
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

THICKER AND QUICKER: A JUMBO TOKEN
FOR FAST PLAIN VISION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

ViTs are general and accurate, and address many tasks, but ViTs are slow, and
are not always practical when efficiency is key. Existing methods for faster ViTs
design hybrid non-ViT architectures, losing generality, or shrink their tokens,
sacrificing accuracy. While many non-ViT architectures are both fast and accurate,
they cannot flexibly process other input shapes, pre-train by SOTA self-supervised
learning, reduce computation by dropping tokens, and more like ViTs can. We
make ViTs faster by reducing patch token width while increasing global token
width by adding a new Jumbo token. Our wider Jumbo token is processed by its
own wider FFN to increase model capacity. Yet our Jumbo FFN is efficient: it
processes a single token, for speed, and its parameters are shared across all layers,
for memory. Crucially, our Jumbo is attention-only and non-hierarchical, like a
plain ViT, so it is simple, scalable, flexible, and compatible with ViT methods new
and old. Jumbo improves over ViT baselines with Registers from Nano to Large
scales while maintaining speed/throughput on ImageNet-1K (↑0.1−13%). Jumbo
also improves MAE pre-training (↑4.9% linear probing on ImageNet-1K), test-time
adaptation (↑5.2% on ImageNet-C), and time series modeling. Our Jumbo models
even achieve better speed-accuracy trade-offs than specialized non-ViT compute-
efficient models, while maintaining plain-ViT compatibility for practicality.

1 INTRODUCTION: ARCHITECTURE, ACCURACY, AND EFFICIENCY

For most model sizes, the vision transformer (ViT; Dosovitskiy et al. (2021)) is the go-to architecture
in computer vision—powering foundation models like DINOv2 (Oquab et al., 2024), language-
aligned models like CLIP (Radford et al., 2021a), segmentation models like SAM (Kirillov et al.,
2023), 3D vision models like DUST3R (Wang et al., 2024), and diffusion models like DiT (Peebles
& Xie, 2022). These are all “plain” ViTs, which are crucially attention-only and non-hierarchical.

At the smallest scales—offering the highest speeds/throughputs—plain ViTs are not competitive with
highly specialized architectures (Yun & Ro, 2024). We attribute the worse accuracy-speed of plain
ViTs to their width (number of channels). Existing work scales width equally across all tokens and
layers so higher speed requires lower width: ViT-Base(768)→ViT-Small(384)→ViT-Tiny(192).

We scale width differently across tokens and equally across layers. Our architecture adds a Jumbo
token, which replaces the conventional CLS token, that is J× wider than the patch tokens, with its
own wider feed-forward network (FFN), to effectively and efficiently boost model capacity. For
self-attention, the Jumbo token is split into J× as many tokens/heads, but the Jumbo FFN is only
applied to the one (merged) token to reduce time and shared across layers to reduce memory. Jumbo
keeps the defining traits of a plain ViT—attention-only and non-hierarchical—so Jumbo applies
anywhere a plain ViT does but at higher speed.

The simplicity of ViTs is due to their attention-only and non-hierarchical architecture. Multiple
uses of ViTs rely on this architectural “interface” for their computation and function. For instance,
this interface enables efficient sparse computation through masking/token dropping. Random token
dropping enables efficient training (Liu et al., 2023; Dehghani et al., 2024; Leroy et al., 2024) and
learned token dropping enables efficient deployment (Bolya et al., 2023; Fuller et al., 2025). Several
SoTA self-supervised learning (SSL) algorithms require token dropping for learning (He et al., 2022;
Garrido et al., 2024; Wei et al., 2025; Venkataramanan et al., 2025). This same interface enables
flexible processing of different input shapes, like time series (Nie et al., 2023) or video (Arnab et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

3 10 20 30 40
60

65

70

75

80

85

EfficientViT

SHViT

MobileNetV4

ViT+Registers

BiXT

ViT+Jumbo (ours)

Throughput (K images/s)

To
p-

1
A

cc
.(
%

)

(a) ImageNet-Val

3 4 5 6 7 8

42

43

44

45

46

47

ViT+Registers

ViT+Jumbo (ours)

1.9× faster

Throughput (K images/s)

To
p-

1
A

cc
.(
%

)

(b) ImageNet-21K

3 10 20 30 40

50

55

60

65

70

75

Eff.ViT

SHViT

MobileNetV4ViT+Reg.

BiXT
ViT+Jumbo (ours)

Throughput (K images/s)

To
p-

1
A

cc
.(
%

)

(c) ImageNet-v2
Legend Method Attention-

only
Non-

hierarchical

EfficientViT ✗ ✗
SHViT ✗ ✗
MobileNetV4 ✗ ✗
ViT+Registers ✓ ✓
BiXT ✓ ✓
ViT+Jumbo (ours) ✓ ✓

Our Jumbo is attention-only and non-hierarchical,
which provides out-of-the-box support for SOTA
self-supervised learning algorithms, multimodal
data, and non-2D data types—while being much
simpler than existing efficient architectures.

Figure 1: Plain ViTs are in red , and others are in blue . ViT+Jumbo outperforms SOTA compute-
efficient architectures — while maintaining the advantages of plain ViTs. ViT+Jumbo outperforms
ViT+Registers on ImageNet-1K and the more challenging ImageNet-21K dataset. Throughput is
measured on an RTX 4090 GPU using PyTorch 2.6.0, torch.compile, and a 512 batch size.

2021). Moreover, many extensions and applications—from object detection and segmentation heads
(Fang et al., 2023; Zhang et al., 2022) to test-time adaptation algorithms (Niu et al., 2023)—are
designed for this plain ViT interface. Architectures that maintain ViT compatibility inherit all of this.

Our experiments show that Jumbo improves speed-accuracy performance across tasks, datasets,
and modalities. 1 Image classification: Jumbo outperforms ViTs by 0.1−13% on ImageNet-1K
and 1.2−3.1% on ImageNet-21K while maintaining throughput and achieves the pareto frontier vs.
compute-efficient architectures. 2 Self-Supervised Learning (SSL): Jumbo improves MAE (He
et al., 2022) pretraining measured with linear probing by 4.9% on ImageNet-1K at ViT-Base scale—
this ViT-Base+Jumbo ties the ViT-Large baseline, with 2.3× fewer parameters, 3.5× fewer FLOPs,
and 3.1× higher throughput. 3 Test-time adaptation (TTA): Jumbo is more accurate and more
robust with 5.2% improvement on ImageNet-C using a SOTA adaptation method for transformers
(SAR (Niu et al., 2023)). 4 Time series: Jumbo generalizes beyond vision to rank first across 20
time series benchmarks vs. transformer baselines.

Jumbo is such an efficient ViT-compatible architecture that it outperforms highly specialized existing
architectures on ImageNet-1K (Fig. 1). This is notable because such compute-efficient architectures
(Chen et al., 2023; Howard et al., 2017) sacrifice generality and compatibility with other techniques
and applications. Even efficient architectures based on ViTs include convolutions, hierarchy, and batch
normalization (Yun & Ro, 2024; Vasu et al., 2023b; Cai et al., 2023) that make them incompatible
out of the box with SSL by MAE, TTA by SAR, time series, ViT heads, etc. Jumbo delivers compute
efficiency while maintaining plain-ViT compatibility.

2 BACKGROUND AND RELATED WORK: GENERALISTS AND SPECIALISTS

2.1 VISION TRANSFORMERS: SIMPLE, FLEXIBLE, BUT NOT YET FAST

Jumbo extends ViTs. A ViT splits an image into a patch grid, RY×X×C → RNy×Nx×Py×Px×C ,
where C is the number of channels, Y / X are the image height / width, Ny / Nx are the grid height /

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

split

concat

MHSA

FFN FFN FFN FFN FFN FFN FFN

CLS Reg1 RegR

global tokens local tokens (image patches)

L 
la

ye
rs

ViT+Registers (Darcet et al., 2024)

MHSA

FFN FFN FFN

Jumbo

global token local tokens (image patches)

L 
la

ye
rs

ViT+Jumbo (ours)

Jumbo FFN FFN

ViT+Jumbo (ours) ViT+Registers (Darcet et al., 2024)

Figure 2: (Left) Our ViT+Jumbo method creates a wide global token that gets split into several tokens,
with width equal to the patch width, prior to multi-headed self-attention (MHSA). After attention, the
split Jumbo token is reassembled via concatenation, and is then processed by its own FFN. Patches
are processed by their own, shared FFN. (Right) ViT+Registers creates register tokens all equal
to the patch width — and all tokens are processed by a shared FFN. ViT+Jumbo enhances global
processing as the (split) global tokens can interact via an expressive FFN, plus attention.

width, and Py / Px are the patch height / width in pixels (equal to Y
Ny

/ X
Nx

). Next, they flatten the
grid into a sequence and flatten the patches into vectors, RNy×Nx×Py×Px×C → RN×Dpix , where
N is the number of patches (equal to Ny · Nx), and Dpix is the number of pixel values per patch
(equal to Py · Px · C). Next, they apply a learnable linear projection to form patch embeddings,
RN×Dpix → RN×D, where D is the token width, also known as the embedding dimension. Next, they
add position embeddings to patch embeddings. These operations produce patch tokens xP ∈ RN×D

that represent local information—typically a 16 × 16 px square. Crucially for us, ViTs prepend a
learnable CLS token xCLS to the sequence of patch tokens, x = xCLS∥0xP ∈ R(N+1)×D, where ∥0
denotes concatenation along the 0th (sequence) dimension. Finally, the input x is processed by a
plain transformer and the CLS token, having attended to all other tokens, can serve as the global
representation of the image. ViT sizes vary w.r.t. depth and width. ViT-Large has 24 layers, others
have 12 layers, while the widths vary {96, 128, 192, 384, 768, 1024}, corresponding to names
{Pico, Nano, Tiny, Small, Base, Large}. Narrower ViTs require less computation and are thus faster.

A standard image size of 224× 224 px and a standard patch size of 16× 16 px result in 196 local
tokens. A single CLS token—designed to aggregate global information for classification—provisions
1/197th of a model’s representational capacity to global information (and this fraction decreases with
larger images and/or smaller patches). This allocation is imbalanced, and may not be optimal. Recent
work finds evidence to support this intuition and proposes a fix: register tokens.

Registers. Darcet et al. (2024) find that ViTs learn to repurpose some patch tokens to behave
like additional CLS tokens by collecting global information and discarding patch-specific local
information. The same work proposes a fix: prepend extra learnable tokens—called registers
xReg ∈ RR×D, where R is the number of registers—to the input sequence, x = xCLS∥0xReg∥0xP ∈
R(N+R+1)×D. Registers improve accuracy (by ∼0.4% on ImageNet-1K (Russakovsky et al., 2015)
at ViT-Base) and reduce attention map artifacts/noise by provisioning more global capacity.

Registers are elegant, simple, and keep the plain ViT interface. In theory, registers can benefit any
plain, non-causal transformer. These advantages account for registers’ significant and immediate
impact including in applications beyond images (Dong et al., 2024; Vaquero et al., 2024; Leigh et al.,
2024; Messaoud et al., 2025; Hu et al., 2024; Thimonier et al., 2024; Omranpour et al., 2024). Our
Jumbo is inspired by ViT+Registers: see Fig. 2 for their relationship and key differences.

2.2 COMPUTE-EFFICIENT ARCHITECTURES: FAST, BUT NOT SIMPLE NOR FLEXIBLE

The Jumbo architecture is accurate and compute-efficient, so we highlight 3 architectures and use
them as baselines for high-speed ViTs. 1 EfficientViT (Cai et al., 2023) and 2 SHViT (Yun & Ro,
2024) improve the efficiency of ViTs by incorporating efficient attention, pooling, and convolutional

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

layers. 3 MobileNetV4 (Qin et al., 2025) improves the efficiency of CNNs by leveraging many
strategies (and different strategies for different model sizes). These baselines represent the SOTA in
computational efficiency; please refer to Appendix A.2 for descriptions of these model architectures.

Beyond these, there is a rich literature on compute-efficient vision architectures. For example, several
efficient CNN-based architectures exist (Howard, 2017; Sandler et al., 2018; Howard et al., 2019;
Han et al., 2020; Tan et al., 2019; Vasu et al., 2023a); however, these are surpassed by MobileNetV4
(Qin et al., 2025). Since the invention of the ViT, there have been many compute-efficient “ViTs” that
incorporate efficiencies inspired by CNN-based approaches (Vasu et al., 2023b; Mehta & Rastegari,
2021; 2022; Li et al., 2023; Pan et al., 2022; Chen et al., 2022; Li et al., 2022). SHViT (Yun & Ro,
2024) has recently surpassed these architectures. Despite their impact and ingenuity, none of these
hybrid architectures meets the definition of a plain ViT, which is attention-only and non-hierarchical;
they thus lose many advantages of ViTs that we wish to keep. On the other hand, BiXT (Hiller et al.,
2024) models are an efficient extension of the Perceiver architecture (Jaegle et al., 2021) that keeps
the attention-only and non-hierarchical properties of ViTs, which are a natural comparison to Jumbo.

3 METHOD: A JUMBO TOKEN FOR A COMPUTE-EFFICIENT PLAIN VIT

3.1 DESIGN MOTIVATION AND INTUITION

200 400 600 800 1,000

0

0.5

1
ViT
ViT+Jumbo

ViT-nano, D=128
ViT-tiny, D=192

ViT-small, D=384

ViT-base
, D

=7
68

Patches (sequence length)

FL
O

Ps
Pe

rL
ay

er
(×

10
1
0
)

Figure 3: The cost of layers is largely determined
by the number of patches and their width D. The
cost of our Jumbo token (J=6) is negligible.

Capacity and Cost. Although Jumbo adds a
wider token and FFN, the cost is minimal. The
key insight is that a single wide token affords
much greater width and more processing with-
out slower speed. As shown in Fig. 3, the main
drivers of computational cost (FLOPs per layer)
are sequence length and patch width, D. The
FLOP contribution from our Jumbo token is
comparatively negligible. Since our architec-
ture shares Jumbo FFN parameters across all
ViT layers, its memory costs are also minimal.

Non-hierarchical and attention-only. Jumbo
preserves the non-hierarchical shape of ViTs
(also known as columnar or isotropic shape). By
foregoing convolutions, spatial information only
moves through attention. These two properties
have several advantages that we now discuss.

Token Dropping / Masking. Although convolutions are capable of processing a sparse subset of
patches via sparse compute kernels, these kernels can be complex, challenging to use, and require
updating when new hardware arrives. Furthermore, sparse convolutional kernels will never be as
efficient as simply indexing from a sequence—i.e., how transformers drop tokens. As a comparison,
ConvNeXt V2 (Woo et al., 2023) reports a 1.3× speedup using a 60% masking ratio with the
Minkowski Engine v0.5.4 (Choy et al., 2019). Conversely, MAE (He et al., 2022) report 2.8− 4.1×
speedups using a 75% masking ratio with plain ViTs. Efficient token dropping is required for
SOTA SSL algorithms (Assran et al., 2023; Fu et al., 2024; Garrido et al., 2024; Wei et al., 2025;
Venkataramanan et al., 2025; Oquab et al., 2024). Token dropping also speeds up supervised training
(Dehghani et al., 2024). We demonstrate Jumbo’s token dropping ability in subsections 4.2 and 4.4.

Other Data Modalities and Shapes. These properties explain the input flexibility of transformers,
which Jumbo keeps. For example, 1D time series, 3D point clouds, or multimodal data; users need
only adjust tokenization strategies. We show a 1D time series application of Jumbo in subsection 4.5.

Plain ViT’s Ecosystem. These two properties—non-hierarchical and attention-only—maintain
support for methods invented for the plain ViT. For example, segmentation and object detection heads
(Fang et al., 2023; Liu et al., 2025; Zhang et al., 2022), which expect ViT’s unpooled feature map;
test-time adaptation methods (Niu et al., 2023), designed for the LayerNorm (Ba et al., 2016) not
BatchNorm (Ioffe & Szegedy, 2015); and attention improvements, such as Flash Attention (Dao et al.,
2022), which can speed up self-attention by > 5×. Jumbo supports these innovations out of the box.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Crucially, none of the compute-efficient architectures in subsection 2.2 immediately benefit from
these advances, support other data modalities or token dropping, or integrate with the ViT ecosystem.

Two hypotheses. Jumbo asymmetrically increases the model capacity. Thus, 1 we expect increasing
gains due to Jumbo with decreasing patch token width. 2 We expect increasing gains due to Jumbo
with increasing task output dimensionality. We explore both of these hypotheses using experiments
with ViTs of different widths and datasets of different complexities.

3.2 DESIGN SPECIFICS FOR TOKEN-WIDTH ASYMMETRY

Exactly like the original ViT, Jumbo computes patch embeddings, xP ∈ RN×D. Unlike the original
ViT, our method creates a Jumbo token that is J times wider than the patch width D, xJumbo ∈ RJ·D.
Architecturally identical transformer layers then process these inputs.

Before self-attention, the Jumbo token is split into J tokens, |1J xJumbo : R1×J·D → RJ×D, where
|1J denotes splitting into J segments along the 1st (feature) dimension. Next, the split Jumbo token is
concatenated with patch embeddings along the sequence dimension, x = xJumbo∥0xP ∈ R(N+J)×D.
This sequence is sent through a plain multi-headed self-attention layer. Afterward, the Jumbo token
is extracted from the sequence by splitting along the sequence dimension, |02 x : R(N+J)×D →
(RJ×D,RN×D), where the first element contains the (still split) Jumbo token and the second element
contains the patch representations. Finally, the Jumbo token is reassembled through concatenation
along the channel dimension, xJumbo = ∥1xJumbo : RJ×D → R1×J·D. These two splits and two
concatenations add negligible runtime overhead.

After self-attention, the Jumbo token is processed by its own FFN that does not share parameters
with the patch FFN. Fig. 2 indicates this by coloring the Jumbo and patch FFNs differently. After
processing by all layers, we project the Jumbo token to C class logits, RJ·D → RC .

Layer sharing. We share our Jumbo FFN parameters across all layers to reduce memory use (through
fewer model parameters). All other model parameters are not shared across layers, as usual. Sharing
also acts as regularization. Empirically, we find sharing keeps (and sometimes increases) Jumbo’s
accuracy gains compared with not layer sharing—while effectively controlling memory use. Sharing
the FFN layer is thus the default in our Jumbo architecture.

4 EXPERIMENTS: ACCURACY, COMPUTE EFFICIENCY, AND GENERALITY

For all experiments, we measure throughput on an RTX 4090 GPU using PyTorch 2.6.0,
torch.compile, and a 512 batch size.

4.1 IMAGENET-1K EXPERIMENTS WITH COMPUTE-EFFICIENT BASELINES

Setup. We perform controlled experiments to evaluate Jumbo. Specifically, we train models from
scratch on ImageNet-1K (Russakovsky et al., 2015) at 128×128 px for 400 epochs, then for 20
epochs at 224×224 px. We leverage distillation to improve convergence, which is a common strategy.

We train each model architecture twice, once for each learning rate {1e−3, 3e−3} (Touvron et al.,
2022; Yun & Ro, 2024) using a 1024 batch size with the AdamW optimizer (Loshchilov, 2017). We
report the results of the best learning rate for each model architecture. Please see Appendix A.3.1 &
A.4 for hyperparameters and complete results, respectively.

Baselines. We choose the high-speed models for each family: 1 ViT+Registers {Nano, Tiny, Small,
Base} (Darcet et al., 2024), 2 BiXT has 1 size (tiny), 3 EfficientViT {B0, B1} (Cai et al., 2023), 4

SHViT {S1, S2, S3} (Yun & Ro, 2024), and 5 MobileNetV4 {Conv-Small, Conv-Medium, Hybrid-
Medium} (Qin et al., 2025). We compare these architectures with our high-speed ViT+Jumbo variants
{Pico, Nano, Tiny, Small, Base}. Darcet et al. (Darcet et al., 2024) show ViT+Registers with R=16
performs best, which we confirm in the appendix Table 7 and use in these experiments. We show
ViT+Jumbo is robust to the choice of J ; we use J=6 and study its effect in the appendix Table 12.

Test Sets. We test all models on the three most common ImageNet-1K test sets: ImageNet-Val
(Russakovsky et al., 2015), ImageNet-ReaL (Beyer et al., 2020), and ImageNet-v2 (Recht et al.,
2019). To further evaluate generalization we also test all models on ImageNet-HR (Fuller et al.,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

10 20 30 40

70

75

80

85

90

+14.2%

Throughput (K images/s)

To
p-

1
A

cc
.(
%

)

ImageNet-ReaL

10 20 30 40

70

75

80

85

90

+15.4%

Throughput (K images/s)

ImageNet-HR

10 20 30 40

20

25

30

35

40

+10.9%

Throughput (K images/s)

ImageNet-R

Legend: ViT+Jumbo (ours), ViT+Registers, BiXT, MobileNetV4, SHViT, EfficientViT

Figure 4: ViT+Jumbo achieves the Pareto frontier and is much simpler than specialized compute-
efficient architectures. Results are plotted for each model’s best learning rate. Throughput is measured
on an RTX 4090 GPU using PyTorch 2.6.0, torch.compile, and a 512 batch size.

2024), for its image diversity and high-quality annotations, ImageNet-R (Hendrycks et al., 2021), for
its out-of-distribution images.

Results. As illustrated in Fig 4, Jumbo achieves the Pareto frontier on ImageNet-1K. Crucially,
Jumbo achieves these results while preserving the many advantages and simplicity of plain ViTs.
Even matching the specialized compute-efficient architectures makes a strong case for ViT+Jumbo.

ViT+Jumbo outperforms ViT+Registers by 13% at the nano scale and 4% at the tiny scale, where
such gains are significant. This confirms our first hypothesis that Jumbo’s gains should increase as
we decrease the patch width, i.e., from Small (384) to Tiny (192) to Nano (128) (Figs. 1a, 4).

ViT+Jumbo is a clear choice if a researcher or practitioner requires high speed and out-of-the-box
ViT compatibility for SSL algorithms or multimodal processing. ViT+Registers is not as accurate
at high speed, while the specialized compute-efficient architectures do not support most SOTA
SSL algorithms or flexible processing across modalities. Remote sensing (Rolf et al., 2024) and
autonomous driving (Muhammad et al., 2020) are two of many applications where this combination
of speed, SSL support, and multimodal processing is particularly valuable.

4.2 IMAGENET-21K EXPERIMENTS WITH VIT COMPARISONS

ImageNet-1K is a subset of the more challenging, original ImageNet (Deng et al., 2009), now
referred to as ImageNet-21K. We use a common variant comprising 10,450 classes that includes
processing to make a more accessible benchmark (Ridnik et al., 2021). This dataset provides more
than 10× the number of classes and samples as ImageNet-1K, making it well suited to test our second
hypothesis—that is, gains due to Jumbo should increase with increasing task-output dimensionality.

Setup. We train models from scratch on ImageNet-21K. Since training models on ImageNet-21K is
expensive, we leverage a token dropping strategy to reduce costs. Specifically, we start training with
a 90% token drop rate and linearly decrease this value to 10%; this halves the total number of tokens
processed. Dehghani et al. (2024) demonstrate the effectiveness of this strategy, i.e., leveraging
“masking” with plain supervised training. Plain ViTs support masking with minimal code changes.
We train each model architecture once, for 50 epochs using a 3e−3 learning rate and a 1024 batch size
with the AdamW optimizer (Loshchilov, 2017) (see the Appendix A.3.1 for other hyperparameters).

Baselines. We choose ViT+Registers {Small, Base} to compare with our ViT+Jumbo {Small, Base}
sizes. This is a more narrow but valid comparison, as the plain ViT is the vision community’s
preferred architecture at these scales. For ViT+Registers, we use R=16; for ViT+Jumbo, we use J=6
for the Small model and J=3 for the Base model.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Results. ViT+Jumbo outperforms ViT+Registers by 3.1% and 1.2% at ViT-Small and ViT-Base
scales, respectively (see Fig. 1b). Gains due to Jumbo increase when scaling from ImageNet-1K to
ImageNet-21K for a given model size, e.g., ViT-Small gains increase from 0.8% (Fig. 1a) to 3.1%.
Thus, these findings confirm our second hypothesis that gains due to Jumbo should increase with
increasing output dimensionality. Furthermore, for a given accuracy Jumbo is 1.9× faster (Fig. 1b).

4.3 MASKED AUTOENCODING EXPERIMENTS

Setup. We pretrain Jumbo ViT-Base and ViT-Large models using masked autoencoding (MAE; (He
et al., 2022)) using the default settings. This tests Jumbo’s ability in a standard SSL framework. This
also tests Jumbo’s scalability to larger models (up to ViT-Large) and longer training schedules (up to
1600 epochs on ImageNet-1K). These experiments are expensive, so we leverage free TPU resources,
perform no hyperparameter tuning, and compare against plain ViT results obtained with the same
MAE implementation. After pretraining, we linear probe on ImageNet-1K to obtain accuracies.

Table 1: MAE Pretraining. Jumbo
significantly outperforms standard ViT.
Jumbo scales to these large MAE
models and their long training sched-
ules (1600 epochs for ViT-Base, 800
epochs for ViT-Large). After pretrain-
ing, we linearly probe to compute top-
1 accuracy on ImageNet-1K.

Architecture Speed
K imgs/s

Params
M

Memory
GB

FLOPs
G

Top-1 Acc.
%

ViT-base 3.1 86.6 3.3 16.5 68.1
ViT-base+Jumbo 3.1 130.7 3.9 16.9 73.0
ViT-large 1.0 304.4 5.0 59.7 73.0
ViT-large+Jumbo 1.0 382.2 5.2 59.9 74.0

Results. Our ViT-Base+Jumbo MAE outperforms the baseline by 4.9% on ImageNet-1K. ViT-
Base+Jumbo ties the ViT-Large MAE, while Jumbo is 3× faster with only 0.43× the parameters. This
shows Jumbo can be applied to SSL by MAE to improve performance without further modification.
The role of masking in the MAE suggests that the wider Jumbo token stores more global information.
For this MAE, Jumbo is a more efficient way to scale model parameters than the wider ViT.

4.4 ROBUSTNESS AND TEST-TIME ADAPTATION EXPERIMENTS

Setup. We measure robustness to corruption with and without adaptation. We follow SAR (Niu et al.,
2023) exactly, swapping in ViT-S models with Registers or our Jumbo from Sec. 4.1, and measure
robustness to 15 corruptions at the highest severity from ImageNet-C (Hendrycks & Dietterich, 2019).

Table 2: Test-Time Adaptation (TTA). Jumbo improves plain-ViT robustness without TTA (avg.
↑3.6%) and with TTA (avg. ↑5.2%) on ImageNet-C. We follow SAR (Niu et al., 2023) and test across
15 shifts at the highest severity. Jumbo is directly compatible with SOTA methods designed for ViTs,
for instant use without tuning, unlike highly-specialized architectures (MobileNet, SHViT, ...).

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Registers 13.6 14.2 13.0 29.3 20.3 34.9 28.7 49.0 50.4 56.6 73.5 47.8 29.0 45.6 56.1 37.5
Jumbo 25.9 26.6 25.8 31.2 21.4 33.3 30.6 53.1 51.9 57.3 75.2 49.4 30.5 47.5 57.1 41.1

Registers+SAR 38.9 39.2 41.5 48.2 48.7 56.5 32.1 62.0 59.4 68.9 76.1 61.5 59.1 65.5 66.1 54.9
Jumbo+SAR 45.2 49.6 51.2 53.3 53.2 61.1 44.5 66.2 58.5 71.7 77.5 67.1 65.2 69.0 69.0 60.1

Results. Jumbo is both more accurate than Registers (+0.8% on IN-Val) and more robust than
Registers on corrupted data (+3.6% on IN-C). Test-time adaptation by SAR further increases the
robustness gain to +5.2%. In principle test-time adaptation can apply to any architecture, but in
practice methods specialize. SOTA methods such as SAR are designed for the plain ViT LayerNorm,
and not the BatchNorm of SHViT, MobileNetV4, and EfficientViT, so ViT compatibility is a plus.

4.5 TIME SERIES EXPERIMENTS

Jumbo can easily process different input shapes (beyond images) because it maintains the plain
transformer interface. We apply Jumbo to time series inputs. PatchTST (Nie et al., 2023) is a SOTA

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

patch-based transformer for time series that we extend with registers (PatchTST+Registers) or Jumbo
(PatchTST+Jumbo).

Setup. We train models from scratch on 1 10 univariate time series datasets from the UCR archive
(Dau et al., 2018), and 2 10 multivariate time series datasets from the UEA archive (Bagnall et al.,
2018); both of which are commonly used benchmarks (Zerveas et al., 2021; Grover et al., 2024; Le
et al., 2024). For each dataset and model, we perform a hyperparameter sweep from the Cartesian
product of learning rate {3e−3, 1e−3, 3e−4, 1e−4}, and dropout {0.0, 0.1, 0.2}. More details are in
Appendix A.3.2. We report the best run and the average of all 12 runs per experiment in the appendix
Tables 13 & 14. To summarize these results, we compute the rank between models and then average
the ranks over the 10 univariate and 10 multivariate datasets.

Baselines. We compare PatchTST with our PatchTST+Jumbo method and our PatchTST+Registers
baseline. We experiment with 8 and 42 patches per sequence for all three models. Jumbo and registers
are both simple to adopt for PatchTST because they remain plain transformers.

Table 3: Time series rankings using PatchTST (Nie et al.,
2023) with Registers or Jumbo (lower is better and the best
is in bold). We rank over 10 univariate and 10 multivariate
datasets. “Best” is the best run of our 12-run hyperparame-
ter sweep and “Avg” is the average over the sweep. Jumbo
achieves the best ranking in all experiments. We use two
patch sizes: 8/42 (results are formatted likewise).

PatchTST PatchTST
+Registers

PatchTST
+Jumbo

Univar. Best 2.0/1.9 2.5/2.1 1.5/1.7
Avg 2.9/2.3 2.1/2.4 1.0/1.3

Multivar. Best 2.1/2.0 2.1/1.9 1.6/1.7
Avg 2.7/2.6 2.0/2.4 1.3/1.0

Results. PatchTST+Jumbo outperforms strong PatchTST and PatchTST+Registers baselines (Tab. 3).
Jumbo gains the most with fewer patches and when considering overall results across hyperparameters.
These results establish that Jumbo can improve non-causal transformers beyond ViTs.

4.6 ABLATIONS

Table 4: Jumbo’s shared FFN
increases accuracy and is mem-
ory efficient. Our Jumbo FFN
can be enlarged (J=10) for even
higher performance, at relatively
low cost. We report top-1 accuracy
on ImageNet-21K.

Architecture Speed
K imgs/s ↑

Params
M

Memory
GB ↓

FLOPs
G ↓

Top-1 Acc.
% ↑

Jumbo (Fig. 1b) 7.9 88.3 2.6 4.6 44.61
Jumbo without layer sharing 7.7 555.6 4.1 4.6 44.95
Jumbo without Jumbo FFN 8.4 45.8 2.2 4.4 43.64
Jumbo with LoRA, rank=8 7.7 88.8 2.5 4.6 44.94
Jumbo J : 6→10 6.9 179.9 3.4 5.5 45.62

Setup. We follow our ImageNet-21K training recipe and ablate Jumbo’s design at ViT-Small scale to
better understand the contributions of the architecture and its design choices.

Results. (Tab. 4) Not sharing the Jumbo FFN across layers slightly improves accuracy at this scale.
However, we can fully recover from the drop with sharing by adapting the Jumbo FFN parameters
with LoRAs (Hu et al., 2022): we still share the Jumbo FFN across layers but apply layer-specific
LoRAs to specialize efficiently. LoRAs recover accuracy at negligible cost in speed and memory.
Jumbo without Jumbo FFNs performs well enough (2.2% better than ViT+Registers) but worse than
Jumbo: the main difference between this ablation and ViT+Registers is that it concatenates all global
tokens as input to the classifier (rather than discarding registers). Yet, our best ViT-Small includes the
Jumbo FFN: with J=10 its shared FFN achieves 45.6% top-1 accuracy. This Jumbo model beats
ViT-Small+Registers by 4.1% and matches ViT-Base+Registers (0.1% difference) with higher speed
(2.4× faster) and less memory.

4.7 ANALYSIS: HOW TO SCALE EFFICIENCY AND CAPACITY

Is Jumbo more accurate just because it has more parameters? No. We take ViT-
B+Registers and increase its width 768→1024 to equalize the number of parameters with
our ViT-Base+Jumbo (Tab. 5 rows 1 & 3). These models differ in accuracy by 0.1%,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 5: ViT-Base+Jumbo matches
a symmetrically wider ViT+Registers
with equal params; yet our Jumbo is
1.7× faster. Jumbo also outperforms
other ways of adding global capacity,
e.g., 1 uses an FFN for patches, and
a separate FFN for CLS+Reg. tokens,
2 uses an FFN for patches+CLS, and
separate FFN for Reg. tokens. We re-
port top-1 accuracy on ImageNet-21K.

Architecture Speed
K imgs/s ↑

Params
M

Memory
GB ↓

FLOPs
G ↓

Top-1 Acc.
% ↑

ViT-Base models
Jumbo 3.1 152.5 4.1 16.5 46.95
Reg. (Darcet et al., 2024) 2.9 93.9 3.5 18.2 45.73
Registers D: 768→1024 1.8 162.9 4.5 32.4 47.08

ViT-Small models
Jumbo 7.9 88.3 2.6 4.6 44.61
Reg. (Darcet et al., 2024) 8.0 25.7 2.3 4.6 41.48
Alt. 1 : CLS+Reg. FFN 7.7 39.9 2.3 4.6 41.51
Alt. 2 : Reg. FFN 7.7 39.9 2.3 4.6 42.11

yet Jumbo is more efficient with 1.7× the throughput, 0.5× the FLOPs, and 0.9× the memory.
Our novel asymmetric-width design of the Jumbo token and FFN is crucial to its better efficiency.

Alternate ViT+Register designs. We experiment with two more architectures to investigate the role
of adding separate FFNs for different types of tokens (Tab. 5). Alternative 1 has an FFN for all patch
tokens with a separate FFN for the CLS and registers. Alternative 2 has an FFN for all patch tokens
and the CLS token with a separate FFN for the registers. Neither model gains much: the asymmetric
token width of Jumbo explains its success, and not the addition of more parameters alone.

Attention maps of split Jumbo tokens Attention maps of register tokens

Figure 5: Jumbo (left two subfigures) eliminates high-norm, outlier tokens in our measurements.
According to Darcet et al. (Darcet et al., 2024), outlier tokens cause attention-map artifacts, and their
presence can be reduced by adding registers (right two subfigures). By inspection, Jumbo also learns
artifact-free attention maps, and split Jumbo tokens seem to specialize.

Does Jumbo also reduce high-norm tokens? Registers reduce high-norm, outlier tokens that cause
attention map artifacts (Darcet et al., 2024). We test if Jumbo does the same. The ViT+Jumbo models
we train are in fact more effective at reducing outlier tokens than ViT+Registers (Fig. 5). We also
show attention maps in the Appendix A.6 where we again see a similar effect.

5 DISCUSSION: EFFICIENCY, GENERALITY, AND CAPACITY

Limitations and Future Work. In this work, we do not evaluate Jumbo in vision-language (e.g.,
CLIP (Radford et al., 2021b)) or language-only applications (e.g., BERT (Devlin et al., 2019), which
is non-causal and could benefit from Jumbo in theory). We save these applications for future work.

Conclusion. Jumbo is highly efficient, simple, and general: our Jumbo ViTs achieve SOTA accuracy-
speed trade-offs by a targeted increase in the global computation and parameter capacity of any
plain ViT. We show that upgrading a plain ViT with Jumbo improves accuracy at the same speed
or maintains accuracy at faster speeds for supervised image classification, self-supervised learning,
time series modeling, and test-time adaptation. Jumbo is the first attention-only and non-hierarchical
architecture to outperform specialized compute-efficient architectures like EfficientViT (Cai et al.,
2023). To do so Jumbo increases width asymmetrically, across tokens, and not across layers (in
contrast to existing hierarchical models). While increasing model capacity can increase accuracy, it is
critical to add capacity in the right places to achieve high efficiency and maintain model flexibility as
we show with Jumbo.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lucic, and Cordelia Schmid.
ViViT: A Video Vision Transformer . In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), 2021. doi: 10.1109/ICCV48922.2021.00676.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15619–15629, 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. URL
https://arxiv.org/abs/1811.00075.

Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are
we done with imagenet? arXiv preprint arXiv:2006.07159, 2020.

Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, and Alexander Kolesnikov.
Knowledge distillation: A good teacher is patient and consistent. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10925–10934, 2022.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and
Judy Hoffman. Token merging: Your vit but faster. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
JroZRaRw7Eu.

Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. Efficientvit: Lightweight multi-scale
attention for high-resolution dense prediction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17302–17313, 2023.

Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song Wen, Chul-Ho Lee, and S-H Gary Chan.
Run, don’t walk: chasing higher flops for faster neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 12021–12031, 2023.

Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Xiaoyi Dong, Lu Yuan, and Zicheng
Liu. Mobile-former: Bridging mobilenet and transformer. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 5270–5279, 2022.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 3075–3084, 2019.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=2dnO3LLiJ1.

Hoang Anh Dau, Anthony J. Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn J. Keogh. The UCR time series archive.
arXiv preprint arXiv:1810.07758, 2018.

Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim M Alabdulmohsin, et al. Patch
n’pack: Navit, a vision transformer for any aspect ratio and resolution. Advances in Neural
Information Processing Systems, 36, 2024.

10

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1811.00075
https://openreview.net/forum?id=JroZRaRw7Eu
https://openreview.net/forum?id=JroZRaRw7Eu
https://openreview.net/forum?id=2dnO3LLiJ1


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, Zijia Chen, Ameya Sunil Mahabaleshwarkar,
Shih-Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen, Yoshi Suhara, Yingyan Lin, Jan Kautz,
and Pavlo Molchanov. Hymba: A hybrid-head architecture for small language models, 2024. URL
https://arxiv.org/abs/2411.13676.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Yuxin Fang, Shusheng Yang, Shijie Wang, Yixiao Ge, Ying Shan, and Xinggang Wang. Unleashing
vanilla vision transformer with masked image modeling for object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 6244–6253, 2023.

Letian Fu, Long Lian, Renhao Wang, Baifeng Shi, Xudong Wang, Adam Yala, Trevor Darrell,
Alexei A. Efros, and Ken Goldberg. Rethinking patch dependence for masked autoencoders. arXiv
preprint arXiv:2401.14391, 2024.

Anthony Fuller, Daniel Kyrollos, Yousef Yassin, and James R Green. Lookhere: Vision transformers
with directed attention generalize and extrapolate. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=o7DOGbZeyP.

Anthony Fuller, Yousef Yassin, Junfeng Wen, Daniel G. Kyrollos, Tarek Ibrahim, James R. Green,
and Evan Shelhamer. Lookwhere? efficient visual recognition by learning where to look and what
to see from self-supervision, 2025. URL https://arxiv.org/abs/2505.18051.

Quentin Garrido, Mahmoud Assran, Nicolas Ballas, Adrien Bardes, Laurent Najman, and Yann
LeCun. Learning and leveraging world models in visual representation learning. arXiv preprint
arXiv:2403.00504, 2024.

Shivam Grover, Amin Jalali, and Ali Etemad. Segment, shuffle, and stitch: A simple layer for improv-
ing time-series representations. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=zm1LcgRpHm.

Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. Ghostnet: More
features from cheap operations. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 1580–1589, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Representations,
2019.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. arXiv preprint arXiv:1606.08415, 2016.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340–8349, 2021.

11

https://arxiv.org/abs/2411.13676
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=o7DOGbZeyP
https://openreview.net/forum?id=o7DOGbZeyP
https://arxiv.org/abs/2505.18051
https://openreview.net/forum?id=zm1LcgRpHm


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Markus Hiller, Krista A. Ehinger, and Tom Drummond. Perceiving longer sequences with bi-
directional cross-attention transformers. In Advances in Neural Information Processing Systems
(NeurIPS), volume 37, pp. 94097–94129, 2024.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.

Andrew G Howard. Mobilenets: Efficient convolutional neural networks for mobile vision applica-
tions. arXiv preprint arXiv:1704.04861, 2017.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017. URL https://arxiv.org/abs/1704.04861.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Yang Hu, Xiao Wang, Lirong Wu, Huatian Zhang, Stan Z Li, Sheng Wang, and Tianlong Chen. Fm-ts:
Flow matching for time series generation. arXiv preprint arXiv:2411.07506, 2024.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015. URL https://arxiv.org/abs/1502.03167.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Xuan-May Le, Ling Luo, Uwe Aickelin, and Minh-Tuan Tran. Shapeformer: Shapelet transformer
for multivariate time series classification. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’24, pp. 1484–1494, New York, NY, USA,
2024. Association for Computing Machinery. doi: 10.1145/3637528.3671862. URL https:
//doi.org/10.1145/3637528.3671862.

Matthew Leigh, Samuel Klein, François Charton, Tobias Golling, Lukas Heinrich, Michael Kagan,
Inês Ochoa, and Margarita Osadchy. Is tokenization needed for masked particle modelling? arXiv
preprint arXiv:2409.12589, 2024.

Vincent Leroy, Jerome Revaud, Thomas Lucas, and Philippe Weinzaepfel. Win-win: Training
high-resolution vision transformers from two windows. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
N23A4ybMJr.

Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. Advances in Neural
Information Processing Systems, 35:12934–12949, 2022.

Yanyu Li, Ju Hu, Yang Wen, Georgios Evangelidis, Kamyar Salahi, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. Rethinking vision transformers for mobilenet size and speed. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 16889–16900, 2023.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
for open-set object detection. In European Conference on Computer Vision, pp. 38–55. Springer,
2025.

12

https://arxiv.org/abs/1704.04861
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/1502.03167
https://doi.org/10.1145/3637528.3671862
https://doi.org/10.1145/3637528.3671862
https://openreview.net/forum?id=N23A4ybMJr
https://openreview.net/forum?id=N23A4ybMJr


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Yue Liu, Christos Matsoukas, Fredrik Strand, Hossein Azizpour, and Kevin Smith. Patchdropout:
Economizing vision transformers using patch dropout. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 3953–3962, 2023.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Sachin Mehta and Mohammad Rastegari. Mobilevit: light-weight, general-purpose, and mobile-
friendly vision transformer. arXiv preprint arXiv:2110.02178, 2021.

Sachin Mehta and Mohammad Rastegari. Separable self-attention for mobile vision transformers.
arXiv preprint arXiv:2206.02680, 2022.

Kaouther Messaoud, Matthieu Cord, and Alexandre Alahi. Towards generalizable trajectory prediction
using dual-level representation learning and adaptive prompting. arXiv preprint arXiv:2501.04815,
2025.

Khan Muhammad, Amin Ullah, Jaime Lloret, Javier Del Ser, and Victor Hugo C de Albuquerque.
Deep learning for safe autonomous driving: Current challenges and future directions. IEEE
Transactions on Intelligent Transportation Systems, 22(7):4316–4336, 2020.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui
Tan. Towards stable test-time adaptation in dynamic wild world. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=g2YraF75Tj.

Soroush Omranpour, Guillaume Rabusseau, and Reihaneh Rabbany. Higher order transform-
ers: Enhancing stock movement prediction on multimodal time-series data. arXiv preprint
arXiv:2412.10540, 2024.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
dov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran,
Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick
Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features with-
out supervision. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=a68SUt6zFt. Featured Certification.

Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios
Tzimiropoulos, and Brais Martinez. Edgevits: Competing light-weight cnns on mobile devices
with vision transformers. In European Conference on Computer Vision, pp. 294–311. Springer,
2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

Danfeng Qin, Chas Leichner, Manolis Delakis, Marco Fornoni, Shixin Luo, Fan Yang, Weijun Wang,
Colby Banbury, Chengxi Ye, Berkin Akin, et al. Mobilenetv4: Universal models for the mobile
ecosystem. In European Conference on Computer Vision, pp. 78–96. Springer, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021a. URL https:
//arxiv.org/abs/2103.00020.

13

https://openreview.net/forum?id=g2YraF75Tj
https://openreview.net/forum?id=g2YraF75Tj
https://openreview.net/forum?id=a68SUt6zFt
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021b.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400. PMLR,
2019.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 1), 2021. URL https://openreview.net/forum?id=Zkj_
VcZ6ol.

Esther Rolf, Konstantin Klemmer, Caleb Robinson, and Hannah Kerner. Position: Mission critical –
satellite data is a distinct modality in machine learning. In Proceedings of the 41st International
Conference on Machine Learning, pp. 42691–42706, 2024.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit,
and Lucas Beyer. How to train your vit? data, augmentation, and regularization in vision
transformers. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL
https://openreview.net/forum?id=4nPswr1KcP.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 2820–2828, 2019.

Hugo Thimonier, José Lucas De Melo Costa, Fabrice Popineau, Arpad Rimmel, and Bich-Liên
Doan. T-jepa: Augmentation-free self-supervised learning for tabular data. arXiv preprint
arXiv:2410.05016, 2024.

Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In European conference
on computer vision, pp. 516–533. Springer, 2022.

Lorenzo Vaquero, Yihong Xu, Xavier Alameda-Pineda, Víctor M Brea, and Manuel Mucientes. Lost
and found: Overcoming detector failures in online multi-object tracking. In European Conference
on Computer Vision, pp. 448–466. Springer, 2024.

Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. Mobileone:
An improved one millisecond mobile backbone. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 7907–7917, 2023a.

Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. Fastvit: A
fast hybrid vision transformer using structural reparameterization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023b.

Shashanka Venkataramanan, Valentinos Pariza, Mohammadreza Salehi, Lukas Knobel, Spyros
Gidaris, Elias Ramzi, Andrei Bursuc, and Yuki M. Asano. Franca: Nested matryoshka clustering
for scalable visual representation learning, 2025. URL https://arxiv.org/abs/2507.
14137.

Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r:
Geometric 3d vision made easy. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 20697–20709, June 2024.

14

https://openreview.net/forum?id=Zkj_VcZ6ol
https://openreview.net/forum?id=Zkj_VcZ6ol
https://openreview.net/forum?id=4nPswr1KcP
https://arxiv.org/abs/2507.14137
https://arxiv.org/abs/2507.14137


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Yibing Wei, Abhinav Gupta, and Pedro Morgado. Towards latent masked image modeling for
self-supervised visual representation learning. In European Conference on Computer Vision, pp.
1–17. Springer, 2025.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16133–16142, 2023.

Seokju Yun and Youngmin Ro. Shvit: Single-head vision transformer with memory efficient macro
design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5756–5767, 2024.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff.
A transformer-based framework for multivariate time series representation learning. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery &; Data Mining, KDD ’21, pp.
2114–2124, 2021.

Bowen Zhang, Zhi Tian, Quan Tang, Xiangxiang Chu, Xiaolin Wei, Chunhua Shen, et al. Segvit:
Semantic segmentation with plain vision transformers. Advances in Neural Information Processing
Systems, 35:4971–4982, 2022.

15

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A APPENDIX

A.1 IMPACT STATEMENT

This work presents new designs and empirical results for deep network architectures for more accurate
and computationally efficient modeling applied to visual recognition and time series processing. This
general topic does not have more specific societal consequences aside from those inherited, good or
bad, from the adoption of machine learning.

A.2 COMPUTE-EFFICIENT ARCHITECTURE DESCRIPTIONS

1 EfficientViT Cai et al. (2023) is a hierarchical architecture with four stages and one head. Stages 1
and 2 consist of MBConv layers Sandler et al. (2018). Stages 3 and 4 consist of MBConv sublayers and
their novel EfficientViT sublayer, consisting of an efficient attention module and an FFN+DWConv
module Howard (2017). Their attention module creates queries, keys, and values of three scales via
three DWConvs, and then each set of queries, keys, and values undergoes efficient linear attention.
Finally, the head receives outputs from Stages 2, 3, and 4, and applies a final MBConv. EfficientViT
variants differ in stage depths and widths, as well as head width.

2 SHViT Yun & Ro (2024) is a hierarchical architecture with three stages. Stage 1 consists of a
DWConv+BatchNorm sublayer and an FFN sublayer. Stages 2 and 3 incorporate their novel single-
headed self-attention (SHSA) sublayer between the stage 1 sublayers. SHSA consists of performing
single-headed self-attention on a fraction of dimensions (1/4.67 ratio); the other dimensions pass
straight through, further reducing cost. Both FFN and SHSA sublayers also replace linear layers with
DWConv. SHViT variants differ in stage depths and widths.

3 MobileNetV4 Qin et al. (2025) variants use their FusedIB, ExtraDW, and Mobile MQA (multi-
query attention) modules along with MBConv, ConvNext-Like Liu et al. (2022), and FFN modules.
Variants differ in stage depths and widths, the number of stages, and stage architectures built with a
combination of the listed modules.

A.3 EXPERIMENTAL DETAILS

A.3.1 IMAGENET-1K AND -21K HYPERPARAMETERS

We pick these recipes based on findings in the literature—such as Touvron et al. (2022), Fuller et al.
(2024), Beyer et al. (2022), Dehghani et al. (2024), and Steiner et al. (2022)—and past experience
indicating that these recipes would result in strong models.

ImageNet-1K training recipe: 128 × 128 px images, 400 epochs, 1024 batch
size, PyTorch’s AdamW optimizer with a 0.05 weight decay, 1.0 clip grad norm,
deit3-base-patch16-224.fb-in22k-ft-in1k teacher Touvron et al. (2022) given
224 × 224 px images using Wightman (2019)’s implementation, KL divergence loss between
student and teacher logits Beyer et al. (2022), linear learning rate warmup for 10% of steps to
{1e−3, 3e−3} and cooldown using a cosine decay schedule to 1e−5, mixup α = 0.8, cutmix α = 1,
and 3-Augment data augmentation Touvron et al. (2022). Then we continue training at 224× 224
px images, 20 epochs, 512 batch size, PyTorch’s AdamW optimizer with a 0.1 weight decay, 1.0
clip grad norm, deit3-large-patch16-224.fb-in22k-ft-in1k teacher Touvron et al.
(2022) given 224× 224 px images using Wightman (2019)’s implementation, KL divergence loss
between student and teacher logits Beyer et al. (2022), linear learning rate warmup for 25% of steps
to 5e−5 and cooldown using a cosine decay schedule to 1e−5, mixup α = 0.8, cutmix α = 1, and
AutoAugment (“rand-m9-mstd0.5-inc1”) data augmentation Cubuk et al. (2018) following DEIT
III’s Touvron et al. (2022) high-res finetuning recipe.

ImageNet-21K training recipe: 224 × 224 px images, 50 epochs, 1024 batch size, PyTorch’s
AdamW optimizer with a 0.02 weight decay, 1.0 clip grad norm, cross-entropy loss, linear learning
rate warmup for 10% of steps to 3e−3 and cooldown using a cosine decay schedule to 1e−5, mixup
α = 0.8, cutmix α = 0, and 3-Augment data augmentation Touvron et al. (2022). To speed up
training, we also employ a token dropping strategy starting at 90%, linearly decreasing to 10%.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A.3.2 TIME SERIES EXPERIMENTS

We adopt the PatchTST Nie et al. (2023) architecture for our time series experiments. PatchTST is a
patch-based transformer architecture for time series processing. The method splits a univariate time
series into patches processed as they are in ViTs for classification, aside from position encoding (2D
vs. 1D). For multivariate series, each channel is processed independently using the shared transformer
backbone, with the final-layer CLS tokens from each channel concatenated before classification. We
extend this shared backbone with registers (PatchTST+Registers) and Jumbo (PatchTST+Jumbo).

We closely follow the PatchTST training recipe for our experiments, making minor adjustments
based on prior experience to enhance performance. This method remains competitive with recent
transformer-based benchmarks for time series classification Zerveas et al. (2021); Grover et al.
(2024); Le et al. (2024). Apart from variations in time series length, all experiments use the same
hyperparameters and methodology.

PatchTST Hyperparameters: The model comprises 3 encoder layers, each with 16 attention heads
and a token width of D = 128. The transformer FFN includes two linear layers with a GELU
activation Hendrycks & Gimpel (2016); the first expands the hidden dimension to 256, while the
second projects it back to 128. For PatchTST+Jumbo, we use J = 4. For PatchTST+Registers, R is
calculated according to Appendix A.3.3.

Time Series training recipe: We perform a hyperparameter sweep over the Cartesian product of
learning rates {3e−3, 1e−3, 3e−4, 1e−4} and dropout rates {0.0, 0.1, 0.2}. Each configuration
uses either 8 or 42 equally sized patches of maximum possible length, with end-padding applied as
needed. The stride length is set to half the patch length. Unless stated otherwise, all experiments
follow the same setup: 100 epochs, 256 batch size, PyTorch’s AdamW optimizer with a 0.02
weight decay, cross-entropy loss, and a linear learning rate warmup for the first 10% of steps,
followed by a cooldown using cosine decay to 1e−8. For large datasets, we reduce the number of
epochs to ensure efficient processing within a reasonable time frame; specifically, we train datasets
{Sleep, Tiselac, FaceDetection} for 20 epochs.

Each dataset from the UEA and UCR archives includes a prescribed validation set. We create a new
50/50 test/validation split from each of these original validation sets, selecting the best run based on
validation performance. All reported results are from the test set.

The 20 datasets were selected in decreasing order of their number of training examples; datasets with
either (i) fewer than 42 total timesteps or (ii) significant data preparation issues were excluded.

A.3.3 FLOP DETAILS

To ensure a fair comparison, we configure PatchTST+Registers and PatchTST+Jumbo to have
approximately equal per-layer FLOPs by selecting the number of registers R in the former and the
Jumbo multiplier J in the latter accordingly. Additionally, we apply average pooling to the J split
segments of the Jumbo token to prevent a significant increase in the number of learnable parameters
of the classification head. This pooling produces a token of width D per channel before concatenation,
effectively serving the same role as a CLS token. The detailed per-layer FLOP calculation is provided
by the proposition below.

Proposition 1. Let P be the total number of local patch tokens, R the number of register tokens, D
the width, and J the Jumbo multiplier. Given an FFN hidden dimension of 2D, and otherwise fixed
parameters, a Register architecture with R registers has the same per-layer FLOP count as a Jumbo
architecture with multiplier J if and only if

R = −(2D + P ) +
√
(2D + P )2 + (1 + 2D)J2 + 2(D + P )J

Proof. Let F denote the FLOP count. Given a sequence length of n tokens, each of width d, the
FLOP contributions from the MHSA and FFN sublayers in a single transformer layer with a FFN
hidden dimension of ld are given by

FMHSA = 4nd2 + 2n2d and FFFN = l2nd2 = 4nd2

where we fix l = 2. For the Register architecture, n = P +R and d = D for both the MHSA and
the FFN contributions. For the Jumbo architecture, n = P + J and d = D for MHSA. The FFN

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

contribution is split; local patch tokens contribute with n = P, d = D while the dedicated Jumbo
FFN has n = 1, d = JD. From summing the contributions, it follows that

FReg = 4(P +R)D2 + 2(P +R)2D + 4(P +R)D2

FJumbo = 4(P + J)D2 + 2(P + J)2D + 4PD2 + 4J2D2

Equating FReg = FJumbo and solving for R gives the stated result.

In our time series experiments, we compute R, rounding to the nearest integer, to match the per-layer
FLOP count of a Jumbo architecture with multiplier J as closely as possible.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

A.4 DETAILED IMAGENET-1K RESULTS

Table 6: All final results obtained on 224× 224 px images (%).

Architecture Size Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-R ImageNet-HR
2242 px Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ViT+Jumbo

D=96, J=6 43.7K 69.0 88.5 76.6 92.3 56.0 79.0 23.5 37.1 77.9 92.6
D=128, J=6 31.3K 74.0 91.5 81.3 94.7 61.4 83.4 27.4 42.6 83.2 95.0
D=192, J=6 20.4K 78.4 94.0 84.8 96.3 66.2 87.0 31.7 47.3 86.8 96.2
D=384, J=6 7.6K 82.7 96.4 88.0 97.8 72.4 90.6 39.0 55.6 90.9 98.3

ViT+Registers
D=128, R=16 25.5K 61.0 84.1 68.9 88.9 49.1 74.1 18.7 32.4 69.7 88.9
D=192, R=16 16.7K 74.5 92.3 82.3 95.4 62.5 84.7 28.2 43.5 83.7 95.6
D=384, R=16 6.6K 81.9 96.0 87.4 97.7 71.4 90.2 38.0 53.8 90.0 98.0

MobileNetV4
conv-small 33.7K 65.6 86.2 73.3 90.7 52.5 75.5 22.3 37.5 75.7 91.3

conv-medium 11.2K 74.9 92.6 82.4 95.5 63.1 84.8 29.4 45.9 84.7 95.8
hybrid-medium 8.8K 78.1 94.3 85.0 96.7 67.0 87.5 33.0 49.4 87.2 96.8

SHViT
S1 42.1K 67.9 88.2 75.7 92.2 54.7 78.2 23.1 38.0 77.6 92.7
S2 34.5K 71.0 90.0 78.6 93.6 58.4 80.5 25.6 41.1 80.9 93.9
S3 23.7K 74.3 92.0 81.6 95.0 61.8 83.5 28.3 43.9 84.0 95.4

EfficientViT B0 25.2K 66.3 86.5 73.9 90.7 53.6 76.3 22.2 36.7 75.8 91.0
B1 9.8K 76.9 93.5 83.7 96.2 64.5 85.9 31.3 47.2 85.8 96.4

Table 7: ViT+Registers results, obtained on 128× 128 px images (%).

Patch Num. Learning Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-R ImageNet-HR
Width Registers Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

128 16 3e−3 107.0K 53.6 78.5 60.8 83.6 42.4 67.8 15.9 28.6 61.9 83.4
16 1e−3 51.9 76.8 59.0 81.8 40.8 65.4 13.7 24.9 60.5 82.6

192
8 3e−3 65.7K 68.5 88.8 76.1 92.6 55.7 78.8 24.9 39.4 77.8 92.2

16 3e−3 59.9K 68.8 88.9 76.6 92.6 55.9 79.4 24.8 38.9 78.5 92.5
16 1e−3 66.1 87.2 74.0 91.2 54.2 77.0 22.9 36.2 75.4 91.6

384
8 3e−3 24.6K 77.8 93.9 84.3 96.2 65.8 86.3 33.3 48.6 86.8 96.5

16 3e−3 21.8K 78.1 94.0 84.5 96.3 66.1 86.6 33.3 48.6 86.6 96.5
16 1e−3 78.2 94.1 84.5 96.3 66.4 86.6 33.5 48.4 87.2 96.6

Table 8: ViT+Jumbo results, obtained on 128× 128 px images (%).

Patch Learning Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-R ImageNet-HR
Width Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

96 3e−3 136.0K 62.4 83.7 69.6 88.1 49.3 72.9 20.1 33.5 71.4 89.1
1e−3 60.8 82.9 68.0 87.3 48.3 71.8 18.9 31.6 70.3 87.6

128 3e−3 103.1K 67.7 87.5 75.0 91.2 54.3 77.6 24.1 37.5 76.6 92.1
1e−3 68.4 87.9 75.6 91.6 55.2 78.0 23.8 37.6 77.0 92.1

192 3e−3 57.3K 73.3 91.2 80.2 94.1 60.5 82.1 28.0 42.2 82.7 94.6
1e−3 73.5 91.3 80.3 94.1 60.5 81.8 27.8 42.2 82.8 94.4

384 3e−3 20.4K 79.3 94.4 85.3 96.5 67.3 87.0 34.3 49.5 88.3 96.8
1e−3 79.3 94.5 85.1 96.6 66.7 86.7 33.4 48.4 87.7 96.6

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 9: MobileNetV4 results, obtained on 128× 128 px images (%).

Size Learning Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-R ImageNet-HR
Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

conv-small 3e−3 142.7K 62.1 83.6 69.2 88.1 49.1 72.8 20.4 34.3 71.8 89.4
1e−3 60.0 82.0 67.2 86.7 47.6 71.4 18.9 32.2 69.8 87.7

conv-medium 3e−3 53.8K 73.3 91.5 80.5 94.6 60.6 82.9 27.7 42.8 83.2 95.3
1e−3 72.2 90.7 79.4 94.0 59.5 81.7 27.0 42.0 82.0 94.6

hybrid-medium 3e−3 43.5K 74.9 92.4 81.8 95.3 62.4 84.0 29.5 44.8 84.4 95.5
1e−3 75.2 92.5 82.0 95.3 63.0 84.5 29.1 44.5 84.2 95.4

Table 10: SHViT results, obtained on 128× 128 px images (%).

Size Learning Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-R ImageNet-HR
Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

S1 3e−3 81.0K 63.5 84.9 70.9 89.1 50.8 74.5 22.2 35.7 73.7 90.0
1e−3 63.5 85.1 71.0 89.3 50.9 74.4 21.3 34.7 72.9 90.5

S1 3e−3 76.1K 66.6 87.0 73.9 90.8 54.0 76.6 23.9 38.0 76.1 91.7
1e−3 66.7 87.0 73.8 90.8 53.7 76.8 24.0 37.8 76.7 92.0

S3 3e−3 73.8K 70.5 89.8 77.7 93.1 58.1 80.4 26.6 41.0 80.4 93.8
1e−3 71.2 90.0 78.3 93.3 58.6 80.7 26.7 40.7 80.7 93.9

Table 11: EfficientViT results, obtained on 128× 128 px images (%).

Size Learning Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-R ImageNet-HR
Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

B0 3e−3 98.6K 59.5 81.9 66.8 86.7 46.8 70.3 18.6 32.0 69.3 87.6
1e−3 60.8 82.6 68.0 87.2 48.3 71.6 19.3 32.6 70.4 87.7

B1 3e−3 38.7K 71.8 90.7 79.2 94.0 59.7 81.8 27.4 42.2 81.5 94.4
1e−3 72.8 91.0 79.8 94.2 60.4 81.9 27.1 42.3 82.5 94.8

Table 12: ViT+Jumbo ablation results, obtained on 128× 128 px images (%).

Patch Jumbo Inner FFN Throughput Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-HR ImageNet-R
Width Multiplier Multiplier 1282 px 2242 px Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

192

2 2 71.6K 21.6K 70.0 89.6 77.5 93.1 57.3 80.0 26.1 40.9 79.3 93.2
4 69.6K 21.5K 70.4 89.6 77.8 93.1 57.3 79.8 25.5 39.6 79.7 93.3

4
1 69.6K 21.3K 71.5 90.4 78.8 93.7 59.2 81.3 26.9 41.7 80.8 93.7
2 68.1K 21.2K 70.6 89.6 77.6 93.0 57.7 79.8 25.9 40.3 80.4 93.5
4 64.9K 20.8K 72.2 90.6 79.2 93.6 59.3 81.1 26.6 41.2 81.8 94.1

6
1 65.3K 20.9K 72.1 90.5 79.2 93.7 58.9 81.1 26.4 41.1 80.8 94.2
2 63.5K 20.6K 71.8 90.2 78.7 93.3 58.2 80.6 25.8 39.8 80.7 93.6
4 56.5K 19.9K 73.0 90.7 79.6 93.7 59.4 81.2 26.8 41.3 82.3 93.9

384

2 2 27.2K 8.7K 77.0 93.5 83.6 96.0 64.6 85.8 31.9 47.9 85.8 96.4
4 26.1K 8.6K 78.1 94.0 84.4 96.3 65.9 86.1 32.8 48.7 86.1 96.4

4
1 26.1K 8.6K 77.3 93.6 83.7 96.0 64.9 85.8 32.1 47.8 86.5 96.2
2 24.5K 8.5K 77.9 93.9 84.0 96.3 65.7 85.9 32.7 48.6 86.7 96.2
4 23.6K 8.3K 77.9 93.8 84.0 96.2 65.7 85.8 32.4 48.0 86.2 96.2

6
1 23.9K 8.4K 77.6 93.6 84.0 96.1 65.8 85.8 32.1 47.9 86.7 96.2
2 22.9K 8.2K 77.8 93.6 83.8 96.0 65.0 85.3 32.2 47.5 86.6 96.0
4 19.5K 7.8K 78.3 93.8 84.2 96.1 66.1 86.0 32.9 48.6 87.0 96.3

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

A.5 DETAILED TIMESERIES RESULTS

Table 13: Univariate time series classification results (%). “Best” refers to the best run of our 12-run
hyperparameter sweep and “Avg” refers to the average over the sweep.

PatchTST/8 PatchTST/8
+Registers

PatchTST/8
+Jumbo PatchTST/42 PatchTST/42

+Registers
PatchTST/42

+Jumbo

Sleep Best 70.9 70.7 73.3 70.5 70.6 70.3
Avg 67.5 67.7 68.3 67.2 67.1 67.6

InsectSound Best 82.8 83.3 83.7 85.8 84.4 85.6
Avg 76.7 76.0 78.7 78.7 78.7 79.7

FruitFlies Best 92.2 90.9 92.2 95.2 95.0 95.1
Avg 88.4 88.4 89.4 93.1 92.9 93.9

RightWhaleCalls Best 94.3 93.8 95.1 96.7 97.0 96.1
Avg 92.8 93.5 94.2 94.0 94.8 95.1

FaultDetectionA Best 98.0 97.7 98.1 99.6 99.8 99.8
Avg 94.6 95.2 97.2 99.2 99.2 99.5

ElectricDevices Best 89.0 88.8 90.1 92.4 92.4 92.5
Avg 81.6 83.2 84.0 85.1 85.2 88.1

Crop Best 80.9 81.2 82.0 81.2 80.6 82.2
Avg 69.4 70.9 72.0 68.7 68.3 68.7

FordB Best 98.8 97.3 97.7 97.7 96.5 96.5
Avg 95.4 96.0 96.6 95.7 94.9 94.8

FordA Best 97.3 98.0 97.7 97.1 97.1 97.5
Avg 96.1 96.6 97.2 95.5 95.7 96.0

MelbournePedestrian Best 92.1 91.5 91.0 90.4 91.0 93.1
Avg 81.8 82.8 83.9 83.5 83.8 84.9

Table 14: Multivariate time series classification results (%). “Best” refers to the best run of our 12-run
hyperparameter sweep and “Avg” refers to the average over the sweep.

PatchTST/8 PatchTST/8
+Registers

PatchTST/8
+Jumbo PatchTST/42 PatchTST/42

+Registers
PatchTST/42

+Jumbo

Tiselac Best 96.6 96.9 97.2 96.4 96.4 96.7
Avg 86.9 87.8 90.1 84.7 85.0 87.9

WalkingSittingStanding Best 96.0 96.0 96.5 98.0 97.6 97.6
Avg 91.7 89.8 93.5 93.9 93.9 94.5

SpokenArabicDigits Best 99.9 99.7 99.9 99.7 99.9 99.9
Avg 99.5 99.6 99.6 99.6 99.5 99.7

FaceDetection Best 87.8 88.1 87.5 86.8 86.6 84.8
Avg 78.9 80.9 80.0 77.4 77.4 78.8

PhonemeSpectra Best 56.3 57.1 59.1 57.6 60.3 58.9
Avg 38.2 38.7 46.5 42.9 44.5 47.7

LSST Best 78.7 79.5 79.9 74.6 75.7 79.9
Avg 69.3 69.4 71.2 61.4 61.4 67.3

UWaveGestureLibrary Best 92.7 88.5 87.5 94.8 99.0 94.8
Avg 76.8 79.9 83.4 81.3 83.5 85.4

CharacterTrajectories Best 99.0 98.0 99.6 98.7 99.3 98.4
Avg 93.6 94.2 96.6 96.6 95.2 97.0

AsphaltPavementTypeCoordinates Best 72.3 77.7 81.1 89.5 88.5 89.5
Avg 72.7 75.8 77.0 81.2 82.1 83.7

MotorImagery Best 87.5 83.3 77.1 79.2 66.7 87.5
Avg 84.9 83.3 83.2 73.6 74.0 81.9

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

A.6 ATTENTION MAPS

(a) Attention maps of the Jumbo token split into 6
smaller global tokens. Like ViT+Registers, ViT+Jumbo
learns relatively artifact-free attention maps (as com-
pared with the attention maps in Darcet et al. (2024)).

(b) Attention maps of the CLS and the first five register
tokens.

22


	Introduction: Architecture, Accuracy, and Efficiency
	Background and Related Work: Generalists and Specialists
	Vision Transformers: Simple, Flexible, but not yet Fast
	Compute-efficient Architectures: Fast, but not Simple nor Flexible

	Method: A Jumbo token for a Compute-Efficient Plain ViT
	Design Motivation and Intuition
	Design Specifics for Token-Width Asymmetry

	Experiments: Accuracy, Compute Efficiency, and Generality
	ImageNet-1K Experiments with Compute-Efficient Baselines
	ImageNet-21K Experiments with ViT Comparisons
	Masked Autoencoding Experiments
	Robustness and Test-Time Adaptation Experiments
	Time Series Experiments
	Ablations
	Analysis: How to Scale Efficiency and Capacity

	Discussion: Efficiency, Generality, and Capacity
	Appendix
	Impact Statement
	Compute-efficient Architecture Descriptions
	Experimental Details
	ImageNet-1K and -21K Hyperparameters
	Time Series Experiments
	FLOP Details

	Detailed ImageNet-1K Results
	Detailed Timeseries Results
	Attention Maps


