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Abstract

Large Language Models (LLMs) are rapidly advancing across diverse domains,
yet their application in theoretical physics remains immature. This position paper
argues that LLM agents can potentially help accelerate theoretical, computational,
and applied physics when properly integrated with domain knowledge and toolbox.
We analyze current LLM capabilities for physics—from mathematical reasoning
to code generation—identifying critical gaps in physical intuition, constraint sat-
isfaction, and reliable reasoning. We envision future physics-specialized LLMs
that could handle multimodal data, propose testable hypotheses, and design experi-
ments. Realizing this vision requires addressing fundamental challenges: ensuring
physical consistency and developing robust verification methods. We call for
collaborative efforts between physics and Al communities to advance scientific
discovery in physics.

1 Introduction

Large Language Models (LLMs) represent a major advance at the forefront of artificial intelligence
(AI), exhibiting remarkable proficiency in understanding natural language and performing increasingly
complex reasoning tasks [1, 2, 3, 4, 5, 6]. While impacting various sectors, their potential in
fundamental scientific research is only beginning to be systematically explored [7, 8]. Physics, with
its complex blend of abstract theory, demanding computation, rigorous experimentation, and reliance
on approximations and physical intuition, presents both unique challenges and fertile ground for
LLM applications.

Position: We argue that LLM agents, when appropriately adapted and integrated with domain-
specific knowledge and toolbox, could potentially serve as a promising technology with the
capacity to accelerate discovery in theoretical physics, with broader implications for computa-
tional and applied physics, provided their current limitations in rigorous reasoning, physical
grounding, and reliability are systematically addressed through targeted interdisciplinary
research.

This position challenges the current paradigm where LLMs serve primarily as assistants for infor-
mation retrieval. We contend that LLMs may evolve into autonomous collaborators for physicists,
augmenting capabilities from literature review and conceptual exploration, to computational sim-
ulation and data interpretation. However, realizing this potential requires acknowledging current
limitations and undertaking dedicated, physics-informed research efforts. Supporting this cautious
optimism is recent progress in LLM architecture, scale, and particularly advances in training rea-

Published in the Al for Science workshop (39th Conference on Neural Information Processing Systems (NeurIPS
2025)).



// 6. Iterate

. q 3. Analytical 4. Simulation .
Ll R Lol Syl & Lol D& ol & Nomercr [ HAREE |l Communicaion
view roblem & Computation Physical Exp. P
A DR T — AS = A X A
. . N .
Literature Synthe- Hypothesis Generation Math/Symbolic Rea- Coding & Tool Physical Consistency Multimodal Reason-
sis (Section 4.1) (Section 5.2.1) soning (Section 3.1) Use (Section 3.4) (Section 3.2.3) ing (Section 5.1)

| Speed up survey Novel connections Experiment control Verify constraints

| Diagram to code

| Error detection

Figure 1: A schematic workflow of theoretical physics research (top row, blue), potential LLM capabilities
(middle row, green), and key opportunities (bottom row, orange). Tool use capability connects with experimental
research through automated instrument control and data analysis.

soning models [3, 6, 4, 5, 9, 10, 11] that demonstrate growing agency in multistep problem-solving
needed for physics research.

Overview of this work This paper is structured as follows. Section 2 introduces the taxonomy
used in this paper, outlining a typical physics research workflow with an overview of the subskills
LLMs might assist with. Section 3 provides an in-depth analysis of LLM capabilities for physics
reasoning, categorized into mathematical skills, physics-specific reasoning beyond mathematics, code
generation & execution, and general research skills. Section 4 discusses common LLM engineering
techniques relevant to physics applications. Section 5 explores open directions and desirable future
capabilities for next-generation LLM-powered systems to better assist physics research. Finally,
Section 6 summarizes our position and offers a concluding perspective. Sections on Risk, Limitations
and Ethical Considerations are included in the appendix.

2 Physics Research: An Overview

2.1 Research Stages & Skills

A typical workflow in physics research often involves several stages, as depicted in Figure 1 (top
row). These stages are generally iterative and involve collaboration among various researchers
with different backgrounds and skill sets. Scientific inquiry typically proceeds through an iterative
workflow that begins with literature review and problem identification, where existing work is
surveyed to assess the state of the art and uncover open questions or inconsistencies. Based on
this foundation, researchers engage in hypothesis formulation and model building, proposing new
ideas, constructing models to capture physical phenomena, and defining the assumptions that frame
their scope. These models are then subjected to analytical derivation, involving mathematical
analysis, symbolic reasoning, and numerical calculations to extract predictions. Complementing
this, simulation and computational experiments are employed to test model behavior and guide
the design of physical experiments, for instance simulating the BKT transition in a quantum XY
model [12] before performing quantum optical experiments. The resulting data undergo analysis
and interpretation of results, where findings are compared with prior work to generate physical
insights. This process is inherently cyclical, requiring iteration of the above stages until the problem
is satisfactorily addressed. Finally, the outcomes are consolidated through communication, including
the preparation of papers and presentations to disseminate the results.

2.2 Opportunities and Challenges for LLMs in Physics Research

The intersection of Al and physics is not new [13], but the advent of powerful LLMs introduces the
potential to help address persistent bottlenecks in physics research—especially for tasks demanding
enormous time investment or the processing of vast information streams. LLMs might assist physics
research in at least two primary modes: (1) automating repetitive tasks such as literature review
and well-defined calculations (see Sections 3.1, 3.4 and 4.1), and (2) sparking new ideas through
human-AI collaboration, where Al agents might provide alternative perspectives (see Sections 3.3
and 5.2.1).

While LLMs have shown remarkable growth in assisting formal theorem proving [14, 15, 16]
and augmenting biochemical research [17, 18], physics poses unique challenges. Unlike formal
mathematics with its focus on rigorous axiom-based proof [14], theoretical physics centrally involves
constructing models, making justified approximations (e.g., when to approximate sin 6 =~ 6 for
small angles or apply perturbation theory where a Hamiltonian H = Hy + AV is expanded in



powers of a small parameter \), seeking validation against experiments, and employing physical
intuition. These represent the highly challenging task of connecting abstractions to physical reality [19,
20, 21]. Physics often involves mathematical problems that, while formally straightforward, gain
complexity and nuance from their physical context, where mathematical rigor alone is insufficient.
For example, diagonalizing a 2 x 2 matrix is standard linear algebra. However, in topological
condensed matter physics, such a matrix might represent the Bloch Hamiltonian of a Chern insulator,
H(k) = dy(k)o, + dy(k)o, + d.(k)o,, where o; are Pauli matrices and d(k) is a vector function
of momentum k. Finding eigenvalues E1 (k) = £|d(k)| is straightforward mathematically, but the
physics lies in how the winding of d (k) determines topological invariants like the Chern number [22],
which dictates quantized Hall conductivity [23]. LLM agents must connect mathematics with
underlying physical interpretation.

3 Skill Analysis for Physics Reasoning

Despite the emerging ecosystem of scientific reasoning benchmarks from general scientific knowl-
edge [24, 25] to physics-specific reasoning [26, 27, 28, 29], they focus primarily on exam-like
problems with one definitive answer for verification. These do not capture the full complexity of
physics research involving tasks such as deriving properties of new physical models, modifying
simulation code based on a paper, and interacting with experts to explore open-ended problems. We
need more benchmarks analogous to SWE-Bench [30] on a full-cycle research workflow to gauge
how LLMs perform in tackling open-ended research in a real-world scenario [31]. Furthermore,
developing benchmarks from frontier research questions such as FrontierMath [32] or Humanity’s
Last Exam [33], within an ecosystem of domain experts [34], is key to probing the limits of Al
reasoning for scientific discovery beyond solving close-ended Olympiad exam questions. In this
section, we discuss concrete skills needed for physics research where limitations of current models
call for focused improvement before LLMs can be reliable research partners. We categorize these
skills to better understand the multifaceted potential and challenges.

3.1 Mathematical and Symbolic Reasoning

Skill Performing algebraic manipulation, calculus (differentiation, integration), linear algebra (matrix
operations, tensor contractions like 7%* S itm = Rfﬁl), and solving differential equations essential for
theoretical physics. Analysis Next-token prediction inherent to LLMs can lead to cascading errors in
complex mathematical operations. Despite saturation on legacy benchmarks like MATH [24], errors
are frequently observed in algebra and calculus [35, 36]. They also struggle with unit consistency
(e.g., mixing SI and natural units), thereby raising questions about their reliability for research-level
derivations (e.g., evaluating path integrals [ DgetS[91/) [37].

3.2 Beyond Math: Physics-Specific Reasoning Skills

We outline skills unique to understanding physical context, principles, and common practices, ordered
roughly from currently more reliable to less reliable (or more complex) for LLMs.

3.2.1 Conceptual Framework, Formula Retrieval, and Application

Skill Articulating physics concepts, principles, and theories in natural language, adapting to specific
notations; identifying and applying general physics formulas to well-structured problems. Analysis
LLMs can generate textbook-style explanations through summarization, yet this apparent understand-
ing can be superficially derived from statistical correlations rather than causal models of physical
laws [19, 20]. This appears in explanations with subtle inaccuracies or missed assumptions (e.g.,
in the context of perturbation theory, failing to state the conditions for its validity) [38]. LLMs
have shown promising progress in applying formulas to well-defined problems mirroring textbook
examples [28, 39, 27], but they may resort to memorized solutions rather than reasoning from first
principles when confronted with novel variants of the same problems. Recent work [40, 21, 41]
shows that perturbations to problem statements can cause significant performance decay, revealing
models’ fragile understanding of systematic solution strategies. Their ability to choose appropriate
approximations or understand the domain of validity for a given formula remains limited.

3.2.2 Mathematical Deduction and Reasoning by Special Cases and Analogies

Skill Applying mathematical tools adaptively to respect the physical constraints and interpretations of
variables and operations; simplifying complex problems by considering special or limiting cases, or
by drawing analogies to simpler, well-understood physical systems. Analysis This involves applying
mathematical tools correctly while respecting the physical constraints and interpretations of variables



and operations. For instance, correctly applying vector calculus to electromagnetic fields requires
not just knowing the formulas for divergence or curl, but understanding what these operations mean
for fields, sources, and boundaries in a physical system. LLMs are improving but can still falter in
maintaining this contextual awareness through complex derivations. A challenge here is the potential
for LLMs to exhibit overcomplication bias. Furthermore, behavioral tuning (e.g., for verbosity or
specific output formats like Markdown) might inadvertently reduce their core reasoning capabilities,
an effect sometimes termed an “alignment tax” [42]. The default system prompts of general-purpose
LLMs may also not elicit the concise, formal style of mathematical physics, potentially hiding their
performance on complex derivations. For shorter calculations, some LLMs have struggled with tasks
like counting the number of ‘r’s in the word “strawberry” or computing ‘9.9-9.11°. In physics, there
are many notations whose rules differ dramatically, and LLMs should understand the context and
apply the correct rule, such as the normal ordering notation with : -: from quantum many-body
physics.

A common strategy in physics research is to gain intuition about a complex problem by analyzing
simpler, solvable special cases (e.g., 1D version of a 2D problem, specific symmetry points in
parameter space) or by relating it to analogous systems (e.g., mapping a quantum spin system to a
classical statistical mechanics model). LLMs show some ability to follow instructions to analyze
special cases. For example, given a general expression for the magnetic susceptibility x(7'), an LLM
might be able to evaluate its behavior as ' — 0 (e.g., Curie’s law y o 1/T for paramagnets [43]) or
T — oco. However, spontaneously identifying fruitful special cases or insightful analogies remains an
underdeveloped skill.

Example: Analyzing Interacting Systems Consider a complex interacting quantum system with
Hamiltonian H = Hy, + Hin. A physicist might first analyze the noninteracting limit (setting U = 0
in Hjy) to build intuition. An LLM could be guided to do this, but proactively suggesting to consider
the case where U = 0 or recognizing analogies (e.g., to the Ising model) demonstrates higher-level
scientific reasoning.

3.2.3 Physical Consistency, Constraint Satisfaction, and Navigating Ambiguity

Skill Ensuring solutions respect fundamental physical principles (e.g., conservation laws like
dE/dt = 0,dP/dt = 0, dimensional consistency, causality, symmetries) and problem-specific
constraints; recognizing ambiguity in problem statements or scientific texts, making justified as-
sumptions to resolve ambiguity, or querying for clarification. Analysis A critical aspect of physics
reasoning is ensuring solutions are physically sensible. LLMs must learn to self-check outputs against
fundamental physical laws (e.g., conservation of energy, momentum, charge) and problem-specific
constraints (e.g., boundary conditions like 1)(x = £L/2) = 0 for a particle in a box [44], symmetries
of the Hamiltonian such as [H, P] = 0 if parity P is conserved). This includes ensuring dimensional
consistency of equations (e.g., verifying that terms being added have the same physical units) and
respecting fundamental symmetries. Developing this “physical common sense” is needed. Current
LLMs may generate solutions that are mathematically plausible but physically violate such principles
if not carefully guided or checked. Self-correction techniques [45, 46, 47] must be adapted to evaluate
physical plausibility alongside logical consistency.

Example: System-Bath Modeling. In modeling system-bath interactions for quantum spin systems
with Hamiltonian H = Hg({0;})+ Hp({7;})+Hsp({0o:}, {7;}), an LLM might erroneously place
system spins {o; } and bath spins {7;} on the same lattice sites if not explicitly prohibited. This is
physically nonsensical for typical models where system and bath are distinct subsystems. Such errors
reveal current gaps in LLMs’ physical intuition about subsystem independence. Physics research
often involves nuanced statements or different notations relying on implicit context. When faced with
choices that lead to different solution paths, a human scientist typically seeks clarification, yet LLMs
tend to randomly pick one path without justification. This extends to interpreting under-specified
problems common in physics, akin to Fermi problems (order-of-magnitude estimations often based
on ambiguous information) [48], where making justified assumptions is essential.

Example: Notational Ambiguity A research note might define a spin Hamiltonian H, =
-J> (i.,j) 74 05 » then describe a Jordan-Wigner transformation to a fermionic Hamiltonian Hy =

—J Z<i’j>(2cjci - 1)(20}0]- — 1) + .... For brevity, an author might informally refer to both as

‘H’ in different contexts. LLM agents often confuse properties valid for H (acting on spin Hilbert
space) with those for Hy (acting on Fock space). They might attempt to ‘correct’ notation or apply



operations valid for H to the transformed H if they fail to track the change in underlying variables
and Hilbert space, leading to cascading errors.

3.2.4 Making Justified Physical Approximations

Skill Selecting appropriate levels of approximation based on physical context, stating assumptions
explicitly, and understanding the domain of validity. Analysis Exact solutions are rare; progress often
hinges on making well-justified approximations. LLMs need to select appropriate approximation
levels (e.g., classical vs. quantum, relativistic vs. nonrelativistic, perturbative expansions, mean-field
theory). They may default to standard textbook approximations (like the ideal gas law PV =
nRT [49] or the harmonic oscillator potential V' (z) = kx?/2) without critically evaluating their
validity for the specific problem context or stating the conditions under which they hold. This includes
complex expansions like those in stochastic calculus or advanced quantum field theory, where the
choice of approximation scheme is nontrivial.

Example: Perturbation Theory Consider a quantum system with a Hamiltonian H = Hy + AV,
where H) is exactly solvable (e.g., a free particle or harmonic oscillator), A is a small dimensionless
perturbation parameter, and V' is the perturbation potential. An LLM might be asked for the first-

order correction to the ground state energy E[()O) of Hy. It should retrieve the standard formula from
time-independent perturbation theory: E(()l) = A(z/J(()O)|V|w(()O)> (see, e.g., [50]), where w(()o) is the
ground state eigenfunction of Hy. However, a crucial aspect is understanding the conditions for the
validity of perturbation theory, such as |/\<1/J7(73)|V|w§10)>\ < \Eﬁg) - Eflo)| for m # n. An LLM
might apply the formula without checking or stating this crucial assumption, or struggle to identify
the appropriate Hy and V' if the problem is not explicitly presented in this standard perturbative form
(a Taylor expansion in \).

3.3 Being A Good Al Physicist: Developing Taste and Gracefulness

Skill Exhibiting good research “taste”, such as resorting to mathematically elegant explanations by
Occam’s Razor and avoiding unnecessary complexity. Analysis While solving a problem is hard,
solving it elegantly or finding the most insightful approach is much harder. A “good” physicist would
not be satisfied with a brute-force answer but would strive for solutions that are simple, generalizable,
and offer deeper understanding. This relates to developing a form of “research taste”. Current LLMs
may sometimes opt for overly complex or brute-force approaches if not guided. Training LLMs
to recognize and prefer elegant or simpler solutions, perhaps through reinforcement learning from
human feedback that rewards such qualities, could be an important direction [51]. Interpretability
studies can also help understand how LLMs arrive at solutions and whether they are employing
physical reasoning or relying on superficial pattern matching [52].

Example: Exploiting Symmetry Consider calculating the expectation value of position & for a
particle in a symmetric one-dimensional potential V(z) = V(—x), such as the harmonic oscillator
V(x) = mw?z?/2 or an infinite square well centered at origin. For an energy eigenstate |1, ), the
wavefunction 1, (z) has definite parity: either even (¢,,(—x) = ¢, (2)) or odd (¢, (—z) = —,(x)).
Consequently, |1, ()|? is always even. The expectation value is (), = [~ x|ty (x)|?dz. Since x

is odd and |v,, (7)|? is even, their product is odd. The integral of an odd function over a symmetric
interval is zero, thus (&),, = 0 (a standard result discussed in, e.g., [53]). An LLM might attempt brute
force: find explicit 1, () (e.g., Hermite polynomials for the harmonic oscillator) and integrate, risking
calculation errors. A ‘good Al physicist’ would recognize the symmetry argument to immediately
conclude (&),, = 0 without detailed calculation. Training LLMs to identify and use such symmetries
reflects deeper physical understanding and leads to more elegant problem-solving. This symmetry
principle extends profoundly in physics [54], from continuous symmetries to discrete ones (e.g., CP
violation [55]).

3.4 Code Generation and Execution for Physics

Skill Physics-aware code generation that correctly translates physical models and algorithms, bridg-
ing theory, computation, and experiment. Analysis LLMs can generate code (NumPy/SciPy) for
Monte Carlo simulations in solid state physics and molecular dynamics, perform numerical analysis
of equations [56], and assist with data analysis [57], helping to accelerate prototyping. They might
assist in maintaining/extending legacy code (e.g., Fortran in large collaborations [58]) or translating
to modern languages. This capability could help bridge theory, computation, and experiment: a
theorist might use an LLLM to quickly prototype a simulation for a new model; an experimentalist



might use it to apply computational analysis to their data without extensive programming expertise.
However, physics-aware code generation [59] demands correct translation of physical models. For

instance, implementing the Hubbard model H = —t¢ E@,j)’o(c%cja +hc.) + U, nipniy [60]
requires understanding its Hilbert space, symmetries (particle number, S, conservation), and nu-
merical algorithms (exact diagonalization, Quantum Monte Carlo [61]). A naive LLM agent might
miss crucial physical constraints like fermionic anticommutation rules {c¢;o, c}o/} = 0;j055’ OF
boundary conditions (e.g., periodic ¢y 41 = c;). Similarly, translating Lattice Gauge Theory (LGT)
formalisms [62], like the SU(/N.) Hamiltonian H = % e ERER — # >, ReTr(Up) (where
E} are electric field operators, U, plaquette operators, a lattice spacing, g coupling), into code
requires handling complex group theory and ensuring constraints like the SU(/V,) Hamiltonian into
code requires handling complex group theory and ensuring constraints like Gauss’s law are correctly
implemented.

4 LLM Techniques as Augmentation for Physics Research

Various techniques in LLM reasoning can be adapted to tackle several common tasks within physics
research, as we detail in this section.

4.1 Literature Review by Retrieval and Long-Context Reasoning

By leveraging Retrieval-Augmented Generation (RAG) [63], frontier agentic research systems like
DeepResearch [64] can access massive up-to-date literature. The rise of long-context LLMs (e.g.,
200K [6] to over 1M tokens [4]) enables workflows requiring comprehensive summarization across
various data sources such as multiple Physical Review papers, PhD theses, or graduate-level textbook
chapters (e.g., following the derivation of the Bethe Ansatz solution [65, 66] for the 1D Heisenberg
model H = J ), S; - S;;1). However, practical limitations persist as performance often degrades
as context length increases (the “lost in the middle” phenomenon [67]), and models can be easily
distracted by irrelevant information [68]. Effectively combining information beyond the context
window remains an open challenge [69, 70].

4.2 Exploratory Reasoning by In-Context Few-Shot Learning

LLMs can adapt their behavior based on in-context demonstrations [1, 71]. For example, LLM agents
could infer how to tackle a particular type of equation from a few examples (e.g., the time-independent
Schrodinger equation (—A2/2m - " + V1)) = E1 for different potentials V () like the harmonic
oscillator V' (x) = mw?x?/2) and then apply a similar methodology to a new potential, such as
microwave shielding for cold molecules [72, 73], where experimental setups require analyzing a
new long-range potential. Using few-shot examples of similar long-range potential analyses, an
LLM could help researchers apply established analysis procedures to these novel experimental
configurations. This is particularly relevant in pursuit of new physics that involves new conditions or
classes of models where the general solution methodology is known and the solutions are verifiable.
LLM agents could study multiple variants of the same problem or multiple solution paths for the
same conjecture simultaneously to help human researchers.

4.3 Tool Use and Reliable Scientific Reasoning by Self-Reflection

Tool Use LLMs are not inherently calculators or symbolic reasoners, but they can effectively
use external tools like symbolic math engines (Mathematica, SymPy), numerical libraries (via code
execution), or databases via dedicated portals such as Model-Context Protocols (MCP) [74, 75,76, 77].
Models need to learn when and how to call these tools effectively, formulate valid queries for them
(e.g., correctly translating a subproblem like “calculate fooo x2e~%dg for a > 0” (a standard integral
found in texts like [78]) into Integrate[x*2 Exp[-a x]1, {x, @, Infinity}] for Mathematica),
and interpret their output correctly within the physics context. Tool use allows for a more dynamic,
nonsequential workflow: LLM agents can query a tool, analyze the output, and then decide on
subsequent actions, effectively optimizing their solution path.

Self-Reflection LLMs suffer from hallucinations or confabulations, which may produce factually
incorrect information that sounds plausible at first [38, 79]. This can lead to flawed conclusions
or even potentially dangerous outcomes in an experimental setting. Ensuring the factual accuracy
and logical consistency of LLM outputs, especially for complex reasoning chains, remains a major
challenge [80]. Techniques like self-critique [47] and RAG [63] with physics-specific knowledge
bases show promise for improving factual accuracy but need further development for scientific



domains. Self-reflection [45, 46, 47] by external modules or human oversight [80, 81, 82] has shown
promising performance gains on scientific tasks [80, 83]. This is particularly valuable for catching
logical inconsistencies, sign errors in derivations, or violations of conservation laws.

Multi-agent simulations [84, 85, 86, 87] open the door for streamlining verification, where specialized
agents verify different physical constraints separately (e.g., one agent checks dimensional consistency,
another checks symmetry properties). A combined system might help accelerate the hypothesis-
verification cycle of scientific discovery.

5 Open Directions and Opportunities for LLM agents

5.1 Advancing Multimodal Reasoning

Physics is inherently multimodal, relying on text, equations, diagrams, and various forms of data.
LLM agents must evolve to efficiently integrate these diverse information types by parsing, inter-
preting, and generating specialized visual representations such as Feynman diagrams (see Figure 2),
tensor network notations [88] (as shown in the example below), dual unitary circuit diagrams [89]
(used in studies of quantum chaos), and phase diagrams.

Current vision-language models show potential in interpreting general plots but struggle with highly
specialized physics notations [90]. The ability to seamlessly reason across modalities—for example,
connecting a mathematical formalism with its graphical representation and experimental data—is
important. This extends to translating diagrams into executable programs (e.g., a quantum circuit
diagram into code for a quantum simulator) and assisting in graphical proofs or derivations [91].
Recent advances like OpenAl-03 demonstrate improved image analysis by calling tools to crop/zoom-
in images, but understanding the deeper semantics of physics visualizations requires further progress
and careful benchmarking.

Example: Tensor Network Diagram Understanding and manipulating diagrams in specialized
fields, such as tensor network notation used in quantum information and condensed matter theory,
illustrates the type of complex visual-symbolic language that future LLMs should handle. Consider

%

the following tensors (all indices are 3D, indexed from 0): = i2—5j, U =49 —k,
i # k

f j; = ijk, . The task is to calculate the value of the last tensor

network (perturbed from [92]). An 1deal LLM assistant would parse the diagram, identify tensors
and connectivity, translate to an algebraic expression Za’b’c’ doe, f AgtBapeDcaCfeq, substitute defi-
nitions, and compute via generated code. LLMs could assist by creating such diagrams from text
or formula descriptions. Mastery of such visual-symbolic languages could extend to interpreting
Feynman diagrams, parsing quantum circuit diagrams to determine their unitary evolution [93], or
graphical proofs [91].

5.2 Developing Agentic Capabilities for Scientific Discovery

Future LLM systems may evolve into more autonomous agents performing full-cycle scientific tasks
with greater independence under supervision.

5.2.1 Agentic Al for Hypothesis Generation and Verification

Future AI agents might propose new models by analyzing anomalies [94] and inconsistencies among
different theories, exploring multiple branches of a solution tree and alternative physical models or
mathematical ansitze, and then systematically validating each option. By scanning through parameter
spaces [86, 95, 96, 97] guided by physical principles, Al-assisted scientific discovery [98, 94] may
eventually contribute to scientific hypothesis generation akin to AlphaGo Move 37 [99, 100], though
this remains an ambitious prospect.

Variational methods in computational physics work by devising an appropriate parameterized class of
variational wavefunction |¥({«;})). This state should capture the essential physics of the system
(e.g., correlations, symmetries) while being computationally verifiable by minimizing the energy
with respect to {«;}. An LLM might assist by suggesting functional forms for |¥) based on the
known properties of the Hamiltonian (e.g., suggesting a Matrix Product State for 1D systems [88]),
incorporating specific symmetries (e.g., in lattice gauge theory [101, 102]), or using non-Gaussian



state ansitze [103] that require long analytical calculations. The verifiability of variational methods
is direct: a better guess leads to a lower calculated energy.

5.2.2 Automated Simulation and Verifying Theoretical Results at Scale

LLM agents might assist in optimizing experimental designs or simulation parameters, particularly
where theoretical models can guide the process, to maximize information gain or test specific
hypotheses [104]. This could involve suggesting appropriate measurement techniques (e.g., choosing
between different spectroscopic methods to probe a material’s electronic structure), identifying key
parameters to calibrate in an experiment with a quantum gas microscope [105], or even interfacing
with automated cloud labs [98]. A significant challenge would be for an LLM to assist in verifying
highly complex proofs in mathematical physics, such as Hastings’s proof of the super-additivity of
Holevo information [106]. Such verification is particularly important given that very technical results
typically take years to fact-check, and errors in published proofs are not uncommon [107].

5.3 Fine-tuned LLM Physicists and Towards Al Physicists

Specialized LLMs fine-tuned for physics could offer advantages over general-purpose models [108],
prioritizing domain knowledge (e.g., quantum mechanics principles), eliminating irrelevant infor-
mation (e.g., historical facts unrelated to physics), and focusing on physical reasoning patterns (e.g.,
dimensional analysis, order-of-magnitude estimation, symmetry arguments). Fine-tuning could in-
volve supervised [109] and reinforcement learning [110]. To train physics-dedicated LLMs, we need
more nuanced and effective reward signals. Beyond simple pass/fail on benchmark problems, rewards
should capture the quality of the reasoning process [80], the physical insightfulness of solutions, and
alignment with established scientific methodology by incorporating feedback from domain experts.

A long-term vision would be for LLM agents to become effective Al collaborators, or building
blocks of automated “Al physicists”, capable of full-cycle capabilities including proposing novel
research ideas, theorizing experimental phenomena, verifying hypotheses and assisting in all research
stages [94, 98]. Apart from significant technical advances, this would require a synergistic partnership
where Al models augment human intellect, supported by suitable UI/UX and appropriate guardrails.
Imagine investigating a novel material: an Al assistant might synthesize literature, formulate com-
putational models using solid-state physics principles, generate simulation code, explore analytical
approximations, and report results. For theoretical physics, a distant prospect is to deploy Al agents
for tackling open problems in the field [111, 112].

6 Conclusion

LLM:s have the potential to contribute meaningfully to modern physics research. Their potential to
help accelerate scientific discovery, automate repetitive tasks, and assist in conceptual breakthroughs
is considerable. However, realizing this potential requires substantial effort to address current
limitations in rigorous reasoning, physical grounding, reliability, and multimodal understanding. By
fostering collaboration between physics and Al communities to develop specialized models, robust
verification techniques, and effective human-AlI interfaces, we can work toward using LLMs to
contribute to expanding our understanding of the physical universe. Furthermore, applying LLMs to
physics serves as a demanding testbed for studying LLMs, including interpretability [52], faithfulness
of reasoning, adversarial robustness, and scalable oversight [113] for safety [114].
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A Risks, Limitations and Ethical Considerations

Risk

Over-reliance on LLMs without rigorous verification could embed subtle errors into research [38].
The potential for LLMs to “cheat” reward functions during fine-tuning, producing plausible but
physically invalid outputs (e.g., a simulation appearing to conserve energy due to numerical artifacts),
requires careful alignment and robust evaluation [114, 115]. Furthermore, depending too heavily on
LLMs for tasks like mathematical derivations (e.g., routinely asking an LLM to compute integrals
like [ d*k/(k* — m? + i€)? instead of learning contour integration techniques), programming, or
data interpretation could risk degrading these essential skills among physicists, especially those
in training [116]. Deep intuition often arises from performing detailed calculations firsthand. The
history of scientific computing shows both warnings and reassurances: tools like Mathematica initially
raised de-skilling concerns but ultimately enabled mathematicians to focus on higher-level work by
automating repetitive calculations. Similarly, LLMs could potentially elevate physics research by
handling routine tasks while humans focus on deeper insights—if used as augmentation rather than
replacement for fundamental understanding.

Limitations

This position paper presents a high-level overview. The field of LLMs is rapidly evolving, and
specific capabilities or limitations discussed may change quickly. Due to the rapid evolution of LLMs,
specific examples quickly become outdated. The selected examples are illustrative of general trends
observed circa late 2024 and early 2025. The scope is necessarily limited to selected aspects of
physics research, and specific examples may not generalize to all subfields.

Ethical Considerations

Generating plausible but incorrect claims requires rigorous validation. Training bias could steer
research suboptimally. Responsible deployment and human oversight are required. Access and
equity issues must be addressed to ensure broad availability of these tools across the global physics
community.

B Related Works

Non-Language Models Already Help Physics Machine learning (ML) is not new to physics [13].
Current applications include analyzing large experimental datasets (e.g., particle identification at
the Large Hadron Collider [117]), solving computational physics problems (e.g., finding ground
states of quantum Hamiltonians like Hvy = F [118, 119]), accelerating partial differential equation
solvers [120], and optimizing experimental controls (e.g., plasma shaping in fusion reactors [121]).
These applications typically involve supervised learning (classification, regression), unsupervised
learning (clustering, dimensionality reduction, generative modeling), or reinforcement learning for
specific, well-defined tasks. While powerful for specific tasks, these methods often differ from
the requirements of open-ended theoretical exploration, complex multistep problem solving, or
nuanced experimental design where LLMs might offer complementary advantages through their
natural language interface and broad knowledge encoding [20, 39].

C More Examples

Example: Notational Nuances Another example is the Bogoliubov-de Gennes (BdG) Hamiltonian,
which often includes a 1/2 prefactor by convention; LLMs might add or omit this factor inconsistently
if not carefully prompted, thereby impacting all subsequent calculations even though the authors
intend a different factor. Example: Lattice Gauge Theory For example, implementing the pure
gauge SU(2) Hamiltonian:

2 R 1 R R
H:S;El:EfE7+292§p:(2—Tr(Up+Ug)) (0

where E’f are electric field operators on links [, U, are plaquette operators, and g is the cou-
pling constant, requires translating abstract gauge theory concepts into concrete numerical algo-
rithms that preserve gauge invariance and other symmetries. A critical physical constraint in such
simulations is ensuring that states satisfy Gauss’s law, which in the quantum context becomes
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> Iestar(n) Ela|¢> phys = 0 for each lattice site n and each gauge group generator a. This constraint

must be explicitly enforced in the code, typically by projecting onto the physical subspace or by
adding an energy penalty term.

Example: Explaining the derivations A research paper may state a key result derived from an
effective action, Seg[¢.], obtained by “integrating out” high-momentum modes ¢, from a full
action S[¢., ¢p]. An LLM assisting a researcher could be tasked to elaborate on the formal path
integral definition e~ Senl®el/P — i DepeSlPe:@nl/M This elaboration might involve expanding the
derivations with common evaluation techniques like saddle-point approximations or perturbative
expansions of S[¢., ¢r] around a background field, all while strictly adhering to the paper’s specific
notation for the classical fields ¢. and quantum fluctuations ¢y, .

Example: Diagonalizing a 2x2 Hermitian matrix When asked to diagonalize a general 2x2
a
b+ ic
LLM might default to a brute-force symbolic expansion of the characteristic determinant det(H —
AI) = 0 to find eigenvalues, followed by solving systems of linear equations for eigenvectors. A
‘good Al physicist’, however, might recognize the structure and suggest decomposing the matrix in
the Pauli basis: H = aol + a - o, where I is the identity matrix, & = (0, 0y, 0,) are the Pauli
matrices, ag = (a+d)/2,and a = (b, ¢, (a — d)/2). From this decomposition, eigenvalues (ag £ |a|)
and eigenvectors (related to the direction of a) can be read off with greater physical insight (e.g.,
connecting to spin precession in a magnetic field) and often less computation. Training LLMs to
prefer such insightful decompositions over brute-force methods is key to developing Al assistants
that contribute to more elegant theory and can reduce complex algebraic manipulations where errors

might occur.

.. . b—ic .
Hermitian matrix H = ( d ) (where a, b, ¢, d are real but have complex expressions), an

Example: Feynman diagram Interpreting a Feynman diagram [122] for Compton scattering (ye™ —
~ve~) (see, e.g., [123]) requires identifying incoming/outgoing photon (wavy lines) and electron (solid
lines) lines, internal propagators (e.g., electron propagator Sg(p) = i(y - p + me)/(p? — m? + ie),
where m, is electron mass, e is elementary charge, v* are Dirac gamma matrices), and vertices
(e.g., QED vertex factor —iey*). An LLM should connect these diagrammatic elements to the
mathematical terms in the scattering amplitude calculation according to Feynman rules.

Figure 2: A Feynman diagram for Compton scattering (ye~ — e~ ) in s-channel. LLMs should connect graph-
ical elements (straight lines for fermions, wavy lines for bosons, and vertices for interactions) to mathematical
terms in scattering amplitude calculations (e.g., propagators, vertex factors, external leg factors).

Example: Physical Inaccuracy in AI-Generated Images Current Al image generators lack physical
understanding, producing visually appealing but scientifically incorrect visualizations. Figure 3 shows
GPT-40’s response to “generate an image of a 3D modeling of a two dimensional projected entangled
pair state tensor network (4 by 4 square lattice)”. The image violates PEPS structure: bulk tensors
require exactly five indices (four virtual bonds to neighbors, one physical index), yet many nodes
show incorrect connectivity. Al systems fail to encode the physical constraints—here, tensor network
geometry and index structure.

Example: AI Material Physicist Imagine a physicist investigating a novel topological material. An
‘Al Physicist’ assistant might: (1) Synthesize recent literature on related materials and their Berry
curvature 2, ., (k) calculations. (2) Assist in formulating a tight-binding Hamiltonian H (k) for the
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Figure 3: GPT-40-generated PEPS network with incorrect or at least unconventional tensor connectivity. Proper
PEPS tensors need 5 indices (4 virtual, 1 physical); many nodes lack required connections.

new material based on its crystal structure (e.g., honeycomb lattice for graphene-like systems). (3)
Generate Python code using libraries like Kwant or TightBindingTools.jl to numerically calculate the
band structure E, (k) and Chern numbers C,, = 5= [, d2k€Qy, 2, (). (4) If numerical results show
unexpected edge states, it might help consider analytical approximations (e.g., a low-energy effective
Dirac Hamiltonian H.f¢ = vp(kyoy — kyoz) + mo,, where v is the Fermi velocity and m is a
mass/gap parameter) to understand their origin. (5) Finally, it might create a slide deck summarizing
these findings, including generating plots. This collaborative workflow, with the Al handling complex
but definable subtasks under human strategic guidance, shows the potential [94].

Example: Verifying analytical calculations by Mathematica Consider the Jordan-Wigner trans-
formation, useful for 1D quantum spin systems. The transverse field Ising model Hamiltonian is
H=-J Z (.§) O3 05 —h)_, of. The transformation maps spin operators o¢* to fermionic operators

cj,c ;, e.g, o} = QCTCJ —land of = ([[,;(1 - 2c£ck))(cj + cj). An LLM might attempt this
transformat1on and could be asked to verify parts via a Mathematica MCP, such as the anticommuta-

tion relation of the fermionic operators after the transformation {c;, T} Using symbolic tools such
as Mathematica, the probability of correctness can be increased, if LLMs become better at generating
the correct query for a tool and interpreting its output for such (and more nontrivial) operator algebra.

D More Analysis

D.1 Building Better UI/UX for Human-centered Al

For LLMs to be effective collaborators, intuitive and efficient user interfaces (Uls) and user experi-
ences (UXs) are essential for supervision, tracing, and trust-building. These interfaces should allow
physicists to interact with LLMs naturally without extensive prompt engineering and should integrate
with existing research workflows and tools (e.g., LaTeX editors, data analysis and simulation environ-
ments). Future LLMs should also be robust to specific prompts and offer finer-grained controllability
over their reasoning style, level of detail, and assumptions made. For instance, prompting an LLM to
“solve the Schrodinger equation for a particle in a box” might yield different solution forms depending
on subtle phrasing. Ideally, an LLM should recognize standard conventions (e.g., specific boundary
conditions ¥ (0) = t(L) = 0 for a box of length L) or prompt for these if ambiguous. Controllability
would allow a physicist to specify, for example, “provide a solution using separation of variables and
show all steps for Hy) = Ev where H = —h?/2m - d° /dz?® + V(z) and V (z) = 0 for 0 < z < L,

. - . 2 . .
oo otherwise” versus “give the energy eigenvalues £, = ‘5= L@ and normalized wavefunctions

Yn(x) = \/2/Lsin(nmrz/L) directly”. Such controllability is vital for making LLMs reliable and
adaptive research assistants. Effective UI/UX must go beyond simple chat interfaces. Physicists
often work with extensive comments, annotations, and margin notes; interfaces supporting these
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natural workflows would be more effective. For supervising agents, Uls need robust mechanisms for
managing experimental/simulation results, tracking context across long interactions (context manage-
ment [124]), and accommodating human-in-the-loop intervention. Given that LLM outputs can be
verbose, tools for generating structured summaries with highlighting are needed. Integration with
collaborative platforms (e.g., Overleaf-like features with LLM assistance for consistency checking in
IATEX documents, or GitHub-style review tools for coding and derivations) would also be convenient.

D.2 Running Physical Experiments

While our primary focus is on theoretical physics, we acknowledge that in the long term, Al systems
might also actively control experimental instrumentation, interpret sensory data in real-time, and
adjust experimental parameters accordingly. This would require the seamless integration of perception
(e.g., using computer vision to optimize laser beam path setup for quantum optics experiments where
alignment precision is critical for data quality), reasoning (understanding the experimental progress
and deciding which measurements to perform next based on acquired data), and action (subsequently
adjusting the lensing setup with high-precision robotic arms) in the physical world. This long-term
vision enables a dynamic integration of reasoning models with robotics and control theory, bridging
high-level human-defined agenda with corresponding physical actions as envisioned by rising interest
in Large Action Models (LAM) [125] and Embodied Intelligence [126].

20



	Introduction
	Physics Research: An Overview
	Research Stages & Skills
	Opportunities and Challenges for LLMs in Physics Research

	Skill Analysis for Physics Reasoning
	Mathematical and Symbolic Reasoning
	Beyond Math: Physics-Specific Reasoning Skills
	Conceptual Framework, Formula Retrieval, and Application
	Mathematical Deduction and Reasoning by Special Cases and Analogies
	Physical Consistency, Constraint Satisfaction, and Navigating Ambiguity
	Making Justified Physical Approximations

	Being A Good AI Physicist: Developing Taste and Gracefulness
	Code Generation and Execution for Physics

	LLM Techniques as Augmentation for Physics Research
	Literature Review by Retrieval and Long-Context Reasoning
	Exploratory Reasoning by In-Context Few-Shot Learning
	Tool Use and Reliable Scientific Reasoning by Self-Reflection

	Open Directions and Opportunities for LLM agents
	Advancing Multimodal Reasoning
	Developing Agentic Capabilities for Scientific Discovery
	Agentic AI for Hypothesis Generation and Verification
	Automated Simulation and Verifying Theoretical Results at Scale

	Fine-tuned LLM Physicists and Towards AI Physicists

	Conclusion
	Risks, Limitations and Ethical Considerations
	Related Works
	More Examples
	More Analysis
	Building Better UI/UX for Human-centered AI
	Running Physical Experiments


