CIFAR-10
+

CIFAR-100

0 + 0 89.20 87.00 / 88.43 94.05 77.30 / 87.36 99.60 94.25 / 95.27
0-2 + 0-19 74.03 74.17 / 74.19 78.08 64.34 / 76.37 78.32 79.22 / 79.22
3-9 + 20-69 75.16 73.72 / 74.25 79.66 72.03 / 75.25 78.67 70.24 / 76.37
0-9 + 20-99 74.87 72.07 / 73.18 79.54 65.97 / 74.65 78.57 66.59 / 70.36

CIFAR-10
+

Tiny-ImageNet

0 + 0 88.20 94.70 / 90.72 94.05 86.95 / 94.51 91.70 62.40 / 80.34
0-2 + 0-69 51.97 53.20 / 53.20 57.65 43.09 / 56.38 54.59 57.51 / 57.81
3-9 + 0-69 54.02 50.20 / 52.48 59.49 52.14 / 58.63 56.57 53.74 / 55.32

0-9 + 70-179 49.33 42.30 / 47.98 54.85 47.21 / 55.17 51.73 48.00 / 52.16

CIFAR-100
+

Tiny-ImageNet

0 + 0 83.00 50.00 / 76.28 92.00 53.00 / 87.34 89.00 50.00 / 85.28
0-19 + 0-69 69.86 50.66 / 57.19 74.59 57.86 / 69.23 74.73 58.67 / 69.14

20-69 + 70-179 71.48 50.08 / 65.71 76.54 56.53 / 69.79 75.08 54.09 / 71.27
0-99 + 0-199 55.97 43.06 / 56.13 61.51 53.05 / 57.23 59.19 48.66 / 58.28

go deeper into the performance of our proposed disassembled method, we present the disassembling
results on ImageNet [24] and the comparison of parameter size and Floating Point Operations Per
Second (FLOPs) in the Supplementary Material.

5.2.2 Model Assembling Results

The performance of model assembling across different datasets is presented in Table 2. It is observed
that the assembled models generally achieve comparable performance to the source models in both
single-task and multi-task assembling settings. Notably, the assembled models combining ‘0-2 + 0-69’
from ‘CIFAR-10 + Tiny-ImageNet’ on GoogleNet surpass the source model in terms of accuracy.
However, there are instances, such as with ‘20-69 + 70-179’ from ‘CIFAR-100 + Tiny-ImageNet’
on ResNet-50, where a decrease in accuracy is noted. This could be attributed to the interaction and
interference among the numerous parameters from the different models being assembled, particularly
when the number of tasks is large, leading to less stable predictions in the new model.

5.3 MDA Applied to GCN Model

Table 3: Performance of the GCN model disassembling
on the Cora Dataset. ‘Base.’ represents the average ac-
curacy for the ‘Disassembled Task’ in the source model.
In ‘Disa.’, ‘Score1 (+Score2)’ indicates the accuracy
and the improvement in accuracy (‘Score2’) compared
to ‘Base.’ for the ‘Disassembled Task’ of the disassem-
bled model.

Dataset Disassembled GCN

Task Base. (%) Disa. (%)

Cora

0 72.36 100.00 (+27.36)
1 78.54 97.10 (+18.56)

1-2 88.27 89.74 (+1.47)
3-5 80.23 81.34 (+1.11)

The proposed MDA method extends be-
yond CNN models and is equally appli-
cable to Graph Convolutional Network
(GCN) models [25]. We demonstrate
this by conducting a disassembling exper-
iment for node classification using a GCN
model [25] on the Cora dataset [26]. The
results of this experiment are presented in
Table 3.

The results clearly indicate that the accu-
racy of the disassembled GCN model sur-
passes that of the source model. For in-
stance, the accuracy of the disassembled
model for categories ‘1-2’ shows an im-
provement of 1.47% over the source GCN
model.

5.4 Ablation Study

Parameters α and β. Fig. 3 presents an ablation study on the thresholds α and β in the fully
connected layer and convolutional layer. With the increase of the thresholds α and β, fewer parameters
will be regarded as relevant to the specific tasks. Therefore, in Fig. 3(a), we observe that as the
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Figure 3: Accuracy curve (a), FLOPs ratio curve
(b), and model parameter size ratio curve (c)
for the disassembled model, varying with hyper-
parameters in the fully connected layers (αf , βf )
and convolutional layers (αc, βc).
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Figure 4: Accuracy curve (a), FLOPs ratio curve
(b), and model parameter size ratio curve (c) for
the disassembled model as the number of disas-
sembled layers varies. The number of disassem-
bled layers accumulates from deep layers to shal-
low layers in the model.

thresholds α and β increase, the accuracy of the disassembled model decreases, with thresholds in the
convolutional layer being more sensitive than in the fully connected layer. Fig. 3(b) illustrates that
thresholds α and β induce more significant changes in FLOPs in the convolutional layer compared
to the fully connected layer. In Fig. 3(c), the model parameter size ratio of the disassembled model
decreases with the increase in thresholds.

Number of Disassembled Layers. Fig. 4 shows the ablation study on the number of disassembled
layers. As depicted in Fig. 4(a), the accuracy initially increases and then decreases with the rising
number of disassembled layers, but consistently remains higher than the source model. Additionally,
Fig. 4(b, c) reveals that both the FLOPs ratio and parameter size ratio decline as more layers are
disassembled. This ablation study validates that our proposed disassembled method can effectively
disassemble all layers of the model.

Table 4: Comparison of assembling strategies. ‘Base.’ repre-
sents the average accuracy for the ‘Assembled Task’ in the
source models. ‘+Padd.’ and ‘+Padd. +Para.’ denote the
accuracy of the assembled classifier using only the padding
alignment strategy and both the padding alignment and pa-
rameter scaling strategies, respectively.

Dataset Assembled VGG-16

Task Base. +Padd. +Padd. +Para.

CIFAR-10
+

CIFAR-100

0 + 0 89.20 50.00 87.00
0-2 + 0-19 74.03 71.74 74.17

3-9 + 20-69 75.16 71.97 73.72
0-9 + 20-99 74.87 69.12 72.07

Assembling Strategy. The impact of
different assembling strategies is de-
tailed in Table 4. It is observed that
the method combining padding align-
ment and parameter scaling (‘+Padd.
+Para.’) results in higher accuracy
compared to the strategy employing
only padding alignment (‘+Padd.’). In
the case of ‘0 + 0’, the ‘+Padd. +Para.’
approach leads to a significant accu-
racy increase of 37.00%. These re-
sults affirm the effectiveness of the
assembling strategies proposed in this
paper.

6 Related Works

6.1 Model Explanation

Model explanation methods can generally be categorized into four types: activation-based, gradient-
based, perturbation-based techniques, and Layer-wise Relevance Propagation (LRP). Activation-based
approaches [27, 28, 29, 30, 31, 32, 33, 34] involve calculating a set of weights and then aggregation
feature maps to highlight crucial features. Gradient-based methods [35, 36, 37, 38, 39, 40, 21, 41, 42]
utilize gradients to identify key features. Perturbation-based techniques [43, 44, 45, 46] discern
important features by altering or masking them and observing the resultant changes in output. LRP
involves backward propagation of the final prediction through the network using specific local
propagation rules, grounded in the principle of conservation [47]. Montavon et al. [48] provided
a comprehensive review of LRP rules, including LRP-0, LRP-ϵ, LRP-γ, LRP-αβ, flat, ω2-rules,
and zB-rule, and discussed their distinctions and interconnections. Additionally, Ancona et al. [49]
examined various gradient-based techniques (such as Gradient × Input, Integrated Gradients, and
DeepLIFT) and LRP from both theoretical and practical angles, highlighting their similarities and
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conditions for equivalence or approximation. While these model explanation techniques are primarily
employed to locate important features in the original input contributing to the final prediction, our
focus is distinct. We aim to identify task-aware components, namely the relevant parameters for
specific tasks, for model disassembling.

6.2 Subnetwork Identification

Subnetwork identification approaches can be divided into ante-hoc and post-hoc techniques. Ante-
hoc techniques, such as those proposed by Li et al. [50] and Liang et al. [15], incorporate novel
architectural control modules to select specific filters or employ category-specific gating during
training, mainly for network interpretation and adversarial sample detection. Post-hoc techniques are
further subdivided. The first family requires additional learnable modules and extra training steps.
For instance, Hu et al. [16] introduced Neural Architecture Disentanglement (NAD) for disentangling
pre-trained DNNs into task-specific sub-architectures, while Wang et al. [51] and Frankle et al. [52]
focused on data routing paths and network acceleration, respectively. Furthermore, Yu et al. [53] and
Yang et al. [17] used knowledge distillation to dissect and reassemble models. The second family
aligns more closely with feature attribution, with techniques such as those of Khakzar et al. [54]
employing concepts similar to perturbation-based methods for pathway selection. In summary, while
existing subnetwork identification techniques are commonly applied for network interpretation and
adversarial sample detection, our work centers on MDA. We focus on disassembling task-aware
components from trained CNN classifiers and reassembling them into a new model, akin to playing
with LEGOs, without requiring additional training.

7 Limitation and Future Work

Our experiments, as detailed in Table 1 of the main text, demonstrate that models disassembled using
the proposed method can surpass the source model in terms of accuracy. However, the performance of
the assembled models, as shown in Table 2 of the main text, indicates a decrease in accuracy in certain
cases (e.g., ‘0-19 + 0-69’, ‘20-69 + 70-179’, ‘0-99 + 0-199’ for ‘CIFAR-100 + Tiny-ImageNet’). This
decline in performance could be attributed to the interference of irrelevant components, which may
adversely affect the correct prediction of samples. Looking ahead, our research will concentrate on
addressing the disturbance caused by irrelevant components and enhancing the effectiveness of our
model disassembling and assembling technique, particularly for targeted tasks. Additionally, while
this paper has focused exclusively on CNN classifiers, future research will explore the disassembling
and assembling of models in other domains, including object detection and segmentation.

8 Conclusion

In this paper, we introduce a novel Model Disassembling and Assembling (MDA) task, inspired by
the subdivision of the visual system [6], with the objective of disassembling and assembling deep
models in a manner akin to playing with LEGOs. The primary focus of this paper centers on the
application of MDA to CNN classifiers. During model disassembling, we introduce the concept of
relative contribution and propose a component locating technique to extract task-aware components
from trained CNN classifiers. For model assembling, we introduce the alignment padding strategy and
parameter scaling strategy to construct a new model tailored for a specific task using the disassembled
task-aware components. Extensive experiments conducted in this study reveal that the performance
of the disassembled and assembled models closely aligns with or even surpasses that of the baseline
models. In addition to offering a fresh perspective for model reuse, our research extends to the diverse
applications of MDA, including decision route analysis, model compression, knowledge distillation,
and more. In future work, we will focus on the MDA applied to other models, such as multi-modal
models, large language models etc.
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A Contribution Aggregation and Allocation in the Fully Connected Layer

Figure 5 illustrates the scenario of contribution aggregation and allocation in the fully connected (FC) layer within
Convolutional Neural Networks (CNNs). The FC layer is composed of Q filters {C(l)

q }Q
q=1, each comprising

P kernels C(l)
q = {c(l)q,p}P

p=1. Notably, in the FC layer, both kernels and features are single real numbers, i.e.,
a
(l)
p ∈ R and c

(l)
q,p ∈ R, contrasting with the convolutional layer where kernels and features are two-dimensional

matrices of real numbers, denoted as a(l)
p ∈ RH×W and c

(l)
q,p ∈ RH

(l)
k

×W
(l)
k (with H(l) and W (l) representing

the height and width of features, and H
(l)
k and W

(l)
k representing the height and width of kernels).

Given this structural discrepancy, the method for computing contributions in fully connected layers requires
adaptation. Specifically, the contribution s

(l)
q,p defined in Eqn.(3) can be directly equated to the hidden feature

a
(l)
q,p as expressed below:

s(l)q,p = a(l)
q,p. (15)

The remaining equations in the main text remain unchanged.

(a) Contribution Aggregation and Allocation
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Figure 5: The process of contribution aggregation and allocation at the l-th fully connected layer,
wherein the red solid line delineates the contribution aggregation process, and the black dashed line
signifies the contribution allocation process.

B Component Locating Technique for a Specific Task

Figure 6 illustrates a visualization of the soft relative contribution r
(l)
p for input feature maps in an intermediate

convolutional layer of a model. Additional visualizations of relative contribution are available in §I. Notably, in
Fig. 6(a), an intriguing observation emerges: different input samples belonging to the same category display
similar patterns in terms of soft relative contribution. This consistency suggests that channels making significant
contributions to the classification of a particular category tend to exhibit consistency across diverse samples
within that category. Essentially, specific categories are closely associated with fixed convolution filters and
kernels.

Conversely, as depicted in Fig. 6(b), input samples from distinct categories manifest distinct patterns of soft
relative contribution. This variability implies that channels contributing substantially to classification vary across
different categories. In essence, each category is linked to a unique set of convolution filters and kernels.

Therefore, considering the l-th layer as an example, to identify components associated with a specific task
(category), we initially select 1% of samples accurately classified for this category with the highest predicted
probability. Subsequently, we average the features of these selected samples and calculate the relative contribution
following the description in the main body of the paper.

C Relevant Feature Identifying with Backward Consideration

The computation of the relative contribution r̂
(l)
p for the input feature map a

(l)
p in the l-th layer employs a

backward approach. Consequently, it is imperative to account for the relative contribution of the input feature
maps in the subsequent (l + 1)-th layer when computing the relative contribution in the l-th layer. Specifically,
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Figure 6: Visualization of the soft relative contribution r
(l)
p (as defined in Eqn.(8)) in the 13-th

convolutional layer of the VGG-16 model trained on the CIFAR-10 dataset. Subfigure (a) depicts
different input samples belonging to the same category, while subfigure (b) showcases input samples
from different categories. Bright and dark colors respectively represent large and small values of
relative contribution.

the input feature maps in the (l+1)-th layer correspond to the output feature maps {a(l+1)
q }Q

q=1 of the l-th layer.
Therefore, the relative contribution {r̂(l+1)

q }Q
q=1 of these output feature maps in the l-th layer is equivalent to the

relative contribution of the input feature maps in the (l + 1)-th layer.

In accordance with Eqn.(2), if the relative contribution r̂
(l+1)
q for the output feature map a

(l+1)
q is zero, then the

relative contribution {r(l)q,p}P
p=1 of the hidden feature maps {a(l)

q,p}P
p=1 is also considered as zero. Consequently,

in Eqn.(9), the hard relative contribution r̂
(l)
q,p for the hidden feature map a

(l)
q,p is recalculated as follows:

r̂(l)q,p =

{
1 r(l)q,p ≥ α and r̂(l+1)

q = 1

0 r(l)q,p < α or r̂(l+1)
q = 0

. (16)

The remaining equations in the main text remain unchanged.

① alignment padding strategy

② concatenate

② alignment padding strategy

① concatenate

(a)

(b)

component " component $

component " component $

Figure 7: (a) The default alignment padding strategy and (b) the improved alignment padding strategy
in the inception module.
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D Alignment Padding Strategy for Inception Module

Due to the distinctive multi-branch concatenation architecture, specifically the inception module, the default
alignment padding strategy encounters challenges when applied to GoogleNet [23]. To address this, we have
enhanced the alignment padding strategy specifically tailored for the inception module.

As illustrated in Fig. 7(a), the conventional alignment padding is employed in each convolutional filter by default,
resulting in blank features calculated by zero kernels being dispersed throughout the channel at various locations
after the concatenate operation. In our improved alignment padding strategy, depicted in Fig. 7(b), the alignment
padding is applied after the concatenate operation.

E More Experiments of CNN Model Disassembling

To further investigate the efficacy of the proposed disassembling method, we present the parameter size and
Floating Point Operations Per Second (FLOPs) in Table 5. It is evident that both the parameter size (referred to
as ‘Para.’) and FLOPs increase with the number of disassembled categories. For instance, the parameter size
of the model disassembled for categories ‘3-9’ from MNIST using VGG-16 is higher than that of the model
disassembled for categories ‘0-2’ from the same dataset and network.

Table 5: Comparison of disassembling performance using additional metrics. In ‘Para.’, ‘Score1 /
Score2’ represent the parameter sizes (in millions, M) for the ‘Disassembled Task’ in the source and
disassembled models, respectively. In ‘FLOPs’, ‘Score1 / Score2’ indicate the FLOPs (Floating Point
Operations per Second) for the ‘Disassembled Task’ in the source model and the disassembled model,
respectively.

Dataset Disassembled VGG-16 ResNet50 GoogleNet

Task Para. FLOPs Para. FLOPs Para. FLOPs

MNIST

0 33.65 / 4.59 33.29 / 12.31 23.52 / 13.77 130.47 / 105.06 6.31 / 4.39 55.43 / 46.40
1 33.65 / 2.28 33.29 / 11.96 23.52 / 10.32 130.47 / 92.52 6.31 / 4.25 55.43 / 44.81

0-2 33.65 / 9.62 33.29 / 26.65 23.52 / 18.39 130.47 / 122.13 6.31 / 5.30 55.43 / 49.04
3-9 33.65 / 14.84 33.29 / 30.79 23.52 / 21.85 130.47 / 126.62 6.31 / 5.73 55.43 / 49.64

FASHION-MNIST

0 33.65 / 6.32 33.29 / 20.71 23.52 / 15.38 130.47 / 115.49 6.31 / 4.75 55.43 / 47.49
1 33.65 / 3.17 33.29 / 13.66 23.52 / 12.18 130.47 / 94.90 6.31 / 4.53 55.43 / 45.91

0-2 33.65 / 10.97 33.29 / 26.79 23.52 / 18.90 130.47 / 122.49 6.31 / 5.31 55.43 / 48.84
3-9 33.65 / 15.27 33.29 / 30.30 23.52 / 21.78 130.47 / 127.69 6.31 / 5.74 55.43 / 49.12

CIFAR-10

0 33.65 / 2.13 33.29 / 8.35 23.52 / 8.11 130.47 / 56.33 6.31 / 3.95 55.43 / 37.72
1 33.65 / 2.35 33.29 / 11.85 23.52 / 8.41 130.47 / 77.19 6.31 / 4.21 55.43 / 40.99

0-2 33.65 / 5.04 33.29 / 18.69 23.52 / 15.55 130.47 / 106.51 6.31 / 5.23 55.43 / 45.50
3-9 33.65 / 13.48 33.29 / 27.36 23.52 / 20.70 130.47 / 116.74 6.31 / 5.73 55.43 / 46.74

CIFAR-100

0 34.02 / 3.09 33.33 / 11.42 23.71 / 3.20 130.49 / 33.62 6.40 / 3.16 55.44 / 33.13
1 34.02 / 3.11 33.33 / 12.73 23.71 / 6.18 130.49 / 55.76 6.40 / 3.22 55.44 / 35.43

0-19 34.02 / 26.81 33.33 / 30.76 23.71 / 17.45 130.49 / 109.51 6.40 / 5.29 55.44 / 45.21
20-69 34.02 / 30.01 33.33 / 31.97 23.71 / 21.56 130.49 / 120.01 6.40 / 5.57 55.44 / 47.08

Tiny-ImageNet

0 34.43 / 1.63 33.37 / 6.62 23.91 / 5.12 130.51 / 49.98 6.51 / 3.13 55.45 / 35.38
1 34.43 / 1.58 33.37 / 4.66 23.91 / 4.41 130.51 / 38.59 6.51 / 3.13 55.45 / 34.21

0-69 34.43 / 29.40 33.37 / 32.07 23.91 / 22.43 130.51 / 126.98 6.51 / 6.17 55.45 / 50.80
70-179 34.43 / 30.72 33.37 / 32.61 23.91 / 23.23 130.51 / 128.33 6.51 / 6.23 55.45 / 51.13

Furthermore, our observations reveal that as the source model encompasses more categories, the individual
components associated with each category tend to be smaller. For example, both the FLOPs and ‘Para.’ for
the model disassembled component for category ‘0’ from Tiny-ImageNet on VGG-16 are less than those for
the same category ‘0’ from MNIST on the same network. This suggests that the complexity and resource
requirements of disassembled models are influenced not only by the number of categories they comprise but also
by the inherent diversity and complexity of the datasets from which they are derived.

F More Experiments of CNN Model Assembling

Table 6 provides detailed insights into the comparative performance of models with and without assembling. The
results indicate that models with assembling generally exhibit reduced performance compared to those without
assembling. For instance, the accuracy of ‘0-2 + 0-19’ from CIFAR-10 + CIFAR-100 on VGG16 decreases after
assembling. This decline in accuracy may be attributed to the possibility that samples from a specific category
could inadvertently attain high confidence in other unrelated components of the assembled models. A notable
example involves similar features across different categories, such as a monkey (from model M(1)) and a gorilla
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Table 6: Performance comparison between models with and without assembling. ‘M(1)’ and ‘M(2)’
represent the accuracy of the two disassembled models in the ‘Assembled Task’, respectively. In
‘Asse.’, ‘Score1 / Score2’ indicate the average accuracy scores for the ‘Assembled Task’ in the
assembled models, presented without fine-tuning and with ten epochs of fine-tuning, respectively. All
results are expressed as percentages.

Dataset Assembled VGG-16 ResNet50 GoogleNet

Task M(1) M(2) Asse. M(1) M(2) Asse. M(1) M(2) Asse.

MNIST
+

FASHION-MNIST

0 + 0 100.00 100.00 97.35 / 97.41 100.00 100.00 62.05 / 87.32 100.00 100.00 96.05 / 96.12
0-2 + 0-2 99.94 97.90 98.48 / 98.48 99.97 98.00 90.47 / 94.14 100.00 97.57 98.27 / 98.16
0-2 + 3-9 99.94 95.57 95.62 / 96.19 99.97 95.66 88.58 / 93.20 100.00 96.44 96.34 / 96.52
0-9 + 0-2 99.68 97.90 98.29 / 98.26 99.62 98.00 83.97 / 95.57 99.74 97.57 98.49 / 97.49

CIFAR-10
+

CIFAR-100

0 + 0 100.00 100.00 50.00 / 85.43 100.00 100.00 77.30 / 87.36 100.00 100.00 94.25 / 95.27
0-2 + 0-19 95.47 82.50 74.17 / 74.19 97.43 77.15 64.34 / 76.37 98.17 87.55 79.22 / 79.22

3-9 + 20-69 92.27 79.66 73.72 / 74.25 94.46 79.72 72.03 / 75.25 93.17 82.42 70.24 / 76.37
0-9 + 20-99 91.37 72.54 72.07 / 73.18 92.32 76.39 65.97 / 74.65 92.38 78.04 66.59 / 70.36

CIFAR-10
+

Tiny-ImageNet

0 + 0 100.00 100.00 94.70 / 90.72 100.00 100.00 86.95 / 94.51 100.00 100.00 62.40 / 80.34
0-2 + 0-69 99.94 55.49 53.20 / 53.20 97.43 56.40 43.09 / 56.38 98.17 59.40 57.51 / 57.81
3-9 + 0-69 92.27 55.49 50.20 / 52.48 94.46 56.40 52.14 / 58.63 93.17 59.40 53.74 / 55.32

0-9 + 70-179 91.37 47.95 42.30 / 47.98 92.32 53.42 47.21 / 55.17 92.38 51.04 48.00 / 52.16

CIFAR-100
+

Tiny-ImageNet

0 + 0 100.00 100.00 50.00 / 76.28 100.00 100.00 53.00 / 87.34 100.00 100.00 50.00 / 85.28
0-19 + 0-69 82.50 55.49 50.66 / 57.19 77.15 56.40 57.86 / 69.23 87.55 59.40 58.67 / 69.14

20-69 + 70-179 79.66 47.95 50.08 / 65.71 79.72 53.42 56.53 / 69.79 82.42 51.04 54.09 / 71.27
0-99 + 0-199 71.38 47.41 43.06 / 56.13 73.97 53.51 53.05 / 57.23 76.08 50.53 48.66 / 58.28

Table 7: The disassembling performance on ImageNet with VGG-16. ‘Base.’ denotes the average
accuracy for specific categories from the source model. For ‘Disa.’, ‘Score1 (+Score2)’ denotes the
average accuracy ‘Score1’ (the improved average accuracy ‘Score2’ compared to ‘Base.’) for specific
categories from the disassembled model.

Dataset Disassembled VGG-16

Task Base. (%) Disa. (%)

ImageNet

0 90.00 100.00 (+10.00)
1 90.00 100.00 (+10.00)

0-9 81.20 83.37 (+2.17)
0-99 76.06 79.24 (+3.18)

0-299 75.84 77.23 (+1.39)
100-499 73.15 74.38 (+1.23)
500-999 66.31 67.34 (+1.03)

(from model M(2)). In such cases, a sample from one category might receive a higher confidence score from
the model trained on the other category.

However, a key advantage of model assembling lies in the reduction of inference time. As the number of
disassembled components increases, running each component independently becomes more time-consuming
compared to utilizing an assembled model. This underscores the trade-off between model performance and
computational efficiency in the assembling process.

G More Experiments of CNN Model on Large-scale Datasets

It is crucial to investigate the scalability of the proposed framework on large-scale datasets, such as Ima-
geNet [24]. Table 7 presents the disassembling performance on ImageNet with VGG-16, demonstrating that
the performance of the disassembled model surpasses that of the source model in all cases. Specifically, when
disassembling categories ‘0-99’, the accuracy of the disassembled model is higher by 3.18% compared to
the source model. These experiments underscore the scalability of the proposed method, which extends its
applicability to mainstream benchmark datasets.

H MDA Applied to Other Domains

The proposed MDA method demonstrates significant flexibility and utility beyond its primary application.
Specifically, it enables the customization and reuse of pre-trained CNN classifiers for specific tasks without

17



layer 1 layer 2

layer 3

layer 4

layer 5
0

5
15

0

0

399

0

199

0

9

layer 1 layer 2

layer 3

layer 4

layer 5

0

5
15

0

0

399

0

199

0

9

route of the category dog
route of the category automobile

Figure 8: Decision routes of the categories ‘dog’ and ‘automobile’ in the LeNet-5 model on the
CIFAR-10 dataset, where the channels of the ‘dog’ and ‘automobile’ in layer 1 are the same, while in
later layers, such as layer 2, 3, 4, and 5, they are totally different.

Table 8: Comparison of model compression performance. ‘Base.’ refers to the source model, while
‘Ours.’ represents the model compressed using the proposed method. ‘Acc.’, ‘FLOPs’, and ‘Para.’
indicate the accuracy, floating point operations, and parameter size of the model, respectively. All
accuracy scores are presented as percentages.

Dataset CNN Base. Ours FPGM HRank

classifier Acc. FLOPs Para. Acc. FLOPs Para. Acc. FLOPs Para. Acc. FLOPs Para.

CIFAR-10
VGG-16 92.90 33.29 33.65M 91.31 28.00 18.63M 91.58 28.87 26.23M 91.97 20.19 13.25M
ResNet50 94.15 130.47 23.52M 93.71 123.21 18.93M 93.24 63.71 12.28M 93.89 71.12 14.42M
GoogleNet 93.76 55.43 6.31M 92.38 47.25 5.78M 93.22 25.21 3.93M 93.13 27.16 4.09M

necessitating additional training. This adaptability extends to various other tasks, including but not limited to
model decision route analysis, model compression, knowledge distillation.

H.1 Model Decision Route Visualization

The concept of a ‘decision route’ refers to the specific data flow pathways utilized for each category within a deep
learning model. These pathways are typically sparse and remain fixed. As elucidated in §B, the prediction for
different categories within a model hinges on the large contributions from distinct feature maps, meaning each
category is associated with its own set of relevant model parameters. The proposed framework for contribution
allocating and aggregating, combined with component locating techniques, facilitates the construction of unique
decision routes for each category.

Such decision route analysis offers several benefits. Firstly, it enhances the explainability of deep models.
By comparing the decision route of a misclassified sample with the corresponding correct category’s route,
researchers can identify where the data flow diverged incorrectly. Additionally, these visualizations serve as
powerful tools for a deeper understanding and exploration of deep classifiers.

For example, Fig.8 illustrates decision routes for specific categories using LeNet-5 [55], which includes two
convolutional layers and three linear layers. It is observable that each category possesses distinct decision
routes, yet there is some overlap among them. This overlap can be attributed to the fact that shallower
convolutional filters often process fundamental features like color, texture, and edges—aligning with existing
research [8, 9, 10, 12, 13, 14] and the mechanisms of biological visual information processing [5, 6, 7]. In the
deeper layers, particularly the final linear layer, we notice that connections between neurons are sparse yet fixed,
reflecting the emergence of category-specific features at deeper levels of the CNN.

In summary, visualizing the decision routes for specific classes within a CNN classifier not only aids in dissecting
the classifier’s underlying mechanisms but also proves instrumental in debugging and enhancing the model’s
performance.

H.2 Model Compression

The proposed MDA presents a novel approach to model compression for CNN classifiers. Utilizing our
component locating technique, we effectively disassemble category-specific parameters from the source model.
This process entails separating parameters utilized across all categories and discarding those that are redundant,
i.e., not used by any category. Consequently, this method offers a unique avenue for model compression.
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Table 9: Comparison of knowledge distillation performance. ‘Base.’ represents the average accuracy
for the ‘Assembled Task’ obtained from the source models. All accuracy scores are expressed as
percentages.

Dataset Distilled VGG-16

Category Base. Ours KA

MNIST
+

FASHION-MNIST

0 + 0 94.60 97.35 92.24
0-2 + 0-2 96.69 98.48 93.81
0-2 + 3-9 96.12 95.62 92.76
0-9 + 0-2 98.24 98.29 93.57

CIFAR-10
+

CIFAR-100

0 + 0 89.20 94.00 84.35
0-2 + 0-19 74.03 74.17 69.46
3-9 + 20-69 75.16 73.72 71.38
0-9 + 20-99 74.87 72.07 71.60

CIFAR-10
+

Tiny-ImageNet

0 + 0 88.20 94.70 85.62
0-2 + 0-69 51.97 53.20 52.67
3-9 + 0-69 54.02 50.20 53.26

0-9 + 70-179 49.33 42.30 51.84

CIFAR-100
+

Tiny-ImageNet

0 + 0 83.00 85.50 81.31
0-19 + 0-69 69.86 50.66 68.24

20-69 + 70-179 71.48 50.08 67.52
0-99 + 0-199 55.97 43.06 52.74

For empirical validation, we conducted compression experiments using three mainstream classifiers: VGG-
16 [56], ResNet-50 [22], and GoogleNet [23] on the CIFAR-10 dataset [19], as detailed in Table 8. Additionally,
we benchmarked our method against state-of-the-art (SOTA) model compression techniques, specifically two
pruning-based methods: FPGM [57] and HRank [58].

The results, as shown in Table 8, indicate that our method achieves comparable accuracy to the SOTA methods,
FPGM and HRank. However, it is observed that our method exhibits higher Floating Point Operations Per
Second (FLOPs) and parameter size compared to these pruning-based methods. This distinction likely stems
from our method’s focus on disassembling parameters relevant to each category, as opposed to pruning methods
which aim to filter out parameters irrelevant to all categories. Consequently, while our method retains parameters
commonly used across categories, pruning methods like FPGM may discard some of these components without
significantly affecting the final prediction, leading to fewer FLOPs and a lower parameter size.

In future research, we aim to delve deeper into the capabilities and potential of our disassembling and assembling
approach in the realm of model compression, exploring ways to enhance its efficiency and effectiveness in
reducing model complexity while preserving or even enhancing performance.

H.3 Knowledge Distillation

The proposed MDA focuses on assembling task-aware components disassembled from different models into a
new, unified model. This process bears resemblance to Knowledge Amalgamating (KA) as described in Shen et
al. [59], where knowledge from multiple ‘teacher’ models is distilled into a single ‘student’ model. While the
overarching goals of MDA and KA are similar, the techniques employed in each approach differ significantly.

To assess the efficacy of our MDA method in the context of knowledge distillation, we conducted comparative
experiments against KA using the VGG-16 [21] model on five benchmark datasets: MNIST [55], Fashion-
MNIST [60], CIFAR-10 [19], CIFAR-100 [19], and Tiny-ImageNet [20]. The results of these experiments are
summarized in Table 9.

The results indicate that the proposed MDA method generally achieves higher accuracy than KA, particularly in
scenarios with a smaller number of assembled categories, such as the combination of ‘MNIST + FASHION-
MNIST’. Conversely, as the number of assembled categories increases—for instance, in the case of ‘CIFAR-100
+ Tiny-ImageNet’, the performance of our method tends to decline, even falling below that of the source model
and KA. This decrease in accuracy could be attributed to the increased complexity and potential interference
when assembling a larger number of task-aware model components. Specifically, for a test image from an
unknown category, the flow through all decision routes in the assembled model can lead to confusion and
incorrect predictions, particularly if the components are primarily tailored for categories in a different dataset
(e.g., dataset ‘A’), thus adversely affecting the accuracy of predictions for samples in dataset ‘B’.
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Figure 9: Visualization of the soft relative contribution r
(l)
p (as defined in Eqn.(8)) for input samples
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Figure 10: Visualization of the soft relative contribution r
(l)
p (as defined in Eqn.(8)) for input samples

from different categories in layer 52 of ResNet-50 on different datasets.

I More Visualization of Relative Contribution (§B)

In this section, Figs. 9-12 show additional visualization results of the relative contribution. As depicted in
Figs. 9-11, for a specific layer of the networks on different datasets, different categories exhibit distinct patterns
of the soft relative contribution. From Fig. 12, it is evident that in different layers of VGG-16, different categories
demonstrate varied patterns of the soft relative contribution. These visualizations offer additional insights into
the associations between categories and specific filters across various layers of the neural networks. In certain
instances, such as in the case of Layer 52 of ResNet50 on CIFAR-10, distinct categories exhibit comparable
substantial relative contributions across diverse channels. The potential explanation for this phenomenon lies in
the insufficient formation of category-related features within this layer, attributable to the limited number of
categories in CIFAR-10 (only ten), coupled with the residual structure and depth of the network. Nonetheless,
other layers manifest disparate substantial relative contributions for distinct categories across diverse channels.
This phenomenon stands as a pivotal factor in ensuring the accurate prediction performance of ResNet50 on the
CIFAR-10 dataset.
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to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Please refer to the main text and the appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Please refer to the main text and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to the main text and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Please refer to the main text and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Please refer to the main text and the appendix.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

26

https://neurips.cc/public/EthicsGuidelines


12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Please refer to the main text and the appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: Please refer to the main text and the appendix.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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