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Abstract

Large Language Models (LLMs) are rapidly advancing across diverse domains,
yet their application in theoretical physics research is not yet mature. This position
paper argues that LLM agents can potentially help accelerate theoretical, computa-
tional, and applied physics when properly integrated with domain knowledge and
toolbox. We analyze current LLM capabilities for physics—from mathematical
reasoning to code generation—identifying critical gaps in physical intuition, con-
straint satisfaction, and reliable reasoning. We envision future physics-specialized
LLMs that could handle multimodal data, propose testable hypotheses, and design
experiments. Realizing this vision requires addressing fundamental challenges:
ensuring physical consistency, and developing robust verification methods. We
call for collaborative efforts between physics and AI communities to help advance
scientific discovery in physics.

1 Introduction

Large Language Models (LLMs) represent a major advance at the forefront of artificial intelligence
(AD), exhibiting remarkable proficiency in understanding natural language and performing increas-
ingly complex reasoning tasks [1, 2, 3, 4, 5, 6]. While impacting various sectors, their potential in
fundamental scientific research is only beginning to be systematically explored [7]. Physics, with its
complex blend of abstract theory, demanding computation, rigorous experimentation, and reliance on
approximations and physical intuition, presents both unique challenges and fertile ground for LLM
applications. Position: We argue that LLLM agents, when appropriately adapted and integrated
with domain-specific knowledge and toolbox, could potentially serve as a promising technology
with the capacity to accelerate discovery in theoretical physics, with broader implications for
computational and applied physics, provided their current limitations in rigorous reasoning,
physical grounding, and reliability are systematically addressed through targeted interdisci-
plinary research. This position challenges the current paradigm where LLMs serve primarily as
assistants for information retrieval. We contend that LLMs may evolve into autonomous collaborators
for physicists, augmenting capabilities from literature review and conceptual exploration, to computa-
tional simulation and data interpretation. However, realizing this potential requires acknowledging
current limitations and undertaking dedicated, physics-informed research efforts. Supporting this
cautious optimism is recent progress in LLM architecture, scale, and particularly advances in training
reasoning models [3, 6, 4, 5, 8, 9, 10] that demonstrate growing agency in multistep problem-solving
needed for physics research. Overview of this work This position paper is structured as follows.
Section 2 introduces the taxonomy used in this paper, outlining a typical physics research workflow
with an overview of the subskills LLMs might assist with. Section 3 provides an in-depth analysis of
LLM capabilities for physics reasoning, categorized into mathematical skills, physics-specific reason-
ing beyond mathematics, code generation & execution, and general research skills. Subsequently,
Section 4 discusses common LLM engineering techniques relevant to physics applications. Section 5
explores open directions and desirable future capabilities for next-generation LLM-powered systems
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Figure 1: A schematic workflow of theoretical physics research (top row, blue), potential LLM capabilities
(middle row, green), and key opportunities (bottom row, orange). Tool use capability connects with experimental
research through automated instrument control and data analysis.

to better assist physics research. Appendix A discusses key risks and challenges. Finally, Section 6
summarizes our position and offers a concluding perspective. Sections on Limitations and Ethical
Considerations are included in the appendix.

2 Physics Research: An Overview

2.1 Research Stages & Skills

A typical workflow in physics research often involves several stages, as depicted in Figure 1 (top
row). These stages are generally iterative and involve collaboration among various researchers
with different backgrounds and skill sets. Scientific inquiry typically proceeds through an iterative
workflow that begins with literature review and problem identification, where existing work is
surveyed to assess the state of the art and uncover open questions or inconsistencies. Based on
this foundation, researchers engage in hypothesis formulation and model building, proposing new
ideas, constructing models to capture physical phenomena, and defining the assumptions that frame
their scope. These models are then subjected to analytical derivation, involving mathematical
analysis, symbolic reasoning, and numerical calculations to extract predictions. Complementing
this, simulation and computational experiments are employed to test model behavior and guide
the design of physical experiments, for instance simulating the BKT transition in a quantum XY
model [11] before performing quantum optical experiments. The resulting data undergo analysis
and interpretation of results, where findings are compared with prior work to generate physical
insights. This process is inherently cyclical, requiring iferation of the above stages until the problem
is satisfactorily addressed. Finally, the outcomes are consolidated through communication, including
the preparation of papers and presentations to disseminate the results.

2.2 Opportunities and Challenges for LLMs in Physics Research

The intersection of Al and physics is not new [12], but the advent of powerful LLMs introduces the
potential to help address persistent bottlenecks in physics research—especially for tasks demanding
enormous time investment or the processing of vast information streams. LLMs might assist physics
research in at least two primary modes: (1) automating repetitive tasks such as literature review and
well-defined calculations (see Sections 3.1, 3.4 and 4.1), and (2) sparking new ideas through human-
Al collaboration, where Al agents might provide alternative perspectives (see Sections 3.3 and 5.2.1).
While LLMs have shown remarkable growth in assisting formal theorem proving [13, 14, 15]
and augmenting biochemical research [16, 17], physics poses unique challenges. Unlike formal
mathematics with its focus on rigorous axiom-based proof [13], theoretical physics centrally involves
constructing models, making justified approximations (e.g., when to approximate sin § ~ 6 for small
angles or apply perturbation theory where a Hamiltonian H = Hy + AV is expanded in powers
of a small parameter \), seeking validation against experiments, and employing physical intuition.
These represent the highly challenging task of connecting abstractions to physical reality [18, 19, 20].
Physics often involves mathematical problems that, while formally straightforward, gain complexity
and nuance from their physical context, where mathematical rigor alone is insufficient. For example,
diagonalizing a 2 x 2 matrix is a standard linear algebra task. However, in topological condensed
matter physics, such a matrix might represent the Bloch Hamiltonian of a Chern insulator, H (k) =
de(k)og + dy(k)oy + d.(k)o., where o; are Pauli matrices and d(k) is a vector function of
momentum k. The mathematical task is to find eigenvalues E4 (k) = 4|d(k)| and eigenvectors. The
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physics, however, lies in understanding how the winding number of the vector d (k) over the Brillouin
zone determines topological invariants like the Chern number [21], which dictates phenomena like
quantized Hall conductivity [22]. LLM agents assisting must go beyond mere diagonalization and try
to connect the mathematical procedure with the underlying physical interpretation.

3 Skill Analysis for Physics Reasoning

Despite the emerging ecosystem of scientific reasoning benchmarks from general scientific knowl-
edge [23, 24] to physics-specific reasoning [25, 26, 27, 28], they focus primarily on exam-like
problems with one definitive answer for verification. These do not capture the full complexity of
physics research involving tasks such as deriving properties of new physical models, modifying
simulation code based on a paper, and interacting with experts to explore open-ended problems. We
need more benchmarks analogous to SWE-Bench [29] on a full-cycle research workflow to gauge
how LLMs perform in tackling open-ended research in a real-world scenario [30]. Furthermore,
developing benchmarks from frontier research questions such as FrontierMath [31] or Humanity’s
Last Exam [32], within an ecosystem of domain experts [33], is key to probing the limits of Al
reasoning for scientific discovery beyond solving close-ended Olympiad exam questions. In this
section, we discuss concrete skills needed for physics research where limitations of current models
call for focused improvement before LLMs can be reliable research partners. We categorize these
skills to better understand the multifaceted potential and challenges.

3.1 Mathematical and Symbolic Reasoning

Skill Performing algebraic manipulation, calculus (differentiation, integration), linear algebra (matrix
operations, tensor contractions like 7%%S;,,, = Ri¥ ), and solving differential equations essential for
theoretical physics. Analysis Next-token prediction inherent to LLMs can lead to cascading errors in
complex mathematical operations. Despite saturation on legacy benchmarks like MATH [23], errors
are frequently observed in algebra and calculus [34, 35]. They also struggle with unit consistency
(e.g., mixing SI and natural units where i = ¢ = 1), thereby raising questions about their reliability
for research-level derivations (e.g., evaluating path integrals [ DeetS1e/) [36].

3.2 Beyond Math: Physics-Specific Reasoning Skills

We outline skills unique to understanding physical context, principles, and common practices, ordered
roughly from currently more reliable to less reliable (or more complex) for LLMs.

3.2.1 Conceptual Framework, Formula Retrieval, and Application

Skill Articulating physics concepts, principles, and theories in natural language, adapting to specific
notations; identifying and applying general physics formulas to well-structured problems. Analysis
LLMs can generate textbook-style explanations through summarization, yet this apparent understand-
ing can be superficially derived from statistical correlations rather than causal models of physical
laws [18, 19]. This is evident in explanations that seem correct but contain subtle physical inaccu-
racies or miss crucial assumptions (e.g., in the context of perturbation theory, failing to state the
conditions for its validity) [37]. LLMs have shown promising progress in applying formulas to
well-defined problems mirroring textbook examples [27, 38, 26], but they may resort to memorized
solutions rather than reasoning from first principles when confronted with novel variants of the same
problems. Recent work [39, 20, 40] shows that perturbations to problem statements can cause signifi-
cant performance decay, revealing models’ fragile understanding of systematic solution strategies.
Their ability to choose appropriate approximations or understand the domain of validity for a given
formula remains limited.

3.2.2 Mathematical Deduction and Reasoning by Special Cases and Analogies

Skill Applying mathematical tools adaptively to respect the physical constraints and interpretations of
variables and operations; simplifying complex problems by considering special or limiting cases, or
by drawing analogies to simpler, well-understood physical systems. Analysis This involves applying
mathematical tools correctly while respecting the physical constraints and interpretations of variables
and operations. For instance, correctly applying vector calculus to electromagnetic fields requires
not just knowing the formulas for divergence or curl, but understanding what these operations mean
for fields, sources, and boundaries in a physical system. LLMs are improving but can still falter in
maintaining this contextual awareness through complex derivations. A challenge here is the potential
for LLMs to exhibit overcomplication bias. Furthermore, behavioral tuning (e.g., for verbosity or
specific output formats like Markdown) might inadvertently reduce their core reasoning capabilities,
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an effect sometimes termed an “alignment tax” [41]. The default system prompts of general-purpose
LLMs may also not elicit the concise, formal style of mathematical physics, potentially hiding their
performance on complex derivations. For shorter calculations, some LLMs have struggled with tasks
like counting the number of ‘r’s in the word “strawberry” or computing ‘9.9-9.11°. In physics, there
are many notations whose rules differ dramatically from other fields, and LLMs should understand
the context and apply the correct rule. For example, the normal ordering notation with : -: from
quantum many-body physics.

A common strategy in physics research is to gain intuition about a complex problem by analyzing
simpler, solvable special cases (e.g., zero temperature limit 7' — 0, one-dimensional version of a 2D
problem, specific symmetry points in parameter space) or by relating it to analogous systems (e.g.,
mapping a quantum spin system to a classical statistical mechanics model). LLMs show some ability
to follow instructions to analyze special cases if explicitly prompted. For example, given a general
expression for the magnetic susceptibility x(7), an LLM might be able to evaluate its behavior as
T — 0 (e.g., Curie’s law y o 1/T for paramagnets [42]) or T' — oco. However, spontaneously
identifying fruitful special cases or insightful analogies that can simplify a problem or suggest a
solution path is a more advanced reasoning skill that remains underdeveloped. Example: Analyzing
Interacting Systems Consider a complex interacting quantum system described by a Hamiltonian
H = Hyi, + Hin A physicist might first analyze the noninteracting limit (setting interaction strength
U = 0 in Hiy,), or a mean-field approximation, to build intuition. An LLM could be guided to do
this, but proactively suggesting “Let’s first consider the case where U = 0” or “This problem, under
certain limits, is analogous to the Ising model Higpng = —J > (i.) afoj— —h Zz o7 if we make X
approximation” demonstrates a higher level of scientific reasoning.

3.2.3 Physical Consistency, Constraint Satisfaction, and Navigating Ambiguity

Skill Ensuring solutions respect fundamental physical principles (e.g., conservation laws like
dE/dt = 0,dP/dt = 0, dimensional consistency, causality, symmetries) and problem-specific
constraints; recognizing ambiguity in problem statements or scientific texts, making justified as-
sumptions to resolve ambiguity, or querying for clarification. Analysis A critical aspect of physics
reasoning is ensuring solutions are physically sensible. LLMs must learn to self-check outputs against
fundamental physical laws (e.g., conservation of energy, momentum, charge) and problem-specific
constraints (e.g., boundary conditions like ¢)(x = £L/2) = 0 for a particle in a box [43], symmetries
of the Hamiltonian such as [H, P] = 0 if parity P is conserved). This includes ensuring dimensional
consistency of equations (e.g., verifying that terms being added have the same physical units, like
Joules for energy) and respecting fundamental symmetries. Developing this “physical common sense”
is needed. Current LLMs may generate solutions that are mathematically plausible but physically
violate such principles if not carefully guided or checked. Self-correction techniques [44, 45, 46] must
be adapted to evaluate physical plausibility alongside logical consistency. Example: System-Bath
Modeling. In a coding task for modeling the system-bath interactions of quantum many-body spin
systems, described by a Hamiltonian like H = Hg({o;}) + Hg({7;}) + Hsz({o:},{7;}), an
LLM (e.g., Cursor integrated with Claude Sonnet) might erroneously place the system spins {o;}
and the bath spins {7;} on the same lattice sites if not explicitly prohibited. This configuration
is physically nonsensical for typical models where system and bath are distinct objects with their
own degrees of freedom, but might not be directly contradicted by a vague prompt. This type of
error, stemming from a lack of “common sense” physical intuition about distinct subsystems, is
something a human physicist would typically avoid. Such errors show the current gap in LLMs’
physical intuition. Physics research often involves nuanced statements or different notations relying
on implicit context. When faced with choices that lead to different solution paths, a human scientist
typically seeks clarification with more context, yet LLMs tend to randomly pick one path without
justification. This extends to interpreting under-specified problems common in physics, akin to
Fermi problems (order-of-magnitude estimations often based on ambiguous information) [47], where
making justified assumptions is essential. Example: Notational Ambiguity A research note might

define a spin Hamiltonian H, = —J ) (i.j) 74 05~ and then describe a Jordan-Wigner transformation

to map it to a fermionic Hamiltonian, Hy = —J Z<i’j>(203q - 1)(2c;r.cj —1)+.... For brevity, an
author might informally refer to both H and Hy as ‘H’ in different parts of the text. LLM agents
often confuse properties or operations valid for [, (acting on spin Hilbert space) with those for
Hy (acting on Fock space). They might attempt to ‘correct’ the notation by consistently using a
new symbol like Hansformed, OF WOTSe, attempt to apply operations valid for the original H to the
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transformed H s if they fail to track the change in underlying variables and the Hilbert space, leading
to cascading errors in explanation.

3.2.4 Making Justified Physical Approximations

Skill Selecting appropriate levels of approximation based on physical context, stating assumptions
explicitly, and understanding the domain of validity. Analysis Exact solutions are rare; progress often
hinges on making well-justified approximations. LLMs need to select appropriate approximation
levels (e.g., classical vs. quantum, relativistic vs. nonrelativistic, perturbative expansions, mean-field
theory). They may default to standard textbook approximations (like the ideal gas law PV =
nRT [48] or the harmonic oscillator potential V (z) = kxz?/2) without critically evaluating their
validity for the specific problem context or stating the conditions under which they hold. This
includes complex expansions like those in stochastic calculus or advanced quantum field theory,
where the choice of approximation scheme is nontrivial. Example: Perturbation Theory Consider
a quantum system with a Hamiltonian H = Hy 4+ AV, where H) is exactly solvable (e.g., a free
particle or harmonic oscillator), A is a small dimensionless perturbation parameter, and V' is the
perturbation potential. An LLM might be asked for the first-order correction to the ground state

energy E((JO) of Hy. It should retrieve the standard formula from time-independent perturbation

theory: Eél) = )\<’(/J(()O) \VW)(()O)> (see, e.g., [49]), where w(()o) is the ground state eigenfunction of
Hjy. However, a crucial aspect is understanding the conditions for the validity of perturbation theory,
such as |)\(1/),(,?) |V|¢£LO )>| < |E,(7?) - E5L0)| for m # n. An LLM might apply the formula without
checking or stating this crucial assumption, or struggle to identify the appropriate H and V' if the
problem is not explicitly presented in this standard perturbative form (a Taylor expansion in \).

3.3 Being A Good Al Physicist: Developing Taste and Gracefulness

Skill Exhibiting good research “taste”, such as resorting to mathematically elegant explanations by
Occam’s Razor and avoiding unnecessary complexity. Analysis While solving a problem is hard,
solving it elegantly or finding the most insightful approach is much harder. A “good” physicist
would not be satisfied with a brute-force answer but would strive for solutions that are simple,
generalizable, and offer deeper understanding. This relates to developing a form of “research taste”.
Current LLMs may sometimes opt for overly complex or brute-force approaches if not guided.
Training LLMs to recognize and prefer elegant or simpler solutions, perhaps through reinforcement
learning from human feedback that rewards such qualities, could be an important direction [50].
Interpretability studies can also help understand how LLMs arrive at solutions and whether they are
employing physical reasoning or relying on superficial pattern matching [51]. Example: Exploiting
Symmetry Consider calculating the expectation value of the position operator & for a particle in a one-
dimensional potential V' () that is symmetric, i.e., V(x) = V(—x), such as the harmonic oscillator
V(x) = mw?2?/2 or an infinite square well centered at the origin. If the particle is in an energy
eigenstate |10, ), its wavefunction v, (z) will have definite parity: either even (¢, (—x) = ¥, (x))
or odd (¢, (—x) = —1,(x)). Consequently, the probability density |, (x)|? is always an even
function. The expectation value is (), = [ (2)apn(z)de = [7_ x|y (2)|?dz. Since x
is an odd function and |t,,(x)|? is an even function, their product is odd. The integral of an odd
function over a symmetric interval (—oo, 00) is zero. Thus, (&), = 0 (a standard result discussed
in, e.g., [52]). An LLM might attempt a brute-force approach: find the explicit form of 1, ()
(e.g., Hermite polynomials for the harmonic oscillator), then perform the integration symbolically
or numerically, potentially making calculation mistakes. A ‘good Al physicist’, however, would
recognize the symmetry of the potential and the parity of the integrand to immediately conclude
(Z),, = 0 without detailed calculation. Training LLMs to identify and use such symmetries reflects
a deeper physical understanding and leads to more elegant and efficient problem-solving. This
symmetry principle extends profoundly in physics [53], from continuous symmetries (e.g., Noether’s
theorem linking them to conservation laws like dP/d¢ = 0 for translational symmetry) to discrete
ones dictating selection rules or fundamental properties (e.g., CP violation in particle physics [54]).

3.4 Code Generation and Execution for Physics

Skill Physics-aware code generation that correctly translates physical models and algorithms, bridg-
ing theory, computation, and experiment. Analysis LLMs can generate code (NumPy/SciPy) for
Monte Carlo simulations in solid state physics and molecular dynamics, perform numerical analysis
of equations [55], and assist with data analysis [56], helping to accelerate prototyping. They might
assist in maintaining/extending legacy code (e.g., Fortran in large collaborations [57]) or translating
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to modern languages. This capability could help bridge theory, computation, and experiment: a
theorist might use an LLLM to quickly prototype a simulation for a new model; an experimentalist
might use it to apply computational analysis to their data without extensive programming expertise.
However, physics-aware code generation [58] demands correct translation of physical models. For

instance, implementing the Hubbard model H = —t¢ Z@}j))a(c%cjg +he.) + U, nipngg [59]
requires understanding its Hilbert space, symmetries (particle number, .S, conservation), and nu-
merical algorithms (exact diagonalization, Quantum Monte Carlo [60]). A naive LLM agent might

miss crucial physical constraints like fermionic anticommutation rules {c¢;o, c;a/} = 0055/ OF
boundary conditions (e.g., periodic cy 41 = c;). Similarly, translating Lattice Gauge Theory (LGT)
formalisms [61], like the SU(/N,.) Hamiltonian H = % e ERER — aTl;? >, ReTr(Up) (where E}*
are electric field operators, U, plaquette operators, a lattice spacing, g coupling), into code requires
handling complex group theory and ensuring constraints like Gauss’s law (e.g., its lattice version
G%lphys) = (3°, . n E7)|phys) = 0) are correctly implemented.

4 LLM Techniques as Augmentation for Physics Research

Various techniques in LLM reasoning can be adapted to tackle several common tasks within physics
research, as we detail in this section.

4.1 Literature Review by Retrieval-Augmented Generation and Long-Context Reasoning

By leveraging Retrieval-Augmented Generation (RAG) [62], frontier agentic research systems like
DeepResearch [63] can access massive up-to-date literature. The rise of long-context LLMs (e.g.,
200K [6] to over 1M tokens [4]) enables workflows that require comprehensive summarization
across various data sources such as multiple Physical Review papers, PhD theses, or graduate-level
textbook chapters (e.g., following the derivation of the Bethe Ansatz solution [64, 65] for the 1D
Heisenberg model H = J ), S; - S;;1 across several chapters of a textbook). However, practical
limitations persist as performance often degrades as context length increases (the “lost in the middle”
phenomenon [66]), and models can be easily distracted by irrelevant information embedded within
the context [67]. Effectively combining and synthesizing information from a wide range of diverse
documents longer than the context window remains an open research frontier [68].

4.2 Exploratory Reasoning by In-Context Few-Shot Learning

LLMs can adapt their behavior based on in-context demonstrations [1, 69]. For example, LLM agents
could infer how to tackle a particular type of equation from a few examples (e.g., the time-independent
Schrodinger equatlon g—hz /2m - " + Vp) = Evp for different potentials V' (z) like the harmonic
oscillator V (x) = mw?x2/2) and then apply a similar methodology to a new potential, such as the
microwave shleldmg for cold molecules [70, 71], where experimental setups require analyzing a
new long-range potential. Using few-shot examples of similar long-range potential analyses, an
LLM could help researchers apply established analysis procedures to these novel experimental
configurations.

This is particularly relevant in pursuit of new physics that involves new conditions or classes of
models where the general solution methodology is known and the solutions are verifiable. LLM
agents could study multiple variants of the same problem or multiple solution paths for the same
conjecture simultaneously to help human researchers.

4.3 Tool Usage and Reliable Scientific Reasoning by Self-Reflection

Tool Usage LLMs are not inherently calculators or symbolic reasoners, but they can effec-
tively use external tools like symbolic math engines (Mathematica, SymPy), numerical li-
braries (via code execution), or databases via dedicated portals such as Model-Context Proto-
cols (MCP) [72, 73, 74, 75]. Models need to learn when and how to call these tools effec-
tively, formulate valid queries for them (e.g., correctly translating a subproblem like “calculate
fooc xz2e~*dg for a > 0” (a standard integral found in texts like [76]) into Integrate[x*2 Exp[-
a x1, {x, 0, Infinity}, Assumptions -> a > @] for Mathematica), and interpret their output
correctly within the physics context. Tool use allows for a more dynamic, nonsequential workflow:
LLM agents can query a tool, analyze the output, and then decide on subsequent actions, effectively
optimizing their solution path. This contrasts with purely auto-regressive generation, enabling more
robust self-correction and complex problem decomposition. Reliable Scientific Reasoning by
Self-Reflection LLMs suffer from hallucinations or confabulations, which may produce factually
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incorrect information that sounds plausible at first [37, 77]. This can lead to flawed conclusions
or even potentially dangerous outcomes in an experimental setting. Ensuring the factual accuracy
and logical consistency of LLM outputs, especially for complex reasoning chains, remains a major
challenge [78]. Techniques like self-critique [46] and RAG [62] with physics-specific knowledge
bases show promise for improving factual accuracy but need further development for scientific
domains. Self-reflection [44, 45, 46] by external modules or human oversight [78, 79, 80] has shown
promising performance gains on scientific tasks [78, 81]. This is particularly valuable for catching
logical inconsistencies, sign errors in derivations, or violations of conservation laws.

Multi-agent simulations [? 82] open the door for streamlining verification, where specialized agents
verify different physical constraints separately (e.g., one agent checks dimensional consistency,
another checks symmetry properties). A combined system might help accelerate the hypothesis-
verification cycle of scientific discovery.

5 Open Directions and Opportunities for LLM agents

5.1 Advancing Multimodal Reasoning

Physics is inherently multimodal, relying on text, equations, diagrams, and various forms of data.
LLM agents must evolve to efficiently integrate these diverse information types by parsing, inter-
preting, and generating specialized visual representations such as Feynman diagrams (see Figure 2),
tensor network notations [83] (as shown in the example below), dual unitary circuit diagrams [84]
(used in studies of quantum chaos), and phase diagrams.

Current vision-language models show potential in interpreting general plots but struggle with highly
specialized physics notations [85]. The ability to seamlessly reason across modalities—for example,
connecting a mathematical formalism with its graphical representation and experimental data—would
be valuable. This extends beyond calculation to translating diagrams into executable programs (e.g.,
a quantum circuit diagram into code for a quantum simulator) and assisting in graphical proofs or
derivations [86]. Recent advances like OpenAl-03 demonstrate improved image analysis by calling
tools to crop/zoom-in images, but understanding the deeper semantics of physics visualizations
requires further progress and careful benchmarking.

Example: Tensor Network Diagram Understanding and manipulating diagrams in specialized
fields, such as the tensor network notation often used in quantum information and condensed matter
theory, illustrates the type of complex visual-symbolic language that future LL.Ms should handle.
Consider the following tensors (all indices are 3D, indexed from 0):

@i’ 25 i — 4l _k, { =, l@:k

The task is to calculate the value of the last tensor network (perturbed from [87]). An ideal LLM as-
sistant would parse the diagram, identify tensors and their connectivity, translate this into an algebraic
expression Zmb’c’ de.f AayBaveDcqCleq, substitute definitions, and perform the computation via
generated code. LLMs could assist by creating such diagrams from text or formula descriptions. Mas-
tery of such visual-symbolic languages could extend to interpreting Feynman diagrams by extending
them into scattering amplitude calculations, or parsing quantum circuit diagrams to determine their
unitary evolution [88] or even carrying out graphical proofs of mathematical physics with such a
graphical language [86].

5.2 Developing Agentic Capabilities for Scientific Discovery

Future LLM systems may evolve into more autonomous agents capable of performing full-cycle
scientific tasks with greater independence under human oversight.

5.2.1 Agentic Al for Hypothesis Generation and Verification

Future Al agents might propose new models by analyzing anomalies [89] and inconsistencies among
different theories, exploring multiple branches of a solution tree and alternative physical models or
mathematical ansitze, and then systematically validating each option. By scanning through parameter
spaces [82, 90, 91, 92] guided by physical principles, Al-assisted scientific discovery [93, 89] may
eventually contribute to scientific hypothesis generation akin to AlphaGo Move 37 [94, 95], though
this remains an ambitious prospect.
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Variational methods in computational physics work by devising an appropriate parameterized class of
variational wavefunction |¥({«;})). This state should capture the essential physics of the system
(e.g., correlations, symmetries) while being computationally verifiable by minimizing the energy with
respect to {«; }. An LLM might assist by suggesting functional forms for |¥) based on the known
properties of the Hamiltonian (e.g., suggesting a Gutzwiller-projected wavefunction for strongly
correlated systems, or a Matrix Product State for 1D systems [83]), incorporating specific symmetries
(e.g., in lattice gauge theory [96, 97]), or using non-Gaussian state ansitze [98] that require long
analytical calculations. The verifiability of variational methods is direct: a better guess leads to a
lower calculated energy, providing a clear objective function for iterative optimization.

5.2.2 Automated Simulation, Experimental Design, and Verifying Theoretical Results at Scale

LLM agents might assist in optimizing experimental designs or simulation parameters, particularly
where theoretical models can guide the process, to maximize information gain or test specific
hypotheses [99]. This could involve suggesting appropriate measurement techniques (e.g., choosing
between different spectroscopic methods to probe a material’s electronic structure), identifying key
parameters to calibrate in an experiment with a quantum gas microscope [100] (where images from
a CCD camera are used to reconstruct particle configurations), or even interfacing with automated
cloud labs [93].

A significant challenge would be for an LLM to assist in verifying highly complex proofs in math-
ematical physics, such as Hastings’s proof of the super-additivity of Holevo information [101]. It
would be valuable to automatically cross-check the use of inequalities against established databases
at scale. Such verification is particularly important given that very technical results typically take
years to fact-check, and errors in published proofs are not uncommon [102].

5.3 Fine-tuned LLM Physicists and Towards Al Physicists

Specialized LLMs fine-tuned for physics could offer advantages over general-purpose models [103].
Such models would prioritize domain knowledge (e.g., quantum mechanics principles), eliminate
irrelevant information (e.g., historical facts unrelated to physics), and focus on physical reasoning
patterns (e.g., dimensional analysis, order-of-magnitude estimation, symmetry arguments). Fine-
tuning could involve supervised [104] and reinforcement learning [105]. To train physics-dedicated
LLMs, we need to collect more nuanced and effective reward signals, similar to how coding agents
are improving. Beyond simple pass/fail on benchmark problems, rewards should ideally capture the
quality of the reasoning process [78], the physical insightfulness of solutions, and alignment with
established scientific methodology by incorporating feedback from domain experts.

A long-term vision would be for LLM agents to become effective Al collaborators, or building
blocks of automated “Al physicists”, capable of full-cycle capabilities including proposing novel
research ideas, theorizing experimental phenomena, verifying hypothesis and assisting in all research
stages [89, 93]. Apart from significant technical advances, this would require a synergistic partnership
where Al models augment human intellect, supported by suitable UI/UX and appropriate guardrails.
Imagine investigating a novel material: an Al assistant might synthesize literature, formulate com-
putational models using solid-state physics principles, generate simulation code, explore analytical
approximations, and report results. For theoretical physics, a distant prospect is to deploy Al agents
for tackling open problems in the field [106].

6 Conclusion

LLMs have the potential to contribute meaningfully to modern physics research. Their poten-
tial to help accelerate scientific discovery, automate repetitive tasks, and assist in conceptual
breakthroughs is considerable. However, realizing this potential requires substantial effort to
address current limitations in rigorous reasoning, physical grounding, reliability, and multimodal
understanding. By fostering collaboration between physics and Al communities to develop
specialized models, robust verification techniques, and effective human-Al interfaces, we can
work toward using LL.Ms to contribute to expanding our understanding of the physical universe.
Furthermore, applying LLMs to physics serves as a demanding testbed for studying LLMs, including
interpretability, faithfulness of reasoning, adversarial robustness, and scalable oversight for safety.
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A Risks, Limitations and Ethical Considerations

Risk

Over-reliance on LLMs without rigorous verification could embed subtle errors into research [37].
The potential for LLMs to “cheat” reward functions during fine-tuning, producing plausible but
physically invalid outputs (e.g., a simulation appearing to conserve energy due to numerical artifacts),
requires careful alignment and robust evaluation [107, 108]. Furthermore, depending too heavily on
LLMs for tasks like mathematical derivations (e.g., routinely asking an LLM to compute integrals
like [ d*k/(k* — m? + i€)? instead of learning contour integration techniques), programming, or
data interpretation could risk degrading these essential skills among physicists, especially those
in training [109]. Deep intuition often arises from performing detailed calculations firsthand. The
history of scientific computing shows both warnings and reassurances: tools like Mathematica initially
raised de-skilling concerns but ultimately enabled mathematicians to focus on higher-level work by
automating repetitive calculations. Similarly, LLMs could potentially elevate physics research by
handling routine tasks while humans focus on deeper insights—if used as augmentation rather than
replacement for fundamental understanding.

Limitations

This position paper presents a high-level overview. The field of LLMs is rapidly evolving, and
specific capabilities or limitations discussed may change quickly. Due to the rapid evolution of LLMs,
specific examples quickly become outdated. The selected examples are illustrative of general trends
observed circa late 2024 and early 2025. The scope is necessarily limited to selected aspects of
physics research, and specific examples may not generalize to all subfields.

Ethical Considerations

Generating plausible but incorrect claims requires rigorous validation. Training bias could steer
research suboptimally. Responsible deployment and human oversight are required. Access and
equity issues must be addressed to ensure broad availability of these tools across the global physics
community.

B Building Better UI/UX for Human-centered Al

For LLMs to be effective collaborators, intuitive and efficient user interfaces (Uls) and user experi-
ences (UXs) are essential for supervision, tracing, and trust-building. These interfaces should allow
physicists to interact with LLMs naturally without extensive prompt engineering and should integrate
with existing research workflows and tools (e.g., LaTeX editors, data analysis and simulation environ-
ments). Future LLMs should also be robust to specific prompts and offer finer-grained controllability
over their reasoning style, level of detail, and assumptions made. For instance, prompting an LLM to
“solve the Schrodinger equation for a particle in a box” might yield different solution forms depending
on subtle phrasing. Ideally, an LLM should recognize standard conventions (e.g., specific boundary
conditions ¥ (0) = t(L) = 0 for a box of length L) or prompt for these if ambiguous. Controllability
would allow a physicist to specify, for example, “provide a solution using separation of variables and
show all steps for Hy) = Ev where H = —h?/2m - d /dz?® + V(z) and V (z) = 0 for 0 < z < L,
n’n3h

oo otherwise” versus “give the energy eigenvalues E,, = *.7-- and normalized wavefunctions

Yn(x) = \/2/Lsin(nmrz/L) directly”. Such controllability is vital for making LLMs reliable and
adaptive research assistants. Effective UI/UX must go beyond simple chat interfaces. Physicists
often work with extensive comments, annotations, and margin notes; interfaces supporting these
natural workflows would be more effective. For supervising agents, Uls need robust mechanisms for
managing experimental/simulation results, tracking context across long interactions (context manage-
ment [110]), and accommodating human-in-the-loop intervention. Given that LLLM outputs can be
verbose, tools for generating structured summaries with highlighting are needed. Integration with
collaborative platforms (e.g., Overleaf-like features with LLM assistance for consistency checking in
IATEX documents, or GitHub-style review tools for coding and derivations) would also be convenient.

C Running Physical Experiments

While our primary focus is on theoretical physics, we acknowledge that in the long term, Al systems
might also actively control experimental instrumentation, interpret sensory data in real-time, and
adjust experimental parameters accordingly. This would require the seamless integration of perception
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(e.g., using computer vision to optimize laser beam path setup for quantum optics experiments where
alignment precision is critical for data quality), reasoning (understanding the experimental progress
and deciding which measurements to perform next based on acquired data), and action (subsequently
adjusting the lensing setup with high-precision robotic arms) in the physical world. This long-term
vision enables a dynamic integration of reasoning models with robotics and control theory, bridging
high-level human-defined agenda with corresponding physical actions as envisioned by rising interest
in Large Action Models (LAM) [111] and Embodied Intelligence [112].

D Related Works

Non-Language Models Already Help Physics Machine learning (ML) is not new to physics [12].
Current applications include analyzing large experimental datasets (e.g., particle identification at
the Large Hadron Collider [113]), solving computational physics problems (e.g., finding ground
states of quantum Hamiltonians like Hy) = Ev [114, 115]), accelerating partial differential equation
solvers [116], and optimizing experimental controls (e.g., plasma shaping in fusion reactors [117]).
These applications typically involve supervised learning (classification, regression), unsupervised
learning (clustering, dimensionality reduction, generative modeling), or reinforcement learning for
specific, well-defined tasks. While powerful for specific tasks, these methods often differ from
the requirements of open-ended theoretical exploration, complex multistep problem solving, or
nuanced experimental design where LLMs might offer complementary advantages through their
natural language interface and broad knowledge encoding [19, 38].

E More Analysis and Examples

Example: Notational Nuances Another example is the Bogoliubov-de Gennes (BdG) Hamiltonian,
which often includes a 1,/2 prefactor by convention; LLMs might add or omit this factor inconsistently
if not carefully prompted, thereby impacting all subsequent calculations even though the authors
intend a different factor. Example: Lattice Gauge Theory For example, implementing the pure
gauge SU(2) Hamiltonian:

2 R 1 R R
H=g2;E7E5l+292;(2—Tr(UP+U;)) )

where Eﬂ are electric field operators on links /, Up are plaquette operators, and g is the coupling con-
stant, requires translating abstract gauge theory concepts into concrete numerical algorithms that pre-
serve gauge invariance and other symmetries. A critical physical constraint in such simulations is en-
suring that states satisfy Gauss’s law, which in the quantum context becomes 3 7 ¢ .. E 1) phys = 0
for each lattice site n and each gauge group generator a. This constraint must be explicitly enforced
in the code, typically by projecting onto the physical subspace or by adding an energy penalty term.
Example: Explaining the derivations A research paper may state a key result derived from an
effective action, Sefr[¢.|, obtained by “integrating out” high-momentum modes ¢, from a full action
S[¢e, dr]. An LLM assisting a researcher could be tasked to elaborate on the formal path integral def-
inition e~ Sel®el/h = [ Dgpy, e=SPe:9rl/h This elaboration might involve expanding the derivations
with common evaluation techniques like saddle-point approximations or perturbative expansions of
S[¢e, 1] around a background field, all while strictly adhering to the paper’s specific notation for the
classical fields ¢. and quantum fluctuations ¢;. Example: Diagonalizing a 2x2 Hermitian matrix
a b—ic
bt ic d ) (where a, b, c,d
are real but have complex expressions), an LLM might default to a brute-force symbolic expansion of
the characteristic determinant det(H — AI) = 0 to find eigenvalues, followed by solving systems
of linear equations for eigenvectors. A ‘good Al physicist’, however, might recognize the structure
and suggest decomposing the matrix in the Pauli basis: H = agl + a - o, where [ is the identity
matrix, o = (0, 0y, 0,) are the Pauli matrices, ap = (a + d)/2, and a = (b, ¢, (a — d)/2). From
this decomposition, eigenvalues (a( =+ |a|) and eigenvectors (related to the direction of a) can be read
off with greater physical insight (e.g., connecting to spin precession in a magnetic field) and often
less computation. Training LLMs to prefer such insightful decompositions over brute-force methods
is key to developing Al assistants that contribute to more elegant theory and can reduce complex
algebraic manipulations where errors might occur. Example: Feynman diagram Interpreting a
Feynman diagram [118] for Compton scattering (ye™ — ye™) (see, e.g., [119]) requires identifying

When asked to diagonalize a general 2x2 Hermitian matrix H = <
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incoming/outgoing photon (wavy lines) and electron (solid lines) lines, internal propagators (e.g.,
electron propagator Sp(p) = i(y-p+me.)/(p* —m?2+ic), where m, is electron mass, e is elementary
charge, v* are Dirac gamma matrices), and vertices (e.g., QED vertex factor —zey*). An LLM should
connect these diagrammatic elements to the mathematical terms in the scattering amplitude calcula-
tion according to Feynman rules. Example: Physical Inaccuracy in AI-Generated Images Current

Figure 2: A Feynman diagram for Compton scattering (ye~ — ye™ ) in s-channel. LLMs should connect graph-
ical elements (straight lines for fermions, wavy lines for bosons, and vertices for interactions) to mathematical
terms in scattering amplitude calculations (e.g., propagators, vertex factors, external leg factors).

Al image generators lack physical understanding, producing visually appealing but scientifically
incorrect visualizations. Figure 3 shows GPT-40’s response to “generate an image of a 3D modeling
of a two dimensional projected entangled pair state tensor network (4 by 4 square lattice)”. The image
violates PEPS structure: bulk tensors require exactly five indices (four virtual bonds to neighbors, one
physical index), yet many nodes show incorrect connectivity. Al systems fail to encode the physical
constraints—here, tensor network geometry and index structure. Example: AI Material Physicist

Figure 3: GPT-40-generated PEPS network with incorrect or at least unconventional tensor connectivity. Proper
PEPS tensors need 5 indices (4 virtual, 1 physical); many nodes lack required connections.

Imagine a physicist investigating a novel topological material. An ‘Al Physicist’ assistant might:
(1) Synthesize recent literature on related materials and their Berry curvature ,, 5, (k) calculations.
(2) Assist in formulating a tight-binding Hamiltonian H (k) for the new material based on its crys-
tal structure (e.g., honeycomb lattice for graphene-like systems). (3) Generate Python code using
libraries like Kwant or TightBindingTools.jl to numerically calculate the band structure E,, (k) and
Chern numbers C,, = % f B2 d? kQy, 2y (k). (4) If numerical results show unexpected edge states,
it might help consider analytical approximations (e.g., a low-energy effective Dirac Hamiltonian
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Hepp=w F(ka:O'y — kyox) + mo,, where v is the Fermi velocity and m is a mass/gap parameter)
to understand their origin. (5) Finally, it might create a slide deck summarizing these findings,
including generating plots. This collaborative workflow, with the AI handling complex but definable
subtasks under human strategic guidance, shows the potential [89]. Example: Verifying analytical
calculations by Mathematica Consider the Jordan-Wigner transformation, useful for 1D quantum
spin systems. The transverse field Ising model Hamiltonian is H = —.J Z<7 §)0i05 — hy,of.

The transformation maps spin operators 07" to fermionic operators ¢;, ¢;, €.g., 05 = 20} c; —1and
of = (I, <j'(1 - 2c£ck)) (c7 + cj) An LLM might attempt thi§ transfomation and co'uld.be asked to
verify parts via a Mathematica MCP, such as the anticommutation relation of the fermionic operators

after the transformation {c;, c;f} Using symbolic tools such as Mathematica, the probability of
correctness can be increased, if LLMs become better at generating the correct query for a tool and
interpreting its output for such (and more nontrivial) operator algebra.
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