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Abstract

Large Language Models (LLMs) are rapidly advancing across diverse domains,1

yet their application in theoretical physics research is not yet mature. This position2

paper argues that LLM agents can potentially help accelerate theoretical, computa-3

tional, and applied physics when properly integrated with domain knowledge and4

toolbox. We analyze current LLM capabilities for physics—from mathematical5

reasoning to code generation—identifying critical gaps in physical intuition, con-6

straint satisfaction, and reliable reasoning. We envision future physics-specialized7

LLMs that could handle multimodal data, propose testable hypotheses, and design8

experiments. Realizing this vision requires addressing fundamental challenges:9

ensuring physical consistency, and developing robust verification methods. We10

call for collaborative efforts between physics and AI communities to help advance11

scientific discovery in physics.12

1 Introduction13

Large Language Models (LLMs) represent a major advance at the forefront of artificial intelligence14

(AI), exhibiting remarkable proficiency in understanding natural language and performing increas-15

ingly complex reasoning tasks [1, 2, 3, 4, 5, 6]. While impacting various sectors, their potential in16

fundamental scientific research is only beginning to be systematically explored [7]. Physics, with its17

complex blend of abstract theory, demanding computation, rigorous experimentation, and reliance on18

approximations and physical intuition, presents both unique challenges and fertile ground for LLM19

applications. Position: We argue that LLM agents, when appropriately adapted and integrated20

with domain-specific knowledge and toolbox, could potentially serve as a promising technology21

with the capacity to accelerate discovery in theoretical physics, with broader implications for22

computational and applied physics, provided their current limitations in rigorous reasoning,23

physical grounding, and reliability are systematically addressed through targeted interdisci-24

plinary research. This position challenges the current paradigm where LLMs serve primarily as25

assistants for information retrieval. We contend that LLMs may evolve into autonomous collaborators26

for physicists, augmenting capabilities from literature review and conceptual exploration, to computa-27

tional simulation and data interpretation. However, realizing this potential requires acknowledging28

current limitations and undertaking dedicated, physics-informed research efforts. Supporting this29

cautious optimism is recent progress in LLM architecture, scale, and particularly advances in training30

reasoning models [3, 6, 4, 5, 8, 9, 10] that demonstrate growing agency in multistep problem-solving31

needed for physics research. Overview of this work This position paper is structured as follows.32

Section 2 introduces the taxonomy used in this paper, outlining a typical physics research workflow33

with an overview of the subskills LLMs might assist with. Section 3 provides an in-depth analysis of34

LLM capabilities for physics reasoning, categorized into mathematical skills, physics-specific reason-35

ing beyond mathematics, code generation & execution, and general research skills. Subsequently,36

Section 4 discusses common LLM engineering techniques relevant to physics applications. Section 537

explores open directions and desirable future capabilities for next-generation LLM-powered systems38
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Figure 1: A schematic workflow of theoretical physics research (top row, blue), potential LLM capabilities
(middle row, green), and key opportunities (bottom row, orange). Tool use capability connects with experimental
research through automated instrument control and data analysis.

to better assist physics research. Appendix A discusses key risks and challenges. Finally, Section 639

summarizes our position and offers a concluding perspective. Sections on Limitations and Ethical40

Considerations are included in the appendix.41

2 Physics Research: An Overview42

2.1 Research Stages & Skills43

A typical workflow in physics research often involves several stages, as depicted in Figure 1 (top44

row). These stages are generally iterative and involve collaboration among various researchers45

with different backgrounds and skill sets. Scientific inquiry typically proceeds through an iterative46

workflow that begins with literature review and problem identification, where existing work is47

surveyed to assess the state of the art and uncover open questions or inconsistencies. Based on48

this foundation, researchers engage in hypothesis formulation and model building, proposing new49

ideas, constructing models to capture physical phenomena, and defining the assumptions that frame50

their scope. These models are then subjected to analytical derivation, involving mathematical51

analysis, symbolic reasoning, and numerical calculations to extract predictions. Complementing52

this, simulation and computational experiments are employed to test model behavior and guide53

the design of physical experiments, for instance simulating the BKT transition in a quantum XY54

model [11] before performing quantum optical experiments. The resulting data undergo analysis55

and interpretation of results, where findings are compared with prior work to generate physical56

insights. This process is inherently cyclical, requiring iteration of the above stages until the problem57

is satisfactorily addressed. Finally, the outcomes are consolidated through communication, including58

the preparation of papers and presentations to disseminate the results.59

2.2 Opportunities and Challenges for LLMs in Physics Research60

The intersection of AI and physics is not new [12], but the advent of powerful LLMs introduces the61

potential to help address persistent bottlenecks in physics research—especially for tasks demanding62

enormous time investment or the processing of vast information streams. LLMs might assist physics63

research in at least two primary modes: (1) automating repetitive tasks such as literature review and64

well-defined calculations (see Sections 3.1, 3.4 and 4.1), and (2) sparking new ideas through human-65

AI collaboration, where AI agents might provide alternative perspectives (see Sections 3.3 and 5.2.1).66

While LLMs have shown remarkable growth in assisting formal theorem proving [13, 14, 15]67

and augmenting biochemical research [16, 17], physics poses unique challenges. Unlike formal68

mathematics with its focus on rigorous axiom-based proof [13], theoretical physics centrally involves69

constructing models, making justified approximations (e.g., when to approximate sin θ ≈ θ for small70

angles or apply perturbation theory where a Hamiltonian H = H0 + λV is expanded in powers71

of a small parameter λ), seeking validation against experiments, and employing physical intuition.72

These represent the highly challenging task of connecting abstractions to physical reality [18, 19, 20].73

Physics often involves mathematical problems that, while formally straightforward, gain complexity74

and nuance from their physical context, where mathematical rigor alone is insufficient. For example,75

diagonalizing a 2× 2 matrix is a standard linear algebra task. However, in topological condensed76

matter physics, such a matrix might represent the Bloch Hamiltonian of a Chern insulator, H(k) =77

dx(k)σx + dy(k)σy + dz(k)σz , where σi are Pauli matrices and d(k) is a vector function of78

momentum k. The mathematical task is to find eigenvalues E±(k) = ±|d(k)| and eigenvectors. The79
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physics, however, lies in understanding how the winding number of the vector d(k) over the Brillouin80

zone determines topological invariants like the Chern number [21], which dictates phenomena like81

quantized Hall conductivity [22]. LLM agents assisting must go beyond mere diagonalization and try82

to connect the mathematical procedure with the underlying physical interpretation.83

3 Skill Analysis for Physics Reasoning84

Despite the emerging ecosystem of scientific reasoning benchmarks from general scientific knowl-85

edge [23, 24] to physics-specific reasoning [25, 26, 27, 28], they focus primarily on exam-like86

problems with one definitive answer for verification. These do not capture the full complexity of87

physics research involving tasks such as deriving properties of new physical models, modifying88

simulation code based on a paper, and interacting with experts to explore open-ended problems. We89

need more benchmarks analogous to SWE-Bench [29] on a full-cycle research workflow to gauge90

how LLMs perform in tackling open-ended research in a real-world scenario [30]. Furthermore,91

developing benchmarks from frontier research questions such as FrontierMath [31] or Humanity’s92

Last Exam [32], within an ecosystem of domain experts [33], is key to probing the limits of AI93

reasoning for scientific discovery beyond solving close-ended Olympiad exam questions. In this94

section, we discuss concrete skills needed for physics research where limitations of current models95

call for focused improvement before LLMs can be reliable research partners. We categorize these96

skills to better understand the multifaceted potential and challenges.97

3.1 Mathematical and Symbolic Reasoning98

Skill Performing algebraic manipulation, calculus (differentiation, integration), linear algebra (matrix99

operations, tensor contractions like T ijkSjlm = Rik
lm), and solving differential equations essential for100

theoretical physics. Analysis Next-token prediction inherent to LLMs can lead to cascading errors in101

complex mathematical operations. Despite saturation on legacy benchmarks like MATH [23], errors102

are frequently observed in algebra and calculus [34, 35]. They also struggle with unit consistency103

(e.g., mixing SI and natural units where ~ = c = 1), thereby raising questions about their reliability104

for research-level derivations (e.g., evaluating path integrals
∫
DφeiS[φ]/~) [36].105

3.2 Beyond Math: Physics-Specific Reasoning Skills106

We outline skills unique to understanding physical context, principles, and common practices, ordered107

roughly from currently more reliable to less reliable (or more complex) for LLMs.108

3.2.1 Conceptual Framework, Formula Retrieval, and Application109

Skill Articulating physics concepts, principles, and theories in natural language, adapting to specific110

notations; identifying and applying general physics formulas to well-structured problems. Analysis111

LLMs can generate textbook-style explanations through summarization, yet this apparent understand-112

ing can be superficially derived from statistical correlations rather than causal models of physical113

laws [18, 19]. This is evident in explanations that seem correct but contain subtle physical inaccu-114

racies or miss crucial assumptions (e.g., in the context of perturbation theory, failing to state the115

conditions for its validity) [37]. LLMs have shown promising progress in applying formulas to116

well-defined problems mirroring textbook examples [27, 38, 26], but they may resort to memorized117

solutions rather than reasoning from first principles when confronted with novel variants of the same118

problems. Recent work [39, 20, 40] shows that perturbations to problem statements can cause signifi-119

cant performance decay, revealing models’ fragile understanding of systematic solution strategies.120

Their ability to choose appropriate approximations or understand the domain of validity for a given121

formula remains limited.122

3.2.2 Mathematical Deduction and Reasoning by Special Cases and Analogies123

Skill Applying mathematical tools adaptively to respect the physical constraints and interpretations of124

variables and operations; simplifying complex problems by considering special or limiting cases, or125

by drawing analogies to simpler, well-understood physical systems. Analysis This involves applying126

mathematical tools correctly while respecting the physical constraints and interpretations of variables127

and operations. For instance, correctly applying vector calculus to electromagnetic fields requires128

not just knowing the formulas for divergence or curl, but understanding what these operations mean129

for fields, sources, and boundaries in a physical system. LLMs are improving but can still falter in130

maintaining this contextual awareness through complex derivations. A challenge here is the potential131

for LLMs to exhibit overcomplication bias. Furthermore, behavioral tuning (e.g., for verbosity or132

specific output formats like Markdown) might inadvertently reduce their core reasoning capabilities,133
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an effect sometimes termed an “alignment tax” [41]. The default system prompts of general-purpose134

LLMs may also not elicit the concise, formal style of mathematical physics, potentially hiding their135

performance on complex derivations. For shorter calculations, some LLMs have struggled with tasks136

like counting the number of ‘r’s in the word “strawberry” or computing ‘9.9-9.11’. In physics, there137

are many notations whose rules differ dramatically from other fields, and LLMs should understand138

the context and apply the correct rule. For example, the normal ordering notation with : · : from139

quantum many-body physics.140

A common strategy in physics research is to gain intuition about a complex problem by analyzing141

simpler, solvable special cases (e.g., zero temperature limit T → 0, one-dimensional version of a 2D142

problem, specific symmetry points in parameter space) or by relating it to analogous systems (e.g.,143

mapping a quantum spin system to a classical statistical mechanics model). LLMs show some ability144

to follow instructions to analyze special cases if explicitly prompted. For example, given a general145

expression for the magnetic susceptibility χ(T ), an LLM might be able to evaluate its behavior as146

T → 0 (e.g., Curie’s law χ ∝ 1/T for paramagnets [42]) or T → ∞. However, spontaneously147

identifying fruitful special cases or insightful analogies that can simplify a problem or suggest a148

solution path is a more advanced reasoning skill that remains underdeveloped. Example: Analyzing149

Interacting Systems Consider a complex interacting quantum system described by a Hamiltonian150

H = Hkin +Hint. A physicist might first analyze the noninteracting limit (setting interaction strength151

U = 0 in Hint), or a mean-field approximation, to build intuition. An LLM could be guided to do152

this, but proactively suggesting “Let’s first consider the case where U = 0” or “This problem, under153

certain limits, is analogous to the Ising model HIsing = −J
∑

〈i,j〉 σ
z
i σ

z
j − h

∑
i σ

x
i if we make X154

approximation” demonstrates a higher level of scientific reasoning.155

3.2.3 Physical Consistency, Constraint Satisfaction, and Navigating Ambiguity156

Skill Ensuring solutions respect fundamental physical principles (e.g., conservation laws like157

dE/dt = 0, dP/dt = 0, dimensional consistency, causality, symmetries) and problem-specific158

constraints; recognizing ambiguity in problem statements or scientific texts, making justified as-159

sumptions to resolve ambiguity, or querying for clarification. Analysis A critical aspect of physics160

reasoning is ensuring solutions are physically sensible. LLMs must learn to self-check outputs against161

fundamental physical laws (e.g., conservation of energy, momentum, charge) and problem-specific162

constraints (e.g., boundary conditions like ψ(x = ±L/2) = 0 for a particle in a box [43], symmetries163

of the Hamiltonian such as [H,P ] = 0 if parity P is conserved). This includes ensuring dimensional164

consistency of equations (e.g., verifying that terms being added have the same physical units, like165

Joules for energy) and respecting fundamental symmetries. Developing this “physical common sense”166

is needed. Current LLMs may generate solutions that are mathematically plausible but physically167

violate such principles if not carefully guided or checked. Self-correction techniques [44, 45, 46] must168

be adapted to evaluate physical plausibility alongside logical consistency. Example: System-Bath169

Modeling. In a coding task for modeling the system-bath interactions of quantum many-body spin170

systems, described by a Hamiltonian like H = HS({σi}) + HB({τj}) + HSB({σi}, {τj}), an171

LLM (e.g., Cursor integrated with Claude Sonnet) might erroneously place the system spins {σi}172

and the bath spins {τj} on the same lattice sites if not explicitly prohibited. This configuration173

is physically nonsensical for typical models where system and bath are distinct objects with their174

own degrees of freedom, but might not be directly contradicted by a vague prompt. This type of175

error, stemming from a lack of “common sense” physical intuition about distinct subsystems, is176

something a human physicist would typically avoid. Such errors show the current gap in LLMs’177

physical intuition. Physics research often involves nuanced statements or different notations relying178

on implicit context. When faced with choices that lead to different solution paths, a human scientist179

typically seeks clarification with more context, yet LLMs tend to randomly pick one path without180

justification. This extends to interpreting under-specified problems common in physics, akin to181

Fermi problems (order-of-magnitude estimations often based on ambiguous information) [47], where182

making justified assumptions is essential. Example: Notational Ambiguity A research note might183

define a spin Hamiltonian Hs = −J
∑

〈i,j〉 σ
z
i σ

z
j , and then describe a Jordan-Wigner transformation184

to map it to a fermionic Hamiltonian, Hf = −J
∑

〈i,j〉(2c
†
i ci − 1)(2c†jcj − 1) + . . . . For brevity, an185

author might informally refer to both Hs and Hf as ‘H’ in different parts of the text. LLM agents186

often confuse properties or operations valid for Hs (acting on spin Hilbert space) with those for187

Hf (acting on Fock space). They might attempt to ‘correct’ the notation by consistently using a188

new symbol like Htransformed, or worse, attempt to apply operations valid for the original Hs to the189
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transformed Hf if they fail to track the change in underlying variables and the Hilbert space, leading190

to cascading errors in explanation.191

3.2.4 Making Justified Physical Approximations192

Skill Selecting appropriate levels of approximation based on physical context, stating assumptions193

explicitly, and understanding the domain of validity. Analysis Exact solutions are rare; progress often194

hinges on making well-justified approximations. LLMs need to select appropriate approximation195

levels (e.g., classical vs. quantum, relativistic vs. nonrelativistic, perturbative expansions, mean-field196

theory). They may default to standard textbook approximations (like the ideal gas law PV =197

nRT [48] or the harmonic oscillator potential V (x) = kx2/2) without critically evaluating their198

validity for the specific problem context or stating the conditions under which they hold. This199

includes complex expansions like those in stochastic calculus or advanced quantum field theory,200

where the choice of approximation scheme is nontrivial. Example: Perturbation Theory Consider201

a quantum system with a Hamiltonian H = H0 + λV , where H0 is exactly solvable (e.g., a free202

particle or harmonic oscillator), λ is a small dimensionless perturbation parameter, and V is the203

perturbation potential. An LLM might be asked for the first-order correction to the ground state204

energy E(0)
0 of H0. It should retrieve the standard formula from time-independent perturbation205

theory: E(1)
0 = λ〈ψ(0)

0 |V |ψ(0)
0 〉 (see, e.g., [49]), where ψ(0)

0 is the ground state eigenfunction of206

H0. However, a crucial aspect is understanding the conditions for the validity of perturbation theory,207

such as |λ〈ψ(0)
m |V |ψ(0)

n 〉| � |E(0)
m − E

(0)
n | for m 6= n. An LLM might apply the formula without208

checking or stating this crucial assumption, or struggle to identify the appropriate H0 and V if the209

problem is not explicitly presented in this standard perturbative form (a Taylor expansion in λ).210

3.3 Being A Good AI Physicist: Developing Taste and Gracefulness211

Skill Exhibiting good research “taste”, such as resorting to mathematically elegant explanations by212

Occam’s Razor and avoiding unnecessary complexity. Analysis While solving a problem is hard,213

solving it elegantly or finding the most insightful approach is much harder. A “good” physicist214

would not be satisfied with a brute-force answer but would strive for solutions that are simple,215

generalizable, and offer deeper understanding. This relates to developing a form of “research taste”.216

Current LLMs may sometimes opt for overly complex or brute-force approaches if not guided.217

Training LLMs to recognize and prefer elegant or simpler solutions, perhaps through reinforcement218

learning from human feedback that rewards such qualities, could be an important direction [50].219

Interpretability studies can also help understand how LLMs arrive at solutions and whether they are220

employing physical reasoning or relying on superficial pattern matching [51]. Example: Exploiting221

Symmetry Consider calculating the expectation value of the position operator x̂ for a particle in a one-222

dimensional potential V (x) that is symmetric, i.e., V (x) = V (−x), such as the harmonic oscillator223

V (x) = mω2x2/2 or an infinite square well centered at the origin. If the particle is in an energy224

eigenstate |ψn〉, its wavefunction ψn(x) will have definite parity: either even (ψn(−x) = ψn(x))225

or odd (ψn(−x) = −ψn(x)). Consequently, the probability density |ψn(x)|2 is always an even226

function. The expectation value is 〈x̂〉n =
∫∞
−∞ ψ∗

n(x)xψn(x)dx =
∫∞
−∞ x|ψn(x)|2dx. Since x227

is an odd function and |ψn(x)|2 is an even function, their product is odd. The integral of an odd228

function over a symmetric interval (−∞,∞) is zero. Thus, 〈x̂〉n = 0 (a standard result discussed229

in, e.g., [52]). An LLM might attempt a brute-force approach: find the explicit form of ψn(x)230

(e.g., Hermite polynomials for the harmonic oscillator), then perform the integration symbolically231

or numerically, potentially making calculation mistakes. A ‘good AI physicist’, however, would232

recognize the symmetry of the potential and the parity of the integrand to immediately conclude233

〈x̂〉n = 0 without detailed calculation. Training LLMs to identify and use such symmetries reflects234

a deeper physical understanding and leads to more elegant and efficient problem-solving. This235

symmetry principle extends profoundly in physics [53], from continuous symmetries (e.g., Noether’s236

theorem linking them to conservation laws like dP/dt = 0 for translational symmetry) to discrete237

ones dictating selection rules or fundamental properties (e.g., CP violation in particle physics [54]).238

3.4 Code Generation and Execution for Physics239

Skill Physics-aware code generation that correctly translates physical models and algorithms, bridg-240

ing theory, computation, and experiment. Analysis LLMs can generate code (NumPy/SciPy) for241

Monte Carlo simulations in solid state physics and molecular dynamics, perform numerical analysis242

of equations [55], and assist with data analysis [56], helping to accelerate prototyping. They might243

assist in maintaining/extending legacy code (e.g., Fortran in large collaborations [57]) or translating244
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to modern languages. This capability could help bridge theory, computation, and experiment: a245

theorist might use an LLM to quickly prototype a simulation for a new model; an experimentalist246

might use it to apply computational analysis to their data without extensive programming expertise.247

However, physics-aware code generation [58] demands correct translation of physical models. For248

instance, implementing the Hubbard model H = −t
∑

〈i,j〉,σ(c
†
iσcjσ + h.c.) + U

∑
i ni↑ni↓ [59]249

requires understanding its Hilbert space, symmetries (particle number, Sz conservation), and nu-250

merical algorithms (exact diagonalization, Quantum Monte Carlo [60]). A naive LLM agent might251

miss crucial physical constraints like fermionic anticommutation rules {ciσ, c†jσ′} = δijδσσ′ or252

boundary conditions (e.g., periodic cN+1 = c1). Similarly, translating Lattice Gauge Theory (LGT)253

formalisms [61], like the SU(Nc) Hamiltonian H = g2

2a

∑
l,αE

α
l E

α
l − 1

ag2

∑
p ReTr(Up) (where Eα

l254

are electric field operators, Up plaquette operators, a lattice spacing, g coupling), into code requires255

handling complex group theory and ensuring constraints like Gauss’s law (e.g., its lattice version256

Gα
n|phys〉 = (

∑
l at nE

α
l )|phys〉 = 0) are correctly implemented.257

4 LLM Techniques as Augmentation for Physics Research258

Various techniques in LLM reasoning can be adapted to tackle several common tasks within physics259

research, as we detail in this section.260

4.1 Literature Review by Retrieval-Augmented Generation and Long-Context Reasoning261

By leveraging Retrieval-Augmented Generation (RAG) [62], frontier agentic research systems like262

DeepResearch [63] can access massive up-to-date literature. The rise of long-context LLMs (e.g.,263

200K [6] to over 1M tokens [4]) enables workflows that require comprehensive summarization264

across various data sources such as multiple Physical Review papers, PhD theses, or graduate-level265

textbook chapters (e.g., following the derivation of the Bethe Ansatz solution [64, 65] for the 1D266

Heisenberg model H = J
∑

i Si · Si+1 across several chapters of a textbook). However, practical267

limitations persist as performance often degrades as context length increases (the “lost in the middle”268

phenomenon [66]), and models can be easily distracted by irrelevant information embedded within269

the context [67]. Effectively combining and synthesizing information from a wide range of diverse270

documents longer than the context window remains an open research frontier [68].271

4.2 Exploratory Reasoning by In-Context Few-Shot Learning272

LLMs can adapt their behavior based on in-context demonstrations [1, 69]. For example, LLM agents273

could infer how to tackle a particular type of equation from a few examples (e.g., the time-independent274

Schrödinger equation (−~2/2m · ψ′′ + V ψ) = Eψ for different potentials V (x) like the harmonic275

oscillator V (x) = mω2x2/2) and then apply a similar methodology to a new potential, such as the276

microwave shielding for cold molecules [70, 71], where experimental setups require analyzing a277

new long-range potential. Using few-shot examples of similar long-range potential analyses, an278

LLM could help researchers apply established analysis procedures to these novel experimental279

configurations.280

This is particularly relevant in pursuit of new physics that involves new conditions or classes of281

models where the general solution methodology is known and the solutions are verifiable. LLM282

agents could study multiple variants of the same problem or multiple solution paths for the same283

conjecture simultaneously to help human researchers.284

4.3 Tool Usage and Reliable Scientific Reasoning by Self-Reflection285

Tool Usage LLMs are not inherently calculators or symbolic reasoners, but they can effec-286

tively use external tools like symbolic math engines (Mathematica, SymPy), numerical li-287

braries (via code execution), or databases via dedicated portals such as Model-Context Proto-288

cols (MCP) [72, 73, 74, 75]. Models need to learn when and how to call these tools effec-289

tively, formulate valid queries for them (e.g., correctly translating a subproblem like “calculate290 ∫∞
0
x2e−axdx for a > 0” (a standard integral found in texts like [76]) into Integrate[x^2 Exp[-291

a x], {x, 0, Infinity}, Assumptions -> a > 0] for Mathematica), and interpret their output292

correctly within the physics context. Tool use allows for a more dynamic, nonsequential workflow:293

LLM agents can query a tool, analyze the output, and then decide on subsequent actions, effectively294

optimizing their solution path. This contrasts with purely auto-regressive generation, enabling more295

robust self-correction and complex problem decomposition. Reliable Scientific Reasoning by296

Self-Reflection LLMs suffer from hallucinations or confabulations, which may produce factually297
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incorrect information that sounds plausible at first [37, 77]. This can lead to flawed conclusions298

or even potentially dangerous outcomes in an experimental setting. Ensuring the factual accuracy299

and logical consistency of LLM outputs, especially for complex reasoning chains, remains a major300

challenge [78]. Techniques like self-critique [46] and RAG [62] with physics-specific knowledge301

bases show promise for improving factual accuracy but need further development for scientific302

domains. Self-reflection [44, 45, 46] by external modules or human oversight [78, 79, 80] has shown303

promising performance gains on scientific tasks [78, 81]. This is particularly valuable for catching304

logical inconsistencies, sign errors in derivations, or violations of conservation laws.305

Multi-agent simulations [? 82] open the door for streamlining verification, where specialized agents306

verify different physical constraints separately (e.g., one agent checks dimensional consistency,307

another checks symmetry properties). A combined system might help accelerate the hypothesis-308

verification cycle of scientific discovery.309

5 Open Directions and Opportunities for LLM agents310

5.1 Advancing Multimodal Reasoning311

Physics is inherently multimodal, relying on text, equations, diagrams, and various forms of data.312

LLM agents must evolve to efficiently integrate these diverse information types by parsing, inter-313

preting, and generating specialized visual representations such as Feynman diagrams (see Figure 2),314

tensor network notations [83] (as shown in the example below), dual unitary circuit diagrams [84]315

(used in studies of quantum chaos), and phase diagrams.316

Current vision-language models show potential in interpreting general plots but struggle with highly317

specialized physics notations [85]. The ability to seamlessly reason across modalities—for example,318

connecting a mathematical formalism with its graphical representation and experimental data—would319

be valuable. This extends beyond calculation to translating diagrams into executable programs (e.g.,320

a quantum circuit diagram into code for a quantum simulator) and assisting in graphical proofs or321

derivations [86]. Recent advances like OpenAI-o3 demonstrate improved image analysis by calling322

tools to crop/zoom-in images, but understanding the deeper semantics of physics visualizations323

requires further progress and careful benchmarking.324

Example: Tensor Network Diagram Understanding and manipulating diagrams in specialized325

fields, such as the tensor network notation often used in quantum information and condensed matter326

theory, illustrates the type of complex visual-symbolic language that future LLMs should handle.327

Consider the following tensors (all indices are 3D, indexed from 0):328

A i

j

= i2 − 5j,
B

i
j

k
= 4ij − k,

Di

j

= j,
Ci

j
k

= ijk,
A

B D

C
.329

The task is to calculate the value of the last tensor network (perturbed from [87]). An ideal LLM as-330

sistant would parse the diagram, identify tensors and their connectivity, translate this into an algebraic331

expression
∑

a,b,c,d,e,f AafBabcDcdCfed, substitute definitions, and perform the computation via332

generated code. LLMs could assist by creating such diagrams from text or formula descriptions. Mas-333

tery of such visual-symbolic languages could extend to interpreting Feynman diagrams by extending334

them into scattering amplitude calculations, or parsing quantum circuit diagrams to determine their335

unitary evolution [88] or even carrying out graphical proofs of mathematical physics with such a336

graphical language [86].337

5.2 Developing Agentic Capabilities for Scientific Discovery338

Future LLM systems may evolve into more autonomous agents capable of performing full-cycle339

scientific tasks with greater independence under human oversight.340

5.2.1 Agentic AI for Hypothesis Generation and Verification341

Future AI agents might propose new models by analyzing anomalies [89] and inconsistencies among342

different theories, exploring multiple branches of a solution tree and alternative physical models or343

mathematical ansätze, and then systematically validating each option. By scanning through parameter344

spaces [82, 90, 91, 92] guided by physical principles, AI-assisted scientific discovery [93, 89] may345

eventually contribute to scientific hypothesis generation akin to AlphaGo Move 37 [94, 95], though346

this remains an ambitious prospect.347
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Variational methods in computational physics work by devising an appropriate parameterized class of348

variational wavefunction |Ψ({αi})〉. This state should capture the essential physics of the system349

(e.g., correlations, symmetries) while being computationally verifiable by minimizing the energy with350

respect to {αi}. An LLM might assist by suggesting functional forms for |Ψ〉 based on the known351

properties of the Hamiltonian (e.g., suggesting a Gutzwiller-projected wavefunction for strongly352

correlated systems, or a Matrix Product State for 1D systems [83]), incorporating specific symmetries353

(e.g., in lattice gauge theory [96, 97]), or using non-Gaussian state ansätze [98] that require long354

analytical calculations. The verifiability of variational methods is direct: a better guess leads to a355

lower calculated energy, providing a clear objective function for iterative optimization.356

5.2.2 Automated Simulation, Experimental Design, and Verifying Theoretical Results at Scale357

LLM agents might assist in optimizing experimental designs or simulation parameters, particularly358

where theoretical models can guide the process, to maximize information gain or test specific359

hypotheses [99]. This could involve suggesting appropriate measurement techniques (e.g., choosing360

between different spectroscopic methods to probe a material’s electronic structure), identifying key361

parameters to calibrate in an experiment with a quantum gas microscope [100] (where images from362

a CCD camera are used to reconstruct particle configurations), or even interfacing with automated363

cloud labs [93].364

A significant challenge would be for an LLM to assist in verifying highly complex proofs in math-365

ematical physics, such as Hastings’s proof of the super-additivity of Holevo information [101]. It366

would be valuable to automatically cross-check the use of inequalities against established databases367

at scale. Such verification is particularly important given that very technical results typically take368

years to fact-check, and errors in published proofs are not uncommon [102].369

5.3 Fine-tuned LLM Physicists and Towards AI Physicists370

Specialized LLMs fine-tuned for physics could offer advantages over general-purpose models [103].371

Such models would prioritize domain knowledge (e.g., quantum mechanics principles), eliminate372

irrelevant information (e.g., historical facts unrelated to physics), and focus on physical reasoning373

patterns (e.g., dimensional analysis, order-of-magnitude estimation, symmetry arguments). Fine-374

tuning could involve supervised [104] and reinforcement learning [105]. To train physics-dedicated375

LLMs, we need to collect more nuanced and effective reward signals, similar to how coding agents376

are improving. Beyond simple pass/fail on benchmark problems, rewards should ideally capture the377

quality of the reasoning process [78], the physical insightfulness of solutions, and alignment with378

established scientific methodology by incorporating feedback from domain experts.379

A long-term vision would be for LLM agents to become effective AI collaborators, or building380

blocks of automated “AI physicists”, capable of full-cycle capabilities including proposing novel381

research ideas, theorizing experimental phenomena, verifying hypothesis and assisting in all research382

stages [89, 93]. Apart from significant technical advances, this would require a synergistic partnership383

where AI models augment human intellect, supported by suitable UI/UX and appropriate guardrails.384

Imagine investigating a novel material: an AI assistant might synthesize literature, formulate com-385

putational models using solid-state physics principles, generate simulation code, explore analytical386

approximations, and report results. For theoretical physics, a distant prospect is to deploy AI agents387

for tackling open problems in the field [106].388

6 Conclusion389

LLMs have the potential to contribute meaningfully to modern physics research. Their poten-390

tial to help accelerate scientific discovery, automate repetitive tasks, and assist in conceptual391

breakthroughs is considerable. However, realizing this potential requires substantial effort to392

address current limitations in rigorous reasoning, physical grounding, reliability, and multimodal393

understanding. By fostering collaboration between physics and AI communities to develop394

specialized models, robust verification techniques, and effective human-AI interfaces, we can395

work toward using LLMs to contribute to expanding our understanding of the physical universe.396

Furthermore, applying LLMs to physics serves as a demanding testbed for studying LLMs, including397

interpretability, faithfulness of reasoning, adversarial robustness, and scalable oversight for safety.398

399
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[11] H.-Q. Ding and M. S. Makivić. Kosterlitz-Thouless transition in the two-dimensional quantum XY model.436

Phys. Rev. B, 42(10):6827–6830, October 1990. 2437

[12] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby, Leslie438

Vogt-Maranto, and Lenka Zdeborová. Machine learning and the physical sciences. Rev. Mod. Phys.,439

91(4):045002, December 2019. 2, 17440

[13] Zhangir Azerbayev, Denys Kocetkov, Artem Kocetkov, Shubham Toshniwal, Yuntao Bai, Charles Sutton,441

Jared Kaplan, Azalia Mirhoseini, Aakanksha Chowdhery, Roger Grosse, Ilya Sutskever, Jean-Baptiste442

Alayrac, Alhussein Fawzi, and Jascha Sohl-Dickstein. Llemma: An open language model for mathematics.443

In Advances in Neural Information Processing Systems, volume 36, pages 26233–26249, 2023. 2444

[14] Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry without445

human demonstrations. Nature, 625(7995):476–482, January 2024. 2446

[15] Stanislas Polu, Jesse Michael Han, Kaiyu Zheng, Ambrose Baksys, Igor Babuschkin, Richard Sutton,447

Arthur Szlam, Jean-Baptiste Alayrac, and Ilya Sutskever. AI assistance for proving mathematical theorems448

in Lean. Nature, 626:115–122, 2024. 2449

[16] Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D. White, and Philippe Schwaller.450

Augmenting large language models with chemistry tools. Nat Mach Intell, 6(5):525–535, May 2024. 2451

9



[17] Varuni Sarwal, Gaia Andreoletti, Viorel Munteanu, Ariel Suhodolschi, Dumitru Ciorba, Viorel Bostan,452

Mihai Dimian, Eleazar Eskin, Wei Wang, and Serghei Mangul. A benchmark for large language models453

in bioinformatics, April 2025. 2454

[18] Thilo Hagendorff, Ishita Dasgupta, Marcel Binz, Stephanie C. Y. Chan, Andrew Lampinen, Jane X. Wang,455

Zeynep Akata, and Eric Schulz. Machine Psychology, August 2024. 2, 3456

[19] Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language models a457

mirage? In Advances in Neural Information Processing Systems 36 (NeurIPS 2023), 2023. 2, 3, 17458

[20] Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim, Jacob459

Andreas, and Yoon Kim. Reasoning or reciting? Exploring the capabilities and limitations of language460

models through counterfactual tasks. In Proceedings of the 2024 Conference of the North American461

Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1:462

Long Papers), pages 1819–1862. Association for Computational Linguistics, June 2024. 2, 3463

[21] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized Hall Conductance in a464

Two-Dimensional Periodic Potential. Phys. Rev. Lett., 49(6):405–408, August 1982. 3465

[22] K. v. Klitzing, G. Dorda, and M. Pepper. New Method for High-Accuracy Determination of the Fine-466

Structure Constant Based on Quantized Hall Resistance. Phys. Rev. Lett., 45(6):494–497, August 1980.467

3468

[23] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob469

Steinhardt. Measuring massive multitask language understanding. In International Conference on470

Learning Representations (ICLR), 2021. 3471

[24] Zhihong Sun, Kuan Kuang, Yiming Ji, Wenxiang Wang, Qun Liu, Hua Wu, Haifeng Wang, Shiqi Wu,472

and Zhi-Hong Dou. SciEval: A multi-level large language model evaluation benchmark for scientific473

research, 2023. 3474

[25] Daniel J. H. Chung, Zhiqi Gao, Yurii Kvasiuk, Tianyi Li, Moritz Münchmeyer, Maja Rudolph, Frederic475

Sala, and Sai Chaitanya Tadepalli. Theoretical Physics Benchmark (TPBench) – a Dataset and Study of476

AI Reasoning Capabilities in Theoretical Physics, February 2025. 3477

[26] Xinyu Zhang, Yuxuan Dong, Yanrui Wu, Jiaxing Huang, Chengyou Jia, Basura Fernando, Mike Zheng478

Shou, Lingling Zhang, and Jun Liu. PhysReason: A Comprehensive Benchmark towards Physics-Based479

Reasoning, February 2025. 3480

[27] Shi Qiu, Shaoyang Guo, Zhuo-Yang Song, Yunbo Sun, Zeyu Cai, Jiashen Wei, Tianyu Luo, Yixuan Yin,481

Haoxu Zhang, Yi Hu, Chenyang Wang, Chencheng Tang, Haoling Chang, Qi Liu, Ziheng Zhou, Tianyu482

Zhang, Jingtian Zhang, Zhangyi Liu, Minghao Li, Yuku Zhang, Boxuan Jing, Xianqi Yin, Yutong Ren,483

Zizhuo Fu, Weike Wang, Xudong Tian, Anqi Lv, Laifu Man, Jianxiang Li, Feiyu Tao, Qihua Sun, Zhou484

Liang, Yushu Mu, Zhongxuan Li, Jing-Jun Zhang, Shutao Zhang, Xiaotian Li, Xingqi Xia, Jiawei Lin,485

Zheyu Shen, Jiahang Chen, Qiuhao Xiong, Binran Wang, Fengyuan Wang, Ziyang Ni, Bohan Zhang, Fan486

Cui, Changkun Shao, Qing-Hong Cao, Ming-xing Luo, Muhan Zhang, and Hua Xing Zhu. PHYBench:487

Holistic Evaluation of Physical Perception and Reasoning in Large Language Models, April 2025. 3488

[28] Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R. Loomba,489

Shichang Zhang, Yizhou Sun, and Wei Wang. SciBench: Evaluating college-level scientific problem-490

solving abilities of large language models. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,491

Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st492

International Conference on Machine Learning (ICML), volume 235 of Proceedings of Machine Learning493

Research, pages 50622–50649. PMLR, 2024. 3494

[29] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R495

Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth496

International Conference on Learning Representations, 2024. 3497

[30] Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel498

Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia Glaese, and Tejal499

Patwardhan. PaperBench: Evaluating AI’s Ability to Replicate AI Research, April 2025. 3500

[31] Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caroline Falkman501

Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, Olli Järviniemi, Matthew Barnett,502

Robert Sandler, Jaime Sevilla, Qiuyu Ren, Elizabeth Pratt, Lionel Levine, Grant Barkley, Natalie Stewart,503

Bogdan Grechuk, Tetiana Grechuk, and Shreepranav Varma Enugandla. FrontierMath: A benchmark for504

evaluating advanced mathematical reasoning in AI. arXiv preprint arXiv:2411.04872, November 2024. 3505

10



[32] Long Phan, Alice Gatti, Ziwen Han, and et al. Humanity’s Last Exam, April 2025. 3506

[33] bench.science. bench.science: Benchmarking the future of science, 2025. Initiative for standardized AI507

benchmarks across scientific domains. 3508

[34] Ernest Davis and Scott Aaronson. Testing GPT-4 with Wolfram Alpha and Code Interpreter plug-ins on509

math and science problems, February 2025. 3510

[35] Ernest Davis. Testing GPT-4-o1-preview on math and science problems: A follow-up study, October511

2024. 3512

[36] Haining Pan, Nayantara Mudur, William Taranto, Maria Tikhanovskaya, Subhashini Venugopalan,513

Yasaman Bahri, Michael P. Brenner, and Eun-Ah Kim. Quantum many-body physics calculations with514

large language models. Commun Phys, 8(1):1–8, January 2025. 3515

[37] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,516

Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei Bi, Freda Shi, and Shuming Shi. Siren’s517

Song in the AI Ocean: A Survey on Hallucination in Large Language Models, September 2023. 3, 7, 16518

[38] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,519

Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy520

Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language models. In Advances521

in Neural Information Processing Systems 36 (NeurIPS 2022), 2022. 3, 17522

[39] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam523

Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor524

Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Kocurek, Ali525

Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda526

Dsouza, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea Santilli, Andreas Stuhlmüller,527

Andrew M. Dai, Andrew La, Andrew K. Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong,528

Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum,529

Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat,530

Aykut Erdem, Ayla Karakas, and et al. Beyond the Imitation Game: Quantifying and extrapolating the531

capabilities of language models, 2022. 3532

[40] Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji, Jiawei Ge, Wenzhe Li, Yingqing Guo, Tianle Cai, Hui533

Yuan, Runzhe Wang, Yue Wu, Ming Yin, Shange Tang, Yangsibo Huang, Chi Jin, Xinyun Chen, Chiyuan534

Zhang, and Mengdi Wang. MATH-Perturb: Benchmarking LLMs’ Math Reasoning Abilities against535

Hard Perturbations, February 2025. 3536

[41] Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,537

Nicholas Joseph, Ben Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,538

Jackson Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam539

McCandlish, Chris Olah, and Jared Kaplan. A General Language Assistant as a Laboratory for Alignment,540

December 2021. 4541

[42] Charles Kittel. Introduction to Solid State Physics. John Wiley & Sons, 8th edition, 2004. 4542

[43] David J. Griffiths and Darrell F. Schroeter. Introduction to Quantum Mechanics. Cambridge University543

Press, 3rd edition, 2018. 4544

[44] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,545

Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,546

Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-Refine: Iterative Refine-547

ment with Self-Feedback, May 2023. 4, 7548

[45] Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu549

Yao. Reflexion: Language Agents with Verbal Reinforcement Learning, October 2023. 4, 7550

[46] William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan Leike.551

Self-critiquing models for assisting human evaluators, June 2022. 4, 7552

[47] Larry Weinstein. Fermi Questions. The Physics Teacher, 48(7):490, October 2010. 4553

[48] Frederick Reif. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York, 1965. 5554

[49] J. J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. Cambridge University Press, 2 edition,555

2017. 5556

11



[50] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,557

Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion, Tom558

Conerly, Sheer El Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan Hume, Scott559

Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom B. Brown,560

Jack Clark, Sam McCandlish, Chris Olah, Benjamin Mann, and Jared Kaplan. Training a helpful and561

harmless assistant with reinforcement learning from human feedback, 2022. 5562

[51] Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-than?: Interpret-563

ing mathematical abilities in a pre-trained language model, 2023. 5564

[52] Ramamurti Shankar. Principles of Quantum Mechanics. Plenum Press, 2 edition, 1994. 5565

[53] David J. Gross. The role of symmetry in fundamental physics. Proceedings of the National Academy of566

Sciences, 93(25):14256–14259, December 1996. 5567

[54] T. D. Lee and C. N. Yang. Question of Parity Conservation in Weak Interactions. Phys. Rev.,568

104(1):254–258, October 1956. 5569

[55] Anoop Cherian, Radu Corcodel, Siddarth Jain, and Diego Romeres. LLMPhy: Complex Physical570

Reasoning Using Large Language Models and World Models, December 2024. 5571

[56] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and572

Graham Neubig. PAL: Program-aided language models. In Proceedings of the 40th International573

Conference on Machine Learning (ICML), volume 202 of Proceedings of Machine Learning Research,574

pages 10764–10799. PMLR, 2023. 5575

[57] Anthony Zhou, Linnia Hawkins, and Pierre Gentine. Proof-of-concept: Using ChatGPT to translate and576

modernize an earth system model from fortran to python/JAX, February 2024. 5577

[58] Yufei Tian, Libo Wang, and Lei Wang. SciCode: A comprehensive benchmark for evaluating code578

generation capability of large language models in science, 2024. 6579

[59] Assa Auerbach. Interacting Electrons and Quantum Magnetism. Springer-Verlag, 1994. 6580

[60] Federico Becca and Sandro Sorella. Quantum Monte Carlo Approaches for Correlated Systems. Cam-581

bridge University Press, Cambridge, 2017. 6582

[61] Kenneth G. Wilson. Confinement of quarks. Phys. Rev. D, 10(8):2445–2459, October 1974. 6583

[62] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,584

Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.585

Retrieval-augmented generation for knowledge-intensive NLP tasks. In Hugo Larochelle, Marc’Aurelio586

Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Infor-587

mation Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,588

NeurIPS 2020, December 6-12, 2020, Virtual, 2020. 6, 7589

[63] OpenAI. Introducing deep research, February 2025. AI-powered multi-step research tool for complex590

tasks. 6591

[64] H. Bethe. Zur Theorie der Metalle. Z. Physik, 71(3):205–226, March 1931. 6592

[65] Fabian H. L. Essler, Holger Frahm, Frank Göhmann, Andreas Klümper, and Vladimir E. Korepin. The593

One-Dimensional Hubbard Model. Cambridge University Press, 2005. 6594

[66] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy595

Liang. Lost in the middle: How language models use long contexts, July 2023. 6596

[67] Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H. Chi, Nathanael Schärli,597

and Denny Zhou. Large language models can be easily distracted by irrelevant context. In Proceedings of598

the 40th International Conference on Machine Learning (ICML), volume 202 of Proceedings of Machine599

Learning Research, pages 31210–31224. PMLR, July 2023. 6600

[68] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer, 2020. 6601

[69] Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models of code602

are few-shot commonsense learners, 2022. 6603

[70] Xing-Yan Chen, Andreas Schindewolf, Sebastian Eppelt, Roman Bause, Marcel Duda, Shrestha Biswas,604

Tijs Karman, Timon Hilker, Immanuel Bloch, and Xin-Yu Luo. Field-linked resonances of polar molecules.605

Nature, 614(7946):59–63, February 2023. 6606

12



[71] Fulin Deng, Xing-Yan Chen, Xin-Yu Luo, Wenxian Zhang, Su Yi, and Tao Shi. Effective Potential and607

Superfluidity of Microwave-Shielded Polar Molecules. Phys. Rev. Lett., 130(18):183001, May 2023. 6608

[72] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. HuggingGPT:609

Solving AI Tasks with ChatGPT and its Friends in Hugging Face. arXiv, December 2023. 6610

[73] Shishir G. Patil, Tianjun Chen, Pingchuan Liang, Xuechen Luan, Dung Tran, Hyung Won Choi, Charles611

Sutton, Sören Mindermann, Alicia Parrish, Judy Hoffman, Le Hou, Brandon Sapp, Joseph E. Gonzalez,612

Ion Stoica, and Dawn Song. Gorilla: Large language model connected with massive apis. In Advances in613

Neural Information Processing Systems, volume 36, pages 1885–1909, 2023. 6614

[74] Anthropic. Introducing the model context protocol, November 2024. Open standard for connecting AI615

systems with data sources. 6616

[75] Pathintegral Institute. MCP.science: Open Source MCP Servers for Scientific Research. GitHub repository,617

2025. Collection of Model Context Protocol servers for scientific applications. 6618

[76] George B. Arfken, Hans J. Weber, and Frank E. Harris. Mathematical Methods for Physicists. Academic619

Press, 7 edition, 2013. 6620

[77] L. Bottou and B. Schölkopf. The fiction machine. SIAM News, 58(3), April 2025. 7621

[78] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike,622

John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step, May 2023. 7, 8623

[79] Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja Trebacz,624

and Jan Leike. LLM Critics Help Catch LLM Bugs, June 2024. 7625

[80] Jan Hendrik Kirchner, Yining Chen, Harri Edwards, Jan Leike, Nat McAleese, and Yuri Burda. Prover-626

Verifier Games improve legibility of LLM outputs, August 2024. 7627

[81] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha628

Chowdhery, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language629

Models. In The Eleventh International Conference on Learning Representations, September 2022. 7630

[82] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,631

Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W. White, Doug Burger, and Chi Wang.632

AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation, October 2023. 7633

[83] Ignacio Cirac, David Perez-Garcia, Norbert Schuch, and Frank Verstraete. Matrix Product States and634

Projected Entangled Pair States: Concepts, Symmetries, and Theorems. Rev. Mod. Phys., 93(4):045003,635

December 2021. 7, 8636

[84] Bruno Bertini, Pavel Kos, and Tomaz Prosen. Exact correlation functions for dual-unitary lattice models637

in 1 + 1 dimensions. Phys. Rev. Lett., 123:210601, Nov 2019. 7638

[85] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,639

Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. A multitask, multilingual,640

multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity, 2023. 7641

[86] Arthur Jaffe, Zhengwei Liu, Jacob D. Biamonte, John Ewing, and Alina Vdovina. Mathematical picture642

language program. Proc. Natl. Acad. Sci., 115(1):81–86, 2018. 7643

[87] Jacob C Bridgeman and Christopher T Chubb. Hand-waving and interpretive dance: An introductory644

course on tensor networks. J. Phys. A, 50(22):223001, May 2017. 7645

[88] Pavel Kos, Bruno Bertini, and Tomaž Prosen. Correlations in Perturbed Dual-Unitary Circuits: Efficient646

Path-Integral Formula. Phys. Rev. X, 11(1):011022, February 2021. 7647

[89] Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,648

Shengchao Liu, Peter Van Katwyk, Andreea Deac, Anima Anandkumar, Karianne Bergen, Carla P.649

Gomes, Shirley Ho, Pushmeet Kohli, Joan Lasenby, Jure Leskovec, Tie-Yan Liu, Arjun Manrai, Debora650

Marks, Bharath Ramsundar, Le Song, Jimeng Sun, Jian Tang, Petar Veličković, Max Welling, Linfeng651
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A Risks, Limitations and Ethical Considerations748

Risk749

Over-reliance on LLMs without rigorous verification could embed subtle errors into research [37].750

The potential for LLMs to “cheat” reward functions during fine-tuning, producing plausible but751

physically invalid outputs (e.g., a simulation appearing to conserve energy due to numerical artifacts),752

requires careful alignment and robust evaluation [107, 108]. Furthermore, depending too heavily on753

LLMs for tasks like mathematical derivations (e.g., routinely asking an LLM to compute integrals754

like
∫
d4k/(k2 −m2 + iε)2 instead of learning contour integration techniques), programming, or755

data interpretation could risk degrading these essential skills among physicists, especially those756

in training [109]. Deep intuition often arises from performing detailed calculations firsthand. The757

history of scientific computing shows both warnings and reassurances: tools like Mathematica initially758

raised de-skilling concerns but ultimately enabled mathematicians to focus on higher-level work by759

automating repetitive calculations. Similarly, LLMs could potentially elevate physics research by760

handling routine tasks while humans focus on deeper insights—if used as augmentation rather than761

replacement for fundamental understanding.762

Limitations763

This position paper presents a high-level overview. The field of LLMs is rapidly evolving, and764

specific capabilities or limitations discussed may change quickly. Due to the rapid evolution of LLMs,765

specific examples quickly become outdated. The selected examples are illustrative of general trends766

observed circa late 2024 and early 2025. The scope is necessarily limited to selected aspects of767

physics research, and specific examples may not generalize to all subfields.768

Ethical Considerations769

Generating plausible but incorrect claims requires rigorous validation. Training bias could steer770

research suboptimally. Responsible deployment and human oversight are required. Access and771

equity issues must be addressed to ensure broad availability of these tools across the global physics772

community.773

B Building Better UI/UX for Human-centered AI774

For LLMs to be effective collaborators, intuitive and efficient user interfaces (UIs) and user experi-775

ences (UXs) are essential for supervision, tracing, and trust-building. These interfaces should allow776

physicists to interact with LLMs naturally without extensive prompt engineering and should integrate777

with existing research workflows and tools (e.g., LaTeX editors, data analysis and simulation environ-778

ments). Future LLMs should also be robust to specific prompts and offer finer-grained controllability779

over their reasoning style, level of detail, and assumptions made. For instance, prompting an LLM to780

“solve the Schrödinger equation for a particle in a box” might yield different solution forms depending781

on subtle phrasing. Ideally, an LLM should recognize standard conventions (e.g., specific boundary782

conditions ψ(0) = ψ(L) = 0 for a box of length L) or prompt for these if ambiguous. Controllability783

would allow a physicist to specify, for example, “provide a solution using separation of variables and784

show all steps for Hψ = Eψ where H = −~2/2m · d2/dx2 + V (x) and V (x) = 0 for 0 < x < L,785

∞ otherwise” versus “give the energy eigenvalues En = n2π2~2

2mL2 and normalized wavefunctions786

ψn(x) =
√
2/L sin(nπx/L) directly”. Such controllability is vital for making LLMs reliable and787

adaptive research assistants. Effective UI/UX must go beyond simple chat interfaces. Physicists788

often work with extensive comments, annotations, and margin notes; interfaces supporting these789

natural workflows would be more effective. For supervising agents, UIs need robust mechanisms for790

managing experimental/simulation results, tracking context across long interactions (context manage-791

ment [110]), and accommodating human-in-the-loop intervention. Given that LLM outputs can be792

verbose, tools for generating structured summaries with highlighting are needed. Integration with793

collaborative platforms (e.g., Overleaf-like features with LLM assistance for consistency checking in794

LATEX documents, or GitHub-style review tools for coding and derivations) would also be convenient.795

C Running Physical Experiments796

While our primary focus is on theoretical physics, we acknowledge that in the long term, AI systems797

might also actively control experimental instrumentation, interpret sensory data in real-time, and798

adjust experimental parameters accordingly. This would require the seamless integration of perception799
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(e.g., using computer vision to optimize laser beam path setup for quantum optics experiments where800

alignment precision is critical for data quality), reasoning (understanding the experimental progress801

and deciding which measurements to perform next based on acquired data), and action (subsequently802

adjusting the lensing setup with high-precision robotic arms) in the physical world. This long-term803

vision enables a dynamic integration of reasoning models with robotics and control theory, bridging804

high-level human-defined agenda with corresponding physical actions as envisioned by rising interest805

in Large Action Models (LAM) [111] and Embodied Intelligence [112].806

D Related Works807

Non-Language Models Already Help Physics Machine learning (ML) is not new to physics [12].808

Current applications include analyzing large experimental datasets (e.g., particle identification at809

the Large Hadron Collider [113]), solving computational physics problems (e.g., finding ground810

states of quantum Hamiltonians like Hψ = Eψ [114, 115]), accelerating partial differential equation811

solvers [116], and optimizing experimental controls (e.g., plasma shaping in fusion reactors [117]).812

These applications typically involve supervised learning (classification, regression), unsupervised813

learning (clustering, dimensionality reduction, generative modeling), or reinforcement learning for814

specific, well-defined tasks. While powerful for specific tasks, these methods often differ from815

the requirements of open-ended theoretical exploration, complex multistep problem solving, or816

nuanced experimental design where LLMs might offer complementary advantages through their817

natural language interface and broad knowledge encoding [19, 38].818

E More Analysis and Examples819

Example: Notational Nuances Another example is the Bogoliubov-de Gennes (BdG) Hamiltonian,820

which often includes a 1/2 prefactor by convention; LLMs might add or omit this factor inconsistently821

if not carefully prompted, thereby impacting all subsequent calculations even though the authors822

intend a different factor. Example: Lattice Gauge Theory For example, implementing the pure823

gauge SU(2) Hamiltonian:824

H =
g2

2

∑
l

Êa
l Ê

a
l +

1

2g2

∑
p

Ä
2− Tr(Ûp + Û†

p)
ä

(1)

where Êa
l are electric field operators on links l, Ûp are plaquette operators, and g is the coupling con-825

stant, requires translating abstract gauge theory concepts into concrete numerical algorithms that pre-826

serve gauge invariance and other symmetries. A critical physical constraint in such simulations is en-827

suring that states satisfy Gauss’s law, which in the quantum context becomes
∑

l∈star(n) Ê
a
l |ψ〉phys = 0828

for each lattice site n and each gauge group generator a. This constraint must be explicitly enforced829

in the code, typically by projecting onto the physical subspace or by adding an energy penalty term.830

Example: Explaining the derivations A research paper may state a key result derived from an831

effective action, Seff[φc], obtained by “integrating out” high-momentum modes φh from a full action832

S[φc, φh]. An LLM assisting a researcher could be tasked to elaborate on the formal path integral def-833

inition e−Seff[φc]/~ =
∫
Dφhe−S[φc,φh]/~. This elaboration might involve expanding the derivations834

with common evaluation techniques like saddle-point approximations or perturbative expansions of835

S[φc, φh] around a background field, all while strictly adhering to the paper’s specific notation for the836

classical fields φc and quantum fluctuations φh. Example: Diagonalizing a 2x2 Hermitian matrix837

When asked to diagonalize a general 2x2 Hermitian matrix H =

Å
a b− ic

b+ ic d

ã
(where a, b, c, d838

are real but have complex expressions), an LLM might default to a brute-force symbolic expansion of839

the characteristic determinant det(H − λI) = 0 to find eigenvalues, followed by solving systems840

of linear equations for eigenvectors. A ‘good AI physicist’, however, might recognize the structure841

and suggest decomposing the matrix in the Pauli basis: H = a0I + a · σ, where I is the identity842

matrix, σ = (σx, σy, σz) are the Pauli matrices, a0 = (a+ d)/2, and a = (b, c, (a− d)/2). From843

this decomposition, eigenvalues (a0 ± |a|) and eigenvectors (related to the direction of a) can be read844

off with greater physical insight (e.g., connecting to spin precession in a magnetic field) and often845

less computation. Training LLMs to prefer such insightful decompositions over brute-force methods846

is key to developing AI assistants that contribute to more elegant theory and can reduce complex847

algebraic manipulations where errors might occur. Example: Feynman diagram Interpreting a848

Feynman diagram [118] for Compton scattering (γe− → γe−) (see, e.g., [119]) requires identifying849
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incoming/outgoing photon (wavy lines) and electron (solid lines) lines, internal propagators (e.g.,850

electron propagator SF (p) = i(γ ·p+me)/(p
2−m2

e+iε), whereme is electron mass, e is elementary851

charge, γµ are Dirac gamma matrices), and vertices (e.g., QED vertex factor −ieγµ). An LLM should852

connect these diagrammatic elements to the mathematical terms in the scattering amplitude calcula-853

tion according to Feynman rules. Example: Physical Inaccuracy in AI-Generated Images Current

pi

ki kf

pf
e−

γ γ

e−

Figure 2: A Feynman diagram for Compton scattering (γe− → γe−) in s-channel. LLMs should connect graph-
ical elements (straight lines for fermions, wavy lines for bosons, and vertices for interactions) to mathematical
terms in scattering amplitude calculations (e.g., propagators, vertex factors, external leg factors).

854
AI image generators lack physical understanding, producing visually appealing but scientifically855

incorrect visualizations. Figure 3 shows GPT-4o’s response to “generate an image of a 3D modeling856

of a two dimensional projected entangled pair state tensor network (4 by 4 square lattice)”. The image857

violates PEPS structure: bulk tensors require exactly five indices (four virtual bonds to neighbors, one858

physical index), yet many nodes show incorrect connectivity. AI systems fail to encode the physical859

constraints—here, tensor network geometry and index structure. Example: AI Material Physicist

Figure 3: GPT-4o-generated PEPS network with incorrect or at least unconventional tensor connectivity. Proper
PEPS tensors need 5 indices (4 virtual, 1 physical); many nodes lack required connections.

860
Imagine a physicist investigating a novel topological material. An ‘AI Physicist’ assistant might:861

(1) Synthesize recent literature on related materials and their Berry curvature Ωn,xy(k) calculations.862

(2) Assist in formulating a tight-binding Hamiltonian H(k) for the new material based on its crys-863

tal structure (e.g., honeycomb lattice for graphene-like systems). (3) Generate Python code using864

libraries like Kwant or TightBindingTools.jl to numerically calculate the band structure En(k) and865

Chern numbers Cn = 1
2π

∫
BZ

d2kΩn,xy(k). (4) If numerical results show unexpected edge states,866

it might help consider analytical approximations (e.g., a low-energy effective Dirac Hamiltonian867
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Heff = vF (kxσy − kyσx) +mσz , where vF is the Fermi velocity and m is a mass/gap parameter)868

to understand their origin. (5) Finally, it might create a slide deck summarizing these findings,869

including generating plots. This collaborative workflow, with the AI handling complex but definable870

subtasks under human strategic guidance, shows the potential [89]. Example: Verifying analytical871

calculations by Mathematica Consider the Jordan-Wigner transformation, useful for 1D quantum872

spin systems. The transverse field Ising model Hamiltonian is H = −J
∑

〈i,j〉 σ
z
i σ

z
j − h

∑
i σ

x
i .873

The transformation maps spin operators σα
i to fermionic operators cj , c

†
j , e.g., σz

j = 2c†jcj − 1 and874

σx
j = (

∏
k<j(1−2c†kck))(cj+c

†
j). An LLM might attempt this transformation and could be asked to875

verify parts via a Mathematica MCP, such as the anticommutation relation of the fermionic operators876

after the transformation {cj , c†j}. Using symbolic tools such as Mathematica, the probability of877

correctness can be increased, if LLMs become better at generating the correct query for a tool and878

interpreting its output for such (and more nontrivial) operator algebra.879

19


	Introduction
	Physics Research: An Overview
	Research Stages & Skills
	Opportunities and Challenges for LLMs in Physics Research

	Skill Analysis for Physics Reasoning
	Mathematical and Symbolic Reasoning
	Beyond Math: Physics-Specific Reasoning Skills
	Conceptual Framework, Formula Retrieval, and Application
	Mathematical Deduction and Reasoning by Special Cases and Analogies
	Physical Consistency, Constraint Satisfaction, and Navigating Ambiguity
	Making Justified Physical Approximations

	Being A Good AI Physicist: Developing Taste and Gracefulness
	Code Generation and Execution for Physics

	LLM Techniques as Augmentation for Physics Research
	Literature Review by Retrieval-Augmented Generation and Long-Context Reasoning
	Exploratory Reasoning by In-Context Few-Shot Learning
	Tool Usage and Reliable Scientific Reasoning by Self-Reflection

	Open Directions and Opportunities for LLM agents
	Advancing Multimodal Reasoning
	Developing Agentic Capabilities for Scientific Discovery
	Agentic AI for Hypothesis Generation and Verification
	Automated Simulation, Experimental Design, and Verifying Theoretical Results at Scale

	Fine-tuned LLM Physicists and Towards AI Physicists

	Conclusion
	Risks, Limitations and Ethical Considerations
	Building Better UI/UX for Human-centered AI
	Running Physical Experiments
	Related Works
	More Analysis and Examples

