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ABSTRACT

We theoretically investigate the in-context learning capabilities of transformers
in the context of learning mixtures of linear regression models. For the case of
two mixtures, we demonstrate the existence of transformers that can achieve an
accuracy, relative to the oracle predictor, of order Õppd{nq1{4q in the low signal-
to-noise ratio (SNR) regime and Õp

a

d{nq in the high SNR regime, where n is
the length of the prompt, and d is the dimension of the problem. Additionally,
we derive in-context excess risk bounds of order OpL{

?
Bq, where B denotes

the number of (training) prompts, and L represents the number of attention lay-
ers. The order of L depends on whether the SNR is low or high. In the high
SNR regime, we extend the results to K-component mixture models for finite K.
Extensive simulations also highlight the advantages of transformers for this task,
outperforming other baselines such as the Expectation-Maximization algorithm.

1 INTRODUCTION

We investigate the in-context learning ability of transformers in addressing the mixture of regression
(MoR) problem (De Veaux, 1989; Jordan & Jacobs, 1994). The MoR model is widely applied in
various domains, including clustered federated learning, collaborative filtering, and healthcare (Deb
& Holmes, 2000; Viele & Tong, 2002; Kleinberg & Sandler, 2008; Faria & Soromenho, 2010; Ghosh
et al., 2020), to address heterogeneity in data, often arising from multiple data sources. We consider
linear MoR models where independent and identically distributed samples pxi, yiq P Rd ˆ R, for
i “ 1, . . . , n, are assumed to follow the model yi “ xβi, xiy ` vi, where vi „ N p0, ϑ2q represents
observation noise, independent of xi, and βi P Rd is an unknown regression vector. Specifically,
there are K distinct regression vectors tβ˚

k uKk“1, and each βi is independently drawn from these
vectors according to the distribution tπkuKk“1. The goal for a new test sample, xn`1, is to predict its
label yn`1. Specifically, we are interested in the meta-learning setup for MoR (Kong et al., 2020).

In a recent intriguing work, through a mix of theory and experiments, Pathak et al. (2024) examined
the performance of transformers for learning MoR models. However, their theoretical result suffers
from the following major drawback: They only showed that the existence of a transformer architec-
ture that is capable of implementing the oracle Bayes optimal predictor for the linear MoR problem.
That is, they assume the availability of tβ˚

k uKk“1 which are in practice unknown and are to be es-
timated. Hence, there remains a gap in the theoretical understanding of how transformers actually
perform parameter estimation and prediction in MoR. Furthermore, their theoretical result is rather
disconnected from their empirical observations which focused on in-context learning. Indeed, they
leave open a theoretical characterization of the problem of in-context learning MoR (Pathak et al.,
2024, Section 4). In this work, we show that transformers are actually capable of in-context learning
linear MoR via implementing the Expectation-Maximization (EM) algorithm, a double-loop algo-
rithm, wherein each inner loop involves multiple steps of gradient ascent.

The EM algorithm is a classic method for estimation and prediction in the MoR model (Balakrishnan
et al., 2017; Kwon et al., 2019; Kwon & Caramanis, 2020; Wang et al., 2024). A major limitation
of the EM algorithm is its tendency to converge to local maxima rather than the global maximum
of the likelihood function. This issue arises because the algorithm’s performance crucially depends
on the initialization (Jin et al., 2016). To mitigate this, favorable initialization strategies based on
spectral methods (Chaganty & Liang, 2013; Zhang et al., 2016; Chen et al., 2020) are typically em-
ployed alongside the EM algorithm. Via our experiments, we empirically demonstrate that trained
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transformers are capable of efficient prediction and estimation in the MoR model, while also con-
siderably avoiding the initialization issues associated with the EM algorithm. In summary, we make
the following contributions in this work:

• We demonstrate the existence of a transformer capable of learning mixture of two linear
regression models by implementing the dual-loops of the EM algorithm. This construction
involves the transformer performing multiple gradient ascent steps during each M-step of
the EM algorithm. In Theorem 2.1, we derive precise bounds on the transformer’s ability to
approximate the oracle predictor in both low and high signal-to-noise (SNR) regimes. We
extend this result to the case of finite-K mixtures in Theorem 4.1 for the high-SNR setting.

• In Theorem 2.2, we establish an excess risk bound for this constructed transformer, demon-
strating its ability to achieve low excess risk under population loss conditions. These results
collectively show that transformers can provably learn mixtures of linear regression models
in-context.

• In Theorem 2.3, we analyze the sample complexity associated with pretraining these trans-
formers using a limited number of in-context learning (ICL) training instances.

• As a byproduct of our analysis, we also derive convergence results with statistical guar-
antees for the gradient EM algorithm applied to a two-component mixture of regression
models, where the M-step involves T steps of gradient ascent. We extend this approach
to the multi-component case, improving upon previous works, such as Balakrishnan et al.
(2017), which considered only a single step of gradient ascent.

1.1 RELATED WORKS

Transformers and optimization algorithms: Garg et al. (2022) successfully demonstrated that
transformers can be trained to perform in-context learning (ICL) for linear function classes, achiev-
ing results comparable to those of the optimal least squares estimator. Beyond their empirical suc-
cess, numerous studies have sought to uncover the mechanisms by which transformers facilitate
ICL. Recent investigations suggest that transformers may internally execute first-order Gradient De-
scent (GD) to perform ICL, a concept explored in depth by Akyürek et al. (2023), Bai et al. (2024),
Von Oswald et al. (2023a), Von Oswald et al. (2023b), Ahn et al. (2024), and Zhang et al. (2024).
Specifically, Akyürek et al. (2023) identified fundamental operations that transformers can execute,
such as multiplication and affine transformations, showing that transformers can implement GD
for linear regression using these capabilities. Building on this, Bai et al. (2024) provided detailed
constructions illustrating how transformers can implement convex risk minimization across a wide
range of standard machine learning problems, including least squares, ridge, lasso, and generalized
linear models (GLMs). Further, Ahn et al. (2024) demonstrated that a single-layer linear trans-
former, when optimally parameterized, can effectively perform a single step of preconditioned GD.
Zhang et al. (2024) expanded on this by showing that every one-step GD estimator, with a learnable
initialization, can be realized by a linear transformer block (LTB) estimator.

Moving beyond first-order optimization methods, Fu et al. (2023) revealed that transformers can
achieve convergence rates comparable to those of the iterative Newton’s Method, which are expo-
nentially faster than GD, particularly in the context of linear regression. These insights collectively
highlight the sophisticated computational abilities of transformers in ICL, aligning closely with clas-
sical optimization techniques. In addition to exploring how transformers implement these mecha-
nisms, recent studies have also focused on their training dynamics in the context of linear regression
tasks; see, for example, Zhang et al. (2023) and Chen et al. (2024). In comparison to the aforemen-
tioned works, in the context of MoR, we demonstrate that transformers are capable of implementing
double-loop algorithms like the EM algorithm.

EM Algorithm: The analysis of the standard EM algorithm for mixture of Gaussian and linear
MoR models has a long-standing history (Wu (1983),McLachlan & Krishnan (2007), Tseng (2004)).
Balakrishnan et al. (2017) first proved that EM algorithm converges at a geometric rate to a local
region close to the maximum likelihood estimator with explicit statistical and computational rates of
convergence. Subsequent works (Kwon et al., 2019; 2021) established improved convergence results
for mixture of regression under different SNR conditions. Kwon & Caramanis (2020) extended these
results to mixture of regression with many components. Gradient EM algorithm was first analyzed
by Wang et al. (2015) and Balakrishnan et al. (2017). It is an immediate variant of the standard EM
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algorithm where the M-step is achieved by one-step gradient ascent rather than exact maximization.
They proved that the gradient EM also can achieve the local convergence with explicit finite sample
statistical rate of convergence. Global convergence for the case of two-components mixture of
Gaussian model was show by Xu et al. (2016); Daskalakis et al. (2017); Wu & Zhou (2021). The
case of unbalanced mixtures was handled by Weinberger & Bresler (2022). Penalized EM algorithm
for handling high-dimensional mixture models was analyzed by Zhu et al. (2017), Yi & Caramanis
(2015) and Wang et al. (2024), showing that gradient EM can achieve linear convergence to the
unknown parameter under mild conditions.

2 MAIN RESULTS

Mixture of Regression model: In this section, we explore the MoR problem involving two compo-
nents. The underlying true model is described by the equation:

yi “ xJ
i βi ` vi (1)

where xi „ N p0, Idq, vi „ N p0, ϑ2Idq denotes the noise term with variance ϑ2, and βi’s are
i.i.d. random vectors that taking the value ´β˚ with probability 1

2 and β˚ with probability 1
2 . The

parameter β˚ is unknown.

Transformer architecture: We focus on transformers that handle the input sequence H P RDˆN by
integrating attention layers and multi-layer perceptrons (MLPs). These transformers are structured
to process the input by effectively mapping the complex interactions and dependencies between data
points in the sequence, utilizing the capabilities of attention mechanisms to dynamically weigh the
importance of different features in the context of regression analysis.
Definition 2.1. A attention layer with M heads is denoted as Attnθp¨q with parameters θ “

tpVm, Qm,KmqumPrMs Ă RDˆD. On any input sequence H P RDˆN , we have

rH “ AttnθpHq :“ H `
1

N

M
ÿ

m“1

`

VmH
˘

ˆ σ
``

QmH
˘J`

KmH
˘˘

P RDˆN , (2)

where σ : R Ñ R is the activation function and D is the hidden dimension. In the vector form,

h̃i “
“

AttnθpHq
‰

i
“ hi `

M
ÿ

m“1

1

N

N
ÿ

j“1

σ
`@

Qmhi,Kmhj
D˘

¨ Vmhj .

Remark 2.1. The prevalent choices for the activation function include the softmax function and the
ReLU function. In our analysis in Section 3, Equation 2 employs a normalized ReLU activation,
t ÞÑ σptq{N , which is used for technical convenience. This modification does not impact the
fundamental nature of the study.
Definition 2.2 (Attention only transformer). An L-layer transformer, denoted as TFθp¨q, is a com-
position of L self-attention layers,

TFθp¨q “ AttnθL ˝AttnθL´1 ˝ ¨ ¨ ¨ ˝ Attnθ1pHq

where H P RDˆN is the input sequence, and the parameter θ “
`

θ1, . . . , θL
˘

consists of the
attention layers θpℓq “

␣`

V
pℓq
m , Q

pℓq
m ,K

pℓq
m

˘(

mPrMpℓqs
Ă RDˆD.

In the theory part, the input sequence H P RDˆpn`1q has columns

hi “ rxi, y
1
i,0D´d´3, 1, tis

J,

hn`1 “ rxn`1, y
1
n`1,0D´d´3, 1, 1sJ

(3)

where ti :“ 1ti ă n ` 1u is the indicator for the training examples. Then the transformer TFθ pro-
duce the output H̃ “ TFθpHq. The prediction ŷn`1 is derived from the pd`1, n`1q-th entry of H̃ ,
denoted as ŷn`1 “ readypH̃q :“

`

h̃n`1

˘

d`1
. Our objective is to develop a fixed transformer archi-

tecture that efficiently conducts in-context learning for the mixture of regression problem, thereby
providing a prediction ŷn`1 for yn`1 under an appropriate loss framework. Besides, the constructed
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transformer in Section 2 can also extract an estimate of the regression components, which is speci-
fied in Section 3.

Notation: For a vector v P Rd, its ℓ2 norm is denoted by }v}2. For a matrix A P Rdˆd,
}A}op denotes the operator (spectral) norm of A. For the linear model Equation 1, we denote
η “ }β˚}2{ϑ as the signal-noise-ratio (SNR). We denote the joint distribution of px, yq in model
Equation 1 by Px,y and the distribution of x by Px. Besides, we denote the joint distribution
of px1, y1, . . . , xn, yn, xn`1, yn`1q by P , where txi, yiu

n
i“1 are the input in the training prompt

and xn`1 is the query sample. Besides, in Section 3, we use y1
i P R defined as y1

i “ yiti for
i “ 1, . . . , n, n ` 1 to simplify our notation.

Evaluation: Let f : H ÞÑ ŷ P R be any procedure that takes a prompt H as input and outputs an
estimate ŷ on the query yn`1. We define the mean squared error (MSE) by MSEpfq :“ EP

“`

fpHq´

yn`1

˘2‰
. Finally, we define the function fn,d,δpa1, a2, a3, a4, a5q as

fn,d,δpa1, a2, a3, a4, a5q :“
´ d

n

¯a1
loga5pna2da3{δa4q,

which will be used in the presentation of theorems in Section 2.1.

2.1 EXISTENCE OF TRANSFORMER FOR MIXTURE OF REGRESSION

In Theorem 2.1, we demonstrate the existence of a transformer capable of approximately imple-
menting the EM algorithm. The performance of the transformer largely depends on the SNR. The
threshold order of SNR is given by O

`

fn,d,δp
1
4 , 1, 0, 0,

1
2 q
˘

“ O
`

d log2pn{δq{n
˘1{4˘

for some small
number δ. High SNR means the order of η is greater than O

`

fn,d,δp
1
4 , 1, 0, 0,

1
2 q
˘

, while low SNR
means the order of η is smaller than O

`

fn,d,δp
1
4 , 1, 0, 0,

1
2 q
˘

. Generally, the transformer performs
better in the high SNR settings compared to the low SNR settings. In Theorem 2.1, we show that
there exists a transformer that implement EM algorithm internally.
Theorem 2.1. Given input matrix H whose columns are given by Equation 3, there exists a trans-
former TFθ, with the number of heads M pℓq ď M “ 4 in each attention layers, that can make
prediction on yn`1 by implementing gradient EM algorithm of MoR problem where T steps of gra-
dient descent are used in each M-step. When T is sufficiently large and the prompt length n satisfies

n ě O
`

d log2
`

1{δ
˘˘

, (4)

the transformer can achieve the prediction error ∆y :“ | ready
`

TFpHq
˘

´ xJ
n`1β

OR| of order

∆y “

"
a

logpd{δqfn,d,δp
1
4 , 1, 0, 1,

1
2 q η ď O

`

fn,d,δp
1
4 , 1, 0, 0,

1
2 q
˘

a

logpd{δqfn,d,δp
1
2 , 1, 0, 1, 1q η ě O

`

fn,d,δp
1
4 , 1, 0, 0,

1
2 q
˘

,
(5)

with probability at least 1 ´ δ, where βOR is defined as

βOR :“ arg min
βPRd

EPx,y

“

pxJβ ´ yq2
‰

“ π1β
˚ ´ π2β

˚ ” 0, (6)

Furthermore, the second-to-last layer approximates β˚:

} readβ
`

TFpHq
˘

´ β˚}2 “

"

O
`

fn,d,δp
1
4 , 1, 0, 1,

1
2 q
˘

η ď O
`

fn,d,δp
1
4 , 1, 0, 0,

1
2 q
˘

O
`

fn,d,δp
1
2 , 1, 0, 1, 1q

˘

η ě O
`

fn,d,δp
1
4 , 1, 0, 0,

1
2 q
˘

with probability at least 1 ´ δ, where readβpTFpHqq “
“

TFpHq
‰

d`2,n`1
extracts the estimate of

β˚ in the output matrix.

Details of the proof of Equation 6 and Theorem 2.1 can be found in Appendix B.5. According to
Theorem 2.1, the architecture of the constructed transformer varies primarily in the number of layers
it includes. In general, with the prompt length n and dimension d held constant, the constructed
transformer needs more training samples in the prompt in the low SNR settings to achieve the desired
precision. The prediction error is order of Õp

a

d{nq under the high SNR settings, and is Õppd{nq
1
4 q

in the low SNR settings. Besides, under the high SNR settings, the constructed transformer needs
O
`

logpn{dq
˘

attention layers, while it needs O
`

logplogpn{dqq
a

n{d
˘

attention layers in the low
SNR settings.
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2.2 ANALYSIS OF PARAMETER ESTIMATOR AND PREDICTION ERROR VIA TRANSFORMER

In Theorem 2.2, we provide the excess risk bound for the transformer constructed in Theorem 2.1
Theorem 2.2. For any T being sufficiently large and the prompt length n satisfies condition Equa-
tion 4. Define the excess risk R :“ EP

”

pyn`1 ´ readypTFpHqqq2
ı

´ infβ EP
“

pxJ
n`1β ´ yn`1q2

‰

.

Then the ICL prediction readypTFpHqq of the constructed transformer in Theorem 2.1 satisfies

R “

"

fn,d,δp
1
2 , 1, 0, 0, 1q 0 ă η ď O

`

fn,d,δp
1
4 , 1, 0, 0,

1
2 q
˘

fn,d,δp1, 1, 0, 0, 2q η ě O
`

fn,d,δp
1
4 , 1, 0, 0,

1
2 q
˘ . (7)

Furthermore, infβ EP
“

pxJ
n`1β ´ yn`1q2

‰

“ ϑ2 ` }β˚}22.

The main idea behind the proof for Theorem 2.1 and 2.2 is deferred to Section 3. Theorem 2.1 and
Theorem 2.2 provide the first quantitative framework for end-to-end ICL in the mixture of regression
problems, achieving desired precision. The order of the excess risk of the constructed transformer
is order of O

`

d log2 n{n
˘

under the high SNR settings, and is order of O
`
a

d{n log n
˘

under the
low SNR settings. These results represent an advancement over the findings in Pathak et al. (2024),
which do not offer explicit error bounds such as Equation 5 to Equation 7.

2.3 ANALYSIS OF PRE-TRAINING

We now analyze the sample complexity needed to pretrain the transformer with a limited number
of ICL training instances. Following the ideas from Bai et al. (2024), we consider the square loss
between the in-context prediction and the ground truth label:

ℓiclpθ;Zq :“
1

2

”

yn`1 ´ clipR
`

ready
`

TFθpHq
˘˘

ı2

,

where Z :“
`

H, yn`1

˘

is the training prompt, θ “
␣

pK
pℓq
m , Q

pℓq
m , V

pℓq
m q : ℓ “ 1, . . . , L,m “

1, . . . ,M
(

is the collection of parameters of the transformer and clipRptq :“ Projr´R,Rsptq is the
standard clipping operator with (a suitably large) radius R ě 0 that varies in different problem setups
to prevent the transformer from blowing up on tail events, in all our results concerning (statistical)
in-context prediction powers. Additionally, the clipping operator can be employed to control the
Lipschitz constant of the transformer TFθ with respect to θ. In practical applications, it is common
to select a sufficiently large clipping radius R to ensure that it does not alter the behavior of the
transformer on any input sequence of interest. Denote }θ} as the norm of transformer given by

}θ} :“ max
ℓPrLs

!

max
mPrMs

!

›

›Qpℓq
m

›

›

op
,
›

›Kpℓq
m

›

›

op

)

`

M
ÿ

m“1

›

›V pℓq
m

›

›

op

)

.

Our pretraining loss is the average ICL loss on B pretraining instances Zp1:Bq iid
„ π, and we consider

the corresponding test ICL loss on a new test instance:

L̂iclpθq :“
1

B

B
ÿ

j“1

ℓicl
`

θ;Zpjq
˘

and Liclpθq :“ EP
“

ℓicl
`

θ;Z
˘‰

.

Our pretraining algorithm is to solve a standard constrained empirical risk minimization problem
over transformers with L layers, M heads, and norm bounded by M 1:

pθ :“ arg min
θPΘM1

pLiclpθq, ΘM 1 “

!

θ “ pKpℓq
m , Qpℓq

m , V pℓq
m q : max

ℓPrLs
M pℓq ď M, }θ} ď M 1

)

. (8)

Theorem 2.3 (Generalization for pretraining). With probability at least 1´3ξ (over the pretraining
instances

␣

Zpjq
(

jPrBs
), the solution pθ to Equation 8 satisfies

Liclppθq ď inf
θPΘB1

Liclpθq ` O

˜

p1 ` η´2q logp2nB{ξq

c

pLq2pMD2qι ` logp1{ξq

B

¸

where ι “ log
`

2 ` max
␣

M 1, Bx, By, p2Byq´1
(˘

, Bx “
a

logpndB{ξq, By “
a

2p1 ` η´2q}β˚}22 logp2nB{ξq, D is the hidden dimension and M is the number of heads.
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Remark 2.2. Under the low SNR settings, the constructed transformer generally requires more at-
tention layers than those in the high SNR settings to achieve the same level of excess risk. In partic-

ular, for the constructed transformer in Theorem 2.1, L “ O
`

T logplogpn{dqq

b

n{pd log2pn{δqq
˘

under the low SNR settings, and L “ O
`

T logpn{dq
˘

under the high SNR settings. Hence, with
the number of samples n per prompt and dimension d fixed, the required number of prompts B to
achieve a comparable excess pretraining risk under the high SNR settings is smaller than that under
the low SNR settings.

3 TRANSFORMER IMPLEMENTS THE GRADIENT-EM ALGORITHM

In this section, we illustrate that the constructed transformers in Theorem 2.1 can solve the MoR
problem by implementing EM algorithm internally while GD is used in each M-step. Prior works
(e.g. Balakrishnan et al. (2017), Kwon et al. (2019) and Kwon et al. (2021)) focused on the sample-
based EM algorithm, typically employing closed-form solutions or one-step gradient approaches in
the M-step. For general analysis, we explore the transformer’s performance using T -step gradient
descent within the EM algorithm. To simplify the analysis, we restrict our stepsize α P p0, 1q in
each gradient descent step in M-step.

Attention layer can implement the one-step gradient descent. We first recall how the attention
layer can implement one-step GD for a certain class of loss functions as demonstrated by Bai et al.
(2024). Let ℓ : R2 Ñ R be a loss function. Let pLnpβq :“ 1

n

řn
i“1 ℓ

`

βJxi, yi
˘

denote the empirical
risk with loss function ℓ on dataset tpxi, yiquiPrns, and we denote

βk`1 :“ βk ´ α∇pLnpβkq (9)

as the GD trajectory on pLn with initialization β0 P Rd and learning rate α ą 0. The foundational
concept of the construction presented in Theorem 2.1 is derived from Bai et al. (2024). It hinges on
the condition that the partial derivative of the loss function, Bsℓ : ps, tq ÞÑ Bsℓps, tq (considered as a
bivariate function), can be approximated by a sum of ReLU functions, which are defined as follows:

Definition 3.1 (Approximability by sum of ReLUs). A function g : Rk Ñ R is pεapprox , R,M,Cq-
approximable by sum of ReLUs, if there exists a “pM,Cq-sum of ReLUs” function

fM,Cpzq “

M
ÿ

m“1

cmσ
`

aJ
mrz; 1s

˘

with
M
ÿ

m“1

|cm| ď C, max
mPrMs

}am}1 ď 1,am P Rk`1, cm P R

such that supzPr´R,Rsk |gpzq ´ fM,Cpzq| ď εapprox.

Suppose that the partial derivative of the loss function, Bsℓps, tq, is approximable by a sum of ReLUs.
Then, T steps of GD, as described in Equation 9, can be approximately implemented by employing
T attention layers within the transformer. This result is formally presented in Proposition E.1.

Transformer can implement the gradient-EM algorithm: Proposition E.1 illustrates how the
transformer described in Theorem 2.1 is capable of learning from the MoR problem. Using propo-
sition E.1, we can construct a transformer whose architecture consists of attention layers that im-
plement GD for each M-step, followed by additional attention layers responsible for computing the
necessary quantities in the E-step. Here is a summary of how the transformer implements the EM
algorithm for the mixture of regression problem. Following the notation from Balakrishnan et al.
(2017), we define the weight function:

wβpx, yq “
exp

␣

´ 1
2ϑ2

`

y ´ xJβ
˘2(

exp
␣

´ 1
2ϑ2

`

y ´ xJβ
˘2(

` exp
␣

´ 1
2ϑ2

`

y ` xJβ
˘2( .

Denote βptq as the current parameter estimates of β˚ in the EM algorithm for the MoR problem.
During each M-step, the objective is to maximize the following loss function:

Qnpβ1 | βptqq “
´1

2n

n
ÿ

i“1

´

wβptq

`

xi, yi
˘`

yi ´ xJ
i β

1
˘2

`
`

1 ´ wβptq

`

xi, yi
˘˘`

yi ` xJ
i β

1
˘2
¯

. (10)
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The update βpt`1q is given by βpt`1q “ argmaxβ1PΩ Qnpβ1 | βptqq. Lemma 3.1 below, proved in
Section A, demonstrates that the function L̂

ptqpβq
n minimized in each M-step is approximable by a

sum of ReLUs.
Lemma 3.1. For the function L̂

ptq
n pβq “ 1

n

řn
i“1 l

ptqpxJ
i β, yiq, where

lptqpxJ
i β, yiq “ wβptq pxi, yiqpyi ´ xJ

i βq2 ` p1 ´ wβptq pxi, yiqqpyi ` xJ
i βq2,

it holds that (1) lptqps, tq is convex in first argument; and (2) Bsl
ptqps, tq is p0,`8, 4, 16q-

approximable by sum of ReLUs.

By Lemma 3.1, we can design attention layers with T layers that implement the T steps of GD for
the empirical loss L̂

ptq
n pβ1q as outlined in Proposition E.1. We provide a concise demonstration of

the entire process below. Starting with an appropriate initialization βp0q, the first M-step minimizes
the loss function:

L̂p0q
n pβq “

1

n

n
ÿ

i“1

␣

wβp0q pxi, yiqpyi ´ xJ
i βq2 ` p1 ´ wβp0q pxi, yiqqpyi ` xJ

i βq2
(

.

Following Proposition E.1, given the input sequence formatted as hi “ rxi; y
1
i; 0d; 0D´2d´3; 1; tis,

there exists a transformer with T attention layers that gives the output h̃i “

rxi; y
1
i;β

p0q

T , 0D´2d´3; 1; tis. Furthermore, the existence of a transformer capable of comput-
ing the necessary quantities in the M-step is guaranteed by Proposition 1 from Pathak et al. (2024)
and we restate this proposition in Section E in appendix.

It is worth mentioning that computing wβptq pxi, yiq in each M-step can be easily implemented by
affine and softmax operation in Proposition E.2. Similar arguments can be made for the upcoming
iterations of the EM algorithm and we summarize these results in Lemma 3.2 and 3.3.

Lemma 3.2. In each E-step, given the input HpT`1q “
“

h
pT`1q

1 , . . . , h
pT`1q

n`1

‰

where

h
pT`1q

i “
“

xi; y
1
i;β

ptq
T ;0D´2d´3; 1; ti;wβpt´1q

T

pxi, yiq
‰J

, i “ 1, . . . , n,

h
pT`1q

n`1 “
“

xi;x
J
n`1β

ptq
T ;β

ptq
T ;0D´2d´3; 1; 1; 0

‰J
,

there exists a transformer TFptq
E that can compute w

β
ptq

T

pxi, yiq. Furthermore, the output sequence
takes the form of

h̃
pT`1q

i “
“

xi; y
1
i;β

ptq
T ;0D´2d´4; 1; ti;wβptq

T

pxi, yiq
‰J

, i “ 1, . . . , n, (11)

h̃
pT`1q

n`1 “
“

xi;x
J
n`1β

ptq
T ;β

ptq
T ;0D´2d´4; 1; 1; 0

‰J
. (12)

Lemma 3.3. In each M-step, given the input matrix as Equation 11 and Equation 12, there exists
a transformer TF

ptq
M with T ` 1 attention layers that can implement T steps of GD on the loss

function T̂
ptq
n pβq “ 1

n

řn
i“1 l

ptqpxJ
i β, yiq, where lptqpxJ

i β, yiq “ w
β

ptq

T

pxi, yiqpyi ´ xJ
i βq2 ` p1 ´

w
β

ptq

T

pxi, yiqqpyi ` xJ
i βq2. Furthermore, the output sequence takes the form of

h
pT`1q

i “
“

xi; y
1
i;β

pt`1q

T ;0D´2d´3; 1; ti;wβptq

T

pxi, yiq
‰J

, i “ 1, . . . , n,

h
pT`1q

n`1 “
“

xi;x
J
n`1β

pt`1q

T ;β
pt`1q

T ;0D´2d´3; 1; 1; 0
‰J

.

The above results are proved in Section A. Combining all the architectures into one transformer,
we have that there exists a transformer that can implement gradient descent EM algorithm for T0

iterations (outer loops) and in each M-step (inner loops), it implements T steps of GD for function
defined by Equation 10. Finally, following similar procedure in Theorem 1 of Pathak et al. (2024),
the output of the transformer will give β̂OR :“ π1β

pT0`1q

T ´ π2β
pT0`1q

T , which is an estimate of
βOR “ π1β

˚ ´ π2β
˚ that minimizes the prediction MSE. The output is given by H̃ P RDˆpn`1q,

whose columns are

h̃i “ rxi, y
1
i, β

pT0`1q

T ,0D´2d´4, 1, tis
J, i “ 1, . . . , n,

h̃n`1 “ rxn`1, x
J
n`1β̂

OR, β
pT0`1q

T ,0D´2d´4, 1, 1sJ.
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4 MIXTURE OF REGRESSION WITH MORE THAN TWO COMPONENTS

In this section, we illustrate the existence of a transformer that can solve MoR problem with K ě 3

components in general. Given the input matrix H as Equation 3 and initialization of πp0q

j “ 1
K ,

there exists a transformer that implements E-steps and computes

γ
pt`1q

ij “

π
ptq
j

śn
ℓ“1 exp

´

´ 1
2ϑ2

`

yℓ ´ xJ
ℓ β

ptq
j

˘2
¯

řk
j1“1 π

ptq
j1

śn
ℓ“1 exp

´

´ 1
2ϑ2

`

yℓ ´ xJ
ℓ β

ptq
j1

˘2
¯ , π

pt`1q

j “
1

n

n
ÿ

i“1

γ
pt`1q

ij , (13)

since the computation in Equation 13 only contains scalar product, linear transformation and softmax
operation. Next, following same procedure as before, one can construct T attention layers that
implement gradient descent of the optimization problem

min
βPRd

#

K
ÿ

i“1

n
ÿ

ℓ“1

γ
pt`1q

ij

`

yℓ ´ βJxℓ
˘2

+

, for all j P rKs,

as the gradient of loss lpxJ
ℓ β, yℓq :“

řk
i“1 γ

pt`1q

ij

`

yℓ ´ βJxℓ
˘2

is convex in first argument and
Bslps, tq is p0,`8, 4, 16q approximable by sum of ReLUs. Hence, the construction in Lemma
3.2 and Lemma 3.3 also holds. For theoretical analysis, we define pairwise distance R˚

ij , and
Rmin, Rmax as the smallest and largest distance between regression vectors of any pair of linear
models: R˚

ij “
›

›β˚
i ´β˚

j

›

›

2
, Rmin “ mini‰j R

˚
ij , Rmax “ maxi‰j R

˚
ij . The SNR of this problem is

defined as the ratio of minimum pairwise distance versus standard deviation of noise η :“ Rmin{ϑ.
Also, we define ρjℓ :“ π˚

ℓ {π˚
j for j ‰ ℓ and ρπ “ maxj π

˚
j {minj π

˚
j as the ratio of maximum

mixing weight and minimum mixing weight, and πmin “ minj π
˚
j . When the number of the com-

ponents K “ 2 and β˚
1 “ ´β˚

2 “ β˚, the SNR reduces to η “ 2}β˚}2{ϑ. Finally, the vector that
minimizes the mean squared error of the prediction is given by

βOR :“ arg min
βPRd

EPx,y

“

pxJβ ´ yq2
‰

“

K
ÿ

ℓ“1

π˚
ℓ β

˚
ℓ .

The performance of the constructed transformers is guaranteed by Theorem 4.1 below.

Theorem 4.1. Given the input matrix H in the form of Equation 3, there exists a transformer TF
with the number of heads M pℓq ď M “ 4 in each attention layers. This transformer TF can
make prediction on yn`1 by implementing gradient EM algorithm of MoR problem where T steps
of gradient descent is used in each M-step. When L is sufficiently large and the prompt length n
satisfies following condition

n ě O
´

max
␣

d log2pdK2{δq,
`

K2{δ
˘1{3

, d logpK2{δq{πmin

(

¯

,

under the SNR condition

η ě CKρπ logpKρπq, for a sufficiently large C ą 0,

equipped with O
`

T log
`

n{d
˘˘

attention layers, the transformer has the prediction error ∆y :“

| ready
`

TFpHq
˘

´ xJ
n`1β

OR| bounded by

∆y ď O

˜

a

logpd{δq

˜

c

d

n
Kρ2π log

2
`

nK2{δ
˘

`

d

dK logpK2{δq

nπmin

¸¸

,

with probability at least 1 ´ 9δ.

When K “ 2, the order of prediction error bound reduces to that in Theorem 2.1 under the high
SNR settings. The SNR condition required in Theorem 4.1 is stricter than that in Theorem 2.1 due
to technical reasons in the proof. However, in the simulation, we see that the actual performance of
the transformer is still good in the low SNR scenario when the number of components K ě 3.
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(a) Component K “ 2 (b) Component K “ 3

(c) Component K “ 5 (d) Component K “ 20

Figure 1: Excess testing risk of the transformer v.s. the prompt length with different SNRs.

5 SIMULATION STUDY

In this section, we present some results of training transformers on the prompts described in Section
2. We trained our transformers using Adam, with a constant step size of 0.001. For the general
settings in the experiments, the dimension of samples d “ 32. The number of training prompts are
B “ 64 by default (B is other value if otherwise stated). The hidden dimension are D “ 64 by
default (D is other value if otherwise stated). The training data xi’s are i.i.d. sampled from standard
multivariate Gaussian distribution and the noise vi’s are i.i.d. sampled from normal distribution
N p0, ϑ2q. The regression coefficients are generated from standard multivariate normal and then
normalized by its l2 norm. Once the coefficient is generated, it is fixed. The excess MSE is reported.
Each experiment is repeated by 20 times and the results is averaged over these 20 times.

The initializations of the transformer parameters for all our experiments are random standard Gaus-
sian. As we will see from our results, transformers provide efficient prediction and estimation errors
despite this global initialization. A possible explanation for this fact might be the overparametriza-
tion naturally available in the transformer architecture and the related need for overparametrization
for estimation in mixture models (Dwivedi et al., 2020; Xu et al., 2024); we leave a theoretical
investigation of this fact as intriguing future work.

Performance of transformers with different prompt length: In this experiment, we vary the
number of components K “ 2, 3, 5. For each case, we run the experiment with different SNR
(η “ 1, 5, 10). The x-axis is the prompt length, and the y-axis is the test MSE. The number of
attention layers is given by L “ 4. The performance results of the transformer are presented in
Figure 1.

From Figure 1, we observe the following trends: (1) With the number of prompt lengths and other
parameters held constant, the trained transformer exhibits a higher excess mean squared error (MSE)
in the low SNR settings. (2) When the prompt length is very small, indicating an insufficient number
of samples in the prompt, the resulting excess test MSE is high. However, with a sufficiently large
prompt length, the performance of the transformers stabilizes and is effective across all SNR settings,
leading to a relatively small excess test MSE. (3) Additionally, when the prompt length and SNR are
fixed, an increase in the number of components tends to result in a larger excess test MSE.

Performance of transformers with different number of training prompts: In this experiment,
we vary the number of training prompts B from 64 to 512. For each case, we run the experiment

9
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(a) Plot of excess testing risk of
the transformer v.s. the number of
prompts with different SNRs.

(b) Plot of excess testing risk of the
transformer v.s. the hidden dimen-
sion D with different SNRs.

(c) Plot of excess testing risk of the
transformer v.s. the dimension d
with different SNRs.

Figure 2: Effect of number of prompt B, hidden dimension D and input dimension d on the perfor-
mance of the transformer

with two components (K “ 2), different SNR (η “ 1, 5, 10). The x-axis is the number of training
prompts, and the y-axis is the test MSE. The length of training prompts is n “ 64.

Figure 2a gives the performance of trained transformer with different number of training prompts
under three different SNR settings. Based on Figure 2a, we observe that when the number of training
prompts is already sufficiently large, the excess MSE is relatively small. Furthermore, as the number
of training prompts increases, there is a general trend of decreasing in the excess MSE.

Performance of transformers with different number of hidden dimension: In this experiment,
we vary the hidden dimension D “ 34, 64, 128. For each case, we run the experiment with two
components (K “ 2), different SNR (η “ 1, 5, 10). The x-axis is the hidden dimension D, and
the y-axis is the excess test MSE. The performance of the trained transformer is presented in Figure
2b. In the low SNR settings, increasing the hidden dimension helps in improving the transformer’s
ability to learn the mixture of regression problem. However, excessively large hidden dimensions
can lead to sparsity in the parameter matrix, which may not significantly enhance performance
further.

Performance of transformers with different dimension d of samples: In this experiment, we fix
the hidden dimension D “ 256, the number of components K “ 2, the number of prompts B “ 128
and the prompt length is given by n “ 64. The x-axis is the dimension d of the input sample xi and
y-axis is the excess test MSE. In this experiment, we evaluate the performance of the trained trans-
former for various dimensions d “ 32, 48, 64, 80, 96, 112, 128. The performance of the transformer
are presented in Figure 2c. Observations from this figure indicate that increasing the dimension d
significantly raises the excess test MSE. Notably, this increase becomes more pronounced at the
lower SNR levels.

6 DISCUSSION

We explored the behavior of transformers in handling linear MoR problems, demonstrating their
strong in-context learning capabilities through both theoretical analysis and empirical experiments.
Specifically, we showed that transformers can internally implement the EM algorithm for linear
MoR tasks. Our findings also reveal that transformer performance improves in high signal-to-noise
ratio (SNR) settings and are less suseptible to initializations. Additionally, we examined the sam-
ple complexity involved in pretraining transformers with a finite number of ICL training instances,
offering valuable insights into their practical performance.

Our empirical and theoretical findings point to several promising directions for future research.
First, while our results demonstrate that transformers can internally implement the EM algorithm,
investigating the use of looped transformers, as discussed in Giannou et al. (2023), could reduce
architectural complexity in in-context linear MoR problems. Next, understanding the training dy-
namics of transformers for linear MoR problems remains a highly interesting and challenging task.
Finally, extending these results to general non-linear MoR models would be a significant and im-
pactful direction for future work.
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A PROOF OF LEMMAS IN SECTION 3

In this section, we provide detailed proofs of the lemmas presented in Section 3.

Proof of Lemma 3.1. Note that

lptqps, tq “ wβptq

`

xi, yi
˘

pt ´ sq2 `
`

1 ´ wβptq pxi, yiq
˘

pt ` sq2.

Taking derivative w.r.t. the first argument yields

Bsl
ptqps, tq “ wβptq pxi, yiqp´2qpt ´ sq `

`

1 ´ wβptq pxi, yiq
˘

2pt ` sq,

B2
s l

ptqps, tq “ 2wβptq

`

xi, yi
˘

` 2
`

1 ´ wβptq pxi, yiqq “ 2.

Hence, lps, tq is convex in the first argument and

Bsl
ptqps, tq “ 2wβptq pxi, yiqps ´ tq ` 2

`

1 ´ wβptq pxi, yiq
˘

ps ` tq

“ 2wβptq pxi, yiqr2σpps ´ tq{2q ´ 2σp´ps ´ tq{2qs

` 2
`

1 ´ wβptq pxi, yiq
˘

r2σpps ` tq{2q ´ 2σp´ps ` tq{2qs.

Here c1 “ 4wβptq pxi, yiq, c2 “ ´4wβptq pxi, yiq, c3 “ 4p1 ´ wβptq pxi, yiqq and c4 “ ´4p1 ´

wβptq pxi, yiqq. Now, we have |c1| ` |c2| ` |c3| ` |c4| ď 16 and Bslps, tq is p0,`8, 4, 16q-
approximable by sum of ReLUs.

Proof of Lemma 3.2. Note that the output of M-step after t-th iteration is given by HpT`1q “
“

h
pT`1q

1 , . . . , h
pT`1q

n`1

‰

where

h
pT`1q

i “
“

xi; y
1
i;β

ptq
T ;0D´2d´3; 1; ti;wβpt´1q

T

pxi, yiq
‰J

, i “ 1, . . . , n

h
pT`1q

n`1 “
“

xi;x
J
n`1β

ptq
T ;β

ptq
T ;0D´2d´3; 1; 1; 0

‰J
,

i.e.

HpT`1q “

»

—

—

—

—

—

—

—

—

–

x1 x2 . . . xn xn`1

y1
1 y1

2 . . . y1
n xJ

n`1β
ptq
T

β
ptq
T β

ptq
T . . . β

ptq
T β

ptq
T

0D´2d´3 0D´2d´3 . . . 0D´2d´3 0D´2d´3

1 1 . . . 1 1
t1 t2 . . . tn 1

w
β

pt´1q

T

px1, y1q w
β

pt´1q

T

px2, y2q . . . w
β

pt´1q

T

pxn, ynq 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

After copy down and scale operation, the output is given by

HpT`1qp1q “

»

—

—

—

—

—

—

—

—

—

—

–

x1 x2 . . . xn xn`1

y1
1 y1

2 . . . y1
n xJ

n`1β
ptq
T

β
ptq
T β

ptq
T . . . β

ptq
T β

ptq
T

´β
ptq
T ´β

ptq
T . . . ´β

ptq
T ´β

ptq
T

0D´3d´3 0D´3d´3 . . . 0D´3d´3 0D´3d´3

1 1 . . . 1 1
t1 t2 . . . tn 1

w
β

pt´1q

T

px1, y1q w
β

pt´1q

T

px2, y2q . . . w
β

pt´1q

T

pxn, ynq 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

After affine operation, the output is given by

HpL`1qp2q “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

x1 x2 . . . xn xn`1

y1
1 y1

2 . . . y1
n xJ

n`1β
ptq
L

β
ptq
T β

ptq
T . . . β

ptq
T β

ptq
T

´β
ptq
T ´β

ptq
T . . . ´β

ptq
T ´β

ptq
T

r1 r2 . . . rn 0
0D´3d´4 0D´3d´4 . . . 0D´3d´4 0D´3d´4

1 1 . . . 1 1
t1 t2 . . . tn 1

w
β

pt´1q

T

px1, y1q w
β

pt´1q

T

px2, y2q . . . w
β

pt´1q

T

pxn, ynq 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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After another affine operation, the output is given by

HpT`1qp3q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

x1 x2 . . . xn xn`1

y1
1 y1

2 . . . y1
n xJ

n`1β
ptq
T

β
ptq
T β

ptq
T . . . β

ptq
T β

ptq
T

´β
ptq
T ´β

ptq
T . . . ´β

ptq
T ´β

ptq
T

r1 r2 . . . rn 0
r̃1 r̃2 . . . r̃n 0

0D´3d´5 0D´3d´5 . . . 0D´3d´5 0D´3d´5

1 1 . . . 1 1
t1 t2 . . . tn 1

w
β

pt´1q

T

px1, y1q w
β

pt´1q

T

px2, y2q . . . w
β

pt´1q

T

pxn, ynq 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

After softmax operation, the output is given by

HpT`1qp4q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

x1 x2 . . . xn xn`1

y1
1 y1

2 . . . y1
n xJ

n`1β
ptq
T

β
ptq
T β

ptq
T . . . β

ptq
T β

ptq
T

´β
ptq
T ´β

ptq
T . . . ´β

ptq
T ´β

ptq
T

r1 r2 . . . rn 0
r̃1 r̃2 . . . r̃n 0

0D´3d´5 0D´3d´5 . . . 0D´3d´5 0D´3d´5

1 1 . . . 1 1
t1 t2 . . . tn 1

w
β

ptq

T

px1, y1q w
β

ptq

T

px2, y2q . . . w
β

ptq

T

pxn, ynq 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

After copy over operation, the output is given by

HpT`1qp5q “

»

—

—

—

—

—

—

—

—

–

x1 x2 . . . xn xn`1

y1
1 y1

2 . . . y1
n xJ

n`1β
ptq
T

β
ptq
T β

ptq
T . . . β

ptq
T β

ptq
T

0D´2d´3 0D´2d´3 . . . 0D´2d´3 0D´2d´3

1 1 . . . 1 1
t1 t2 . . . tn 1

w
β

ptq

T

px1, y1q w
β

ptq

T

px2, y2q . . . w
β

ptq

T

pxn, ynq 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (14)

Finally, this transformer gives the output matrix H
pT`1q

M as Equation 14.

Proof of Lemma 3.3. The conceptual basis of the proof draws from the theorem discussed in Bai
et al. (2024). By Proposition C.2 in Bai et al. (2024), there exists a function f : R2 Ñ R of form

fps, tq “

4
ÿ

m“1

cmσ
`

ams ` bmt ` dm
˘

with
4
ÿ

m“1

|cm| ď 16, |am| ` |bm| ` |dm| ď 1,@m P r4s,

such that supps,tqPR2

ˇ

ˇfps, tq ´ Bsℓps, tq
ˇ

ˇ ď ε. Next, in each attention layer, for every m P r4s, we
define matrices Qm,Km, Vm P RDˆD such that

Qmhi “

»

—

—

—

—

—

–

amβ
bm
dm
´2
0
0

fi

ffi

ffi

ffi

ffi

ffi

fl

, Kmhj “

»

—

—

—

—

—

–

xj
y1
j

1
R
`

1 ´ tj
˘

0
0

fi

ffi

ffi

ffi

ffi

ffi

fl

, Vmhj “ ´
pN ` 1qηcm

N
¨

»

—

—

—

–

0d
0
xj

0D´2p´1

0

fi

ffi

ffi

ffi

fl

where D is the hidden dimension which is a constant multiple of d. In the last attention layers, the
heads

␣`

Q
pT`1q
m ,K

pT`1q
m , V

pT`1q
m

˘(

m“1,2
satisfies

Q
pT`1q

1 h
pT q

i “
“

xi;0D´d`1

‰

, K
pT`1q

1 h
pT q

j “
“

β
pt`1q

T ;0D´d`1

‰

, V
pT`1q

1 h
pT q

j “
“

0d; 1;0D´d

‰

,

Q
pT`1q

2 h
pT q

i “
“

xi;0D´d`1

‰

, K
pT`1q

2 h
pT q

j “
“

´ β
pt`1q

T ;0D´d

‰

, V
pT`1q

2 h
pT q

j “
“

0d;´1;0D´d

‰

.
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The output of this transformer gives the matrix

HpT`1q “

»

—

—

—

—

—

—

—

—

–

x1 x2 . . . xn xn`1

y1
1 y1

2 . . . y1
n xJ

n`1β
pt`1q

T

β
pt`1q

T β
pt`1q

T . . . β
pt`1q

T β
pt`1q

T
0D´2d´3 0D´2d´3 . . . 0D´2d´3 0D´2d´3

1 1 . . . 1 1
t1 t2 . . . tn 1

w
β

ptq

T

px1, y1q w
β

ptq

T

px2, y2q . . . w
β

ptq

T

pxn, ynq 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

B PROOF OF THEOREM 2.1

In this section, we give the proof of the estimation and prediction bound presented in Theorem 2.1.
In Section 3, the transformer described in Lemma 3.3, which is equipped with L layers, implements
the M-step of the EM algorithm by performing T steps of gradient descent on the empirical loss
L̂

ptq
n pβq. Therefore, it is sufficient to analyze the behavior of the sample-based EM algorithm in

which T steps of gradient descent are implemented during each M-step.

To begin, we define some notations that are utilized in the proof. We denote β̃p0q as any fixed ini-
tialization for the EM algorithm. The transformer described in Theorem 2.1 addresses the following
optimization problem:

argmin
!

L̂p0q
n pβq “

1

n

n
ÿ

i“1

␣

wβp0q pxi, yiqpyi ´ xJ
i βq2 ` p1 ´ wβp0q pxi, yiqqpyi ` xJ

i βq2
(

)

for some weight function wβp0q P p0, 1q. The transformer generates a sequence β
p0q

1 , . . . , β
p0q

L , with

β
p0q

ℓ Ñ β̃p1q as L Ñ 8. More generally, we denote β̃ptq as the minimizer of the loss function
L̂

pt´1q
n pβq at each M-step. Additionally, βp0q

1 , ¨ ¨ ¨ , β
p0q

L represents the sequence generated by apply-
ing L attention layers of the constructed transformer in Lemma 3.3.

The approach to analyzing the convergence behavior of the transformer’s output, TFpHq, involves
examining the performance of the sample-based gradient EM algorithm. This analysis is conducted
by coupling the finite sample EM with the population EM, drawing on methodologies from Balakr-
ishnan et al. (2017) and Kwon et al. (2019).

B.1 RESULTS IN POPULATION GRADIENT EM ALGORITHM FOR MOR PROBLEM

In this section, we present some results regarding the population EM algorithm. Given the current
estimator of the parameter β˚ to be βptq. The population gradient EM algorithm maximizes (see
Balakrishnan et al. (2017) and Kwon et al. (2019))

Q
`

β | βptq
˘

“ ´
1

2
E
”

wβptq pX,Y q
`

Y ´
@

X,β
D˘2

`
`

1 ´ wβptq pX,Y q
˘`

Y `
@

X,β
D˘2

ı

,

whose gradient is given by E
“

tanh
`

1
ϑ2Y XJβptq

˘

Y X ´ β
‰

. Rather than using the standard popu-
lation EM update

β̃pt`1q “ argmax
β

Qpβ | βptqq “ E
”

tanh
´ 1

ϑ2
Y XJβptq

¯

Y X
ı

(15)

the output after applying T steps of gradient descent is employed as the subsequent estimator for the
parameter β˚, i.e.

βpt`1q “ p1 ´ αqTβptq `
`

1 ´ p1 ´ αqT
˘

E
”

tanh
´ 1

ϑ2
Y XJβptq

¯

Y X
ı

, (16)

where α P p0, 1q is the step size of the gradient descent.

In each iteration of the population gradient EM algorithm, the current iterate is denoted by β, the
next iterate by β1 and the standard EM update based on Equation 15 by β̃1. We concentrate on a
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single iteration of the population EM, which yields the next iterate β1. Consequently, Equation 16
becomes:

β1 “ p1 ´ αqTβ `
`

1 ´ p1 ´ αqT
˘

β̃1. (17)

We employ techniques similar to those used in Kwon et al. (2019) for basis transformation. By
selecting v1 “ β{}β}2 in the direction of the current iterate and v2 as the orthogonal complement of
v1 within the span of tβ, β˚u, we extend these vectors to form an orthonormal basis tv1, . . . , vdu in
Rd. To simplify notation, we define:

b1 :“ xβ, v1y “ }β}2, b˚
1 :“ xβ˚, v1y b˚

2 :“ xβ˚, v2y, (18)

which represent the coordinates of the current estimate β and β˚. The next iterate β1 can then be
expressed as:

β1 “ p1 ´ αqT b1v1 `
`

1 ´ p1 ´ αqT
˘

E

«

tanh
´α1b1

ϑ2
Y
¯

Y
d
ÿ

i“1

αivi

ff

(19)

based on spherical symmetry of Gaussian distribution. The expectation is taken over αi „ N p0, 1q

and Y | αi „ N pα1b
˚
1 ` α2b

˚
2 , ϑ

2q. Without loss of generality, we assume that b1, b˚
1 , b

˚
2 ě 0.

Lemma B.1 is analogous to Lemma 1 from Kwon et al. (2019). It provides an explicit expression for
β1 within the established basis system, demonstrating among other insights that β1 resides within the
spantβ, β˚u. Consequently, all estimators of β˚ generated by the population gradient EM algorithm
remain confined within the spantβp0q, β˚u

Lemma B.1. Suppose that α P p0, 1q. Define ϑ2
2 :“ ϑ2 ` b˚2

2 . We can write β1 “ b1
1v1 ` b1

2v2,
where b1

1 and b1
2 satisfy

b1
1 “ p1 ´ αqT b1 `

`

1 ´ p1 ´ αqT
˘`

b˚
1S ` R

˘

, (20)

b1
2 “

`

1 ´ p1 ´ αqT
˘

b˚
2S. (21)

Here, S ě 0 and R ą 0 are given explicitly by

S :“ Eα1„N p0,1q,y„N p0,ϑ2
2q

“

tanh
`

α1b1
ϑ2 py ` α1b

˚
1 q
˘

` α1b1
ϑ2 py ` α1b

˚
1 q tanh1

`

α1b1
ϑ2 py ` α1b

˚
1 q
˘‰

(22)

and

R :“
`

ϑ2 `
›

›β˚
›

›

2

2

˘

Eα1„N p0,1q,y„N p0,ϑ2
2q

”α2
1b1
ϑ2

tanh1
´α1b1

ϑ2

`

y ` α1b
˚
1

˘

¯ı

. (23)

Moreover, S “ 0 iff b1 “ 0 or b˚
1 “ 0.

Proof. The proof of Lemma B.1 is directly adapted from the argument used in Lemma 1 from Kwon
et al. (2019), applying Equation 19 for our specific context. In Equation 19, the inner expectation
over y is independent of αi for i ě 3. Consequently, taking the expectation over αi for i ě 3 results
in zero, confirming that β1 remains within the plane spanned by v1, v2. This allows us to express β1

as β1 “ b1
1v1 ` b1

2v2 with

b1
1 “ p1 ´ αqT b1 `

`

1 ´ p1 ´ αqT
˘

Eα1,α2

”

EY |α1,α2

”

tanh
´b1α1

ϑ2
Y
¯

Y
ı

α1

ı

, (24)

b1
2 “

`

1 ´ p1 ´ αqT
˘

Eα1,α2

”

EY |α1,α2

”

tanh
´b1α1

ϑ2
Y
¯

Y
ı

α2

ı

, (25)

where the expectation is taken over αi „ N p0, 1q, and y | αi „ N pα1b
˚
1 ` α2b

˚
2 , ϑ

2q. The
computation from Equation 24 and Equation 25 to Equation 22 and Equation 23 is identical to that
in Lemma 1 of Kwon et al. (2019).

The findings in Lemma B.1 align with Lemma 1 from Klusowski et al. (2019). As the number of
iterations T approaches infinity, the estimator β1 converges to the standard population EM update

βptq Ñ EX„N p0,Iq

”´

EY |X„NpxX,β˚y,ϑ2q

”

tanh
´

@

X,βpt´1q
D

ϑ2
Y
¯

Y
ı¯

X
ı

.
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For any number of steps T , the angle between β1 and β˚ is consistently smaller than that between β
and β˚. This can be observed by noting that:

0 ď tan=
`

β1, β
˘

“
b1
2

b1
1

“

`

1 ´ p1 ´ αqT
˘

b˚
2S

p1 ´ αqT b1 `
`

1 ´ p1 ´ αqT
˘

pb˚
1S ` Rq

ď
b˚
2

b˚
1

“ tan=
`

β˚, β
˘

.

(26)

These relationships demonstrate the geometric convergence properties of the estimation process.
Motivated by Equation 26, we examine the behavior of the angle between the iterates βptq and β˚.
For clarity, we use θ0, θ, and θ1 to denote the angles formed by β˚ with βp0q (the initial iterate), β
(the current iterate), and β1 (the next iterate), respectively. Using the coordinate representation of β1

Equation 20 and Equation 21, the cosine and sine of θ1 can be expressed by

cos θ1
“

p1´αq
T b1b

˚
1 `p1´p1´αq

T
qpS}β˚

}
2
2`Rb˚

1 q

}β˚}2

c

p1´αq2T b21`p1´p1´αqT q2
`

R2`S2}β˚}22`2RSb˚
1

˘

`2p1´αqT b1p1´p1´αqT q

`

b˚
1 S`R

˘

,

sin θ1
“

p1´αq
T b1b

˚
2 `p1´p1´αq

T
qRb˚

2

}β˚}2

c

p1´αq2T b21`p1´p1´αqT q2
`

R2`S2}β˚}22`2RSb˚
1

˘

`2p1´αqT b1p1´p1´αqT q

`

b˚
1 S`R

˘

.

Lemma B.2. There exists a non-decreasing function φpλq on λ P r0, 1s such that

φp0q “
1

a

1 ` pS{Rq2}β˚}22 ` 2pS{Rqb˚
1

,

φp1q “ 1.

As long as θ P rπ3 ,
π
2 q and α P p0, 1q, it holds that

sin θ1 ď φpp1 ´ αqT q sin θ

and

φp0q “
1

a

1 ` pS{Rq2}β˚}22 ` 2pS{Rqb˚
1

ď

˜

d

1 `
2η2

1 ` η2
cos2 θ

¸´1

ă 1.

Similarly,

cos θ1 ě ϕpp1 ´ αqT q cos θ

where

ϕp0q “

d

1 `
b˚2
2 p3}β˚}22 ` 2ϑ2q

p}β˚}22 ` ϑ2q2 ` b˚2
1 p3}β˚}22 ` 2ϑ2q

ą 1,

ϕp1q “ 1.

Proof. We provide the proof for the sine case, and the proof for the cosine case follows a similar
approach. Define λ “ p1 ´ αqT P p0, 1s, we have

sin θ1 “
b˚
2

}β˚}2

λb1 ` p1 ´ λqR
b

`

λb1 ` p1 ´ λqpb˚
1S ` Rq

˘2
`
`

λ ¨ 0 ` p1 ´ λqpb˚
2Sq

˘2

“ sin θ
λb1 ` p1 ´ λqR

b

`

λb1 ` p1 ´ λqpb˚
1S ` Rq

˘2
`
`

λ ¨ 0 ` p1 ´ λqpb˚
2Sq

˘2
.

Then we define the function φpλq to be

φpλq :“
λb1 ` p1 ´ λqR

b

`

λb1 ` p1 ´ λqpb˚
1S ` Rq

˘2
`
`

λ ¨ 0 ` p1 ´ λqpb˚
2Sq

˘2
.

By symmetry, one can assume that the angles =xβ, β˚y,=xβ̃1, β˚y ă π
2 . The non-decreasing prop-

erty of φpλq can be easily verified by the fact that β1 is located on the line segment between the
current iterate β and standard population EM updates β̃ based on Equation 17.
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In the remainder of this section, we discuss the convergence of the gradient population EM algorithm
in terms of distance, as presented in Theorem B.1.

Theorem B.1. Assume that θ ă π{8, and define ϑ2
2 “ ϑ2 ` b˚2

2 . If b˚
2 ă ϑ or ϑ2

2

ϑ2 b1 ă b˚
1 , then we

have

}β1 ´ β˚}2 ď
`

p1 ´ αqT `
`

1 ´ p1 ´ αqT
˘

κ
˘

}β ´ β˚}2

`
`

1 ´ p1 ´ αqT
˘

κ
`

16 sin3 θ
˘

}β˚}2
η2

1 ` η2
,

where κ “

´

b

1 ` min
`ϑ2

2

ϑ2 b1, b
˚
1

˘2
{ϑ2

2

¯´1

. Otherwise, we have

}β1 ´ β˚}2 ď
`

p1 ´ αqT ` 0.6
`

1 ´ p1 ´ αqT
˘˘

}β ´ β˚}2.

Proof. The proof of this theorem is a direct corollary of Theorem 4 from Kwon et al. (2019) by
noticing that

}β1 ´ β˚}2 “
›

›p1 ´ αqTβ `
`

1 ´ p1 ´ αqT
˘

β̃1 ´ β˚
›

›

2

ď p1 ´ αqT }β ´ β˚}2 `
`

1 ´ p1 ´ αqT
˘

}β̃1 ´ β˚}2.

B.2 RESULTS IN SAMPLE-BASED EM ALGORITHM FOR MOR PROBLEM

In this section, we present results concerning the convergence of the sample-based gradient EM
algorithm. We begin by deriving the update rule for the sample-based gradient EM algorithm, which
incorporates T steps of gradient descent. Starting from the previous estimate, βpt´1q, we define
Σ̂ “ 1

n

řn
i“1 xix

J
i . The new estimate, βptq, is obtained by applying T steps of gradient descent to

the loss function L̂
pt´1q
n pβq, specifically:

βptq “ β
pt´1q

T

“

˜

I ´
α

n

n
ÿ

i“1

xix
J
i

¸

β
pt´1q

T´1 `
α

n

n
ÿ

i“1

tanh
´ 1

ϑ2
yix

J
i β

pt´1q
¯

yixi

“pI ´ αΣ̂q

«

pI ´ αΣ̂qβ
pt´1q

T´2 `
α

n

n
ÿ

i“1

tanh
´ 1

ϑ2
yix

J
i β

pt´1q
¯

yixi

ff

`
α

n

n
ÿ

i“1

tanh
´ 1

ϑ2
yix

J
i β

pt´1q
¯

yixi

“pI ´ αΣ̂qTβpt´1q ` α ¨ pαΣ̂q´1
`

I ´ pI ´ αΣ̂qT
˘ 1

n

n
ÿ

i“1

tanh
´ 1

ϑ2
yix

J
i β

pt´1q
¯

yixi.

For the analysis in the remainder of this section, we denote the current iteration as β, the subsequent
iteration resulting from T steps of sample-based gradient descent as β̃1, and the iteration following
T steps of population-based gradient descent as β1. By define µ̂ :“ 1

n

řn
i“1 tanh

´

1
ϑ2 yix

J
i β

¯

yixi

and µ :“ E tanh
´

1
ϑ2Y XJβ

¯

Y X , we have

β̃1 “ pI ´ αΣ̂qTβ ` Σ̂´1
`

I ´ pI ´ αΣ̂qT
˘

µ̂,

β1 “ pI ´ αIqTβ `
`

I ´ pI ´ αIqT
˘

µ.
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In the previous analysis,

β̃1 ´ β˚ “ pI ´ αΣ̂qT pβ ´ β˚q `
`

I ´ pI ´ αΣ̂qT
˘`

Σ̂´1µ̂ ´ β˚
˘

,

Σ̂´1µ̂ ´ β˚ “ Σ̂´1

˜

1

n

n
ÿ

i“1

yixi tanh
´yixxi, βy

ϑ2

¯

´ Ey
1

n

n
ÿ

i“1

yixi tanh
´yixxi, β

˚y

ϑ2

¯

¸

“ Σ̂´1
ljhn

:“I

˜

1

n

n
ÿ

i“1

yixi tanh
´yixxi, βy

ϑ2

¯

´ Ey
1

n

n
ÿ

i“1

yixi tanh
´yixxi, βy

ϑ2

¯

¸

l jh n

:“II

` Σ̂´1

˜

Ey
1

n

n
ÿ

i“1

yixi tanh
´yixxi, βy

ϑ2

¯

´ Ey
1

n

n
ÿ

i“1

yixi tanh
´yixxi, β

˚y

ϑ2

¯

¸

l jh n

:“III

.

Then }I}op “ 1 ` O
´
b

d
n

¯

by standard concentration result and it requires n ě O
`

d log2p1{δq
˘

in the end. Conditioning on the sample covariance matrix has bounded spectral norm, }II}2 “

O
´
b

d
n

¯

. Finally, for each fixed β satisfying }β}2 ě
}β˚

}2
10 , and its angle with β˚, θ is less than π

70 ,

with n “ O
`

d
ϵ2

˘

, }III}2 ď
`

0.95 ` ϵ{
?
d
˘

}β ´ β˚}2.

This can be improved by

β̃1 ´ β˚ “ pI ´ αΣ̂qTβ ` Σ̂´1
`

I ´ pI ´ αΣ̂qT
˘ 1

n

n
ÿ

i“1

tanh
´ 1

ϑ2
yix

J
i β

¯

yixi ´ β˚

“ pI ´ αΣ̂qT pβ ´ β˚q `
`

I ´ pI ´ αΣ̂qT
˘

«

1

n

n
ÿ

i“1

Σ̂´1 tanh
´ 1

ϑ2
yix

J
i β

¯

yixi ´ β˚

ff

l jh n

:“A

,

A “ Σ̂´1

«

EX,Y
“

XY∆pX,Y qpβq
‰

l jh n

:“A1

`
1

n

ÿ

i

XiYi∆pXi,Yiqpβq ´ EX,Y
“

XY∆pX,Y qpβq
‰

l jh n

:“A2

`
1

n

ÿ

i

xiyi tanh
`

yix
J
i β

˚{ϑ2
˘

´ Eyi|xi

” 1

n

ÿ

i

xiyi tanh
`

yix
J
i β

˚{ϑ2
˘

ı

l jh n

:“A3

ff

,

where ∆pX,Y qpβq :“ tanh
`

yxJβ{ϑ2
˘

´ tanh
`

yxJβ˚{ϑ2
˘

. Then

A1 ă 0.9}β ´ β˚}2,

A2 ď p}β ´ β˚}2 ` 1q

b

d log2
`

n}β˚}2{δ
˘

{n,

A3 ď C
a

d logp1{δq{n,

with probability at least 1 ´ δ.

B.3 CONVERGENCE RESULTS UNDER THE HIGH SNR SETTING

We first present the results for parameter estimation under the high SNR regime.
Lemma B.3. For any given r ą 0, there exists a universal constant c ą 0 such that with probability
at least 1 ´ δ.

sup
}β}2ďr

›

›Σ̂´1µ̂ ´ µ
›

›

2
ď cr

b

d log2pn{δq{n
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where

µ “ E
“

XY tanh
`

Y XJβ
˘‰

,

µ̂ “
1

n

n
ÿ

i“1

tanh
´yix

J
i β

ϑ2

¯

yixi,

Σ̂ “
1

n

ÿ

i

xix
J
i .

Lemma B.4. For each fixed β, with probability at least 1 ´ expp´cnq ´ 6d exp
`

´ nt2

72

˘

›

›

›

1

n

n
ÿ

i“1

yixi tanh
`

yixxi, βy
˘

´
1

n

n
ÿ

i“1

Eyi
“

yixi tanh
`

yixxi, βy
˘‰

›

›

›

2
ď t

for some absolute constant c ą 0.

Theorem B.2. Suppose that η ě O
`

d log2pn{δq{n
˘1{4

for some absolute constant C and }βp0q} ě

0.9}β˚} and cos=
`

β˚, βp0q
˘

ě 0.95., let tβptqu be the iterates of sample-based gradient EM algo-
rithm, then there exists a constant γ2 P p0, 1q such that

}βptq ´ β˚}2 ď γt2 `
1

1 ´ γ2
O
´

b

d log2pn{δq{n
¯

holds with probability at least 1 ´ 5δ.

Proof. Without loss of generality, we can assume that ϑ “ 1. Denote β as the current iterate, and β̃1

as the next sample-based iterate. We first consider

β̃1 ´ β˚ “ pI ´ αΣ̂qTβ ` Σ̂´1
`

I ´ pI ´ αΣ̂qT
˘ 1

n

n
ÿ

i“1

tanh
´ 1

ϑ2
yix

J
i β

¯

yixi ´ β˚

“ pI ´ αΣ̂qT pβ ´ β˚q `
`

I ´ pI ´ αΣ̂qT
˘

«

1

n

n
ÿ

i“1

Σ̂´1 tanh
´ 1

ϑ2
yix

J
i β

¯

yixi ´ β˚

ff

l jh n

:“A

.

We prove the results in two cases, i.e. η ě 1 and C0

`

d log2pn{δq{n
˘1{4

ď η ď 1 for some universal
constant C0. When η ě 1, based on the analysis in Kwon et al. (2021), with probability at least
1 ´ 5δ,

}A}2 ď

´

0.9 `

b

d log2
`

n}β˚}2{δ
˘

{nq

¯

}β ´ β˚} ` C1

b

d log2
`

n}β˚}2{δ
˘

{n

ď γ}β ´ β˚}2 ` C1

b

d log2
`

n}β˚}2{δ
˘

{n (27)

where γ “ 0.9 `

b

d log2
`

n}β˚}2{δ
˘

{nq. By standard concentration results on Σ̂ ´ I , it holds

that with n ě Opd log2p1{δqq, }pI ´ αΣ̂qT }op ď p1 ´ α{2qT with probability at least 1 ´ δ for
appropriately small α. Along with Equation 27,

}β̃1 ´ β˚}2 ď
`

1 ´
α

2

˘T
}β ´ β˚}2 `

`

1 ´
`

1 ´
α

2

˘T ˘
}A}2

ď

”

`

1 ´
α

2

˘T
`
`

1 ´
`

1 ´
α

2

˘T ˘
γ
ı

}β ´ β˚}2

`
`

1 ´
`

1 ´
α

2

˘T ˘
C1

b

d log2
`

n}β˚}2{δ
˘

{n. (28)

Define ϵpn, δq “
`

1´
`

1´ α
2

˘T ˘
C1

b

d log2
`

n}β˚}2{δ
˘

{n and γ2 “
`

1´ α
2

˘T
`
`

1´
`

1´ α
2

˘T ˘
γ.

As long as γ ă 1, we can iterate over t based on Equation 28 and obtain

}βptq ´ β˚} ď γ2}βpt´1q ´ β˚}2 ` ϵpn, δq ď γ2
2}βpt´2q ´ β˚}2 ` p1 ` γ2qϵpn, δq

ď γt2}βp0q ´ β˚}2 `
1

1 ´ γ2
ϵpn, δq.
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In the remaining part of the proof, we present an analysis of the convergence behavior of the sample-
based gradient EM algorithm when C0

`

d log2pn{δq{n
˘1{4

ď η ď 1. By Lemma 3 from Kwon et al.
(2021), it holds that

›

›E
“

tanh
`

Y XJβ
˘

Y X
‰

´ β˚}2 ď
`

1 ´
1

8
}β˚}22

˘

}β ´ β˚}2.

To systematically analyze the convergence, we categorize the iterations into several epochs. We
define C̄0 “ }βp0q ´β˚}2 and assume that during each lth epoch, the distance }β ´β˚}2 lies within
the interval rC̄02

´l´1, C̄02
´ls. This stratification is conceptual and does not impact the practical

implementation of the EM algorithm. The key idea in this part is the same as Kwon et al. (2021).
During the lth epoch, the improvement in the population gradient EM updates must exceed the
statistical error for convergence to occur, formalized as:

1

8

`

1 ´ p1 ´
α

2
qT
˘

}β˚}22}β ´ β˚}2 ě 2cr

b

d log2pn{δq{n

where c is the constant in Lemma B.3. By setting r “ }β˚} ` C̄02
´l and using triangle inequality

}β}2 ď }β˚}2 ` }β ´ β˚}2, in lth epoch when

1

8

`

1 ´ p1 ´
α

2
qT
˘

}β˚}2C̄02
´l´1 ě 2cr

b

d log2pn{δq{n

ě 4c
`

}β˚} ` C̄02
´l
˘

b

d log2pn{δq{n,

is guaranteed to be true, then it holds that

}A}2 ď

´

1 ´
1

16
}β˚}22

¯

}β ´ β˚}2

}β1 ´ β˚}2 ď

”

`

1 ´
α

2

˘T
`
`

1 ´
`

1 ´
α

2

˘T ˘
´

1 ´
1

16
}β˚}22

¯ı

}β ´ β˚}2.

Recall that η ě O
`

pd log2pn{δq{nq
1
4

˘

, then with appropriately set constants

}β˚}2 ě pc1 ` 1q

b

d log2pn{δq{n,

we can deduce that β moves progressively closer to β˚ as long as C̄02
´l ď

c2}β˚}
´1
2

b

d log2pn{δq{n. This process requires O
`

}β˚}
´2
2

˘

iterations per epoch, and after

Oplogpn{dqq epochs, the error bound }β ´ β˚}2 ď c2}β˚}
´1
2

b

d log2pn{δq

n is expected to hold.
Thus, the convergence rate for βptq towards β˚ is quantified as:

}βptq ´ β˚}2 ď γt2}βp0q ´ β˚}2 `
1

1 ´ γ2

b

d log2pn{δq{n.

B.4 CONVERGENCE RESULTS UNDER LOW SNR SETTINGS

We present several auxiliary lemmas that will be utilized in analyzing the convergence results for
sample-based gradient EM iterates.
Lemma B.5 (Lemma 6 in Kwon et al. (2021)). There exists some universal constants cu ą 0 such
that,

}β}2
`

1 ´ 4}β}22 ´ cu}β˚}22

˘

ď
›

›E
“

tanh
`

Y XJβ
˘

Y X
‰
›

›

2
ď }β}2

`

1 ´ }β}22 ` cu}β˚}22

˘

.

Theorem B.3. When η ď C0pd log2pn{δq{nq1{4, there exist universal constants C3, C4 ą 0 such
that the sample-based gradient EM updates initialized with }βp0q}2 ď 0.2 return βptq that satisfies

}βptq ´ β˚}2 ď O
´

`

d log2 n{n
˘

1
4

¯

with probability at least 1 ´ δ after t ě C4

`

1 ´
`

1 ´ α{2
˘T ˘´1

logplogpn{dqq

b

n{
`

d log2pn{δq
˘

iterations.
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Proof. The proof argument follows the similar localization argument used in Theorem B.2. Define

ϵpn, δq :“ C
b

d log2pn{δq{n with some absolute constant C ą 0. We assume that we start from
the initialization region where }β}2 ď ϵα0pn, δq for some α0 P r0, 1{2q. Suppose that ϵαl`1pn, δq ď

}β}2 ď ϵαlpn, δq at the lth epoch for l ě 0. We let C ą 0 sufficiently large such that

ϵpn, δq ě 4cu}β˚}22 ` 4 sup
βPBpβ˚,rlq

›

›µ ´ Σ̂´1µ̂
›

›

2
{rl

with rl “ ϵαl
n . During this period, from Lemma B.5 on contraction of population EM, and Lemma

B.3 concentration of finite sample EM, we can check that

}Σ̂´1µ̂}2 ď }β}2 ´ 0.5}β}32 ` cu}β}2}β˚}22 ` sup
βPBpβ˚,rq

›

›µ ´ Σ̂´1µ̂
›

›

ď }β}2 ´
1

2
ϵ3αl`1pn, δq `

1

4
ϵαl`1pn, δq,

}β̃1}2 ď
`

1 ´
α

2

˘T
}β}2 `

´

1 ´
`

1 ´
α

2

˘T
¯

}Σ̂´1µ̂}2

ď }β}2 `

´

1 ´
`

1 ´
α

2

˘T
¯”

´
1

2
ϵ3αl`1pn, δq `

1

4
ϵαl`1pn, δq

ı

.

Note that this inequality is valid as long as ϵαl`1pn, δq ď }β}2 ď ϵαlpn, δq. Now we define a
sequence αl by

αl “ p1{3qlpα0 ´ 1{2q ` 1{2

and αl Ñ 1{2 as l Ñ 8. With this choice of αl, ϵαl
n Ñ pd{nq1{4. Hence during the lth epoch, we

have

›

›β̃1
›

›

2
ď }β}2 ´

1

4

´

1 ´
`

1 ´
α

2

˘T
¯

ϵαl`1pn, δq.

Furthermore, the number of iterations required in lth epoch is

tl :“

`

ϵαlpn, δq ´ ϵαl`1pn, δq
˘

´

1 ´
`

1 ´ α
2

˘T
¯

ϵαl`1pn, δq
ď

´

1 ´
`

1 ´
α

2

˘T
¯´1

ϵ´1pn, δq.

When it gets into pl ` 1qth epoch. the behavior can be analyzed in the same way and after going
through l epochs in total, we have }β}2 ď ϵαl`1pn, δq. At this point, the total number of iterations
(counted in terms of steps of gradient descent) is bounded by

l
´

1 ´
`

1 ´
α

2

˘T
¯´1

ϵ´1pn, δq.

By taking l “ C
`

1 ´
`

1 ´ α{2
˘T ˘

logp1{θq for some universal constant C such that αl is 1{2 ´ θ
for arbitrarily small θ ą 0, it holds that

}βptq}2 ď ϵ1{2´θpn, δq ď c
`

d log2pn{δq{n
˘1{4´θ{2

with high probability as long as t ě ϵ´1pn, δql Á
a

d{n
`

1 ´
`

1 ´ α{2
˘T ˘

logp1{θq where c
is some universal constant. By taking θ “ C{ logpd{nq and using triangle inequalities, it holds
that }βptq}2 ď c

`

d log2pn{δq{n
˘1{4

and }βptq ´ β˚}2 ď c1
`

d log2pn{δq{n
˘1{4

where c1 is some
universal constant under low SNR settings.

To finish the proof, we replace δ by δ{ logp1{θq and take the union bound of the concentration of
sample gradient EM operators for all l “ 1, . . . , C

`

1´
`

1´α{2
˘T ˘

logp1{θq, such that the argument
holds for all epochs.
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B.5 PROOF OF THEOREM 2.1

Proof of Equation 6. For the data generated based on model Equation 1 with two components,
βn`1 “ ´β˚ with probability 1

2 and βn`1 “ β˚ with probability 1
2 . For any choice of β P Rd,

EPx,y rpyn`1 ´ xJ
n`1βq2s “ EPx,y rpxJ

n`1βn`1 ´ xJ
n`1β ` vn`1q2s

“ ϑ2 ` EPx,y

“`

xJ
n`1βn`1 ´ xJ

n`1β
˘2‰

“ ϑ2 ` EPx,y
trxn`1x

J
n`1pβn`1 ´ βqpβn`1 ´ βqJ

“ ϑ2 ` EPx,y
trpβn`1 ´ βqpβn`1 ´ βqJ

“ ϑ2 ` EPx,y}βn`1 ´ β}22

“ ϑ2 `
1

2
}β˚ ´ β}22 `

1

2
}β˚ ` β}22.

Therefore, EPx,y
rpyn`1 ´ xJ

n`1q2s is minimized at β̂ “ 1
2β

˚ ´ 1
2β

˚ “ 0 and the optimal risk is
given by ϑ2`}β˚}22. And same results holds if the estimator β depends on previous training instance
px1, y1, . . . , xn, ynq and the expectation is taken w.r.t. P .

Proof of Theorem 2.1. The existence of the transformer follows from Lemma 3.2 and Lemma 3.3.
The output of the transformer is given by

ŷn`1 “ ready
`

TFpHq
˘

“ xJ
n`1β̂

OR

where β̂OR is given by

β̂OR :“ π1β̂ ´ p1 ´ π1qβ̂

with β̂ “ readβpTFpHqq for L “ O
´

T
`

1 ´
`

1 ´ α{2
˘T ˘´1

logplogpn{dqq

b

n{
`

d log2pn{δq
˘

¯

in

the low SNR settings and O
´

T log
`

n logn
d

˘

¯

in the high SNR settings. Note that }β̂OR ´ βOR}2 ď

π1}β˚ ´ β̂}2 ` p1 ´ π1q}β˚ ´ β̂}2 ď }β˚ ´ β̂}2.

• Under thelow SNR regime, after T0 ě O
´

logplogpn{dqq

b

n{
`

d log2pn{δq
˘

¯

outer loops,

}βOR ´ β̂OR}2 ď O
´´d logpn{δq

n

¯
1
4
¯

with probability at least 1 ´ 5δ.

• Under the high SNR regime, after T0 ě O
´

log
`

n logn
d

˘

¯

outer loops,

}βOR ´ β̂OR}2 ď O

˜

d

d log2pn{δq

n

¸

with probability at least 1 ´ 5δ.

Then we can bound the error
ˇ

ˇxJ
n`1β

OR ´ xJ
n`1β̂

OR
ˇ

ˇ as
ˇ

ˇxJ
n`1β

OR ´ xJ
n`1β̂

OR
ˇ

ˇ ď
›

›xn`1

›

›

2

›

›βOR ´ β̂OR
›

›

2
.

By standard concentration results on Euclidean norm of standard Gaussian random vectors,

}xn`1}2 ď 2
b

log d
δ with probability at least 1 ´ δ. Combining everything above with Theorem

B.3 and Theorem B.2 yields the results.

Proof of Theorem 2.2. The oracle estimator that minimizes the MSE, i.e. MSEpfq “ EP
“`

fpHq ´

yn`1

˘2‰
is given by Equation 6. We would like to bound

EP

”

`

yn`1 ´ readypTFpHqq
˘2
ı

´ inf
β

EP

”

`

xJ
n`1β ´ yn`1

˘2
ı

.
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Note that the EP

”

`

yn`1 ´ readypTFpHqq
˘2
ı

is given by

EP

”

`

xJ
n`1β̂

OR ´ yn`1

˘2
ı

“ EP

”

`

xJ
n`1

`

β̂OR ´ βOR ` βOR˘ ´ yn`1

˘2
ı

“EP

”

`

xJ
n`1β̂

OR ´ βOR˘˘2
ı

` 2EP

”

`

β̂OR ´ βOR˘J
xn`1

`

xJ
n`1β

OR ´ yn`1

˘

ı

` EP

”

`

xJ
n`1β

OR ´ yn`1

˘2
ı

.

Hence, when π1 “ π2 “ 1
2 , βOR “ π1β

˚ ´ π2β
˚ “ 0,

EP

”

`

yn`1 ´ readypTFpHqq
˘2
ı

´ inf
β

EP

”

`

xJ
n`1β ´ yn`1

˘2
ı

“EP

”

`

xJ
n`1

`

β̂OR ´ βOR˘˘2
ı

` 2EP

”

`

β̂OR ´ βOR˘J
xn`1x

J
n`1β

OR
ı

“EP

”

`

β̂OR ´ βOR˘J
xn`1x

J
n`1

`

β̂OR ´ βOR˘
ı

“EP

”

tr
´

xn`1x
J
n`1

`

β̂OR ´ βOR˘`β̂OR ´ βOR˘J
¯ı

“EP
›

›β̂OR ´ βOR
›

›

2

2
.

• Under the high SNR settings, it holds that

P
´

}β̂OR ´ βOR}2 ď O
´

b

d log2pn{δq{n
¯¯

ě 1 ´ δ.

Hence, by integrating the tail probabilities we have

E}β̂OR ´ βOR}22 “

ż `8

0

P
`
›

›β̂OR ´ βOR
›

›

2
ě

?
t
˘

dt

“

”

ż c1

0

`

ż `8

c1

ı

P
`
›

›β̂OR ´ βOR
›

›

2
ě

?
t
˘

dt

ď

ż c1

0

1dt `

ż `8

c1

P
`
›

›β̂OR ´ βOR
›

›

2
ě

?
t
˘

dt

ď c1 `

ż `8

c1

P
`
›

›β̂OR ´ βOR
›

›

2
ě

?
t
˘

dt.

Setting
?
t “ O

´

b

d log2pn{δq{n
¯

and solving for δ give us δ ď n exp
␣

´
a

nt{d
(

. By

taking c1 “
Cd log2 n

n for some absolute constant C, it holds that

E}β̂OR ´ βOR}22 ď O

˜

d log2 n

n

¸

`

ż `8

c1

n exp
␣

´
a

nt{d
(

dt

“ O

˜

d log2 n

n

¸

` O

˜

p2d ` 1q log n

n

¸

“ O

˜

d log2 n

n

¸

.

• Under the low SNR settings, it holds that

P
´

}β̂OR ´ βOR}2 ď O
`

d
1
4 log

1
2 pn{δq{n

1
4

˘

¯

ě 1 ´ δ.
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Hence,

E}β̂OR ´ βOR}22 “

ż `8

0

P
`›

›β̂OR ´ βOR
›

›

2
ě

?
t
˘

dt

“

”

ż c1

0

`

ż `8

c1

ı

P
`
›

›β̂OR ´ βOR
›

›

2
ě

?
t
˘

dt

ď

ż c1

0

1dt `

ż `8

c1

P
`
›

›β̂OR ´ βOR
›

›

2
ě

?
t
˘

dt

ď c1 `

ż `8

c1

P
`
›

›β̂OR ´ βOR
›

›

2
ě

?
t
˘

dt.

Similarly, setting
?
t “ O

´

d
1
4 log

1
2 pn{δq{n

1
4

¯

and solving for δ give us δ ď n exp
!

´

a

n{dt
)

. By taking c1 “ C
b

d log2 n{n for some absolute constant C, it holds that

E}β̂OR ´ βOR}22 ď O

˜

d

d log2 n

n

¸

`

ż `8

c1

n exp
!

´ d´ 1
4

?
t
)

dt

“ O
´

a

d{n log n
¯

.

Combining everything together, it holds that

EP

”

pyn`1 ´ readypTFpHqqq2
ı

´ inf
β

EP
“

pxJ
n`1β ´ yn`1q2

‰

“

$

&

%

O
´

d log2 n
n

¯

η ě O
``

d log2pn{δq{n
˘

1
4
˘

O
´

a

d{n log n
¯

η ď O
``

d log2pn{δq{n
˘

1
4
˘

.

C PROOF OF THEOREM 2.3 IN SECTION 2.3

Proposition C.1 (Proposition A.4 Bai et al. (2024)). Suppose that tXθuθPΘ is a zero-mean random
process given by

Xθ :“
1

N

N
ÿ

i“1

fpzi; θq ´ Ezrfpz; θqs,

where z1, ¨ ¨ ¨ , zN are i.i.d samples from a distribution Pz such that the following assumption holds:

(a) The index set Θ is equipped with a distance ρ and diameter D. Further, assume that for
some constant A, for any ball Θ1 of radius r in Θ, the covering number admits upper
bound logN

`

δ; Θ1, ρ
˘

ď d logp2Ar{δq for all 0 ă δ ď 2r.

(b) For any fixed θ P Θ and z sampled from Pz , the random variable fpz; θq is a SG
`

B0
˘

-sub-
Gaussian random variable.

(c) For any θ, θ1 P Θ and z sampled from Pz , the random variable fpz; θq ´ fpz; θ1q is a
SG

`

B1ρ
`

θ, θ1
˘˘

-subGaussian random variable.

Then with probability at least 1 ´ δ, it holds that

sup
θPΘ

ˇ

ˇXθ

ˇ

ˇ ď CB0

c

d logp2Aκq ` logp1{δq

N
,

where C is a universal constant, and we denote κ “ 1 ` B1D{B0.
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Furthermore, if we replace the SG in assumption (b) and (c) by SE, then with probability at least
1 ´ δ, it holds that

sup
θPΘ

ˇ

ˇXθ

ˇ

ˇ ď CB0

«

c

d logp2Aκq ` logp1{δq

N
`

d logp2Aκq ` logp1{δq

N

ff

.

For any p P r1,8s, let }H}2,p :“
´

řn
i“1 }hi}

p
2

¯1{p

denote the column-wise p2, pq-norm of H . For

any radius R ą 0, we denote HR :“
!

H : }H}2,8 ď R
)

be the ball of radius R under norm
} ¨ }2,8.
Lemma C.1 (Corollary J.1 Bai et al. (2024)). For a single attention layer θattn “
␣

pVm, Qm,Kmq
(

mPrMs
Ă RDˆD and any fixed dimension D, we consider

Θattn,B1 :“
␣

θattn :
›

›θattn
›

› ď B1
(

.

Then for H P HR,θattn P Θattn,B , the function
`

θattn, H
˘

ÞÑ AttnθattnpHq is pB2R3q-Lipschitz
w.r.t. θattn and p1 ` B3R2q-Lipschitz w.r.t. H . Furthermore, for the function TFR given by

TFR : pθ, Hq ÞÑ clipR
`

Attnθattn pHq
˘

.

TFR is BΘ-Lipschitz w.r.t θ and LH -Lipschitz w.r.t. H , where BΘ :“ B2R3 and BH :“ 1`B3R2.
Proposition C.2 (Proposition J.1 Bai et al. (2024)). For a fixed number of heads M and hidden
dimension D, we consider

ΘTF,L,B1 “

!

θ “ θ
p1:Lq

attn : M pℓq “ M,Dpℓq “ D, }θ} ď B1
)

.

Then the function TFR is
`

LBL´1
H BΘ

˘

-Lipschitz w.r.t θ P ΘTF,L,B for any fixed H.

Proof. Define events

Ey :“

#

max
iPrn`1s,jPrBs

␣
ˇ

ˇy
pjq

i

ˇ

ˇ

(

ď By

+

,

Ex :“

#

max
iPrn`1s,jPrBs

␣
›

›x
pjq

i

›

›

2

(

ď Bx

+

,

and the random process

Xθ :“
1

B

B
ÿ

j“1

ℓicl
`

θ;Zpjq
˘

´ EZ

“

ℓiclpθ;Zq
‰

where Zp1:Bq are i.i.d. copies of Z „ P, drawn from the distribution P. The next step involves
applying Proposition C.1 to the process tXθu conditioning on events Ex X Ey . To proceed, we must
verify the following preconditions:

(a) By [Wainwright (2019), Example 5.8], it holds that logN
`

δ; B}¨}prq, } ¨ }
˘

ď

Lp3MD2q logp1 ` 2r{δq, where B}¨}prq is any ball of radius r under norm } ¨ }.

(b)
ˇ

ˇℓicl pθ;Zq
ˇ

ˇ ď 4B2
y and hence 4B2

y-sub-Gaussian.

(c)
ˇ

ˇℓiclpθ;Zq ´ ℓiclprθ;Zq
ˇ

ˇ ď 2By
`

LBL´1
H BΘ

˘

}θ ´ rθ} by Proposition C.2, where BΘ :“

B
12R3 and BH :“ 1 ` B

13R2.

Therefore, by Proposition C.1, conditioning on Ex X Ey with probability at least 1 ´ ξ,

sup
θ

ˇ

ˇXθ

ˇ

ˇ ď O

˜

B2
y

c

LpMD2qι ` logp1{ξq

B

¸
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where ι “ 20L log
`

2 ` max
␣

B1, R, p2Byq´1
(˘

. Note that yi is sub-Gaussian with parameter at
most

a

ϑ2 ` }β˚}22 “
a

p1 ` η´2q}β˚}22. Then by taking

Bx “
a

d logpnB{ξq,

By “

b

2p1 ` η´2q}β˚}22 logp2nB{ξq,

R “ 2maxtBx, Byu,

we have P
`

Ey
˘

ě 1´ ξ and P
`

Ex
˘

ě 1´ ξ by union bound. Hence, with probability at least 1´3ξ,

sup
θ

ˇ

ˇXθ

ˇ

ˇ ď O

˜

p1 ` η´2q logp2nL{ξq

c

LpMD2qι ` logp1{ξq

B

¸

where
ι “ 20L log

`

2 ` max
␣

B1, R, p2Byq´1
(˘

is a log factor.

D PROOF OF THEOREM 4.1

Given the estimate β
pt´1q

j and π
pt´1q

j , at step t ´ 1, the population EM algorithm is defined by the
updates

w
ptq
j pX,Y q “

π
pt´1q

j exp
␣

´ 1
2

`

Y ´ XJβ
pt´1q

j

˘2(

ř

ℓPrKs π
pt´1q

ℓ exp
␣

´ 1
2 pY ´ XJβℓ

˘2( ,

β̃
ptq
j “

`

E
“

w
ptq
j pX,Y qXXJ

‰˘´1`E
“

w
ptq
j pX,Y qXY

‰˘

,

π̃
ptq
j “ E

“

w
ptq
j pX,Y q

‰

.

In the sample version of the gradient EM algorithm, we define Σ̂
ptq
w “ 1

n

řn
i“1 w

ptq
ij pxi, yiqxix

J
i .

The new estimate, βptq, is obtained by applying L steps of gradient descent to the loss function

L̂ptq
n pβq “

1

2n

n
ÿ

i“1

w
ptq
ij pxi, yiq

`

yi ´ xJ
i β

˘2

starting from β
pt´1q

j . Specifically,

β
ptq
j “

´

I ´ αΣ̂ptq
w

¯T

β
pt´1q

j `

´

I ´
`

I ´ αΣ̂ptq
w

˘T
¯ 1

n

n
ÿ

i“1

“

Σ̂ptq
w

‰´1
w

ptq
ij pxi, yiqyixi.

In the finite sample gradient version of EM, the estimation error at the next iteration in this problem
is

β
ptq
j ´ β˚

j “

´

I ´ αΣ̂ptq
w

¯T
`

β
pt´1q

j ´ β˚
j

˘

`

´

I ´
`

I ´ αΣ̂ptq
w

˘T
¯” 1

n

n
ÿ

i“1

“

Σ̂ptq
w

‰´1
w

ptq
ij pxi, yiqyixi ´ β˚

j

ı

.

Define

w˚
j pX,Y q “

π˚
j exp

`

´ 1
2

`

Y ´ XJβ˚
j

˘2˘

řK
l“1 π

˚
j exp

`

´ 1
2

`

Y ´ XJβ˚
j

˘2˘ ,

then we have
E
“

w˚
j pX,Y qX

`

Y ´ XJβ˚
j

˘‰

“ π˚
1E

“

X
`

Y ´ XJβ˚
j

˘‰

“ 0,

since true parameters are a fixed point of the EM iteration. Hence,

β
ptq
j ´ β˚

j “
`

I ´ αΣ̂pt´1q
w

˘T `
β

pt´1q

j ´ β˚
j

˘

`

´

I ´
`

I ´ αΣ̂ptq
w

˘T
¯

`

Σ̂ptq
w

˘´1“
eB ` B

‰

,

eB “
1

n

n
ÿ

i“1

w
ptq
ij pxi, yiq

`

yi ´ xJ
i β

˚
j

˘

xi ´ E
“

w
ptq
j pX,Y qX

`

Y ´ XJβ˚
j

˘‰

,

B “ E
“

w
ptq
j pX,Y qX

`

Y ´ XJβ˚
j

˘‰

´ E
“

w˚
j pX,Y qX

`

Y ´ XJβ˚
j

˘‰

.

In Kwon & Caramanis (2020), the following results are proved.
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Lemma D.1 ((Kwon & Caramanis, 2020)). Under SNR condition

η ě CKρπ logpKρπq

with sufficiently large C ą 0 and initialization condition

max
ℓ

|π
pt´1q

ℓ ´ π˚
ℓ | ď

πmin

2
,

max
ℓ

›

›β
pt´1q

ℓ ´ β˚
ℓ

›

›

2
ď

cη

Kρπ logpKρπq
,

for sufficiently small c ą 0. Given n ě O
`

max
␣

d log2pdK2{δq,
`

K2{δ
˘1{3(˘

samples, we get

}eB}2 ď

d

Kπ˚2
j

πmin

c

d

n
log2

`

nK2{δ
˘

max
ℓ

›

›β
pt´1q

ℓ ´ β˚
l

›

›

2
`

d

Kπ˚2
j

πmin

c

d

n
log2

`

nK2{δ
˘

with probability at least 1 ´ δ.
Lemma D.2 ((Kwon & Caramanis, 2020)). Under SNR condition

η ě CKρπ logpKρπq

with sufficiently large C ą 0 and initialization condition

max
ℓ

|π
pt´1q

ℓ ´ π˚
ℓ | ď

πmin

2
,

max
ℓ

›

›β
pt´1q

ℓ ´ β˚
ℓ

›

›

2
ď

cη

Kρπ logpKρπq
,

for sufficiently small c ą 0. There exits some universal constant c1
B P p0, 1{2q

B ď c1
Bπ

˚
j max

ℓ

›

›β
pt´1q

ℓ ´ β˚
ℓ

›

›

2
.

Now, it remains to bound the maximum eigenvalue and minimum eigenvalue of the weighted sample
covariance matrix Σ̂

ptq
w . Define the event

Ej “
␣

the sample comes from j-th component
(

.

Note that

1

n

n
ÿ

i“1

w
ptq
ij pxi, yiqxix

J
i 1Ej

ĺ Σ̂ptq
w “

1

n

n
ÿ

i“1

w
ptq
ij pxi, yiqxix

J
i ĺ

1

n

n
ÿ

i“1

xix
J
i .

By standard concentration results on Σ̂ ´ I , it holds that with n ě Opd logp1{δqq,

λmaxpΣ̂ptq
w q ď λmaxpΣ̂q ď

3

2

with probability at least 1 ´ δ. The concentration of 1
n

řn
i“1 w

ptq
ij pxi, yiqxix

J
i 1Ej

comes from stan-
dard concentration argument for random matrix with sub-exponential norm Vershynin (2018). Since
w

ptq
ij P p0, 1q and xi is standard multivariate Gaussian, then by Appendix B.2 in Kwon & Caramanis

(2020), it holds that
›

›

›

1

n

ÿ

i

w
ptq
ij xix

J
i 1Ej

´ E
“

w
ptq
j pX,Y qXXJ1Ej

‰

›

›

›

2
ď O

´b

π˚
j

c

d logpK2{δq

n

¯

with probability at least 1´ δ. By Lemma A.3 in Kwon & Caramanis (2020), it holds that under the
same SNR condition

λmin

`

E
“

w
ptq
j pX,Y qXXJ

‰˘

ě
π˚
j

2
.

Therefore, as long as n ě O
`

d logpK2{δq{πmin

˘

, it holds that

λmin

`

Σ̂ptq
w

˘

ě λmin

´ 1

n

ÿ

i

w
ptq
ij xix

J
i 1E1

¯

ě
π˚
j

4
.
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Therefore, we have under the same SNR and initialization condition, as long as

n ě O
´

max
␣

d log2pdK2{δq,
`

K2{δ
˘1{3

, d logpK2{δq{πmin

(

¯

,

it holds that for appropriately small α,

}
`

I ´ αΣ̂ptq
w

˘T
}2 ď maxt|1 ´ 3α{2|, p1 ´ πminα{4quT :“ γT , (29)

}eB}2 ď

d

Kπ˚2
j

πmin

c

d

n
log2

`

nK2{δ
˘

max
ℓ

›

›β
pt´1q

ℓ ´ β˚
ℓ

›

›

2
`

d

Kπ˚2
j

πmin

c

d

n
log2

`

nK2{δ
˘

, (30)

B ď
π˚
j

2
max
ℓ

›

›β
pt´1q

ℓ ´ β˚
ℓ

›

›

2
, (31)

›

›

“

Σ̂ptq
w

‰´1›
›

2
ď

4

πmin
. (32)

For appropriately small α, we have γT P p0, 1q Therefore, combining Equation 29, Equation 30,
Equation 31 and Equation 32 together, we have

β
ptq
j ´ β

p˚q

j ď

«

γT ` p1 ´ γT q

˜

d

Kπ˚2
j

πmin

c

d

n
log2

`

nK2{δ
˘

`
π˚
j

2

¸ff

max
ℓ

›

›β
pt´1q

ℓ ´ β˚
ℓ

›

›

2

`

d

Kπ˚2
j

πmin

c

d

n
log2

`

nK2{δ
˘

with probability at least 1 ´ 5δ.

To derive the concentration results for
ˇ

ˇ

1
n

ř

i w
ptq
ij pxi, yiq ´ E

“

w
ptq
j pX,Y q

‰
ˇ

ˇ, we define following
events

Eℓ,1 “
␣

|v| ď τℓ
(

,

Eℓ,2 “

!

4p|xX,∆jy| _ |xX,∆ℓy|q ď |xX,β˚
ℓ ´ β˚

j y|

)

,

Eℓ,3 “

!

|xX,β˚
ℓ ´ β˚

j y| ě 4
?
2τℓ

)

,

Eℓ, good “ Eℓ,1 X Eℓ,2 X Eℓ,3,

where ∆ℓ “ β
pt´1q

ℓ ´ β˚
ℓ , then we have the decomposition

w
ptq
ij pxi, yiq “

˜

K
ÿ

ℓ “j

w
ptq
ij pxi, yiq1EℓXEℓ,good

` w
ptq
ij pxi, yiq1EℓXEc

ℓ,good

¸

` w
ptq
ij pxi, yiq1Ej

.

Therefore, we could bound
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

i

w
ptq
ij pxi, yiq1EℓXEℓ,good

´ E
”

w
ptq
ij pxi, yiq1EℓXEℓ, good

ı

ˇ

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

i

w
ptq
ij pxi, yiq1EℓXEc

ℓ,good
´ E

”

w
ptq
ij pxi, yiq1EℓXEc

ℓ,good

ı

ˇ

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

i

w
ptq
ij pxi, yiq1Ej

´ E
”

w
ptq
ij pxi, yiq1Ej

ı

ˇ

ˇ

ˇ

ˇ

ˇ

,

respectively. For the first part, note that

›

›w
ptq
ij pxi, yiq1EℓXEc

ℓ,good

›

›

ψ2
“ sup

pě1
p´1{2E

”

ˇ

ˇw
ptq
ij pxi, yiq

ˇ

ˇ

p
| Eℓ X Eℓ,good

ı1{p

ď Cρℓj exp
`

´ τ2ℓ
˘

.
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Therefore, with probability at least 1 ´ δ{K2,
ˇ

ˇ

ˇ

1
n

ř

i w
ptq
ij pxi, yiq1EℓXEℓ,good

´ E
”

w
ptq
ij pxi, yiq1EℓXEℓ,good

ı
ˇ

ˇ

ˇ
ď O

´

ρℓj exp
`

´ τ2ℓ
˘a

π˚
ℓ

b

1
n logpK2{δq

¯

.

For the second part, note that

}w
ptq
ij pxi, yiq1EℓXEc

ℓ,good
}ψ2

“ sup
pě1

p´1{2ED

”

ˇ

ˇw
ptq
ij pxi, yiq

ˇ

ˇ

p
| Eℓ X Ecℓ, good

ı1{p

ď 1,

P
`

Eℓ X Ecℓ, good

˘

ď O
`

π˚
ℓ {pKρπq

˘

.

Therefore,
ˇ

ˇ

ˇ

1
n

ř

i w
ptq
ij pxi, yiq1EℓXEc

ℓ,good
´ E

“

w
ptq
ij pxi, yiq1EℓXEc

ℓ,good

‰

ˇ

ˇ

ˇ
ď O

´

b

π˚
ℓ

Kρπ
_

logpK2{δq

n

b

logpK2{δq

n

¯

.

Similar to the second part, we have the following concentration result for the last part:
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

i

w
ptq
ij pxi, yiq1Ej ´ E

“

w
ptq
ij pxi, yiq1Ej

‰

ˇ

ˇ

ˇ

ˇ

ˇ

ď O

˜

c

π˚
j _

logpK2{δq

n

c

logpK2{δq

n

¸

.

Combining three parts together, we have
ˇ

ˇ

ˇ

1

n

ÿ

i

w
ptq
ij pxi, yiq ´ E

“

w
ptq
j pX,Y q

‰

ˇ

ˇ

ˇ
ď O

˜

b

1
n logpK2{δq

˜

řK
ℓ “j ρℓj exp

`

´ τ2ℓ
˘a

π˚
ℓ `

b

π˚
j

K

¸

`

b

π˚
j logpK2{δq

n

¸

ď O

˜

b

K logpK2{δq

nπmin

b

π˚
j

K

´

řK
ℓ “j

?
ρℓ,j

b

π˚
j

Kρπ
`

b

π˚
j

k

¯

`

b

K logpK2{δq

nπmin
π˚
j

¸

ď O

˜

b

K logpK2{δq

nπmin
π˚
j

¸

.

with probability at least 1 ´ 3δ. Therefore,

|xJ
n`1β̂

OR ´ xJ
n`1β

OR| ď }xn`1}2}β̂OR ´ βOR}2

ď }xn`1}2

´

max
j

|π̂j ´ π˚
j |max

j
}β˚
j }2 ` max

j
tπ̂jumax

j
}β̂j ´ β˚

j }2

¯

ď
a

logpd{δq

˜

d

K logpK2{δq

nπmin
π˚
j `

d

Kπ˚2
j

πmin

c

d

n
log2

`

nK2{δ
˘

¸

with probability at least 1 ´ 9δ.

E AUXILIARY RESULTS

Proposition E.1 (Proposition C.2 in Bai et al. (2024)). Let ℓp¨, ¨q : R2 Ñ R be a loss function such
that B1ℓ is pε,R,M,Cq-approximable by sum of relus with R “ max

␣

BxBw, By, 1
(

. Let pLnpβq :“
1
n

řn
i“1 ℓ

`

βJxi, yi
˘

denote the empirical risk with loss function ℓ on dataset
␣

pxi, yiq
(

iPrns
. Then,

for any ε ą 0, there exists an attention layer
␣`

Qm,Km, Vm
˘(

mPrMs
with M heads such that, for

any input sequence that takes form hi “
“

xi; y
1
i;β; 0D´2d´3; 1; ti

‰

with }β}2 ď Bw, it gives output

rhi “
“

AttnθpHq
‰

i
“
“

xi; y
1
i;
rβ; 0D´2d´3; 1; ti

‰

for all i P rN ` 1s, where
›

›rβ ´
`

β ´ η∇pLnpβq
˘
›

›

2
ď ε ¨

`

ηBx
˘

.

Proposition E.2 (Proposition 1 in Pathak et al. (2024)). Given any input matrix H P Rpˆq that
output a matrix H 1 P Rpˆq , following operators can be implemented by a single layer of an autore-
gressive transformer:
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• copy down
`

H; k, k1, ℓ, I
˘

: For columns with index i P I, outputs H 1 where

H 1
k1:ℓ1,i “ Hk:ℓ,i

and the remaining entries are unchanged. Here, ℓ1 “ k1 ` pℓ ´ kq and k1 ě k, so that
entries are copied ”down” within columns i P I. Note, we assume ℓ ě k and that k1 ď q
so that the operator is well-defined.

• copy over
`

H; k, k1, ℓ, I
˘

: For columns with index i P I, outputs H 1 with

H 1
k1:ℓ1,i “ Hk:ℓ,i´1.

The remaining entries stay the same. Here entries from column i ´ 1 are copied ”over” to
column i.

• mul
`

H; k, k1, k2, ℓ, I
˘

: For columns with index i P I, outputs H 1 where

H 1
k2`t,i “ Hk`t,iHk1`t,i, for t P t0, . . . , ℓ ´ ku.

Note that ℓ2 “ k2 ` δ2 where W P Rδ2
ˆδ,W 1 P Rδ2

ˆδ1

and ℓ “ k ` δ, ℓ1 “ k1 ` δ1. We
assume δ, δ1, δ2 ě 0. The remaining entries of H are copied over to H 1, unchanged.

• scaled agg
`

H;α, k, ℓ, k1, i, I
˘

: Outputs a matrix H 1 with entries

Hk1`t,i “ α
ÿ

jPI
Hk`t,j for t P t0, 1, . . . , ℓ ´ ku.

The set I is causal, so that I Ă ri´ 1s. The remaining entries of H are copied over to H 1,
unchanged.

• soft
`

H; k, ℓ, k1
˘

: For the final column q, outputs a matrix H 1 with entries

H 1
k1`t,q “

eHk`t,q

řℓ´k
t1“0 e

Hk`t1,q

, for t P t0, 1, . . . , ℓ ´ ku.

The remaining entries of H are copied over to H 1, unchanged.

32


	Introduction
	Related works

	Main Results
	existence of transformer for Mixture of Regression
	Analysis of parameter estimator and prediction error via transformer
	Analysis of pre-training

	Transformer Implements the Gradient-EM Algorithm
	Mixture of regression with more than two components
	Simulation Study
	Discussion
	Proof of Lemmas in Section 3
	Proof of Theorem 2.1
	Results in population gradient EM algorithm for MoR problem
	Results in sample-based EM algorithm for MoR problem
	Convergence results under the high SNR setting
	Convergence results under Low SNR settings
	Proof of Theorem 2.1

	Proof of Theorem 2.3 in Section 2.3
	Proof of Theorem 4.1
	Auxiliary Results

