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Abstract
Vision-Language Models (VLMs) have demon-001
strated impressive capabilities across a range002
of tasks, yet concerns about their potential bi-003
ases exist. This work investigates the extent to004
which prominent VLMs exhibit cultural biases005
by evaluating their performance on an image-006
based country identification task at a coun-007
try level. Utilising the geographically diverse008
Country211 dataset, we probe several large vi-009
sion language models (VLMs) under various010
prompting strategies: open-ended questions,011
multiple-choice questions (MCQs), including012
challenging setups like multilingual and adver-013
sarial settings. Our analysis aims to uncover014
disparities in model accuracy across different015
countries and question formats, providing in-016
sights into how training data distribution and017
evaluation methodologies might influence cul-018
tural biases in VLMs. The findings highlight019
significant variations in performance, suggest-020
ing that while VLMs possess considerable vi-021
sual understanding, they inherit biases from022
their pre-training data and scale that impact023
their ability to generalize uniformly across di-024
verse global contexts.025

1 Introduction026

Vision-Language Models (VLMs) have rapidly ad-027

vanced, demonstrating exceptional capabilities in028

integrating visual and textual information for a029

wide array of tasks, from image captioning to vi-030

sual question answering (Liu et al., 2024; Alayrac031

et al., 2022; Wang et al., 2024). These models are032

increasingly being deployed in diverse applications,033

impacting areas such as education, healthcare, and034

public services globally (Zhang et al., 2024).035

However, as their influence grows, so do con-036

cerns regarding their potential to perpetuate and037

even amplify societal biases present in their train-038

ing data (Zhao et al., 2017; Zhou et al., 2022;039

Weng et al., 2024). Cultural and geographical bi- 040

ases are of particular concern because they can 041

lead to unequal performance and representation 042

across different populations and regions of the 043

world (AlKhamissi et al., 2024; Manvi et al., 2024). 044

Defining "culture" is inherently complex, encom- 045

passing a broad spectrum of social norms, values, 046

practices, languages, and historical contexts that 047

shape the lived experiences of individuals and com- 048

munities (Kroeber et al., 1985). Establishing cul- 049

ture in computational settings presents a persistent 050

challenge due to its multifaceted and dynamic na- 051

ture. Empirical studies employ tractable proxies 052

such as demographic or geographic proxies to en- 053

able systematic analysis (Adilazuarda et al., 2024; 054

Yadav et al., 2025). While nation-level aggregation 055

can mask sub-national heterogeneity, prior work 056

in human–computer interaction and cultural ana- 057

lytics has demonstrated that country labels often 058

serve as a practical proxy for coarse-grained cul- 059

tural signals when large-scale analyses are required 060

(Obradovich et al., 2022). 061

In order to quantify cultural disparities in VLMs, 062

we adopt image-based country identification as a 063

concrete proxy task in which a model must infer an 064

image’s country of origin solely from visual cues, 065

while also providing a justification. Prior work 066

has shown that geolocation tasks reveal representa- 067

tional imbalances in visual models, as performance 068

often correlates with the prevalence of training data 069

from different regions (Pouget et al., 2024). Using 070

a dataset, with a balanced distribution of images 071

from each country, we ensure that the observed 072

accuracy gaps stem from model bias rather than 073

dataset imbalance. Further, the complex nature 074

of images used could measure VLMs’ ability to 075

distinguish similar cultures/countries. 076

The main contributions of this paper are: 077
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Figure 1: Visualization of the average country-wise recognition accuracy across the VLMs studied in this paper.
VLMs perform well at recognizing images from North American and Western European countries, but there are
clear disparities in performance for African and Central American countries.

1. We introduce a scalable framework to evaluate078

cultural biases in VLMs using an image-based079

country identification task over 211 countries,080

leveraging the geographically diverse and bal-081

anced Country211 dataset.082

2. We systematically probe VLMs under var-083

ied settings—open-ended and multiple-choice084

questions (MCQs) with both random and cul-085

turally similar distractors—alongside multi-086

lingual prompts in five languages, to capture087

nuanced cultural and linguistic disparities.088

3. We examine model robustness to image pertur-089

bations and analyse performance across nine090

image categories (e.g. architecture, landscape,091

food etc), revealing the influence of image092

content on cultural bias.093

4. Our findings show that VLM biases do not094

consistently favour Western countries; instead,095

biases often reflect overrepresentation of cer-096

tain popular countries (e.g., India, USA) in097

the training data, suggesting a more complex098

bias landscape.099

2 Related Works100

Recent work has increasingly explored the socio-101

cultural dimensions of Large Language Models102

(LLMs), including how they encode, express, and103

respond to culturally specific knowledge. Stud-104

ies have examined value alignment (Choenni105

and Shutova, 2024), moral reasoning across lan-106

guages (Agarwal et al., 2024), and cultural persona107

(AlKhamissi et al., 2024), while also uncovering 108

strong Western biases in model outputs (Naous 109

et al., 2024) which risk marginalizing cultural di- 110

versity if deployed in real world. There have also 111

been efforts to address these concerns, like prompt- 112

ing based on ethnographic fieldwork (AlKhamissi 113

et al., 2024) and fine-tuning culture-specific LLMs 114

(Li et al., 2024a). Similar studies have been ex- 115

tended for Vision Language Models (VLMs) start- 116

ing from (Liu et al., 2021) over cultural aspects, but 117

in a weaker capacity (Nwatu et al., 2023) showed 118

that CLIP (Radford et al., 2021) struggled in data 119

for poor socio-economic groups worldwide in the 120

Dollar Street dataset (Gaviria Rojas et al., 2022). 121

State-of-the-art off-shelf VLMs score much higher 122

on images depicting Western scenes than equiva- 123

lent East-Asian scenes for every vision task, such 124

as identification, question-answering, and art emo- 125

tion classification (Ananthram et al., 2025). Simi- 126

larly, (Liu et al., 2025; Yadav et al., 2025) reveals 127

that VLMs show stronger performance in Western 128

concepts and weaker results in African and Asian 129

contexts. These findings align with the fact that 130

large pretraining corpora are dominated by high- 131

resource languages and regions. Of the samples 132

that can be geo-located in the OpenImages dataset 133

(Kuznetsova et al., 2020), 32% were from only 134

the United States, and 60% came from only six 135

Western countries (Shankar et al., 2017). Such im- 136

balances translate into a “Western bias” in model 137

behavior (de Vries et al., 2019). 138
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Prior Work Eval Method Multilingual? Adversarial? Categories Total Sample Count Domain
CulturalVQA (Nayak et al., 2024) Open-Ended No No 11 Countries 2,328 5 Categories

WorldCuisines (Winata et al., 2025) Both Yes (30 languages) Yes 189 Countries 6,045 Only Food
Food-500 CAP (Ma et al., 2023) Open-Ended No Yes 7 Regions 24,700 Only Food

MOSAIC-1.5k (Burda-Lassen et al., 2025) Open-Ended No No N/A 1,500 3 Categories
See It From My Perspective (Ananthram et al., 2025) Open-Ended Yes (2 languages) No 2 Regions 38,479 4 Categories

CVQA (Romero et al., 2024) MCQ Yes (31 languages) Yes 39 Countries 5,239 10 Categories
Ours Both Yes (5 languages) Yes 211 Countries 63,300 9 Categories

Table 1: Overview of prior datasets used in cultural recognition experiments.

Figure 2: Examples of the Country211 dataset, alongside automatically-predicted categories for each image,
showcasing the visual diversity of the examples to be classified.

Datasets & Benchmarks : To probe these biases,139

a growing body of work has constructed specialized140

datasets and benchmarks with cross-cultural con-141

tent, such as MOSAIC-1.5k (Burda-Lassen et al.,142

2025), CULTURAL-VQA (Nayak et al., 2024),143

and GlobalRG (Bhatia et al., 2024). Many works144

also opt for probing specific aspects of culture, such145

as food (Li et al., 2024b), race (tse Huang et al.,146

2025), art (Mohamed et al., 2024), etc., instead of147

providing an overall view for bias study. (Winata148

et al., 2025) introduced WorldCuisines for Food149

Vision Question Answering and country identifica-150

tion and found that VLMs often fail on adversari-151

ally misleading contexts or less-common cuisines.152

(Ma et al., 2023) introduced the Food-500 CAP153

dataset and observed that most models exhibited154

geographical culinary biases. Several studies have155

also treated country-of-origin or geolocation as a156

proxy for cultural provenance. WorldCuisines in-157

cludes a country identification task to reveal fail-158

ures on uncommon or misleading contexts (Winata159

et al., 2025), and Food-500 CAP finds systematic160

mismatches between predicted and actual coun-161

tries of culinary images (Ma et al., 2023). Even162

in datasets like Dollar Street (Gaviria Rojas et al.,163

2022) or OpenImages (Kuznetsova et al., 2020), ge- 164

ographic metadata has been used to analyze repre- 165

sentational imbalances across regions (Nwatu et al., 166

2023; Shankar et al., 2017), demonstrating that 167

country-level annotations provide a practical signal 168

for probing cultural and geographic bias in VLMs. 169

Impact of Evaluation: The format of evalua- 170

tion also impacts bias measurement. Many of 171

the above benchmarks use multiple-choice or bi- 172

nary questions, which can mask a model’s true 173

understanding. Since language choice can influ- 174

ence bias, benchmarks are often performed across 175

multiple languages. (Romero et al., 2024) showed 176

that the performance of LLaVA-1.5-7B dropped by 177

19.6% when prompted without multiple choices for 178

CVQA. Models also showed lower performance 179

when prompted in native language of the image’s 180

country of origin. However, (Ananthram et al., 181

2025) observed that prompting in a culturally closer 182

language can reduce Western bias in some VLMs. 183

It was also observed that people of different cul- 184

tures are capable of differently capable of describ- 185

ing what they see in an image (van Miltenburg et al., 186

2017). We build on these insights by comparing 187
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open-ended vs. multiple-choice prompts (including188

“hard” questions with challenging distractors) and189

by evaluating in both English and native languages,190

to see how the prompting strategy affects cultural191

bias in VLMs.192

3 Dataset Used193

The primary dataset used for the experiments is the194

Country211 (Radford et al., 2021) dataset which195

was a subset of images from YFCC100M (Thomee196

et al., 2016) having GPS coordinates associated197

with them. The images cover several domains in-198

cluding but not limited to - exterior architecture,199

interior architecture, landscape (vegetation, na-200

ture, skyview), people’s appearance, attires, scripts,201

texts, posters, etc. The GPS coordinates associated202

with the images were then used to map them to in-203

dividual countries. ISO-3166 1 codes representing204

each country were used as labels for each image.205

ISO labels were used for consistency as country206

names used by the VLMs were not deterministic207

i.e Britain was also used simultaneously in place208

of Great Britain or UK or its constituents, proving209

the list of tags and corresponding country names210

led to the models responding consistently with no211

observable difference in performance. For our ex-212

periments, we utilized this dataset, which consists213

of 21.1 K images, i.e 100 images each from 211214

countries.215

Key Differences: Existing benchmarks highlight216

cultural blind spots in VLMs, but they generally217

either cover fewer categories or countries or are218

restricted to specialized domains. Our work differs219

by using an image-based country-identification task220

over 211 countries, providing much broader geo-221

graphic coverage and adversarial probing. Further,222

the datasets utilized in the prior works utilize a im-223

ages that might be easier to classify, including but224

not limited to close up shots of food items, popular225

monuments being the primary object in an image226

etc... The dataset we utilized introduces a lot of227

noise and randomness in a majority of images as228

seen in Figure 2. For instance, the examples from229

Norway, India and Egypt might be easy to classify,230

but the examples from Afghanistan and Kuwait re-231

quire grasping certain features and their associated232

knowledge i.e the headgear pattern of the Kuwait233

image and how it is different from other countries in234

the region. Th example from Afghanistan requires235

1https://en.wikipedia.org/wiki/List_of_ISO_
3166_country_codes

Figure 3: Model-wise averaged accuracy when varying
the prompt language or selection of MCQA alternatives
(left: random; right: similar). Performance is consistent
across conditions.

noticing the afghan flag, while the appearance of 236

the person in the left may try to mislead the VLM 237

due to an appearance of different ethnicity. 238

4 Experiments 239

Prompt Variations: We probed each VLM under 240

three complementary prompting paradigms. 241

1. open-ended questions 242

2. multiple-choice questions (with random dis- 243

tractors) 244

3. multiple-choice questions (with similar dis- 245

tractors) 246

Image perturbations:The open-ended experi- 247

ments were re-done with following adversarial 248

changes: 249

1. Rotation by 90◦ clockwise, 250

2. Rotation by 90◦ anti-clockwise 251

3. Flipping the image 252

4. Gray-scaling the image 253

However, open ended experiments pose chal- 254

lenges for objective scoring due to semantic 255

variability. Second, multiple-choice questions 256

(MCQs) with random distractors yield correctness 257

metrics yet may understate subtle biases if 258

distractors are easily ruled out. Third, challenging 259

MCQs with similar distractors force models to 260

discriminate between culturally proximate options, 261

thus exposing fine-grained bias patterns. The 262

MCQs are designed as part of discriminative 263

probing and to assess the disparity in the model’s 264

cultural knowledge. 265
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266

Linguistic Variations : We further extend267

discriminative proving to a multilingual setting,268

prompting models in five languages : (English,269

Hindi, Chinese, Portuguese, Spanish) to assess the270

intersection of cultural and linguistic biases.271

Model Variations : A diverse set of VLMs272

were tested including both proprietary and open-273

weight models of varying sizes: Gemini-2.5-Flash,274

Gemma-3-27B (Team et al., 2025), Aya-Vision-8B,275

Aya-Vision-32B (Dash et al., 2025), GPT-4o-Mini276

(OpenAI et al., 2024), (etal, 2025).277

The experiments being repeated with each per-278

mutation of features lead to a total of 168.8 K sam-279

ples tested. Inference was done in JSON format280

with the default hyperparameters for each of the281

models tested through Cohere 2 and OpenRouter’s282

API 3. More on the JSON formatting and prompts283

used can be found in Appendix D.284

4.1 Open-Ended Evaluation285

For the open-ended experiments, we asked each286

model to provide information on 4 areas: (1) name287

of the country, (2) country selection rationale in288

a few sentences, (3) a score from 0 to 100 repre-289

senting the confidence in the classification, (4) and290

up to 6 features from the image as a list that had291

influence in the decision. The accuracies of each292

country obtained using each of the VLMs used can293

be seen in Figure 17. The accuracies of many coun-294

tries were far lower especially in Eastern Europe,295

South America, Africa and Central Asia. This gap296

between country level accuracies was far higher in297

open ended experiments compared to the multiple-298

choice experiments .299

4.2 Evaluation through random distractors in300

multiple-choice questions301

For these experiments, we asked each model to302

provide information on 4 areas: (1) name of the303

country, (2) label of the chosen country from the304

choices provided (3) country selection rationale in305

a few sentences, and (4) a score from 0 to 100 rep-306

resenting the confidence in the classification. For307

these experiments, 4 countries were chosen at ran-308

dom from among the other 210 countries for each309

sample as distractors. The order of options were310

then shuffled such that the distribution of correct311

answer’s location is made uniform. Compared to312

2https://docs.cohere.com/cohere-documentation
3https://openrouter.ai/docs/quickstart

MCQA
Region Open-Ended Similar Random

North America 41.9 73.7 80.2

Central America 11.1 69.7 68.0

Caribbean 13.6 50.5 71.4

South America 20.4 70.9 68.7

Oceania 19.0 57.5 68.9

Western Europe 30.9 57.9 77.5

Northern Europe 25.3 60.6 79.4

Eastern Europe 26.6 53.4 75.9

Middle East 29.3 68.4 77.1

Central Asia 26.7 53.5 78.1

East Asia 43.6 71.6 83.8

Southeast Asia 41.7 67.5 81.7

South Asia 49.1 69.0 85.5

North Africa 31.9 54.3 78.9

Central Africa 11.8 57.0 68.2

Southern Africa 20.4 74.2 74.2

Overall 27.7 63.1 76.1

Table 2: Region-wise averaged accuracy across models.
There are consistent disparities in performance across
different regions, regardless of the prompting method.

other settings, this setting led to the highest average 313

of accuracies obtained due to the clearly contrasting 314

nature of distractors used. However, many central 315

African nations still face a recognition bias likely 316

due to low representation in training data. This was 317

observed across all VLMs that were tested as seen 318

in Figure 18. 319

4.3 Evaluation through similar distractors in 320

multiple-choice questions 321

Similar to the prior experiments with MCQs us- 322

ing random distractors, in this setting use similar 323

nations as distractors. These were chosen from 324

among the bordering nations. Any countries with 325

high similarity in culture if any were added man- 326

ually. (Ex : Spain -> Mexico). This led to the av- 327

erage of accuracies dropping considerably due the 328

challenging nature of the options presented to the 329

models. However, the drops were observed for only 330

a few countries where choosing similar distractors 331

led to these countries’ images being classified as 332

belonging to one of their popular neighbors. This 333

can be observed in Figure 18 and Figure 19. 334

5 Results 335

The results for experimental setting over countries 336

of each region can be seen in Table 2. 337

5
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Figure 4: Model-wise averaged accuracy across the
nine image categories, as a function of the image per-
turbations. There is a clear trend of models performing
better with the original images (left), compared to the
grayscale images (middle) , or rotated images (right).

5.1 Effect of Language of Inputs on Results338

The average of country level accuracies compared339

to each language as input can be seen in Figure 3.340

The language used for inputs had a very little ef-341

fect i.e <2% for all languages. But at a country342

level, most countries remained unaffected by lan-343

guage of the prompt to a large extent with change344

in accuracy less that 0.1%. The only cases with345

a noticeable change in accuracy are some but not346

all of the countries that speak the target language347

predominantly. This can be seen in Figure 3. For348

example, Changing the input language from En-349

glish to Spanish improved accuracy for Spain but350

the change over Latin-American countries was neg-351

ligible. Similarly, while switching to Portuguese352

had improved the accuracy for Brazil, it lead to a353

drop in accuracy for Portugal. Overall, the input354

language improves performance for some countries355

primarily associated with the language used. The356

results also partially contradict prior findings that357

prompting in culturally similar languages reduces358

western bias (Ananthram et al., 2025).359

5.2 Effect of Image Perturbations on Results360

Figure 4 and Figure 5 display the changes in ac-361

curacy observed due to gray-scaling and rotating362

the images compared to the original images. In-363

put image perturbations can have a large impact on364

the country-level biases in VLMs. Further, It can365

be assumed that the VLMs tested are not robust366

enough towards image perturbations, with each367

country being effected at a different scale between368

each model/perturbation. The overall averages can369

also be seen in Figure 8, Figure 9 and Figure 10370

respectively.371

Figure 18 shows how perturbations affect model372

performance across different semantic image cat-373

Figure 5: Average model confidence, given the original
images (left), grayscale images (middle), and rotated
images (right). GPT4o, GeminiFlash, and Gemma27B
are most sensitive to image perturbations.

egories. For all nine categories, models perform 374

best on original (unaltered) images, with decreas- 375

ing accuracy for gray-scaled and worse for ro- 376

tated versions. Categories like exterior architecture, 377

text/scripts/posters, and attire/patterns are espe- 378

cially impacted by perturbations. We hypothesize 379

that it is likely because they contain fine-grained, 380

orientation-sensitive, or highly color-dependent de- 381

tails. 382

We also look at geographical disparities of these 383

changes in orientation in Figure 14 and Figure 15. 384

We observe the disparity in model robustness also 385

emerges clearly. For example, models such as Aya 386

Vision 32B, GPT4o-mini and Gemini 3 12B show 387

very different sensitivity across both a) perturba- 388

tions and b) regions which were affected. We hy- 389

pothesise that architectural and training differences 390

might be influencing how models process image 391

orientation and color. While gray-scaling may re- 392

duce performance due to the loss of visual detail 393

or color-dependent cues, rotation disrupts spatial 394

reasoning and object orientation, which are critical 395

for geographic or cultural recognition. 396

These findings highlight the importance of eval- 397

uating model performance under realistic image 398

distortions, especially for applications where im- 399

ages may not be clean or consistently formatted as 400

image characteristics can vary widely. 401

5.3 Effect of Input Variations on Confidence 402

Despite the drop in Overall accuracy by all of the 403

tested models due to either of the image perturba- 404

tions, the confidence of the open-weight models 405

didn’t have a significant change while the propri- 406

etary models displayed a visible drop in confidence 407

compared to the original images. Compared to ro- 408

tation of images, Gray-scaling had a larger impact 409

on the response accuracies. The average confi- 410
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Figure 6: Country-wise response distribution in the open-ended prompt format. There is a consistent trend of models
predicting USA, but otherwise, no clear bias towards predicting Western countries.

dence of each VLM with each adversarial setting411

compared to the original can be seen in Figure 5.412

The closed-weights models exhibited a drop in con-413

fidence when a rotated or grayscale image was414

provided than the corresponding originals, but this415

wasn’t the case with open-weight models we tested.416

5.4 Image Feature categories VS accuracy417

Apart from the experiments, the original 21.1 K418

images were also labeled multi-way based on the419

key features they contain using larger VLMs like420

Gemini-2.5-Pro, o4-mini, Grok-2-Vision. Later a421

majority vote of each label was considered. The422

quality was later manually verified over a subset423

by multiple people. We have used 9 sub-categories424

for this categorization. The descriptions of each of425

these categories can be seen in Table 3. A large vari-426

ance was observed between each feature category427

and the country level accuracies obtained. Addi-428

tionally there was also a large variation between429

how accuracy was affected for each country/feature430

based on model/perturbation used. This can be also431

be seen in Figure 13. The extent to which each cat-432

egory’s images were recognized by VLMs can be433

seen in Figure 4. External architecture and native434

language texts’ presence in the background helped435

the VLMs recognize the culture better compared to436

the other features.437

5.5 Distribution of Predicted countries438

The distribution of responses in an open ended439

approach can be seen in Figure 6. The output dis-440

tributions varied largely among models, even those441

within the same family (i.e between Gemma-3-27B,442

Gemma-3-12B and Aya-vision-32B, Aya-vision- 443

8B). The results obtained contradict the usual as- 444

sumption about western biases in generative mod- 445

els, and was observed over a few nations with likely 446

high training data proportion. 447

Notably, all models consistently overpredict cer- 448

tain countries—particularly the USA, India, and 449

Brazil—regardless of actual ground truth. We hy- 450

pothize that these countries are likely overrepre- 451

sented in the models’ pretraining data or benefit 452

from more visually distinctive cues. Biases seem 453

to cluster around a few highly represented or visu- 454

ally salient countries rather than reflecting broader 455

geopolitical landscape. 456

These results show that model predictions are 457

likely highly influenced by data availability and 458

image characteristics rather than a generic global 459

bias. It also underscores the need for better inter- 460

pretabilty regarding the geographic composition 461

of VLM training datasets to fully understand such 462

biases. 463

5.6 Misclassification Analysis 464

The mapping of misclassification of samples was 465

not limited to similar or neighboring nations. This 466

can be observed in Figure 20 to Figure 34. These 467

misclassifications varied by each individual feature 468

and provide a better fine-grained insights of cultural 469

biases. For instance, Apart from neighboring / 470

similar countries, most images from Africa and 471

rural regions of South America were classified as 472

India. A specific example is shown in Figure 7 473

where out of the 600 images (100 * 6 models), 474

roughly 80-120 belong to this category for most 475
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Figure 7: Mis-classification map for North African countries. There is a clear trend of models predicting USA,
India, Australia, or geographically close countries in Europe and the Middle East.

countries, while many countries had most of their476

misclassified as originating from India.477

6 Discussion478

Our study presents a comprehensive analysis of cul-479

tural biases in Vision-Language Models (VLMs)480

using a geographically balanced dataset across 211481

countries. The key difference between the samples482

in our datasets and those from the other works is483

the complexity of images provided. In most of the484

images, we used it is difficult to understand and485

predict the country of origin without a strong vi-486

sion ability. For example, the Afghanistan example487

from Figure 2 is difficult to classify without spot-488

ting the hint of Afghan flag from one of the people489

from the image.490

We evaluated popular models across multiple491

prompting strategies, e.g. open-ended, multiple-492

choice (random and similar distractors), and multi-493

lingual settings. Open-ended formats showed the494

greatest disparity in country-level accuracy, partic-495

ularly in underrepresented regions such as Central496

Africa and parts of South America.The use of cul-497

turally similar distractors proved to be the most498

effective in revealing fine-grained errors, highlight-499

ing limitations in models’ cultural discrimination500

abilities.501

We further assessed the models’ robustness to502

image perturbations like gray-scaling and rotation.503

While gray-scaling affected only a few specific504

countries, rotation led to a broad and uniform drop505

in performance, confirming that VLMs rely heav-506

ily on image orientation. We further observed that507

performance also varied by semantic image con-508

tent—categories like architecture, textual cues, and509

attire were more predictive of cultural origin, espe- 510

cially in unaltered images. 511

Language variation in prompts had minimal im- 512

pact on average accuracy, though countries closely 513

tied to the input language (e.g., Spain with Span- 514

ish, Brazil with Portuguese) showed slight gains. 515

However, this trend was inconsistent and did not 516

generalize across all culturally linked regions. 517

Finally, our misclassification analysis shows 518

that models frequently confuse images from low- 519

resource or visually ambiguous countries with a 520

few dominant nations, reinforcing the role of train- 521

ing data bias. These findings emphasize the need 522

for transparent reporting of dataset composition in 523

VLM development and call for more robust, cultur- 524

ally diverse benchmarks to ensure equitable global 525

performance 526

7 Conclusion 527

We investigated cultural biases in Vision-Language 528

Models using a diverse country-level image classi- 529

fication task. Our findings show that biases are not 530

uniformly Western but instead reflect overrepresen- 531

tation of certain countries in training data. Model 532

performance varied across prompt types, languages, 533

image features, and perturbations—highlighting 534

limitations in robustness and cultural generaliza- 535

tion. 536

These results call for greater transparency in 537

dataset composition and the need for more cultur- 538

ally inclusive evaluation methods to ensure fairer 539

and more globally representative VLMs. 540
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Limitations541

Our study has a few important limitations to keep542

in mind. First, the use of country-level labels as543

a proxy for culture, while common for large-scale544

analysis, inherently overlooks intra-country cul-545

tural diversity and multicultural populations, poten-546

tially obscuring sub-national or regional nuances.547

The country labels used don’t account for political548

complexities like disputed territories.549
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A Overall Accuracies Before and After1018

Image Perturbations1019

Figure 8, Figure 9, Figure 10 display the accuracy1020

obtained for each image perturbation used com-1021

pared to the original through each of the VLMs1022

tested.1023

B Overall Accuracy VS Models used : In1024

each MCQ setting1025

Figure 11, Figure 12 display the accuracy obtained1026

through each model in each MCQ experiment.1027

C Reproducibility1028

Inference was done through Cohere’s API for Aya-1029

Vision-8B and Aya-Vision-32B through the default1030

hyperparameters with a seed value of 1024. The1031

rest of the models were used through OpenRouter’s1032

API through the default hyper-parameters with a1033

seed value of 1024. The experiments were repeated1034

thrice and the overall accuracy varied between 1-1035

1.2%, with some countries’ accuracy varying up1036

to 1.5%. The costs associated with all experi-1037

ments combined were 850$ through OpenRouter1038

and 250$ Cohere API credits. The experiments1039

were run on TPUs costing 0.35$/hr with the costs1040

reaching 60$.1041

D Prompt Usage1042

The prompts used for each experiment setting can1043

be seen below.1044
1045

## OPEN ENDED1046
Respond in the following format :1047
{1048
"Country": {1049
"type": "string",1050
"description": "Just Country Name, Nothing1051

else."1052
},1053
"Reasoning": {1054
"type": "string",1055
"description": "Why you feel the image is1056

from that particular country. Explain1057
what features/objects/items/visuals1058
of the image made you think so.1059
Should be fine-grained and clear, but1060
in just 2-3 sentences."1061

}, 1062
"Confidence": { 1063
"type": "integer", 1064
"description": "A integer score on a scale 1065

of 0 to 100 on how confident you are 1066
about the classification." 1067

}, 1068
"Features": { 1069
"type": "string", 1070
"description": "Which of the features of 1071

the image were primarily used for 1072
determining the country labels, 1073
separated by commas, ordered with 1074
primary feature in the beginning." 1075

} 1076
} 10771078

1079
## MCQ 1080
prompt_header="Respond with a label from the 1081

choices : What country is this image 1082
likely from ?\n" 1083

for l,c in 1084
zip(labels,choices):prompt_header+=f"{l}) 1085
: {c}\n" 1086

fixed_prompt=prompt_header+"""Respond in the 1087
following format : 1088

{ 1089
"Label": "Uppercase Alphabet", 1090
"Country": "The chosen label's country 1091

name exactly as it was", 1092
"Confidence": "Integer between 0 to 100 in 1093

numeric format" 1094
}""" 10951096

E Other Plots 1097
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Figure 8: Overall Accuracy : Open Ended (Normal)

Figure 9: Overall Accuracy : Open Ended (Rotated)

Figure 10: Overall Accuracy : Open Ended (Grayscale)
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Category Description
Appearance (Attire) Attires of some people from the image, clothes being hanged in the background, etc.

Appearance (People) Appearance / visual perception of people’s ethnicity, presence of any celebrities, etc.

Architecture (Exterior) Building facades, monuments, bridges, outdoor structures, and any external architectural ele-
ments visible in the scene.

Architecture (Interior) Indoor environments e.g. rooms, corridors, staircases, furniture, and interior design details.

Landscape (Water) Bodies of water such as oceans, rivers, lakes, waterfalls, ponds, and any aquatic scenery.

Landscape (Air) Aerial / bird’s-eye views, landscapes captured from above, clouds, sky scenes, and horizon vistas.

Landscape (Vegetation) Forests, grasslands, gardens, crops, shrubs, foliage patterns, plant life, or visible greenery.

Texts/Scripts/Posters Signs, banners, billboards, labels, handwritten or printed text, posters, and any other written or
graphic messaging.

Patterns/Designs Decorative motifs, surface textures, fabric prints, wallpaper or tile patterns, abstract designs, and
repetitive graphical elements.

Table 3: Overview of the image categories used to analyse model performance as a function of the type of image.

Figure 11: Overall Accuracy : MCQ-Random : Model
wise

Figure 12: Overall Accuracy : MCQ-Similar : Model
wise
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Figure 13: Image Feature categories VS Country wise Accuracy

Figure 14: Effect of Gray-scaling VS change in country wise accuracies

Higher Contrast = Larger Drop in accuracy
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Figure 15: Effect of Rotation VS change in country wise accuracies

Higher Contrast = Larger Drop in accuracy
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F Mis-Classification Map : Region-wise1098

The mis-classifications from one region to coun-1099

tries outside the region can be seen fro each region1100

in Figure 20 to Figure 34 respectively.1101

G Country wise accuracies in each1102

experimental setting1103

The accuracies obtained over samples of each coun-1104

try through each experimental setup can be seen in1105

Table 4 to Table 8.1106

Country name Open-Ended MCQs with MCQs with

Similar choices Random choices

Afghanistan 41.33 68.90 81.56

Albania 20.00 42.80 67.64

Algeria 10.50 29.73 65.71

Andorra 12.00 59.63 72.41

Angola 4.67 48.07 58.83

Anguilla 2.00 15.27 58.51

Antarctica 34.83 84.80 83.57

Antigua and Barbuda 7.67 31.67 70.64

Argentina 30.67 84.17 71.39

Armenia 42.33 66.23 80.07

Aruba 17.67 55.67 78.96

Australia 44.50 87.90 69.58

Austria 18.83 42.13 80.69

Azerbaijan 20.00 46.83 66.45

Bahamas 24.83 69.47 78.13

Bahrain 21.00 63.00 73.94

Bangladesh 42.50 59.30 87.48

Barbados 17.67 39.50 72.07

Belarus 13.33 45.60 72.98

Belgium 21.00 44.93 72.21

Belize 11.67 59.13 68.49

Benin 7.50 51.47 78.75

Bermuda 20.67 62.63 67.61

Bhutan 59.17 66.03 90.70

Plurinational State of Bolivia 26.33 76.13 78.26

Bonaire, Sint Eustatius and Saba 3.50 36.47 69.24

Bosnia and Herzegovina 23.33 44.43 73.23

Botswana 22.83 82.13 80.00

Brazil 47.67 83.37 74.70

Brunei Darussalam 8.67 21.73 48.78

Bulgaria 25.33 46.47 77.12

Burkina Faso 7.50 60.83 74.72

Cabo Verde 10.17 67.23 55.22

Cambodia 62.83 81.02 92.15

Cameroon 4.67 67.20 70.02

Canada 41.50 69.43 81.16

Cayman Islands 6.67 28.07 68.78

Central African Republic 0.83 16.67 50.21

Chile 20.83 65.90 67.78

China 58.83 78.73 81.48

Colombia 23.83 75.73 69.25

Democratic Republic of Congo 6.83 40.70 56.60

Cook Islands 3.83 22.23 68.28

Table 4: Country wise accuracies through various exper-
imental settings : Part 1/5
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Figure 16: Region wise effect of perturbations

Figure 17: Accuracy over each country’s images through open-ended Experiments
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Figure 18: Accuracy over each country’s images through MCQ Experiments with random distractors

Figure 19: Accuracy over each country’s images through MCQ Experiments with similar distractors

Figure 20: Mis-classification map : Caribbean
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Figure 21: Mis-classification map : Western Europe

Figure 22: Mis-classification map : North Europe

Figure 23: Mis-classification map : Eastern Europe
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Figure 24: Mis-classification map : East Asia

Figure 25: Mis-classification map : Central Asia

Figure 26: Mis-classification map : South East Asia
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Figure 27: Mis-classification map : South Asia

Figure 28: Mis-classification map : Middle East

Figure 29: Mis-classification map : Southern Africa
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Figure 30: Mis-classification map : Central Africa

Figure 31: Mis-classification map : North America

Figure 32: Mis-classification map : Central America
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Figure 33: Mis-classification map : South America

Figure 34: Mis-classification map : Oceania

25



Country name Open-Ended MCQs with MCQs with

Similar choices Random choices

Costa Rica 26.00 73.23 72.16

Croatia 47.83 72.83 83.92

Cuba 47.50 76.83 77.92

Curaçao 20.83 61.07 80.96

Cyprus 13.67 59.33 69.19

Czechia 40.50 66.07 83.90

Côte d’Ivoire 13.33 60.00 71.47

Denmark 32.50 66.93 78.54

Dominica 15.17 61.17 67.04

Dominican Republic 15.00 56.37 70.43

Ecuador 21.50 76.10 73.05

Egypt 60.50 77.07 83.84

El Salvador 4.83 65.93 63.40

Estonia 21.83 43.90 70.30

Eswatini 0.50 28.70 53.07

Ethiopia 41.00 80.93 80.24

Falkland Islands 8.83 92.13 90.35

Faroe Islands 30.33 71.30 90.66

Fiji 22.83 64.10 76.93

Finland 32.33 67.80 76.31

France 40.83 73.77 83.70

French Guiana 3.00 64.73 53.93

French Polynesia 24.67 81.90 83.97

Gabon 5.33 56.00 66.67

Gambia 3.33 41.40 53.16

Georgia 32.00 71.40 83.37

Germany 54.83 71.30 87.54

Ghana 26.33 70.53 67.80

Gibraltar 19.00 62.27 79.48

Greece 66.67 91.00 91.06

Greenland 27.00 65.43 84.90

Grenada 3.50 37.77 63.75

Guadeloupe 1.50 48.80 71.09

Guam 11.33 70.43 55.57

Guatemala 19.67 75.50 74.38

Guernsey 1.83 66.50 81.14

Guyana 8.83 52.33 52.66

Haiti 27.83 71.23 65.98

Vatican City State 8.67 43.77 74.31

Honduras 4.67 64.13 66.98

Hong Kong 22.67 65.23 86.70

Hungary 24.83 49.00 78.44

Iceland 69.00 82.27 89.04

Table 5: Region wise accuracies through various experi-
mental settings : Part 2/5

Country name Open-Ended MCQs with MCQs with

Similar choices Random choices

India 78.33 90.03 90.10

Indonesia 48.83 67.76 84.97

Iran 50.83 70.40 83.27

Iraq 28.67 60.60 76.84

Ireland 48.33 74.57 87.63

Isle of Man 6.17 52.03 77.91

Israel 35.67 76.33 73.99

Italy 60.00 82.30 85.40

Jamaica 28.17 60.20 70.58

Japan 81.17 88.92 91.75

Jersey 3.67 50.37 71.69

Jordan 44.00 79.03 89.04

Kazakhstan 18.33 44.73 77.73

Kenya 56.00 88.57 88.15

North Korea 47.33 25.64 81.26

South Korea 47.83 67.23 79.90

Kuwait 12.83 52.30 68.70

Kyrgyzstan 20.17 37.30 69.48

Laos 26.50 38.53 80.25

Latvia 17.00 41.63 72.47

Lebanon 27.00 73.63 78.09

Liberia 9.33 50.97 65.37

Libya 6.67 22.87 73.10

Liechtenstein 6.17 34.03 72.29

Lithuania 24.00 54.43 74.40

Luxembourg 13.33 21.90 62.29

Macao 17.00 66.42 85.38

Madagascar 24.17 81.20 65.40

Malawi 8.33 54.80 66.39

Malaysia 28.33 73.28 83.65

Maldives 39.33 80.20 82.08

Mali 13.83 65.43 80.11

Malta 47.67 79.57 90.95

Martinique 4.33 53.60 72.85

Mauritania 12.00 76.77 80.28

Mauritius 38.33 92.00 79.52

Mexico 53.17 79.77 79.69

Moldova 7.67 35.23 63.57

Monaco 30.17 54.83 69.69

Mongolia 50.83 82.41 81.39

Montenegro 22.17 44.37 81.00

Morocco 67.83 85.40 93.75

Mozambique 5.17 66.57 63.78

Myanmar 61.50 76.56 92.62

Table 6: Region wise accuracies through various experi-
mental settings : Part 3/5
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Country name Open-Ended MCQs with MCQs with

Similar choices Random choices

Namibia 0.00 83.40 85.35

Nepal 65.00 72.53 89.72

Netherlands 46.00 74.63 86.86

New Caledonia 7.50 55.03 64.98

New Zealand 53.83 76.40 82.58

Nicaragua 6.83 69.87 69.64

Nigeria 47.33 79.13 73.78

North Macedonia 10.17 44.27 74.44

Norway 32.50 48.17 79.45

Oman 31.67 71.40 77.59

Pakistan 30.33 53.57 79.32

Palau 15.83 71.23 71.97

Palestine, State of 9.00 73.53 83.59

Panama 4.33 80.17 60.86

Papua New Guinea 13.50 61.87 63.38

Paraguay 6.17 52.23 54.29

Peru 54.83 85.73 83.61

Philippines 43.67 74.82 85.94

Poland 28.83 62.00 79.17

Portugal 43.50 58.60 84.39

Puerto Rico 16.67 68.97 72.52

Qatar 19.50 56.63 66.04

Romania 31.50 56.43 79.02

Russian Federation 52.67 73.13 77.18

Rwanda 29.50 71.73 73.72

Réunion 5.33 90.87 69.21

Saint Helena, Ascension 3.33 71.40 57.44

and Tristan da Cunha

Saint Kitts and Nevis 14.17 41.23 64.61

Saint Lucia 16.83 61.40 79.33

Saint Martin (French) 4.00 45.43 69.48

Samoa 23.33 68.43 71.19

San Marino 10.17 35.00 54.01

Saudi Arabia 26.00 65.53 74.69

Senegal 21.83 78.73 78.20

Serbia 24.33 58.70 79.14

Seychelles 26.33 92.87 76.83

Sierra Leone 8.83 56.53 75.23

Singapore 51.33 74.91 80.15

Saint Martin (Dutch) 7.17 50.77 75.14

Slovakia 12.33 32.33 67.41

Slovenia 24.00 53.40 75.09

Solomon Islands 3.33 22.53 69.22

Somalia 24.67 75.30 78.46

Table 7: Region wise accuracies through various experi-
mental settings : Part 4/5

Country name Open-Ended MCQs with MCQs with

Similar choices Random choices

South Africa 38.50 94.43 82.91

South Georgia and the 7.17 80.70 77.99

South Sandwich Islands

South Sudan 25.83 65.83 82.31

Spain 51.00 83.13 84.71

Sri Lanka 37.00 61.40 82.72

Sudan 25.33 70.63 81.25

Svalbard and Jan Mayen 0.00 74.13 89.45

Sweden 35.50 54.63 81.22

Switzerland 42.17 62.53 76.40

Syrian Arab Republic 13.00 51.63 64.82

Taiwan, Province of China 23.00 51.01 80.16

Tajikistan 10.83 44.43 81.04

Tanzania, United Republic of 24.83 84.37 84.89

Thailand 64.17 84.49 89.08

Timor-Leste 7.83 41.77 69.67

Togo 2.33 31.67 65.98

Tonga 1.33 19.60 44.73

Trinidad and Tobago 8.00 56.23 53.62

Tunisia 20.33 40.00 75.53

Turkmenistan 22.67 48.73 82.83

Türkiye 56.33 86.10 92.24

Uganda 26.83 79.90 80.27

Ukraine 22.83 67.63 72.82

United Arab Emirates 53.00 85.30 85.30

United Kingdom 50.17 92.17 89.05

United States 67.17 91.03 87.76

Uruguay 14.17 46.33 61.10

Uzbekistan 47.17 68.63 83.07

Vanuatu 5.50 18.00 57.04

Venezuela, Bolivarian Republic of 11.17 57.63 53.41

Viet Nam 55.50 78.74 89.77

Virgin Islands, British 6.83 38.00 79.60

Virgin Islands, U.S. 9.67 46.73 81.72

Kosovo 6.50 28.70 65.53

Yemen 27.17 69.80 76.46

Zambia 9.50 54.80 73.29

Zimbabwe 11.67 71.03 76.05

Åland Islands 0.17 29.00 62.02

Overall 25.14 61.92 75.06

Table 8: Region wise accuracies through various experi-
mental settings : Part 5/5
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Figure 35: A sample from our dataset and its corre-
sponding response (GPT-4o-Mini)
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