
MetaGPT: Merging Large Language Models Using
Model Exclusive Task Arithmetic

Anonymous ACL submission

Abstract001

The advent of large language models (LLMs)002
like GPT-4 has catalyzed the exploration of003
multi-task learning (MTL), in which a single004
model demonstrates proficiency across diverse005
tasks. Task arithmetic has emerged as a cost-006
effective approach for MTL. It enables per-007
formance enhancement across multiple tasks008
by adding their corresponding task vectors009
to a pre-trained model. However, the cur-010
rent lack of a method that can simultaneously011
achieve optimal performance, computational012
efficiency, and data privacy limits their appli-013
cation to LLMs. In this paper, we propose014
Model Exclusive Task Arithmetic for merg-015
ing GPT-scale models (MetaGPT), which for-016
malizes the objective of model merging into017
a multi-task learning framework, aiming to018
minimize the average loss difference between019
the merged model and each individual task020
model. Since data privacy limits the use of021
multi-task training data, we leverage LLMs’ lo-022
cal linearity and task vectors’ orthogonality to023
separate the data term and scaling coefficients024
term and derive a model-exclusive task arith-025
metic method. Our proposed MetaGPT is data-026
agnostic and bypasses the heavy search process,027
making it cost-effective and easy to implement028
for LLMs. Extensive experiments demonstrate029
that MetaGPT leads to improvements in task030
arithmetic and achieves state-of-the-art perfor-031
mance on multiple tasks.032

1 Introduction033

In recent years, a well-established paradigm for034

AI has been to pre-train models using large-scale035

datasets and then to fine-tune the models on dif-036

ferent tasks through supervised learning with task-037

specific datasets, which can lead to improved per-038

formance while requiring less labeled data (De-039

vlin et al., 2018; OpenAI, 2023; Dodge et al.,040

2020). However, for each new application, a sep-041

arate model has to be fine-tuned and deployed,042

AdaMerging

Computational
Efficient

Optimal
Performance

Data
Privacy

G-Task
Arithmetic

Task
Arithmetic

Figure 1: Existing methods face the trilemma of per-
formance, data privacy, and computational costs, which
hinders its application to LLMs. Our MetaGPT can solve
these problems under careful approximation and thus
can scale to GPT3-scale LLMs.

which is computationally expensive and resource- 043

intensive (Fifty et al., 2021; Zhang and Yang, 2021). 044

Thus, Multi-Task Learning (MTL) methods have 045

been proposed and developed to enable a single 046

model to solve multiple tasks concurrently. 047

Conventional MTL approaches typically involve 048

collecting raw data across multiple tasks and then 049

jointly training a single model (Caruana, 1997; 050

Yang et al., 2023a). However, the fine-tuning pro- 051

cess becomes extremely computationally intensive 052

with the development of large language models 053

(LLMs) that may comprise billions or even tril- 054

lions of parameters. Therefore, researchers have 055

explored merging various task-specific models with 056

the expectation that the merged model can handle 057

multiple tasks simultaneously. 058

One of the outstanding merging methods is task 059

arithmetic (Ilharco et al., 2023). For a given task, 060

the element-wise difference between the weights of 061

the pre-trained model and the fine-tuned model is 062

referred to as the task vector. Recent studies have 063

1

shown that linearly adding multiple scaled task vec-064

tors to the pre-trained model can improve perfor-065

mance across those tasks (Ilharco et al., 2023; Yang066

et al., 2023b). Nevertheless, previous task arith-067

metic methods face a trilemma in practice. 1) The068

best-performing task arithmetic methods require069

extra training to obtain optimal hyper-parameters,070

but the high computational costs hinder their appli-071

cation to GPT3-scale LLMs. 2) Some training-free072

methods heuristically set the scaling coefficient to073

a constant (e.g., 0.3), which is efficient but leads074

to sub-optimal performance. 3) Some methods075

conduct grid search on the training/validation set,076

which is sometimes impractical and faces the risk077

of data privacy concerns. In summary, as illustrated078

in Figure 1, there is essentially no task arithmetic079

method suitable for billion-scale models that per-080

form satisfactorily in practice.081

To address the aforementioned problems, in this082

paper, we propose MetaGPT: an optimal and effi-083

cient task arithmetic method for MTL without any084

data (model exclusive task arithmetic). We begin085

by providing a detailed theoretical analysis of the086

task loss difference and average loss difference in-087

troduced by the task arithmetic algorithm. Since088

we aim to choose parameters that minimize the av-089

erage loss difference, we first separate the data term090

and scaling coefficients, which also establishes a091

performance upper bound for task arithmetic. After092

separating the scaling coefficients, the final result093

is quadratic for each scaling coefficient, leading to094

a closed-form solution that is simple and effective095

to implement.096

The experimental results on the LLaMA-2 (Tou-097

vron et al., 2023) and Mistral (Jiang et al., 2023)098

series demonstrate that the MetaGPT approach is099

superior to previous merging methods on several100

tasks. MetaGPT provides an efficient avenue to op-101

timally implement task arithmetic for large-scale102

multi-task learning (MTL) and push the frontiers103

of language model merging. To sum up, our contri-104

butions include:105

1. We provide the mathematical formulation of106

the optimization objective for task arithmetic107

and the first theoretical analysis of the perfor-108

mance bound for task arithmetic.109

2. To achieve efficient, optimal, and model-110

exclusive task arithmetic, we separate the data111

term and scaling coefficients in the optimiza-112

tion objective, which leads to a closed-form113

solution for the scaling coefficients.114

3. Our MetaGPT is orthogonal to existing task 115

vector-improving methods and can be inte- 116

grated to achieve higher performance. 117

4. Extensive experiments demonstrate that our 118

MetaGPT can improve task arithmetic and 119

achieve state-of-the-art performance. 120

2 Related Work 121

Model Merging. Currently, model merging has 122

been developed for multiple uses such as improv- 123

ing performance on a single target task (Izmailov 124

et al., 2018; Wortsman et al., 2022), improving out- 125

of-domain generalization (Ramé et al., 2023; Cha 126

et al., 2021; Arpit et al., 2022), and improving the 127

performance of multi-task learning (Ilharco et al., 128

2023; Yadav et al., 2024; Yu et al., 2023), which is 129

the core focus of our research. The range of appli- 130

cations has led to a proliferation of methods to im- 131

prove beyond simple parameter averaging. Fisher 132

merging (Matena and Raffel, 2022) tries to weight 133

the importance of individual models using Fisher 134

Information Matrix and uses it to merge different 135

models. RegMean (Jin et al., 2022) formulate the 136

merging problem as a regression problem and leads 137

to an optimal solution for linear models. Task Arith- 138

metic (Ilharco et al., 2023) presents a method for 139

merging models by adding task vectors to the pre- 140

trained model to improve multi-task performance. 141

Ties Merging (Yadav et al., 2024) and DARE (Yu 142

et al., 2023) propose to refine the task vectors by 143

resolving the interference and removing extremely 144

redundant components. Ortiz-Jimenez et al. (2024) 145

propose that fine-tuning the models in their tangent 146

space can amplify weight disentanglement and lead 147

to substantial performance improvements. 148

Multi-Task Learning. Multi-task learning is a 149

powerful method for solving multiple correlated 150

tasks simultaneously (Caruana, 1997). Current 151

MTL works mainly focus on learning the shared 152

representations from designing specific architec- 153

ture (Misra et al., 2016; Sun et al., 2020) or using 154

specific optimization methods (Sener and Koltun, 155

2018; Liu et al., 2021). The former focuses on 156

learning the shared representation using different 157

methods such as designing specific representation 158

sharing module (Liu et al., 2019; Ding et al., 2021), 159

learning to branch (Lu et al., 2017; Guo et al., 160

2020), and based selection criteria (Ma et al., 2018; 161

Hazimeh et al., 2021). And the latter focuses on 162

balancing multiple tasks from the perspectives of 163

task training weights (Sener and Koltun, 2018; Liu 164

2

et al., 2019), gradient dominance (Chen et al., 2018;165

He et al., 2022; Yang et al., 2023a), and solving gra-166

dient conflicts (Yu et al., 2020; Chen et al., 2020;167

Liu et al., 2021). However, the conventional MTL168

approaches for collecting raw data across multiple169

tasks for joint training are not suitable for LLMs.170

The factors contributing to this issue are twofold:171

first, computational inefficiency due to the substan-172

tial computational costs associated with updating173

pre-trained models; second, a significant number of174

data proprietors are reluctant to disclose valuable175

or privacy-sensitive raw data.176

3 Preliminaries177

3.1 Notation178

Let 𝑓 : X × Θ → Y be a neural network tak-179

ing inputs 𝒙 ∈ X and parameterized by a set of180

weights 𝜽 ∈ Θ. We assume X ⊆ R𝑝, Θ ⊆ R𝑚 and181

Y ⊆ R𝑞. We consider fine-tuning a pre-trained182

model 𝑓 (·, 𝜽0) on 𝑇 different tasks, with each183

task 𝑡 consisting of a triplet (D𝑡 ,L𝑡 , 𝜽𝑡) , where184

D𝑡 = (Dtrain
𝑡 ,Dval

𝑡 ,Dtest
𝑡) is the training, valida-185

tion and test data of task 𝑡, L𝑡 is the loss function186

of task 𝑡, and 𝜽𝑡 is the model parameters fine-tuned187

on task 𝑡 based on the pre-trained weight 𝜽0.188

3.2 Task Arithmetic189

Let the task vector of task 𝑡 be the difference be-190

tween the fine-tuned and the pre-trained weights:191

𝝉𝑡 = 𝜽𝑡 − 𝜽0. (1)192

Task arithmetic aims to solve the multi-task learn-193

ing problem by directly adding the scaled task vec-194

tors to the pre-trained model weight 𝜽0:195

𝜽final = 𝜽0 +
𝑇∑︁
𝑖=1

𝜆𝑖𝝉𝑖 (2)196

where 𝜆𝑖 is the scaling coefficient of task vector197

𝜏𝑖 . As illustrated in Eq. 2, the task arithmetic intro-198

duces 𝑇 hyper-parameters {𝜆𝑖 |𝑖 = 1, · · · , 𝑇} and199

the choice of these scaling coefficients has a signif-200

icant influence on the performance of the merged201

model. Thus, selecting the appropriate scaling co-202

efficients for different task vectors remains a chal-203

lenging problem.204

3.3 Existing Methods205

Earlier task arithmetic (Ilharco et al., 2023; Yadav206

et al., 2024) propose to perform a grid search (G-207

Task Arithmetic) on the validation set to choose208

the optimal scaling coefficients. However, as the 209

number of tasks increases, exploring all the scaling 210

coefficient combinations faces the curse of dimen- 211

sionality. Therefore, to simplify the problem, they 212

use the same value for multiple scaling coefficients, 213

thereby reducing the computational complexity. In 214

the absence of the training/validation data, they set 215

𝜆 = 0.3 as the default setting for dataless arith- 216

metic. Moreover, Adamerging (Yang et al., 2023b) 217

aims to autonomously learn the coefficients from 218

unlabeled test samples using entropy minimization. 219

3.4 Scalability Challenges for LLMs 220

The methods mentioned above are not suitable for 221

scaling to LLMs: The grid search method requires 222

extra validation/training data, which faces the risk 223

of data privacy concerns and the curse of dimen- 224

sionality when the number of tasks increases. For 225

instance, conducting a grid search for three hyper- 226

parameters, each with a discretization interval of 227

0.01, would require 106 forward passes across the 228

entire dataset. Setting a fixed value such as 0.3 for 229

all the 𝜆𝑖 is time-efficient and can be applied to 230

LLMs, but it leads to sub-optimal performance. Us- 231

ing test data input to unsupervised optimize these 232

hyper-parameters can lead to an optimal solution 233

but requires extra data and necessitates loading mul- 234

tiple models for training. This process is both time 235

and memory consuming, making it challenging to 236

apply to LLMs. For example, merging three LLMs 237

requires loading three LLMs simultaneously to op- 238

timize, which is extremely costly. The statement 239

above suggests that scaling up existing optimal task 240

arithmetic to LLMs remains a challenging problem. 241

4 Our Proposed MetaGPT 242

4.1 Overview 243

To solve the problems above, we propose a new al- 244

gorithm MetaGPT, based on careful approximations 245

to a closed-form solution, which easily scales to 246

giant models both in terms of runtime as well as 247

performance while protecting data privacy. In this 248

section, we state the motivation and optimization 249

problem and solve it step by step. All proofs of 250

lemmas and theorems are provided in the appendix. 251

4.2 MetaGPT Optimization Objective 252

Definition 1 (Single Task Loss Difference). For the 253

fine-tuned model 𝜽𝑖 and the task arithmetic merged 254

model 𝜽final. The Task Loss Difference in task 𝑡 255

3

�final = �0 +
�1(�1, �2)�1 + �1(�1, �2)�2

�0
�2(�

1,
�2)�

2

�
1 (�

1 , �
2)�

2

� final

 MetaGPT

�final = �0 + C(�1 + �2)

�0

�2

�
1

 Task Arithmetic

�final = �0 +
opt(�1)�1 + opt(�2)�2

 AdaMerging

�final = �0 + �1�1 + �2�2

 G-Task Arithmetic

 0.2 0.4 0.6 0.8 1 �1

 0

.2

 0
.4

 0

.6

 0
.8

1 0.5

(d)(c)(b)(a)

0.4

0.3

0.2

0.1

0.0

 �
2

0.
0

 0

.2

 0
.4

 0

.6

 0
.8

1

0.0 0.2 0.4 0.6 0.8 1.0 �1

Sub-Optimal
Performance

Huge Computational
and Memory Cost

Curse of Dimensionality
Lack of Data Privacy

Optimal Performance √
Data Privacy √

Efficient Computation √

� final

Figure 2: Current task arithmetic based methods face the problems of sub-optimal performance, huge computational
and memory cost, curse of dimensionality and data privacy, which makes it difficult to scale to LLMs. Our method
solves the aforementioned problems and provides an avenue to scale task arithmetic to LLMs.

(TLD𝑡) is defined as:256

TLD𝑡 (𝜆1, · · · ,𝜆𝑇 , 𝝉1, · · · , 𝝉𝑇) (3)257

= L𝑡 (𝜽final, 𝒙) − L𝑡 (𝜽𝑡 , 𝒙).258

It is obvious that smaller TLD𝑡 suggests that259

the loss of the merged model is close or even lower260

than the fine-tuned model on task 𝑡, which indicates261

a better task arithmetic performance.262

However, for task arithmetic, it aims to improve263

the average performance of the final model on all264

the tasks. Thus, we define the average of all the265

task loss differences as Average Loss Difference266

(ALD), which can be formulated as follows:267

Definition 2 (Average Task Loss Difference). For268

the fine-tuned models {𝜽𝑖 |𝑖 = 1, · · · , 𝑇} and task269

arithmetic merged model 𝜽final. The average loss270

difference for all tasks is defined as:271

ALD(𝜆1, · · · , 𝜆𝑇 , 𝝉1, · · · , 𝝉𝑇) (4)272

=
1

𝑇

𝑇∑︁
𝑡=1

(L𝑡 (𝜽final, 𝒙) − L𝑡 (𝜽𝑡 , 𝒙)) .273

Thus, the optimization objective of MetaGPT is274

to find the optimal scaling coefficients that can275

minimize the ALD, which can be formulated as:276

Definition 3 (Optimization objective of MetaGPT).277

Our MetaGPT aims at finding the scaling coeffi-278

cients {𝜆𝑖 |𝑖 = 1, · · · , 𝑇}, which minimizes the av-279

erage loss difference ALD:280

argmin
𝜆1, · · · ,𝜆𝑇

1

𝑇

𝑇∑︁
𝑡=1

(L𝑡 (𝜽final, 𝒙) − L𝑡 (𝜽𝑡 , 𝒙)) . (5)281

4.3 Separating Data and Coefficients 282

Before analyzing ALD, we start with reformulating 283

TLD𝑡 by its Taylor expansion. 284

Lemma 4. Using Taylor expansion for L(𝜽final, 𝒙) 285

at 𝜽𝑡 , the TLD𝑡 in Eq. 3 can be reformulated as a 286

quadratic form with respect to the linear combina- 287

tion of 𝝀 and 𝜽: 288

TLD𝑡 =
1

2
𝒉⊤𝑡

(∫ 1

0
∇2L𝑡 (𝛾𝑡 (𝛽))𝑑𝛽

)
𝒉𝑡 , (6) 289

where 𝛾𝑡 (𝛽) = 𝜽𝑡 + 𝛽(𝜽final − 𝜽𝑡) and 𝒉𝑡 is the 290

linear combination of 𝝀 and 𝜽: 291

𝒉𝑡 =
∑︁
𝑘≠𝑡

𝜆𝑘 (𝜽𝑘 − 𝜽0) − (1 − 𝜆𝑡) (𝜽𝑡 − 𝜽0). (7) 292

Single TLD𝑡 is associated with the data, models, 293

and scaling coefficients. As we can see in Eq. 6, we 294

have transformed the data term 𝒙𝑡 to the Hessian, 295

the coefficients 𝝀 = [𝜆1, · · · , 𝜆𝑇] and models term 296

[𝜽1, · · · , 𝜽𝑇] to 𝒉. As our method tends to achieve 297

model-exclusive task arithmetic, the final result 298

should not correlate with the data term. Thus, we 299

first provide a property, which will be used latter 300

in our theorem proofs to separate the data term and 301

scaling coefficients and models term. In general, if 302

a pre-trained network 𝑓 (·; 𝜽0) demonstrates kernel 303

behavior during fine-tuning, i.e., fine-tuning occurs 304

in the linear regime, the following property must 305

be satisfied (Jacot et al., 2018): 306

Property 5 (NTK linearization). Around the ini- 307

tialization weights 𝜽0, a neural network can be 308

approximated with a linear approximation: 309

𝑓 (𝒙; 𝜽0 + 𝛼(𝜽𝑡 − 𝜽0)) ≈ 𝑓 (𝒙; 𝜽0) + 𝛼 · 𝐶. (8) 310

4

where 𝐶 = (𝜽𝑡 − 𝜽0)⊤∇ 𝑓 (𝒙, 𝜽0) is a data and311

model dependent constant.312

It is worth noting that, as the network width ap-313

proaches infinity, Eq. 8 becomes exact and remains314

valid throughout training (Jacot et al., 2018; Arora315

et al., 2019; Lee et al., 2019), which is specifically316

suitable for the LLMs arithmetic scenario.317

The second property is observed by (Ilharco318

et al., 2023), which states that the different task319

vectors are orthogonal:320

Property 6 (Orthogonality of Task Vectors). For321

task vector 𝝉𝑖 = 𝜽𝑖 − 𝜽0 and 𝝉𝑗 = 𝜽 𝑗 − 𝜽0 (𝑖 ≠ 𝑗),322

we have the following equation:323

𝝉⊤𝑖 𝝉𝑗 = (𝜽𝑖 − 𝜽0)⊤(𝜽 𝑗 − 𝜽0) = 0. (9)324

Now, as we previously introduce our first Lemma325

to transform the TLD𝑡 in Eq. 3 into a quadratic326

form with respect to the linear combination of 𝝀327

and 𝜽 . Next, using Property 5,6 and Lemma 7, we328

can upper bound the TLD𝑡 and separate the data329

term and scaling coefficients and models term.330

Theorem 7. The TLD𝑡 can be upper bounded by:331

TLD𝑡 (𝜆1, · · · , 𝜆𝑇 , 𝝉1, · · · , 𝝉𝑇)332

≤
𝛿2𝑡

2
∥𝜽𝑡 − 𝜽0∥22

{ 𝑇∑︁
𝑘≠𝑡

𝟙𝑡 (𝜆2𝑘)∥𝜽𝑘 − 𝜽0∥2
}
, (10)333

where 𝛿𝑡 is a data-dependent constant and we use334

𝟙𝑡 (𝜆2𝑘) to denote (𝜆2
𝑘
)𝟙(𝑘 ≠ 𝑡) + (1 − 𝜆2

𝑘
)𝟙(𝑘 = 𝑡).335

Now, after separating the data-related term to 𝛿𝑡 ,336

the scaling coefficients and models term to 𝟙𝑡 (𝜆2𝑘).337

By summing all the TLD𝑡s, we can separate the338

two terms for ALD:339

Theorem 8. By summing all the TLD𝑡 , we can340

separate the correlation between data term and341

scaling coefficients term in ALD:342

ALD(𝜆1, · · · , 𝜆𝑇 , 𝝉1, · · · , 𝝉𝑇) (11)343

≤
𝑇∑︁
𝑡=1

𝛿2𝑡 ∥𝜽𝑡 − 𝜽0∥22

{
𝑇∑︁
𝑘≠𝑡

𝟙(𝜆2𝑘)∥𝜽𝑘 − 𝜽0∥2
}
,344

4.4 The Optimal Solution345

After separating the data term and the scaling coef-346

ficients term, we can now reformulate our optimiza-347

tion objective Eq. 11 and derive the closed-form348

optimal solution of the scaling coefficients.349

Theorem 9 (𝜆 decomposition of ALD). For each350

𝜆𝑡 , we use it to decompose Eq. 11 as:351

ALD ≤
𝑇∑︁
𝑡=1

ALD𝜆𝑡 , (12)352

where ALD𝜆𝑡 is: 353

ALD𝜆𝑡 =
𝛿20

2
∥𝜽𝑡 − 𝜽0∥2

[
𝑇∑︁
𝑘=1

𝟙𝑡 (𝜆)∥𝜽𝑘 − 𝜽0∥2
]
,

(13)

354

where 𝛿0 = max𝑡 𝛿𝑡 . The equation above easily 355

leads to a model-exclusive closed-form solution: 356

Theorem 10 (Optimal Scaling Coefficients). We 357

can solve 𝜆𝑡 form Eq 13 by: 358

𝜆𝑡 = argmin
𝜆𝑡

∥𝜽𝑡 − 𝜽0∥2
[

𝑇∑︁
𝑘=1

𝟙𝑡 (𝜆)∥𝜽𝑘 − 𝜽0∥2
]
.

(14)

359

The above equation is quadratic on 𝜆𝑡 and the opti- 360

mal solution for 𝜆𝑡 is: 361

𝜆𝑡 =
∥𝜽𝑡 − 𝜽0∥2∑𝑛

𝑘=1 ∥𝜽𝑘 − 𝜽0∥2
. (15) 362

N
or

. y

�

Three random
sampled output

Figure 3: Verification of NTK linearization. We ran-
domly sampled the outputs of Llama-2-7b-chat-hf with
different 𝛼. We can see that the sampled outputs are
linearly with 𝛼 as expected.

5 Property Verification 363

In Section 4, we introduced two properties essential 364

to our proof. In this section, we conduct experi- 365

ments to verify these properties. 366

5.1 NTK Linearization 367

Jacot et al. (2018) have proved that when the 368

width of the neural network approaches infin- 369

ity, it demonstrates kernel behavior and the op- 370

timization proceeds in the linear regime. We 371

test Llama-2-7b-chat-hf (Touvron et al., 2023) on 372

AGIEval (Zhong et al., 2023) dataset to verify its 373

5

linearity. We have randomly sampled three outputs374

of the Llama-2-7b-chat-hf when 𝛼 in Eq. 8 gets375

value of [0, 0.1, · · · , 1]. For better visualization,376

we also subtract all the outputs using max{𝑦𝑖},377

ensuring they have the same endpoint. From the re-378

sults in Figure 3, we can see that all the outputs are379

almost linear with 𝛼, which indicates that LLMs380

do exhibit a kernel behavior during finetuning.381

5.2 Task Vector Orthogonality382

Ilharco et al. (2023); Yang et al. (2023b) have per-383

formed experiments to verify this property for vi-384

sion models. For LLMs, we also observe similar385

results: these task vectors are almost orthogonal to386

each other. The result has been shown in Figure 4.387

We can see that different task vectors are almost388

orthogonal, and their cosine similarity is nearly 0389

as Eq.9 expected, which verifies the property we390

have used for our proof.

English
Chinese

Spanish
Japanese Code

Math

English

Chinese

Spanish

Japanese

Code

Math

1.0000 0.0008 0.0004 0.0428 0.0013 0.0084

0.0008 1.0000 0.0000 0.0001 0.0018 0.0003

0.0004 0.0000 1.0000 0.0106 0.0000 0.0003

0.0428 0.0001 0.0106 1.0000 0.0002 0.0008

0.0013 0.0018 0.0000 0.0002 1.0000 0.0011

0.0084 0.0003 0.0003 0.0008 0.0011 1.0000

0.00

0.02

0.04

0.06

0.08

0.10

Figure 4: Verification of orthogonality. We calculate the
cosine similarity between six different task vectors and
find that their cosine similarity is nearly 0.

391

6 Experiments392

In this section, we conduct experiments to demon-393

strate the effectiveness of our MetaGPT. In the first394

section, we demonstrate that our MetaGPT consis-395

tently achieves optimal average performance across396

diverse datasets and is robust for model series with397

varying parameter sizes and architectures. DARE398

and Ties-Merging are task vector-improving meth-399

ods that resolve conflicts and redundant parameters400

between task vectors. We conduct experiments401

to demonstrate that our method is orthogonal to402

theirs and can be integrated to improve the aver-403

age performance further. Finally, we show that the 404

model merged by our MetaGPT has better out-of- 405

distribution generalization ability. 406

6.1 Merging Models Using MetaGPT 407

Dataset and Models. To test the effectiveness of 408

our method, we use Llama-2-7b-chat-hf (Touvron 409

et al., 2023), MAmmoTH-7B (Yue et al., 2023) and 410

llama-2-coder-7b (Manuel Romero, 2023) as mod- 411

els fine-tuned on general knowledge, math, and 412

code datasets using the pre-trained model Llama-2- 413

7B-hf (Touvron et al., 2023). Moreover, we use a 414

different model architecture: Mistral-7B-Instruct- 415

v0.2 (AI), MAmmoTH2-7B-Plus (Yue et al., 2024) 416

and Mistral-7B-codealpaca-lora (Nondzu) as mod- 417

els fine-tuned on general knowledge, math, and 418

code datasets using pre-trained model Mistral 419

7B (Jiang et al., 2023). We also provide experi- 420

ments using models with larger sizes: Llama-2- 421

13b-chat-hf (Touvron et al., 2023), MAmmoTH- 422

13B (Yue et al., 2023), and llama-2-13b-code- 423

chat (TAŞAR, 2023) as models fine-tuned on gen- 424

eral knowledge, math, and code datasets using 425

the pre-trained model Llama-2-13B-hf (Touvron 426

et al., 2023). We use WinoGrande (Sakaguchi 427

et al., 2021) and AGIEval (Zhong et al., 2023) 428

for evaluating general knowledge performance, 429

GSM8K (Cobbe et al., 2021) and MATH (Saxton 430

and Hill, 2019) for testing mathematical reason- 431

ing ability, HumanEval (Chen et al., 2021) and 432

MBPP (Austin et al., 2021) for estimating code- 433

generation capacity. 434

Evaluation Metrics. We use common evalua- 435

tion settings for a single task: 5-shot accuracy for 436

AGIEval, 4-shot accuracy for GSM8K and MATH, 437

3-shot accuracy for MBPP, and zero-shot accuracy 438

for HumanEval and WinoGrande. We employ two 439

key metrics in evaluating different merging meth- 440

ods: absolute average performance and normalized 441

average accuracy. 442

Quantitative Evaluation for LLaMA-2-7B. We 443

use the metrics and datasets we introduced above to 444

evaluate the performance of different methods. We 445

use Weight Average (Wortsman et al., 2022), Task 446

Arithmetic (Ilharco et al., 2023), Ties-Merging (Ya- 447

dav et al., 2024) and DARE (Yu et al., 2023), 448

which are also model exclusive and computation- 449

ally efficient methods, to compare with our method 450

by merging LLaMA-2-7B. The scores in Table 1 451

show that for WinoGrande, AGIEval, GSM8k, and 452

MATH dataset, our method scores 64.25, 32.71, 453

6

Table 1: Performance comparison of merging different LLaMA-2-7B fine-tuned models on different datasets.

Model WinoGrande AGIEval GSM8k MATH MBPP HumanEval Abs. Avg Nor. Avg

LM 62.67 34.01 28.66 4.00 22.00 7.31 26.44 0.91
Math 61.64 29.40 47.16 2.40 17.40 11.58 28.26 0.84
Code 61.88 27.41 17.21 2.20 24.80 21.92 25.90 0.84

Weight Average 63.93 31.36 37.68 7.00 23.40 20.12 30.58 1.25
Task Arithmetic 63.54 31.70 37.53 5.20 23.20 19.51 30.11 1.12
Ties Merging 62.67 32.10 37.93 7.40 22.80 18.29 30.20 1.26
DARE 63.27 32.25 37.86 7.00 24.40 19.51 30.72 1.26
MetaGPT(ours) 64.25 32.71 45.41 7.80 21.20 17.68 31.51 1.31

Table 2: Performance comparison of merging different Mistral-7B fine-tuned models on different datasets.

Model WinoGrande AGIEval GSM8k MATH MBPP HumanEval Abs. Avg Nor. Avg

LM 69.30 37.55 47.54 7.80 34.40 34.75 38.56 0.776
Math 63.46 38.06 68.46 28.00 24.00 25.00 41.16 0.854
Code 67.32 40.69 60.73 15.60 43.40 39.02 44.46 0.917

Weight Average 67.88 41.12 62.77 17.40 40.20 38.41 44.63 0.921
Task Arithmetic 67.88 41.41 63.38 18.80 40.20 38.40 45.01 0.932
Ties Merging 67.72 41.06 60.35 17.80 40.20 40.24 44.56 0.924
DARE 67.40 40.58 59.67 19.00 36.00 40.85 43.92 0.913
MetaGPT(ours) 68.35 41.86 66.03 20.80 39.00 35.37 45.24 0.936

45.41, and 7.80, which outperforms other meth-454

ods. For the HumanEval dataset, DARE performs455

best, and for the MBPP dataset, the Weight Av-456

erage method achieves the highest score. Since457

our method aims to achieve the average best per-458

formance, we use absolute average performance459

score and normalized average performance score460

to compare the five methods. We can see that our461

MetaGPT achieves the rank-1 score 31.51, 1.31 in462

both absolute average performance and normalized463

average performance.464

Using Different Model Architecture. We also465

use a different model architecture, Mistral-7B, for466

evaluation, and the result has been shown in Ta-467

ble 2. The scores in Table 2 show similar re-468

sults to LLaMA-2-7B: For WinoGrande, AGIEval,469

GSM8k, and MATH dataset, our MetaGPT scores470

41.86, 68.35, 66.03, 20.8, which outperforms exist-471

ing methods, for HumanEval dataset Weight Aver-472

age, Task Arithmetic, and Ties Merging performs473

best and for MBPP dataset, DARE method achieves474

the highest score.475

Using Larger Model Size. We also test our 476

method using a larger model LLaMA-2-13B (Tou- 477

vron et al., 2023). The scores in Table 3 demon- 478

strate that for AGIEval, Math, and MBPP datasets, 479

our method outperforms other methods. For Wino- 480

Grand, GSM8K, and HumanEval dataset, DARE, 481

Weight Average and Ties-Merging achieves the 482

highest score. Similarly, under the average mea- 483

sure absolute average performance and normalized 484

average performance, our method also outperforms 485

the other five methods. 486

Integrate with Ties/DARE As there are conflicts 487

and redundant parameters between task vectors, 488

DARE (Yu et al., 2023) and Ties-Merging (Yadav 489

et al., 2024) are two methods trying to solve the 490

interfaces, reducing the redundancy and thereby im- 491

proving the performance of task arithmetic. Since 492

our method is also based on the framework of task 493

arithmetic, Ties-merging and DARE are expected 494

to improve the performance of our MetaGPT fur- 495

ther. As we can see in Table 4, under the baseline 496

of Ties-Merging and DARE methods, our method 497

is orthogonal to Ties-Merging and DARE and can 498

integrate them into our MetaGPT, thus leading to 499

7

Table 3: Comparison of performance of merging fine-tuned LLaMA-2-13B on different datasets.

Model WinoGrande AGIEval GSM8K MATH MBPP HumanEval Abs. Avg Nor. Avg

LM 64.80 35.04 42.84 4.80 27.00 15.24 31.62 1.02
Math 60.38 36.74 55.27 3.40 22.60 12.80 31.87 0.93
Code 63.93 32.04 36.47 5.00 26.60 16.46 30.08 1.01

Weight Average 64.88 37.23 53.15 7.60 29.80 21.95 35.77 1.29
Task Arithmetic 65.11 35.48 50.34 7.20 29.80 21.95 34.98 1.25
Ties Merging 65.23 36.02 51.23 7.40 30.20 23.17 35.54 1.28
DAREs 65.70 36.87 51.85 7.60 30.00 22.56 35.76 1.29
MetaGPT(ours) 65.04 37.33 52.92 7.80 30.40 21.95 35.91 1.30

Table 4: MetaGPT can be integrated with DARE and Ties-Merging, thereby leading to further improvment.

Method WinoGrande AGIEval GSM8k MATH MBPP HumanEval Abs. Avg Nor. Avg

Ties-Merging 62.67 32.10 37.93 7.40 22.80 18.29 30.20 1.26
Ties + MetaGPT 62.35 32.91 46.10 8.00 22.40 17.68 31.57 1.33

Dare 63.27 32.25 37.86 7.00 24.40 19.51 30.72 1.26
Dare + MetaGPT 62.99 33.01 45.72 7.60 21.80 18.29 31.57 1.30

further improvement. For example, the average500

absolute performance of DARE has been improved501

by our MetaGPT from 30.72 to 31.57. And the nor-502

malized absolute performance of DARE has been503

improved by our MetaGPT from 1.26 to 1.3. Ties-504

merging also leads to a similar conclusion: the av-505

erage absolute performance of DARE has been im-506

proved by our MetaGPT from 30.20 to 31.57. And507

the normalized absolute performance of DARE has508

been improved by our MetaGPT from 1.26 to 1.33.509

6.2 Out of Distribution Generalization510

Following (Yang et al., 2023b; Jin et al., 2022), we511

also compare the out-of-distribution generalization512

ability of different merging methods. We evalu-513

ate different methods using JEC-QA (Zhong et al.,514

2020), FinanceIQ (DI, 2023), and MedQA (Jin515

et al., 2021) dataset. All three datasets use 5-shot516

accuracy as the evaluation metric. Table 5 sum-517

marizes out-of-distribution generalization perfor-518

mance when merging all domain specific mod-519

els using different methods. As we can see,520

MetaGPT outperforms current methods on these un-521

seen datasets, which demonstrates that MetaGPT is522

more robust to the test data distribution shifts.523

Table 5: Out of distribution Generalization

Model JEC-QA FinancelQ MedQA Avg

LM 31.32 32.83 30.20 31.45
Math 25.56 30.25 24.73 26.85
Code 29.23 30.87 26.25 28.78

Weight Average 30.73 34.17 29.90 31.60
Task Arithmetic 30.85 33.89 30.13 31.62
Ties Merging 30.80 33.53 30.02 31.45
DARE 30.79 33.93 30.17 31.63
MetaGPT(ours) 30.97 34.31 30.07 31.78

7 Conclusion 524

In this paper, we have provided a novel model merg- 525

ing method named MetaGPT, an efficient and opti- 526

mal model-exclusive task arithmetic specifically de- 527

signed for LLMs. We provide the mathematical for- 528

mulation of task arithmetic’s optimization objective 529

and the theoretical analysis of the task arithmetic 530

performance bound. By separating the data and 531

scaling coefficient term under careful approxima- 532

tion, the closed-form solution provides an avenue 533

for optimally achieving task arithmetic without us- 534

ing any data. Extensive experiment results show 535

that our MetaGPT outperforms the existing state-of- 536

the-art model-exclusive merging method and can 537

be integrated with task vector-improving methods 538

such as Ties-Merging and DARE. 539

8

8 Limitations540

(1) Our works share the same general limitation541

of existing task arithmetic based methods: Our542

merging method relies on common initialization543

and model architecture, which ensures that the task544

vectors are orthogonal. (2) Moreover, since our545

method is specifically designed for LLMs and relies546

on the NTK linearization, for small size models,547

our method may not perform well.548

References549

Mistral AI. Mistral-7b-instruct-v0.2.550

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Rus-551
lan Salakhutdinov, and Ruosong Wang. 2019. On552
exact computation with an infinitely wide neural net.553
In Advances in Neural Information Processing Sys-554
tems (NeurIPS).555

Devansh Arpit, Huan Wang, Yingbo Zhou, and Caim-556
ing Xiong. 2022. Ensemble of averages: Improving557
model selection and boosting performance in domain558
generalization. Advances in Neural Information Pro-559
cessing Systems, 35:8265–8277.560

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten561
Bosma, Henryk Michalewski, David Dohan, Ellen562
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.563
Program synthesis with large language models. arXiv564
preprint arXiv:2108.07732.565

Rich Caruana. 1997. Multitask learning. Machine566
learning, 28:41–75.567

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-568
Cheol Cho, Seunghyun Park, Yunsung Lee, and Sun-569
grae Park. 2021. Swad: Domain generalization by570
seeking flat minima. Advances in Neural Information571
Processing Systems, 34:22405–22418.572

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming573
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-574
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,575
Greg Brockman, Alex Ray, Raul Puri, Gretchen576
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-577
try, Pamela Mishkin, Brooke Chan, Scott Gray,578
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz579
Kaiser, Mohammad Bavarian, Clemens Winter,580
Philippe Tillet, Felipe Petroski Such, Dave Cum-581
mings, Matthias Plappert, Fotios Chantzis, Eliza-582
beth Barnes, Ariel Herbert-Voss, William Hebgen583
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie584
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,585
William Saunders, Christopher Hesse, Andrew N.586
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan587
Morikawa, Alec Radford, Matthew Knight, Miles588
Brundage, Mira Murati, Katie Mayer, Peter Welinder,589
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya590
Sutskever, and Wojciech Zaremba. 2021. Evaluat-591
ing large language models trained on code. Preprint,592
arXiv:2107.03374.593

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and 594
Andrew Rabinovich. 2018. Gradnorm: Gradient nor- 595
malization for adaptive loss balancing in deep multi- 596
task networks. In ICML, pages 794–803. PMLR. 597

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang 598
Luong, Henrik Kretzschmar, Yuning Chai, and 599
Dragomir Anguelov. 2020. Just pick a sign: Op- 600
timizing deep multitask models with gradient sign 601
dropout. In NeurIPS. 602

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 603
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 604
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 605
Nakano, Christopher Hesse, and John Schulman. 606
2021. Training verifiers to solve math word prob- 607
lems. arXiv preprint arXiv:2110.14168. 608

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 609
Kristina Toutanova. 2018. Bert: Pre-training of deep 610
bidirectional transformers for language understand- 611
ing. arXiv preprint arXiv:1810.04805. 612

Duxiaoman DI. 2023. Financeiq. 613

Ke Ding, Xin Dong, Yong He, Lei Cheng, Chilin Fu, 614
Zhaoxin Huan, Hai Li, Tan Yan, Liang Zhang, Xiaolu 615
Zhang, et al. 2021. Mssm: a multiple-level sparse 616
sharing model for efficient multi-task learning. In 617
SIGIR, pages 2237–2241. 618

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali 619
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020. 620
Fine-tuning pretrained language models: Weight ini- 621
tializations, data orders, and early stopping. arXiv 622
preprint arXiv:2002.06305. 623

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan 624
Anil, and Chelsea Finn. 2021. Efficiently identifying 625
task groupings for multi-task learning. Advances in 626
Neural Information Processing Systems, 34:27503– 627
27516. 628

Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. 629
2020. Learning to branch for multi-task learning. In 630
ICML, pages 3854–3863. PMLR. 631

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdh- 632
ery, Maheswaran Sathiamoorthy, Yihua Chen, Rahul 633
Mazumder, Lichan Hong, and Ed Chi. 2021. Dselect- 634
k: Differentiable selection in the mixture of experts 635
with applications to multi-task learning. NeurIPS, 636
34:29335–29347. 637

Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong 638
Guo, and James Caverlee. 2022. Metabalance: Im- 639
proving multi-task recommendations via adapting 640
gradient magnitudes of auxiliary tasks. WWW, pages 641
2205–2215. 642

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts- 643
man, Suchin Gururangan, Ludwig Schmidt, Han- 644
naneh Hajishirzi, and Ali Farhadi. 2023. Editing 645
models with task arithmetic. The Twelfth Interna- 646
tional Conference on Learning Representations. 647

9

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://huggingface.co/datasets/Duxiaoman-DI/FinanceIQ

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,648
Dmitry Vetrov, and Andrew Gordon Wilson. 2018.649
Averaging weights leads to wider optima and better650
generalization. arXiv preprint arXiv:1803.05407.651

Arthur Jacot, Franck Gabriel, and Clément Hongler.652
2018. Neural tangent kernel: Convergence and gen-653
eralization in neural networks. Advances in neural654
information processing systems, 31.655

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-656
sch, Chris Bamford, Devendra Singh Chaplot, Diego657
de las Casas, Florian Bressand, Gianna Lengyel, Guil-658
laume Lample, Lucile Saulnier, et al. 2023. Mistral659
7b. arXiv preprint arXiv:2310.06825.660

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng,661
Hanyi Fang, and Peter Szolovits. 2021. What disease662
does this patient have? a large-scale open domain663
question answering dataset from medical exams. Ap-664
plied Sciences, 11(14):6421.665

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and666
Pengxiang Cheng. 2022. Dataless knowledge fu-667
sion by merging weights of language models. arXiv668
preprint arXiv:2212.09849.669

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz,670
Yasaman Bahri, Roman Novak, Jascha Sohl-671
Dickstein, and Jeffrey Pennington. 2019. Wide neu-672
ral networks of any depth evolve as linear models673
under gradient descent. In Advances in Neural Infor-674
mation Processing Systems (NeurIPS).675

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and676
Qiang Liu. 2021. Conflict-averse gradient descent677
for multi-task learning. NeurIPS, 34:18878–18890.678

Shikun Liu, Edward Johns, and Andrew J. Davison.679
2019. End-to-end multi-task learning with attention.680
In CVPR, pages 1871–1880. Computer Vision Foun-681
dation / IEEE.682

Yongxi Lu, Abhishek Kumar, Shuangfei Zhai,683
Yu Cheng, Tara Javidi, and Rogerio Feris. 2017.684
Fully-adaptive feature sharing in multi-task networks685
with applications in person attribute classification. In686
CVPR, pages 5334–5343.687

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan688
Hong, and Ed H. Chi. 2018. Modeling task relation-689
ships in multi-task learning with multi-gate mixture-690
of-experts. In SIGKDD, pages 1930–1939. ACM.691

Manuel Romero. 2023. llama-2-coder-7b (revision692
d30d193).693

Michael S Matena and Colin A Raffel. 2022. Merging694
models with fisher-weighted averaging. Advances in695
Neural Information Processing Systems, 35:17703–696
17716.697

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and698
Martial Hebert. 2016. Cross-stitch networks for699
multi-task learning. In CVPR, pages 3994–4003.700
IEEE Computer Society.701

Nondzu. Mistral-7b-codealpaca-lora. 702

OpenAI. 2023. GPT-4 technical report. Preprint, 703
arXiv:2303.08774. 704

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pas- 705
cal Frossard. 2024. Task arithmetic in the tangent 706
space: Improved editing of pre-trained models. Ad- 707
vances in Neural Information Processing Systems, 708
36. 709

Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu 710
Cord, Léon Bottou, and David Lopez-Paz. 2023. 711
Model ratatouille: Recycling diverse models for out- 712
of-distribution generalization. In International Con- 713
ference on Machine Learning, pages 28656–28679. 714
PMLR. 715

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 716
ula, and Yejin Choi. 2021. Winogrande: An adver- 717
sarial winograd schema challenge at scale. Commu- 718
nications of the ACM, 64(9):99–106. 719

Grefenstette Saxton and Kohli Hill. 2019. Analysing 720
mathematical reasoning abilities of neural models. 721
arXiv:1904.01557. 722

Ozan Sener and Vladlen Koltun. 2018. Multi-task learn- 723
ing as multi-objective optimization. In NeurIPS, 724
pages 525–536. 725

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate 726
Saenko. 2020. Adashare: Learning what to share for 727
efficient deep multi-task learning. NeurIPS, 33:8728– 728
8740. 729

Davut Emre TAŞAR. 2023. llama-2-13b-code-chat. 730

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 731
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 732
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 733
Bhosale, et al. 2023. Llama 2: Open founda- 734
tion and fine-tuned chat models. arXiv preprint 735
arXiv:2307.09288. 736

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, 737
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor- 738
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, 739
Simon Kornblith, et al. 2022. Model soups: averag- 740
ing weights of multiple fine-tuned models improves 741
accuracy without increasing inference time. In In- 742
ternational conference on machine learning, pages 743
23965–23998. PMLR. 744

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A 745
Raffel, and Mohit Bansal. 2024. Ties-merging: Re- 746
solving interference when merging models. Ad- 747
vances in Neural Information Processing Systems, 748
36. 749

Enneng Yang, Junwei Pan, Ximei Wang, Haibin Yu, 750
Li Shen, Xihua Chen, Lei Xiao, Jie Jiang, and Guib- 751
ing Guo. 2023a. Adatask: A task-aware adaptive 752
learning rate approach to multi-task learning. In 753
AAAI, volume 37, pages 10745–10753. 754

10

https://huggingface.co/mrm8488/llama-2-coder-7b
https://huggingface.co/mrm8488/llama-2-coder-7b
https://huggingface.co/mrm8488/llama-2-coder-7b
https://huggingface.co/Nondzu/Mistral-7B-codealpaca-lora
https://arxiv.org/abs/2303.08774
https://huggingface.co/emre/llama-2-13b-code-chat

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guib-755
ing Guo, Xingwei Wang, and Dacheng Tao. 2023b.756
Adamerging: Adaptive model merging for multi-task757
learning. In The Twelfth International Conference on758
Learning Representations.759

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin760
Li. 2023. Language models are super mario: Absorb-761
ing abilities from homologous models as a free lunch.762
arXiv preprint arXiv:2311.03099.763

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey764
Levine, Karol Hausman, and Chelsea Finn. 2020.765
Gradient surgery for multi-task learning. NeurIPS,766
33:5824–5836.767

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-768
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.769
2023. Mammoth: Building math generalist models770
through hybrid instruction tuning. arXiv preprint771
arXiv:2309.05653.772

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen.773
2024. Mammoth2: Scaling instructions from the web.774
arXiv preprint arXiv:2405.03548.775

Yu Zhang and Qiang Yang. 2021. A survey on multi-776
task learning. IEEE Transactions on Knowledge and777
Data Engineering, 34(12):5586–5609.778

Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang779
Zhang, Zhiyuan Liu, and Maosong Sun. 2020. Jec-780
qa: a legal-domain question answering dataset. In781
Proceedings of the AAAI conference on artificial in-782
telligence, volume 34, pages 9701–9708.783

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,784
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,785
and Nan Duan. 2023. Agieval: A human-centric786
benchmark for evaluating foundation models. arXiv787
preprint arXiv:2304.06364.788

11

Appendix789

A Proof790

A.1 Proof of Lemma 4791

Using Taylor expansion for L(𝜽final, 𝒙) at 𝜽0:792

L(𝜽final, 𝒙) (16)793

=L𝑡 (
𝑛∑︁

𝑘=1

𝜆𝑘 (𝜽𝑘 − 𝜽0) + 𝜽0, 𝒙𝑡) (17)794

=L𝑡 (𝒉𝑡 + 𝜽𝑡 , 𝒙𝑡) (18)795

=L𝑡 (𝜽𝑡 , 𝒙𝑡) + ∇L𝑡 (𝜽𝑡 , 𝒙𝑡)𝒉𝑡796

+ 1

2
𝒉⊤𝑡

(∫ 1

0
∇2L𝑡 (𝛾𝑡 (𝛽))𝑑𝛽

)
𝒉𝑡 (19)797

where 𝛾𝑡 (𝛽) = 𝜽𝑡 +𝛽(𝜽final−𝜽𝑡) and 𝒉𝑡 is the linear798

combination of 𝝀 and 𝜽:799

𝒉𝑡 =
∑︁
𝑘≠𝑡

𝜆𝑘 (𝜽𝑘 − 𝜽0) − (1 − 𝜆𝑡) (𝜽𝑡 − 𝜽0) (20)800

Because the 𝜽𝑡 is fine-tuned using loss L𝑡 , the801

gradient of L𝑡 at 𝜽𝑡 is zero, and the first order802

expansion is 0. Substituting Eq. 19 to Eq. 3, we803

have:804

TLD𝑡 = L𝑡 (𝜽final, 𝒙𝑡) − L𝑡 (𝜽𝑡 , 𝒙𝑡) (21)805

=
1

2
𝒉⊤𝑡

(∫ 1

0
∇2L𝑡 (𝛾𝑡 (𝛽))𝑑𝛽

)
𝒉𝑡 (22)806

Thus, we have completed the proof.807

A.2 Proof of Theorem 7808

Before starting the proof, we first introduce a809

lemma:810

Lemma 11. Under the Property. 5, the task vector811

is linearly with the gradient.812

𝛿𝑡 (𝜽𝑡 − 𝜽0) = ∇𝜽0 𝑓 (𝒙, 𝜽0) (23)813

Proof: For gradient descent, we have:814

𝜽𝑡 − 𝜽0 =
𝑛∑︁
𝑖=1

𝑙𝑟𝑖∇L𝑖
𝑡 (24)815

=

𝑛∑︁
𝑖=1

𝑙𝑟𝑖
𝜕L𝑖

𝑡

𝜕 𝑓
∇ 𝑓𝑖 (25)816

where 𝑙𝑟𝑖 and ∇L𝑖
𝑡 and ∇ 𝑓𝑖 is the learning rate, gra-817

dient loss, gradient of 𝑓 at step i. From Property 5,818

we can see that the fine-tuning process of 𝑓 occurs819

in the linear regime, which indicates that the first820

order derivative in the task vector direction is an 821

constant. We derivative at 𝜽𝑡 : 822

∇𝜽𝑡 𝑓 (𝒙, 𝜽𝑡) = ∇𝜽0 𝑓 (𝒙, 𝜽0) (26) 823

Thus, we substitute all the gradient of 𝑓𝑖 using 824

∇𝜽0 𝑓 (𝒙, 𝜽0): 825

𝛿𝑡 (𝜽𝑡 − 𝜽0) = ∇𝜽0 𝑓 (𝒙, 𝜽0) (27) 826

where
1

𝛿𝑡
=

𝑛∑︁
𝑖=1

𝑙𝑟𝑖
𝜕L𝑖

𝑡

𝜕 𝑓

. Thus, we have completed the proof of the Lemma. 827

For the of loss function, using Property 5 we 828

have: 829

L𝑡 (𝜽𝑡 , 𝒙𝑡) = ∥ 𝑓 (𝒙𝑡 , 𝜽𝑡) − 𝑦∥2 (28) 830

=∥(𝜽𝑡 − 𝜽0)⊤∇ 𝑓 (𝒙𝑡 ; 𝜽0) + 𝐶0∥2 (29) 831

For the Hessian of loss function, it can be repre- 832

sented as: 833

∇2
𝜽𝑡
L𝑡 = ∇𝜽0 𝑓 (𝒙𝑡 ; 𝜽0)∇⊤

𝜽0
𝑓 (𝒙𝑡 ; 𝜽0) (30) 834

Using Eq. 30 the TLD𝑡 can be represented as: 835

2TLD𝑡 (31) 836

=𝒉⊤𝑡

(∫ 1

0
∇2L𝑡 (𝛾𝑡 (𝛽))𝑑𝛽

)
𝒉𝑡 (32) 837

=𝒉⊤𝑡

(
∇2L𝑡 (𝜽)

)
𝒉𝑡 (33) 838

=𝒉⊤𝑡
(
∇𝜽0 𝑓 (𝜽0, 𝒙𝑡)∇𝜽0 𝑓

⊤(𝜽0, 𝒙𝑡)
)
𝒉𝑡 (34) 839

=tr
{
𝒉⊤𝑡

(
∇𝜽0 𝑓 (𝜽0, 𝒙𝑡)∇𝜽0 𝑓

⊤(𝜽0, 𝒙𝑡)
)
𝒉𝑡

}
(35) 840

≤tr(𝒉𝒉⊤)tr
(
∇𝜽0 𝑓 (𝜽0, 𝒙𝑡)∇𝜽0 𝑓

⊤(𝜽0, 𝒙𝑡)
)

(36) 841

For tr(𝒉𝒉⊤), using Property. 6, we have: 842

tr(𝒉𝒉⊤) (37) 843

=

 𝑇∑︁
𝑘≠𝑡

𝜆𝑘 (𝜽𝑘 − 𝜽0) − (1 − 𝜆𝑡) (𝜽𝑡 − 𝜽0)⊤
2 (38) 844

=

𝑇∑︁
𝑘≠𝑡

[
𝟙𝑘≠𝑡 (𝜆2𝑘) + 𝟙𝑘=𝑡 (1 − 𝜆2𝑘)

]
∥𝜽𝑘 − 𝜽0∥2

(39)

845

=

𝑇∑︁
𝑘≠𝑡

[
𝟙(𝜆2𝑘)∥𝜽𝑘 − 𝜽0∥2

]
(40) 846

where (𝜆2𝑘)𝟙(𝑘 ≠ 𝑡)+(1−𝜆2𝑘)𝟙(𝑘 = 𝑡) B 𝟙𝑡 (𝜆2𝑘).

12

For the second part:847

tr(∇𝜽0 𝑓 (𝜽0, 𝒙𝑡)∇𝜽0 𝑓
⊤(𝜽0, 𝒙𝑡)), using Lemma 11848

we can have:849

tr
(
∇𝜽0 𝑓 (𝜽0, 𝒙𝑡)∇𝜽0 𝑓

⊤(𝜽0, 𝒙𝑡)
)
= 𝛿2𝑡 ∥𝜽𝑡 − 𝜽0∥2

(41)
850

Thus, for TLD𝑡 we can upper bound it by851

TLD𝑡 ≤
𝛿2𝑡

2
∥𝜽𝑡 − 𝜽0∥22

{ 𝑇∑︁
𝑘≠𝑡

𝟙𝑡 (𝜆2𝑘)∥𝜽𝑘 − 𝜽0∥2
}

(42)

852

A.3 Proof of Theorem 8853

By summing Eq.42 from 1 to T, we can complete854

the proof.855

ALD ≤
𝑇∑︁
𝑡=1

𝛿2𝑡

2
∥𝜽𝑡 − 𝜽0∥22

{ 𝑇∑︁
𝑘≠𝑡

𝟙𝑡 (𝜆2𝑘)∥𝜽𝑘 − 𝜽0∥2
}

(43)

856

A.4 Proof of Theorem 9857

First, for Eq. 43, we have:858

ALD ≤
𝛿2𝑡

2

𝑇∑︁
𝑡=1

∥𝜽𝑡 − 𝜽0∥22
{ 𝑇∑︁
𝑘≠𝑡

𝟙𝑡 (𝜆2𝑘)∥𝜽𝑘 − 𝜽0∥2
}

(44)

859

where 𝛿0 = max{𝛿𝑖} For Eq. 44, it is easy to verify860

that the terms containing 𝜆𝑡 can be represented as:861

ALD𝜆𝑡 =
𝛿2𝑡

2
∥𝜽𝑡 − 𝜽0∥2

[
𝑇∑︁
𝑘=1

𝟙𝑡 (𝜆)∥𝜽𝑘 − 𝜽0∥2
]

(45)

862

Thus, the ALD can be upper bounded by863

ALD ≤
𝑇∑︁
𝑡=1

ALD𝜆𝑡 (46)864

A.5 Proof of Theorem 10865

Because each ALD𝜆𝑡 does not contain other scaling866

coefficients. We can solve each optimal 𝜆𝑡 from867

ALD𝜆𝑡 :868

𝜆𝑡 = argmin
𝜆𝑡

𝛿20

2
∥𝜽𝑡 − 𝜽0∥2

[
𝑇∑︁
𝑘=1

𝟙𝑡 (𝜆)∥𝜽𝑘 − 𝜽0∥2
]

(47)

869

= argmin
𝜆𝑡

∥𝜽𝑡 − 𝜽0∥2
[

𝑇∑︁
𝑘=1

𝟙𝑡 (𝜆)∥𝜽𝑘 − 𝜽0∥2
]

(48)

870

The RHS of the above equation is quadratic on 𝜆𝑡 871

and and the optimal solution for 𝜆𝑡 is: 872

𝜆𝑡 =
∥𝜽𝑡 − 𝜽0∥2∑𝑛

𝑘=1 ∥𝜽𝑘 − 𝜽0∥2
(49) 873

B Details of Models and Datasets 874

Table 7 shows the versions and correspondence 875

with pre-trained backbones of fine-tuned LLMs. 876

Table 8 shows the details of the datasets we use in 877

our paper. 878

C Infra and hardware details 879

We use PyTorch as the deep learning framework. 880

We merge and evaluate the neural networks using 881

A100 GPUs. 882

D Hyper-parameter Setting 883

For both DARE and TIES-Merging, the density of 884

0.55 is used, and the open-source tool MergeKit1 885

is employed for the merging process. 886

E Details of different Methods 887

We give a detailed comparison of the current merg- 888

ing method below from the perspective of extra 889

data information, time complexity, and optimal 890

performance. The time complexity for forward 891

and backward processes is denoted as FW and BP. 892

For RegMean, it requires the inner product data 893

matrices for layer input to calculate the updated 894

parameters. It only requires a forward process, but 895

loading all the inner products of the layer input ma- 896

trix requires O(𝜃2) memory. For Fisher merge, it 897

also requires the data to calculate the Fisher Matrix, 898

which requires the forward process to calculate 899

the Fisher matrix and O(𝜃2) memory to store the 900

Fisher matrix. Grid-search Task Arithmetic (G- 901

Task Arithmetic) requires O(𝐺T × TFW) forward 902

process to evaluate, where G is the grid number 903

(G = 100 means 100 girds from 0 to 1) and T is 904

the number of tasks. The space complexity is also 905

equal to the memory requirement of the forward 906

process. For Adamerging, it simultaneously loads 907

T LLMs to optimize, whose time complexity is 908

O(TBP) and space complexity is: O(SBP × 𝑇). For 909

weight average, task arithmetic, and MetaGPT, they 910

all do not need extra data information, which is 911

model exclusive. Their time and space complexity 912

is O(1) and O(𝑛), but only our MetaGPT achieves 913

optimal performance. 914

1https://github.com/arcee-ai/mergekit/tree/main

13

Table 6: Extra data information requirement, time and space complexity, and optimally of current methods. The time
complexity for forward process and back propagation are denote by TFW,TBP. The space complexity for forward
process and back propagation are denote by SFW,SBP. T is the number of task, 𝜃 is the number of parameters and G
is the grid number (G = 100 means 100 girds from 0 to 1).

Extra Data Info Time Complexity Space Complexity Optimal Apply to LLMs

RegMean ! O(TFW) O(𝜃2) ! %

Fisher Merge ! O(TFW) O(𝜃2) ! %

G-Task Arithmetic ! O(𝐺T × TFW) O(SFW) ! %

AdaMerging ! O(TBP) O(SBP × 𝑇) ! %

Task Arithmetic % O(1) O(𝑛) % !

Weight Average % O(1) O(𝑛) % !

MetaGPT % O(1) O(𝑛) ! !

Table 7: Details of datasets we used for our evaluation.

Dataset
Number of

Training Examples
Number of

Validation Examples
Number of

Testing Examples
Evaluate Metric

WinoGrande 9248 1267 1767 0-shot accuracy

AGIEval N/A N/A 8062 5-shot accuracy

GSM8k 7473 N/A 1319 4-shot accuracy

Math 7500 N/A 1500 4-shot accuracy

MBPP 374 30 500 3-shot accuracy

HumanEval N/A N/A 164 0-shot accuracy

JEC-QA N/A N/A 26365 5-shot accuracy

FinancelQ N/A N/A 7173 5-shot accuracy

MedQA N/A N/A 61097 5-shot accuracy

Table 8: Details of models we used for our evaluation.

Pre-trained Model Task Fine-tuned-Models

LLaMA-2-7b

General Knowledge meta-llama/Llama-2-7b-chat-hf
Mathematical Reasoning TIGER-Lab/MAmmoTH-7B
Code Generating mrm8488/llama-2-coder-7b
Chinese hfl/chinese-llama-2-7b
Spanish clibrain/Llama-2-7b-ft-instruct-es
Japanese elyza/ELYZA-japanese-Llama-2-7b

Mistral-7b
General Knowledge mistralai/Mistral-7B-Instruct-v0.2
Mathematical Reasoning TIGER-Lab/MAmmoTH2-7B
Code Generating Nondzu/Mistral-7B-codealpaca-lora

LLaMA-2-13b
General Knowledge meta-llama/Llama-2-13b-chat-hf
Mathematical Reasoning TIGER-Lab/MAmmoTH-13B
Code Generating emre/llama-2-13b-code-chat

14

	Introduction
	Related Work
	Preliminaries
	Notation
	Task Arithmetic
	Existing Methods
	Scalability Challenges for LLMs

	Our Proposed MetaGPT
	Overview
	MetaGPT Optimization Objective
	Separating Data and Coefficients
	The Optimal Solution

	Property Verification
	NTK Linearization
	Task Vector Orthogonality

	Experiments
	Merging Models Using MetaGPT
	Out of Distribution Generalization

	Conclusion
	Limitations
	Proof
	Proof of Lemma 4
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10

	Details of Models and Datasets
	Infra and hardware details
	Hyper-parameter Setting
	Details of different Methods

