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Abstract

The fusion of vision and language has driven progress in grounding and tracking
tasks. However, aerial single-object tracking (SOT) has lagged in this domain due
to a lack of text annotations in existing datasets. To address this, we provide text
annotations for five aerial datasets, promoting multi-modal research in aerial track-
ing. Additionally, we introduce a third modality: click (or point prompt), offering a
user-friendly alternative to bounding box annotations, enabling approximate target
specification with less effort. We propose CLaVi, a multimodal framework that
integrates click and language inputs, improving target localization and tracking
efficiency. Our experiments on these datasets form the AerTrack-460 benchmark,
which outperforms prior language-based methods, setting a strong baseline for
future research.

1 Introduction
Single Object Tracking (SOT) in aerial imagery presents unique challenges, such as motion blur
caused by mechanical vibrations of aerial vehicles and rapid changes in camera angles. These factors,
combined with harsh lighting and weather conditions, significantly affect the appearance of the target.
Traditional tracking methods rely on bounding box (BBox) annotations [1, 2, 9, 11, 13, 14], which
are time-consuming [24] and difficult to create in aerial environments with small, occluded, or blurry
objects.

Recent advances in natural language (NL) initialized tracking have shown promise by capturing global
semantic information [8, 19, 27, 28], maintaining consistency amid frequent appearance changes.
However, NL alone struggles in scenarios with clusters of similar-looking objects or tiny, unclear
targets. Integrating an additional input modality, such as a click input, can address these challenges.
Recent works [4, 5, 12] have trained neural networks to track points with fast inference but have
not integrated point/click inputs with other modalities for single-object tracking. The click modality
pinpoints object location despite appearance changes, while natural language provides global context
for accurate predictions. Clicking once is more user-friendly and faster than drawing bounding boxes,
allowing users to specify the target with minimal effort.

In this paper: (1) We provide text descriptions for five aerial datasets, collectively named AerTrack-
460, to facilitate multimodal aerial tracking research; (2) We introduce CLaVi, a grounding and
tracking framework that integrates click input with language-vision guidance, serving as a baseline
for AerTrack-460; (3) We leverage spatio-temporal click data through the Point Trajectory Memory
Module in CLaVi for path localization. Finally, we provide the AerTrack-460 benchmark through
experiments, providing a foundation for future research.

2 AerTrack-460 Dataset
To extend vision-language trackers to the aerial domain, we develop AerTrack-460, which is a
collection of official videos and language annotations from five diverse aerial datasets, including
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Figure 1: CLaVi Overview: (a) Inputs (image, language prompt, and click) are encoded and fused;
(b) Memory modules process each modality; (c) A transformer decoder predicts bounding boxes
using fused information.

UAVDT [6], UAV123 [21], UAVDark135 [17],DTB70 [18], and UAVTrack112 [10]. This diverse
dataset spans various conditions and environments, offering a broad range of object classes with
captions, making it a valuable resource for visual grounding. We annotate this collection of 5 dataset
with the target’s color, action, and surroundings in the first frame of each video. In total, AerTrack-460
has 461 sentences, reviewed and refined by our team.

3 CLaVi Framework
Building on the JointNLT framework for grounding and tracking, we extend it to the aerial domain
by introducing an additional click modality and utilizing point tracking for path localization. Fig. 1
shows the CLaVi framework and its three key components.

Multi-Modal Feature Encoding and Fusion A pre-trained Swin Transformer [20] encodes both
the input image and template into flattened embeddings. A BERT model [3] encodes the tokenized
language prompt with added CLS and SEP tokens, producing a text embedding. Clicks are encoded
using Gaussian Random Fourier features [23] and a learnable embedding vector [16] for positional
information. During training, the click is the ground-truth bounding box center with random jitter;
during evaluation, it’s user-provided for the first frame and predicted in subsequent frames. The
encodings from the image, template, click, and language are concatenated and passed to a Feature
Fusion Encoder, yielding enhanced representations.

Modal-Tailored Memory Modules To leverage spatio-temporal information, we design memory
modules for each modality:

NL Semantic Memory Module. Natural language descriptions provide consistent global information
about the target object, we store the learned NL token in the NL memory module, keeping it fixed
throughout video frames.

Click Memory Module. An object’s center point remains a consistent spatial reference in video
sequences despite changes in shape, appearance, and visibility [12], providing valuable trajectory
information for tracking. To leverage this, we design a click memory module with a transformer
architecture that stacks the enhanced click outputs from k previous frames and combines them with
enhanced language encoding. A transformer decoder with a learnable target query then cross-attends
to the encoder output to yield a click temporal clue.

Vision Memory Module. Similar to [28], this module stores ROI-pooled features from previous
bounding boxes, which, along with language embeddings, provide visual cues for tracking in future
frames.

Joint Localization Decoding The embeddings from the fusion encoder and memory modules are
passed to a cross-attention transformer-based decoder. The target query is formed by combining a
learnable query embedding with click and visual temporal clues. A unified localization head predicts
bounding boxes for both grounding and tracking tasks.
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Table 1: Quantitative Comparison of CLaVi with traditional aerial BBox tracking, recent BBox,
and NL tracking on the 5 aerial datasets.

Dataset Method Initialize AUC PRE N-PRE Dataset Method Initialize AUC PRE N-PRE

UAVDT [6]

HiFT BBox - 53.58 72.46

UAVTrack112 [10]

HiFT BBox - 59.34 72.36
SiamRPN BBox - 48.85 64.25 SiamRPN BBox - 62.60 77.34
TCTrack BBox - 51.38 67.02 TCTrack BBox - 62.55 75.15

JointNLT NL 51.22 41.53 52.41 JointNLT NL 64.82 71.68 84.66

CLaVi (Ours) Click+NL 69.43 61.05 72.32 CLaVi (Ours) Click+NL 71.16 72.59 86.14

DTB70 [18]

HiFT BBox - 65.57 84.65

UAVDark135 [17]

HiFT BBox - 35.89 45.86
SiamRPN BBox - 69.16 87.92 SiamRPN BBox - 49.80 61.65
TCTrack BBox - 70.51 90.46 TCTrack BBox - 44.94 46.55

JointNLT NL 69.82 61.80 80.01 JointNLT NL 62.09 52.65 62.03

CLaVi (Ours) Click+NL 71.50 63.27 81.98 CLaVi (Ours) Click+NL 66.01 56.97 67.99

UAV123 [21]

HiFT BBox - 50.51 63.56
SiamRPN BBox - 56.08 73.56
TCTrack BBox - 51.89 63.67

JointNLT NL 67.08 62.24 75.46
CLaVi (Ours) Click+NL 69.01 65.28 79.72

#000001
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Figure 2: Qualitative Results. For one sequence, we compare bounding box predictions from
JointNLT (NL) (yellow) and CLaVi (red). Ground truth bounding boxes are marked as green. Since
click-only predictions are substantially worse, we omit them for clarity.

4 Experiments

Following JointNLT, we first train CLaVi on LaSOT [7], TNL2K [25], and OTB [26], then fine-
tune and benchmark five models on AerTrack-460 sub-datasets. CLaVi accepts test images of size
320× 320, click coordinates (x, y), and language prompts up to 40 tokens; the grounding template
image is 120 × 120, and the memory modules’ history length is set to k = 8. We train for 300
epochs on a single 80GB Nvidia A100 GPU using the Adam optimizer [15], optimizing for GIoU
[22] and L1 loss. For inference, our method achieves approximately 33 FPS on a 16GB Nvidia 3090
GPU. We evaluate our method by comparing it to others based on three criteria: (a) BBox-initialized
trackers, (b) language-initialized trackers, and (c) BBox and language-initialized trackers, and also
demonstrate how CLaVi performs relative to single-modality counterparts.

Results and Analysis As shown in Table 1 and Figure 2, our method achieves superior tracking
and grounding results across all aerial datasets compared to single-modality counterparts. We signifi-
cantly outperform the language-initialized grounding and tracking method [28], demonstrating the
effectiveness of incorporating the "click" modality to enhance both tasks. The statistical significance
of our results confirms the robustness of our approach. We also present a comparison of CLaVi
with current state-of-the-art aerial tracking methods. As one of the first attempts at click-guided
language-initialized tracking, our method surpasses existing conventional aerial trackers on UAV123
[21], UAVTrack112 [10], UAVDark135 [17] and UAVDT [6].

5 Discussion and Conclusion

We addressed the gap in aerial single-object tracking by introducing AerTrack-460, a collection of
five aerial datasets annotated with text descriptions to support multimodal research. We introduce the
click modality—a user-provided point on the screen—as a distinct input alongside traditional visual
and textual data. We present CLaVi, a framework that integrates click, language, and vision inputs to
disambiguate predictions in scenarios with small or visually similar objects. Experiments show that
CLaVi outperforms traditional tracking methods and achieves state-of-the-art grounding and tracking
performance. Our AerTrack-460 benchmark serves as a robust baseline for future advancements in
this domain.
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