THICKER AND QUICKER: A JUMBO TOKEN
FOR FAST PLAIN VISION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

ViTs are general and accurate, and address many tasks, but ViTs are slow, and
are not always practical when efficiency is key. Existing methods for faster ViTs
design hybrid non-ViT architectures, losing generality, or shrink their tokens,
sacrificing accuracy. While many non-ViT architectures are both fast and accurate,
they cannot flexibly process other input shapes, pre-train by SOTA self-supervised
learning, reduce computation by dropping tokens, and more like ViTs can. We
make ViTs faster by reducing patch token width while increasing global token
width by adding a new Jumbo token. Our wider Jumbo token is processed by its
own wider FFN to increase model capacity. Yet our Jumbo FFN is efficient: it
processes a single token, for speed, and its parameters are shared across all layers,
for memory. Crucially, our Jumbo is attention-only and non-hierarchical, like a
plain ViT, so it is simple, scalable, flexible, and compatible with ViT methods new
and old. Jumbo improves over ViT baselines with Registers from Nano to Large
scales while maintaining speed/throughput on ImageNet-1K (10.1—13%). Jumbo
also improves MAE pre-training (14.9% linear probing on ImageNet-1K), test-time
adaptation (15.2% on ImageNet-C), and time series modeling. Our Jumbo models
even achieve better speed-accuracy trade-offs than specialized non-ViT compute-
efficient models, while maintaining plain-ViT compatibility for practicality.

1 INTRODUCTION: ARCHITECTURE, ACCURACY, AND EFFICIENCY

For most model sizes, the vision transformer (ViT; Dosovitskiy et al.| (2021)) is the go-to architecture
in computer vision—powering foundation models like DINOv2 (Oquab et al., [2024)), language-
aligned models like CLIP (Radford et al.||2021al), segmentation models like SAM (Kirillov et al.|
2023)), 3D vision models like DUST3R (Wang et al., |2024])), and diffusion models like DiT (Peebles
& Xie,|2022). These are all “plain” ViTs, which are crucially attention-only and non-hierarchical.

At the smallest scales—offering the highest speeds/throughputs—plain ViTs are not competitive with
highly specialized architectures (Yun & Rol [2024). We attribute the worse accuracy-speed of plain
ViTs to their width (number of channels). Existing work scales width equally across all tokens and
layers so higher speed requires lower width: ViT-Base(768)— ViT-Small(384)— ViT-Tiny(192).

We scale width differently across tokens and equally across layers. Our architecture adds a Jumbo
token, which replaces the conventional CLS token, that is J x wider than the patch tokens, with its
own wider feed-forward network (FFN), to effectively and efficiently boost model capacity. For
self-attention, the Jumbo token is split into Jx as many tokens/heads, but the Jumbo FFN is only
applied to the one (merged) token to reduce time and shared across layers to reduce memory. Jumbo
keeps the defining traits of a plain ViT—attention-only and non-hierarchical—so Jumbo applies
anywhere a plain ViT does but at higher speed.

The simplicity of ViTs is due to their attention-only and non-hierarchical architecture. Multiple
uses of ViTs rely on this architectural “interface” for their computation and function. For instance,
this interface enables efficient sparse computation through masking/token dropping. Random token
dropping enables efficient training (Liu et al.||2023} |Dehghani et al.| 2024} |Leroy et al.| [2024]) and
learned token dropping enables efficient deployment (Bolya et al.| 2023} [Fuller et al}[2025). Several
SoTA self-supervised learning (SSL) algorithms require token dropping for learning (He et al.| 2022}
Garrido et al.| 2024} [Wei et al.| 2025} Venkataramanan et al.| [2025)). This same interface enables
flexible processing of different input shapes, like time series (Nie et al.||2023) or video (Arnab et al.,

(a) ImageNet-Val (b) ImageNet-21K
| | | | |

85 47 | . ‘ .
5 VI T+ JUmb
K 80 e Lours))
N— N— ‘e .,
; s 45 |- =
Q75 Q Y
2 2 bl Tt 1.9x faster |
— 70 s, — Viu}é ~~~~~
&, X, &.43 |- gt .
ﬁ 65 |- 'a)o “‘ N ﬁ e/:S‘
% L e I BERCT]
60 || i i G’f i i - | | | I I ’
3 10 20 30 40 3 4 5 6 7 8
Throughput (K images/s) Throughput (K images/s)
(c) ImageNet-v2
| | Attention- Non-
7 Legend Method only hierarchical
§ 70 EfficientViT X X
"" SHVIiT X X
g 65 MobileNetV4 X X
<) ® ViT+Registers v v
— 60 ® BiXT v v
&, % ViT+Jumbo (ours) v v
2 55 Lz) Our Jumbo is attention-only and non-hierarchical,
B %, | which provides out-of-the-box support for SOTA
0 | L @ | | self-supervised learning algorithms, multimodal
3 10 20 30 40 data, and non-2D data types—while being much
Throughput (K images/s) simpler than existing efficient architectures.

Figure 1: Plain ViTs are in - and others are in |[blue . ViT+Jumbo outperforms SOTA compute-
efficient architectures — while maintaining the advantages of plain ViTs. ViT+Jumbo outperforms
ViT+Registers on ImageNet-1K and the more challenging ImageNet-21K dataset. Throughput is
measured on an RTX 4090 GPU using PyTorch 2.6.0, torch. compile, and a 512 batch size.

2021)). Moreover, many extensions and applications—from object detection and segmentation heads
(Fang et al., 2023} [Zhang et al.| [2022])) to test-time adaptation algorithms (Niu et al.| [2023))—are
designed for this plain ViT interface. Architectures that maintain ViT compatibility inherit all of this.

Our experiments show that Jumbo improves speed-accuracy performance across tasks, datasets,
and modalities. @ Image classification: Jumbo outperforms ViTs by 0.1—13% on ImageNet-1K
and 1.2—3.1% on ImageNet-21K while maintaining throughput and achieves the pareto frontier vs.
compute-efficient architectures. @ Self-Supervised Learning (SSL): Jumbo improves MAE (He
et al.l[2022) pretraining measured with linear probing by 4.9% on ImageNet-1K at ViT-Base scale—
this ViT-Base+Jumbo ties the ViT-Large baseline, with 2.3 x fewer parameters, 3.5x fewer FLOPs,
and 3.1x higher throughput. @ Test-time adaptation (TTA): Jumbo is more accurate and more
robust with 5.2% improvement on ImageNet-C using a SOTA adaptation method for transformers
(SAR (Niu et al.,[2023)). @ Time series: Jumbo generalizes beyond vision to rank first across 20
time series benchmarks vs. transformer baselines.

Jumbo is such an efficient ViT-compatible architecture that it outperforms highly specialized existing
architectures on ImageNet-1K (Fig. [T). This is notable because such compute-efficient architectures
(Chen et al.| [2023; [Howard et al., [2017) sacrifice generality and compatibility with other techniques
and applications. Even efficient architectures based on ViTs include convolutions, hierarchy, and batch
normalization (Yun & Ro,[2024}|Vasu et al.}|2023b; |(Cai et al.,[2023)) that make them incompatible
out of the box with SSL by MAE, TTA by SAR, time series, ViT heads, etc. Jumbo delivers compute
efficiency while maintaining plain-ViT compatibility.

2 BACKGROUND AND RELATED WORK: GENERALISTS AND SPECIALISTS

2.1 VISION TRANSFORMERS: SIMPLE, FLEXIBLE, BUT NOT YET FAST

Jumbo extends ViTs. A ViT splits an image into a patch grid, RY XXX _ RNyXNoxX Pyx PpxC

where C' is the number of channels, Y/ X are the image height / width, N, / N, are the grid height /

ViT+Jumbo (ours) ViT+Registers (Darcet et al., [2024)

1 1
] 1
. . . '
1 1
" 0, 1
: S350 N N A A R I
> > 1
= 8, '
- - MHSA .
' :
L A (N A R S __l
global token local tokens (image patches) global tokens local tokens (image patches)

Figure 2: (Left) Our ViT+Jumbo method creates a wide global token that gets split into several tokens,
with width equal to the patch width, prior to multi-headed self-attention (MHSA). After attention, the
split Jumbo token is reassembled via concatenation, and is then processed by its own FFN. Patches
are processed by . (Right) ViT+Registers creates register tokens all equal
to the patch width — and all tokens are processed by . ViT+Jumbo enhances global
processing as the (split) global tokens can interact via an expressive FFN, plus attention.

width, and P, / P, are the patch height / width in pixels (equal to le / J\%)' Next, they flatten the

grid into a sequence and flatten the patches into vectors, RNy X Ne X Py xPe xC' _y RNXDpiz \where
N is the number of patches (equal to N, - N), and D, is the number of pixel values per patch
(equal to P, - P, - C). Next, they apply a learnable linear projection to form patch embeddings,
RN *Dpiz _ RNXD ‘where D is the token width, also known as the embedding dimension. Next, they
add position embeddings to patch embeddings. These operations produce patch tokens x”” € RV*P
that represent local information—typically a 16 x 16 px square. Crucially for us, ViTs prepend a
learnable CLS token x°S to the sequence of patch tokens, x = x5 |[opx? € RIVFDXD where |,
denotes concatenation along the 0" (sequence) dimension. Finally, the input x is processed by a
plain transformer and the CLS token, having attended to all other tokens, can serve as the global
representation of the image. ViT sizes vary w.r.t. depth and width. ViT-Large has 24 layers, others
have 12 layers, while the widths vary {96, 128, 192, 384, 768, 1024}, corresponding to names
{Pico, Nano, Tiny, Small, Base, Large}. Narrower ViTs require less computation and are thus faster.

A standard image size of 224 x 224 px and a standard patch size of 16 x 16 px result in 196 local
tokens. A single CLS token—designed to aggregate global information for classification—provisions
1/197" of a model’s representational capacity to global information (and this fraction decreases with
larger images and/or smaller patches). This allocation is imbalanced, and may not be optimal. Recent
work finds evidence to support this intuition and proposes a fix: register tokens.

Registers. |Darcet et al|(2024) find that ViTs learn to repurpose some patch tokens to behave
like additional CLS tokens by collecting global information and discarding patch-specific local
information. The same work proposes a fix: prepend extra learnable tokens—called registers
x%e9 € REXD 'where R is the number of registers—to the input sequence, x = x°5|ox*¢9||ox*" €
RVHAHDXD Registers improve accuracy (by ~0.4% on ImageNet-1K (Russakovsky et al.,[2015)
at ViT-Base) and reduce attention map artifacts/noise by provisioning more global capacity.

Registers are elegant, simple, and keep the plain ViT interface. In theory, registers can benefit any
plain, non-causal transformer. These advantages account for registers’ significant and immediate
impact including in applications beyond images (Dong et al.| 2024; [Vaquero et al.|[2024{ [Leigh et al.|
2024} [Messaoud et al.| 2025} [Hu et al.| [2024} [Thimonier et al.} [2024; |(Omranpour et al.| [2024). Our
Jumbo is inspired by ViT+Registers: see Fig. 2] for their relationship and key differences.

2.2 COMPUTE-EFFICIENT ARCHITECTURES: FAST, BUT NOT SIMPLE NOR FLEXIBLE

The Jumbo architecture is accurate and compute-efficient, so we highlight 3 architectures and use
them as baselines for high-speed ViTs. @ EfficientViT (Cai et al.,|2023)) and @ SHViT (Yun & Ro|
2024])) improve the efficiency of ViTs by incorporating efficient attention, pooling, and convolutional

layers. @ MobileNetV4 (Qin et al.| 2025) improves the efficiency of CNNs by leveraging many
trategies for d

strategies (and different s ifferent model sizes). These baselines represent the SOTA in
computational efficiency; please refer to Appendix [A.2]for descriptions of these model architectures.

Beyond these, there is a rich literature on compute-efficient vision architectures. For example, several
efficient CNN-based architectures exist 2017} [Sandler et al] 2018} [Howard et al.| 2019
Han et al @ Tan et al.l 2019} [Vasu et al} 20234); however, these are surpassed by MobileNetV4
(Qin et al| 2025). Since the invention of the ViT, there have been many compute-efficient “ViTs” that
incorporate efficiencies inspired by CNN-based approaches (Vasu et al | Mehta & Rastegari
2021} 2022} [Li et al] [2023} [Pan et al} 2022} [Chen et al] 2022} |Li et al.| [2022). SHVIT (Yun & Ro

2024) has recently surpassed these architectures. Despite their impact and ingenuity, none of these
hybrid architectures meets the definition of a plain ViT, which is attention-only and non-hierarchical;
they thus lose many advantages of ViTs that we wish to keep. On the other hand, BiXT
[2024) models are an efficient extension of the Perceiver architecture (Jaegle et al.| [2021) that keeps
the attention-only and non-hierarchical properties of ViTs, which are a natural comparison to Jumbo.

3 METHOD: A JUMBO TOKEN FOR A COMPUTE-EFFICIENT PLAIN VIT

3.1 DESIGN MOTIVATION AND INTUITION

T T [[
ViT I
1F ee-a- ViT+Jumbo

Capacity and Cost. Although Jumbo adds a
wider token and FFN, the cost is minimal. The
key insight is that a single wide token affords
much greater width and more processing with-
out slower speed. As shown in Fig. [3] the main
drivers of computational cost (FLOPs per layer)
are sequence length and patch width, D. The
FLOP contribution from our Jumbo token is
comparatively negligible. Since our architec-
ture shares Jumbo FFN parameters across all
ViT layers, its memory costs are also minimal.

0.5

FLOPs Per Layer (x10'9)

ViTnano, D=128-
| |

| | |
Non-hierarchical and attention-only. Jumbo 200 400 600 800 1,000
preserves the non-hierarchical shape of ViTs Patches (sequence length)
(also known as columnar or isotropic shape). By
foregoing convolutions, spatial information only Figure 3: The cost of layers is largely determined
moves through attention. These two properties by the number of patches and their width D. The
have several advantages that we now discuss. cost of our Jumbo token (J=6) is negligible.

Token Dropping / Masking. Although convolutions are capable of processing a sparse subset of
patches via sparse compute kernels, these kernels can be complex, challenging to use, and require
updating when new hardware arrives. Furthermore, sparse convolutional kernels will never be as
efficient as simply indexing from a sequence—i.e., how transformers drop tokens. As a comparison,
ConvNeXt V2 (Woo et al. 2023) reports a 1.3x speedup using a 60% masking ratio with the
Minkowski Engine v0.5.4 (Choy et al [2019). Conversely, MAE report 2.8 — 4.1x
speedups using a 75% masking ratio with plain ViTs. Efficient token dropping is required for
SOTA SSL algorithms (Assran et all 2023} [Fu et al|, 2024} [Garrido et all, 2024} [Wei et al] 2025}
[Venkataramanan et al .| 2025}, [Oquab et al.,[2024). Token dropping also speeds up supervised training
(Dehghant et al.| [2024). We demonstrate Jumbo’s token dropping ability in subsections #.2]and .4}

Other Data Modalities and Shapes. These properties explain the input flexibility of transformers,
which Jumbo keeps. For example, 1D time series, 3D point clouds, or multimodal data; users need
only adjust tokenization strategies. We show a 1D time series application of Jumbo in subsection[4.3]

Plain ViT’s Ecosystem. These two properties—non-hierarchical and attention-only—maintain
support for methods invented for the plain ViT. For example, segmentation and object detection heads
(Fang et al | 2023} [Liu et al | 2025} [Zhang et al.| [2022)), which expect ViT’s unpooled feature map;
test-time adaptation methods 12023)), designed for the LayerNorm (Ba et al.| 2016) nor

BatchNorm ([Toffe & Szegedyl [2015); and attention improvements, such as Flash Attention (Dao et al|
2022), which can speed up self-attention by > 5x. Jumbo supports these innovations out of the box.

Crucially, none of the compute-efficient architectures in subsection [2.2]immediately benefit from
these advances, support other data modalities or token dropping, or integrate with the ViT ecosystem.

Two hypotheses. Jumbo asymmetrically increases the model capacity. Thus, @ we expect increasing
gains due to Jumbo with decreasing patch token width. @ We expect increasing gains due to Jumbo
with increasing task output dimensionality. We explore both of these hypotheses using experiments
with ViTs of different widths and datasets of different complexities.

3.2 DESIGN SPECIFICS FOR TOKEN-WIDTH ASYMMETRY

Exactly like the original ViT, Jumbo computes patch embeddings, x” € RY*P_ Unlike the original
ViT, our method creates a Jumbo token that is J times wider than the patch width D, x7™° ¢ R’ D,
Architecturally identical transformer layers then process these inputs.

Before self-attention, the Jumbo token is split into J tokens, |} x7um° : RPX/-D 5 RIXD where
| denotes splitting into .J segments along the 1** (feature) dimension. Next, the split Jumbo token is
concatenated with patch embeddings along the sequence dimension, x = x7™°||ox? ¢ RW+/)xD,
This sequence is sent through a plain multi-headed self-attention layer. Afterward, the Jumbo token
is extracted from the sequence by splitting along the sequence dimension, |9 x : RWNV+IXD
(R/*P RN*D) where the first element contains the (still split) Jumbo token and the second element
contains the patch representations. Finally, the Jumbo token is reassembled through concatenation
along the channel dimension, x79™° = ||;x74™° ; R/XP 5 R1X7"D These two splits and two

concatenations add negligible runtime overhead.

After self-attention, the Jumbo token is processed by its own FFN that does not share parameters
with the patch FFN. Fig. [2]indicates this by coloring the Jumbo and patch FFNs differently. After
processing by all layers, we project the Jumbo token to C class logits, R7*? — R,

Layer sharing. We share our Jumbo FFN parameters across all layers to reduce memory use (through
fewer model parameters). All other model parameters are not shared across layers, as usual. Sharing
also acts as regularization. Empirically, we find sharing keeps (and sometimes increases) Jumbo’s
accuracy gains compared with not layer sharing—while effectively controlling memory use. Sharing
the FFN layer is thus the default in our Jumbo architecture.

4 EXPERIMENTS: ACCURACY, COMPUTE EFFICIENCY, AND GENERALITY

For all experiments, we measure throughput on an RTX 4090 GPU using PyTorch 2.6.0,
torch.compile, and a 512 batch size.

4.1 IMAGENET-1K EXPERIMENTS WITH COMPUTE-EFFICIENT BASELINES

Setup. We perform controlled experiments to evaluate Jumbo. Specifically, we train models from
scratch on ImageNet-1K (Russakovsky et al.| [2015)) at 128128 px for 400 epochs, then for 20
epochs at 224 x 224 px. We leverage distillation to improve convergence, which is a common strategy.

We train each model architecture twice, once for each learning rate {1e—3, 3e—3} (Touvron et al.
20225 [Yun & Rol [2024) using a 1024 batch size with the AdamW optimizer (Loshchilov] [2017). We
report the results of the best learning rate for each model architecture. Please see Appendix &
[A.4]for hyperparameters and complete results, respectively.

Baselines. We choose the high-speed models for each family: @ ViT+Registers {Nano, Tiny, Small,
Base} (Darcet et al.|[2024), @ BiXT has 1 size (tiny), @ EfficientViT {BO0, B1} (Cai et al.}[2023)), @
SHVIT {S1, S2, S3} (Yun & Ro,|2024), and @ MobileNetV4 { Conv-Small, Conv-Medium, Hybrid-
Medium} (Qin et al.,2025)). We compare these architectures with our high-speed ViT+Jumbo variants
{Pico, Nano, Tiny, Small, Base}. Darcet et al. (Darcet et al.| 2024)) show ViT+Registers with R=16
performs best, which we confirm in the appendix Table [7|and use in these experiments. We show
ViT+Jumbo is robust to the choice of J; we use J=6 and study its effect in the appendix Table[12]

Test Sets. We test all models on the three most common ImageNet-1K test sets: ImageNet-Val
(Russakovsky et al., 2015), ImageNet-Real. (Beyer et al.| |2020), and ImageNet-v2 (Recht et al.|
2019). To further evaluate generalization we also test all models on ImageNet-HR (Fuller et al.|

ImageNet-RealL

ImageNet-HR

ImageNet-R

| | | |
90
°) +15.4%
~ 85
) e
Q . G
< 80
n
& 75 1
o
= 75
70 1 70

10 20 30 40
Throughput (K images/s)

10 20 30 40
Throughput (K images/s)

10 20 30 40
Throughput (K images/s)

Legend: % ViT+Jumbo (ours), ®ViT+Registers, ®BiXT, AMobileNetV4, ¢SHVIT, =EfficientViT

Figure 4: ViT+Jumbo achieves the Pareto frontier and is much simpler than specialized compute-
efficient architectures. Results are plotted for each model’s best learning rate. Throughput is measured
on an RTX 4090 GPU using PyTorch 2.6.0, torch.compile, and a 512 batch size.

2024), for its image diversity and high-quality annotations, ImageNet-R (Hendrycks et al.l [2021), for
its out-of-distribution images.

Results. As illustrated in Fig] Jumbo achieves the Pareto frontier on ImageNet-1K. Crucially,
Jumbo achieves these results while preserving the many advantages and simplicity of plain ViTs.
Even matching the specialized compute-efficient architectures makes a strong case for ViT+Jumbo.

ViT+Jumbo outperforms ViT+Registers by 13% at the nano scale and 4% at the tiny scale, where
such gains are significant. This confirms our first hypothesis that Jumbo’s gains should increase as
we decrease the patch width, i.e., from Small (384) to Tiny (192) to Nano (128) (Figs. |'1_E|, E[)

ViT+Jumbo is a clear choice if a researcher or practitioner requires high speed and out-of-the-box
ViT compatibility for SSL algorithms or multimodal processing. ViT+Registers is not as accurate
at high speed, while the specialized compute-efficient architectures do not support most SOTA
SSL algorithms or flexible processing across modalities. Remote sensing (Rolf et al.l [2024)) and
autonomous driving (Muhammad et al.| [2020) are two of many applications where this combination
of speed, SSL support, and multimodal processing is particularly valuable.

4.2 IMAGENET-21K EXPERIMENTS WITH VIT COMPARISONS

ImageNet-1K is a subset of the more challenging, original ImageNet (Deng et al.l [2009), now
referred to as ImageNet-21K. We use a common variant comprising 10,450 classes that includes
processing to make a more accessible benchmark (Ridnik et al.| [2021)). This dataset provides more
than 10x the number of classes and samples as ImageNet-1K, making it well suited to test our second
hypothesis—that is, gains due to Jumbo should increase with increasing task-output dimensionality.

Setup. We train models from scratch on ImageNet-21K. Since training models on ImageNet-21K is
expensive, we leverage a token dropping strategy to reduce costs. Specifically, we start training with
a 90% token drop rate and linearly decrease this value to 10%; this halves the total number of tokens
processed. |Dehghani et al.| (2024) demonstrate the effectiveness of this strategy, i.e., leveraging
“masking” with plain supervised training. Plain ViTs support masking with minimal code changes.
We train each model architecture once, for 50 epochs using a 3e—3 learning rate and a 1024 batch size
with the AdamW optimizer (Loshchilov] 2017) (see the Appendix [A3:T|for other hyperparameters).

Baselines. We choose ViT+Registers { Small, Base} to compare with our ViT+Jumbo {Small, Base}
sizes. This is a more narrow but valid comparison, as the plain ViT is the vision community’s
preferred architecture at these scales. For ViT+Registers, we use R=16; for ViT+Jumbo, we use J=6
for the Small model and J=3 for the Base model.

Results. ViT+Jumbo outperforms ViT+Registers by 3.1% and 1.2% at ViT-Small and ViT-Base
scales, respectively (see Fig. [Tb). Gains due to Jumbo increase when scaling from ImageNet-1K to
ImageNet-21K for a given model size, e.g., ViT-Small gains increase from 0.8% (Fig. to 3.1%.
Thus, these findings confirm our second hypothesis that gains due to Jumbo should increase with
increasing output dimensionality. Furthermore, for a given accuracy Jumbo is 1.9 faster (Fig. [Tb).

4.3 MASKED AUTOENCODING EXPERIMENTS

Setup. We pretrain Jumbo ViT-Base and ViT-Large models using masked autoencoding (MAE; (He
et al., [2022))) using the default settings. This tests Jumbo’s ability in a standard SSL framework. This
also tests Jumbo’s scalability to larger models (up to ViT-Large) and longer training schedules (up to
1600 epochs on ImageNet-1K). These experiments are expensive, so we leverage free TPU resources,
perform no hyperparameter tuning, and compare against plain ViT results obtained with the same
MAE implementation. After pretraining, we linear probe on ImageNet-1K to obtain accuracies.

Table 1: MAE Pretraining. Jumbo

significantly outperforms standard ViT. Architecture Speed Params Memory FLOPs Top-1 Acc.

Jumbo scales to these large MAE Kimgs/s M GB G 7

models and their long training sched- ViT-base 31 866 33 165 68.1
ules (1600 epochs for ViT-Base, 800 ViT-base+Jumbo 3.1 130.7 3.9 169 73.0
epochs for ViT-Large). After pretrain- ViT-large 1.0 3044 50 597 73.0

ing, we linearly probe to compute t0p- v jaroejumbo 1.0 3822 52 599 740
1 accuracy on ImageNet-1K.

Results. Our ViT-Base+Jumbo MAE outperforms the baseline by 4.9% on ImageNet-1K. ViT-
Base+Jumbo fies the ViT-Large MAE, while Jumbo is 3x faster with only 0.43 x the parameters. This
shows Jumbo can be applied to SSL by MAE to improve performance without further modification.
The role of masking in the MAE suggests that the wider Jumbo token stores more global information.
For this MAE, Jumbo is a more efficient way to scale model parameters than the wider ViT.

4.4 ROBUSTNESS AND TEST-TIME ADAPTATION EXPERIMENTS

Setup. We measure robustness to corruption with and without adaptation. We follow SAR (Niu et al.|
2023) exactly, swapping in ViT-S models with Registers or our Jumbo from Sec. [4.1] and measure
robustness to 15 corruptions at the highest severity from ImageNet-C (Hendrycks & Dietterichl [2019).

Table 2: Test-Time Adaptation (TTA). Jumbo improves plain-ViT robustness without TTA (avg.
13.6%) and with TTA (avg. 15.2%) on ImageNet-C. We follow SAR (Niu et al.}[2023) and test across
15 shifts at the highest severity. Jumbo is directly compatible with SOTA methods designed for ViTs,
for instant use without tuning, unlike highly-specialized architectures (MobileNet, SHViT, ...).

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
Registers 13.6 142 13.0 293 203 349 287 49.0 50.4 56.673.5 47.8 29.0 456 56.1 37.5
Jumbo 259 26.6 258 31.2 214 333 30.6 53.1 51.9 573752 494 30.5 47.5 57.1 41.1

Registers+SAR 389 39.2 415 482 487 56.5 321 62.0 594 68976.1 61.5 59.1 655 66.1 549
Jumbo+SAR 452 49.6 51.2 533 53.2 61.1 445 66.2 58.571.777.5 67.1 65.2 69.0 69.0 60.1

Results. Jumbo is both more accurate than Registers (+0.8% on IN-Val) and more robust than
Registers on corrupted data (+3.6% on IN-C). Test-time adaptation by SAR further increases the
robustness gain to +5.2%. In principle test-time adaptation can apply to any architecture, but in
practice methods specialize. SOTA methods such as SAR are designed for the plain ViT LayerNorm,
and not the BatchNorm of SHViT, MobileNetV4, and EfficientViT, so ViT compatibility is a plus.

4.5 TIME SERIES EXPERIMENTS

Jumbo can easily process different input shapes (beyond images) because it maintains the plain
transformer interface. We apply Jumbo to time series inputs. PatchTST (Nie et al.l 2023) is a SOTA

patch-based transformer for time series that we extend with registers (PatchTST+Registers) or Jumbo
(PatchTST+Jumbo).

Setup. We train models from scratch on @ 10 univariate time series datasets from the UCR archive
(Dau et al.,[2018)), and @ 10 multivariate time series datasets from the UEA archive (Bagnall et al.;
2018); both of which are commonly used benchmarks (Zerveas et al.} 2021} |Grover et al.||[2024f |Le
et al.||2024). For each dataset and model, we perform a hyperparameter sweep from the Cartesian
product of learning rate {3e—3, le—3, 3e—4, le—4}, and dropout {0.0, 0.1, 0.2}. More details are in
Appendix We report the best run and the average of all 12 runs per experiment in the appendix
Tables [13] &[14] To summarize these results, we compute the rank between models and then average
the ranks over the 10 univariate and 10 multivariate datasets.

Baselines. We compare PatchTST with our PatchTST+Jumbo method and our PatchTST+Registers
baseline. We experiment with 8 and 42 patches per sequence for all three models. Jumbo and registers
are both simple to adopt for PatchTST because they remain plain transformers.

Table 3: Time series rankings using PatchTST (Nie et al.,
2023)) with Registers or Jumbo (lower is better and the best PatchTST
is in bold). We rank over 10 univariate and 10 multivariate
datasets. “Best” is the best run of our 12-run hyperparame- Univar.
ter sweep and “Avg” is the average over the sweep. Jumbo
achieves the best ranking in all experiments. We use two Multivar.
patch sizes: 8/42 (results are formatted likewise).

PatchTST PatchTST
+Registers +Jumbo

Best 2.0/1.9 2.5/2.1 1.5/1.7
Avg 29123 21124 1.0/1.3

Best 2.1/20 2.1/1.9 1.6/1.7
Avg 27126 20124 1.3/1.0

Results. PatchTST+Jumbo outperforms strong PatchTST and PatchTST+Registers baselines (Tab. [3).
Jumbo gains the most with fewer patches and when considering overall results across hyperparameters.
These results establish that Jumbo can improve non-causal transformers beyond ViTs.

4.6 ABLATIONS

Table 4: Jumbo’s Shar?d FEN Archi Speed Params Memory FLOPs Top-1 Acc.
increases accuracy and is mem- Architecture Kimgs/sT M GB) G| %1

ory efficient. - Our Jumbo FFN' 7 ;o Ty 79 883 26 46 446
can be enlarged (J=10) for even jympo without layer sharing 7.7 555.6 4.1 4.6 44.95
higher performance, at relatively Jumbo without Jumbo FFN 8.4 458 22 44 4364
low cost. We report top-1 accuracy Jumbo with LoRA, rank=8 7.7 88.8 25 4.6 44.94
on ImageNet-21K. Jumbo J: 6—10 6.9 1799 34 5.5 45.62

Setup. We follow our ImageNet-21K training recipe and ablate Jumbo’s design at ViT-Small scale to
better understand the contributions of the architecture and its design choices.

Results. (Tab.) Not sharing the Jumbo FFN across layers slightly improves accuracy at this scale.
However, we can fully recover from the drop with sharing by adapting the Jumbo FFN parameters
with LoRAs (Hu et al.|2022): we still share the Jumbo FFN across layers but apply layer-specific
LoRAs to specialize efficiently. LoRAs recover accuracy at negligible cost in speed and memory.
Jumbo without Jumbo FFNs performs well enough (2.2% better than ViT+Registers) but worse than
Jumbo: the main difference between this ablation and ViT+Registers is that it concatenates all global
tokens as input to the classifier (rather than discarding registers). Yet, our best ViT-Small includes the
Jumbo FFN: with J=10 its shared FFN achieves 45.6% top-1 accuracy. This Jumbo model beats
ViT-Small+Registers by 4.1% and matches ViT-Base+Registers (0.1% difference) with higher speed
(2.4x faster) and less memory.

4.7 ANALYSIS: HOW TO SCALE EFFICIENCY AND CAPACITY

Is Jumbo more accurate just because it has more parameters? No. We take ViT-
B+Registers and increase its width 768—1024 to equalize the number of parameters with
our ViT-Base+Jumbo (Tab. rows 1 & 3). These models differ in accuracy by 0.1%,

Table 5: ViT-Base+Jumbo matches Speed Params Memory FLOPs Top-1 Acc.

a symmetrically wider ViT+Registers ~ Architecture Kimgs'stT M GBl Gl %1
with equal params; yet our Jumbo is Tree m o
1.7x faster. Jumbo also outperforms ,ho 3.1 1525 41 165 4695

other ways of adding global capacity, Reg. 2.9 939 35 182 4573
e.g., @ uses an FFEN for patches, and Registers D: 768—1024 1.8 1629 45 324 47.08
a separate FFN for CLS+Reg. tokens, viT-Small models

@® uses an FFN for patches+CLS, and Jumbo 7.9 883 2.6 46 4461

separate FFN for Reg. tokens. We re- Reg. 2024) 80 257 23 46 4148
+Re;

port top-1 accuracy on ImageNet-21K, ~ Alt. @: g 77399 23 46 4151
Alt. @: Reg. FFN 7.7 399 23 4.6 42.11

yet Jumbo is more efficient with 1.7x the throughput, 0.5x the FLOPs, and 0.9 the memory.
Our novel asymmetric-width design of the Jumbo token and FFN is crucial to its better efficiency.

Alternate ViT+Register designs. We experiment with two more architectures to investigate the role
of adding separate FFNs for different types of tokens (Tab. . Alternative @ has an FFN for all patch
tokens with a separate FFN for the CLS and registers. Alternative @ has an FEN for all patch tokens
and the CLS token with a separate FFN for the registers. Neither model gains much: the asymmetric
token width of Jumbo explains its success, and not the addition of more parameters alone.

Attention maps of split Jumbo tokens Attention maps of register tokens
W | , S5 1 o
& e Ry

Split Jumbo norms Patch norms Register norms Patch norms
10°
10°
. z 107
g 10 G
2 g
1072 107
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Lz norm L; norm L; norm Lz norm

Figure 5: Jumbo (left two subfigures) eliminates high-norm, outlier tokens in our measurements.
According to Darcet et al. (Darcet et al| [2024)), outlier tokens cause attention-map artifacts, and their
presence can be reduced by adding registers (right two subfigures). By inspection, Jumbo also learns
artifact-free attention maps, and split Jumbo tokens seem to specialize.

Does Jumbo also reduce high-norm tokens? Registers reduce high-norm, outlier tokens that cause
attention map artifacts (Darcet et al][2024). We test if Jumbo does the same. The ViT+Jumbo models
we train are in fact more effective at reducing outlier tokens than ViT+Registers (Fig. [5). We also
show attention maps in the Appendix [A.6 where we again see a similar effect.

5 DISCUSSION: EFFICIENCY, GENERALITY, AND CAPACITY

Limitations and Future Work. In this work, we do not evaluate Jumbo in vision-language (e.g.,

CLIP (Radford et al[2021b)) or language-only applications (e.g., BERT (Devlin et al| 2019)), which

is non-causal and could benefit from Jumbo in theory). We save these applications for future work.

Conclusion. Jumbo is highly efficient, simple, and general: our Jumbo ViTs achieve SOTA accuracy-
speed trade-offs by a targeted increase in the global computation and parameter capacity of any
plain ViT. We show that upgrading a plain ViT with Jumbo improves accuracy at the same speed
or maintains accuracy at faster speeds for supervised image classification, self-supervised learning,
time series modeling, and test-time adaptation. Jumbo is the first attention-only and non-hierarchical
architecture to outperform specialized compute-efficient architectures like EfficientViT
[2023). To do so Jumbo increases width asymmetrically, across tokens, and not across layers (in
contrast to existing hierarchical models). While increasing model capacity can increase accuracy, it is
critical to add capacity in the right places to achieve high efficiency and maintain model flexibility as
we show with Jumbo.

REFERENCES

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lucic, and Cordelia Schmid.
ViViT: A Video Vision Transformer . In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), 2021. doi: 10.1109/ICCV48922.2021.00676.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Fattern Recognition, pp. 15619-15629, 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. URL
https://arxiv.org/abs/1811.00075k

Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aéron van den Oord. Are
we done with imagenet? arXiv preprint arXiv:2006.07159, 2020.

Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, and Alexander Kolesnikov.
Knowledge distillation: A good teacher is patient and consistent. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10925-10934, 2022.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and
Judy Hoffman. Token merging: Your vit but faster. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL |https://openreview.net/forum?id=
JroZRaRw7/Eul

Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. Efficientvit: Lightweight multi-scale
attention for high-resolution dense prediction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17302-17313, 2023.

Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song Wen, Chul-Ho Lee, and S-H Gary Chan.
Run, don’t walk: chasing higher flops for faster neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 12021-12031, 2023.

Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Xiaoyi Dong, Lu Yuan, and Zicheng
Liu. Mobile-former: Bridging mobilenet and transformer. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 5270-5279, 2022.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 3075-3084, 2019.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344-16359, 2022.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=2dnO3LLiJ1.

Hoang Anh Dau, Anthony J. Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn J. Keogh. The UCR time series archive.
arXiv preprint arXiv:1810.07758, 2018.

Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim M Alabdulmohsin, et al. Patch
n’pack: Navit, a vision transformer for any aspect ratio and resolution. Advances in Neural
Information Processing Systems, 36, 2024.

10

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1811.00075
https://openreview.net/forum?id=JroZRaRw7Eu
https://openreview.net/forum?id=JroZRaRw7Eu
https://openreview.net/forum?id=2dnO3LLiJ1

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019.

Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, Zijia Chen, Ameya Sunil Mahabaleshwarkar,
Shih-Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen, Yoshi Suhara, Yingyan Lin, Jan Kautz,
and Pavlo Molchanov. Hymba: A hybrid-head architecture for small language models, 2024. URL
https://arxiv.org/abs/2411.13676.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreviewl
net/forum?id=YicbFdNTTyl.

Yuxin Fang, Shusheng Yang, Shijie Wang, Yixiao Ge, Ying Shan, and Xinggang Wang. Unleashing
vanilla vision transformer with masked image modeling for object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 6244—-6253, 2023.

Letian Fu, Long Lian, Renhao Wang, Baifeng Shi, Xudong Wang, Adam Yala, Trevor Darrell,
Alexei A. Efros, and Ken Goldberg. Rethinking patch dependence for masked autoencoders. arXiv
preprint arXiv:2401.14391, 2024.

Anthony Fuller, Daniel Kyrollos, Yousef Yassin, and James R Green. Lookhere: Vision transformers
with directed attention generalize and extrapolate. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
1d=07D0OGbZevyP.

Anthony Fuller, Yousef Yassin, Junfeng Wen, Daniel G. Kyrollos, Tarek Ibrahim, James R. Green,
and Evan Shelhamer. Lookwhere? efficient visual recognition by learning where to look and what
to see from self-supervision, 2025. URL https://arxiv.org/abs/2505.18051.

Quentin Garrido, Mahmoud Assran, Nicolas Ballas, Adrien Bardes, Laurent Najman, and Yann
LeCun. Learning and leveraging world models in visual representation learning. arXiv preprint
arXiv:2403.00504, 2024.

Shivam Grover, Amin Jalali, and Ali Etemad. Segment, shuffle, and stitch: A simple layer for improv-
ing time-series representations. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=zmlLcgRpHml

Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. Ghostnet: More
features from cheap operations. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 1580-1589, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000-16009, 2022.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Representations,
2019.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. arXiv preprint arXiv:1606.08415, 2016.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340-8349, 2021.

11

https://arxiv.org/abs/2411.13676
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=o7DOGbZeyP
https://openreview.net/forum?id=o7DOGbZeyP
https://arxiv.org/abs/2505.18051
https://openreview.net/forum?id=zm1LcgRpHm

Markus Hiller, Krista A. Ehinger, and Tom Drummond. Perceiving longer sequences with bi-
directional cross-attention transformers. In Advances in Neural Information Processing Systems
(NeurIPS), volume 37, pp. 94097-94129, 2024.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 1314-1324, 2019.

Andrew G Howard. Mobilenets: Efficient convolutional neural networks for mobile vision applica-
tions. arXiv preprint arXiv:1704.04861, 2017.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017. URL https://arxiv.org/abs/1704.04861,

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
1d=nZeVKeeFYfO.

Yang Hu, Xiao Wang, Lirong Wu, Huatian Zhang, Stan Z Li, Sheng Wang, and Tianlong Chen. Fm-ts:
Flow matching for time series generation. arXiv preprint arXiv:2411.07506, 2024.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015. URL https://arxiv.org/abs/1502.03167.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine

learning, pp. 4651-4664. PMLR, 2021.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Xuan-May Le, Ling Luo, Uwe Aickelin, and Minh-Tuan Tran. Shapeformer: Shapelet transformer
for multivariate time series classification. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD 24, pp. 1484—-1494, New York, NY, USA,
2024. Association for Computing Machinery. doi: 10.1145/3637528.3671862. URL https:
//doi.org/10.1145/3637528.3671862

Matthew Leigh, Samuel Klein, Frangois Charton, Tobias Golling, Lukas Heinrich, Michael Kagan,
Inés Ochoa, and Margarita Osadchy. Is tokenization needed for masked particle modelling? arXiv
preprint arXiv:2409.12589, 2024.

Vincent Leroy, Jerome Revaud, Thomas Lucas, and Philippe Weinzaepfel. Win-win: Training
high-resolution vision transformers from two windows. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL |https://openreview.net/forum?id=
N23A4ybMJTl

Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. Advances in Neural
Information Processing Systems, 35:12934-12949, 2022.

Yanyu Li, Ju Hu, Yang Wen, Georgios Evangelidis, Kamyar Salahi, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. Rethinking vision transformers for mobilenet size and speed. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 16889-16900, 2023.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
for open-set object detection. In European Conference on Computer Vision, pp. 38-55. Springer,
2025.

12

https://arxiv.org/abs/1704.04861
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/1502.03167
https://doi.org/10.1145/3637528.3671862
https://doi.org/10.1145/3637528.3671862
https://openreview.net/forum?id=N23A4ybMJr
https://openreview.net/forum?id=N23A4ybMJr

Yue Liu, Christos Matsoukas, Fredrik Strand, Hossein Azizpour, and Kevin Smith. Patchdropout:
Economizing vision transformers using patch dropout. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 3953-3962, 2023.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976-11986, 2022.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Sachin Mehta and Mohammad Rastegari. Mobilevit: light-weight, general-purpose, and mobile-
friendly vision transformer. arXiv preprint arXiv:2110.02178, 2021.

Sachin Mehta and Mohammad Rastegari. Separable self-attention for mobile vision transformers.
arXiv preprint arXiv:2206.02680, 2022.

Kaouther Messaoud, Matthieu Cord, and Alexandre Alahi. Towards generalizable trajectory prediction
using dual-level representation learning and adaptive prompting. arXiv preprint arXiv:2501.04815,
2025.

Khan Muhammad, Amin Ullah, Jaime Lloret, Javier Del Ser, and Victor Hugo C de Albuquerque.
Deep learning for safe autonomous driving: Current challenges and future directions. [EEE
Transactions on Intelligent Transportation Systems, 22(7):4316-4336, 2020.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui
Tan. Towards stable test-time adaptation in dynamic wild world. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=g2YrakF 75Tl

Soroush Omranpour, Guillaume Rabusseau, and Reihaneh Rabbany. Higher order transform-
ers: Enhancing stock movement prediction on multimodal time-series data. arXiv preprint
arXiv:2412.10540, 2024.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
dov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran,
Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick
Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features with-
out supervision. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=a68SUt 6zFtl Featured Certification.

Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios
Tzimiropoulos, and Brais Martinez. Edgevits: Competing light-weight cnns on mobile devices
with vision transformers. In European Conference on Computer Vision, pp. 294-311. Springer,
2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

Danfeng Qin, Chas Leichner, Manolis Delakis, Marco Fornoni, Shixin Luo, Fan Yang, Weijun Wang,
Colby Banbury, Chengxi Ye, Berkin Akin, et al. Mobilenetv4: Universal models for the mobile
ecosystem. In European Conference on Computer Vision, pp. 78-96. Springer, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021a. URL https:
//arxiv.org/abs/2103.00020.

13

https://openreview.net/forum?id=g2YraF75Tj
https://openreview.net/forum?id=g2YraF75Tj
https://openreview.net/forum?id=a68SUt6zFt
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.

8748-8763. PMLR, 2021b.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389-5400. PMLR,
2019.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 1),2021. URL https://openreview.net/forum?id=2k j_|
VcZb6ol.

Esther Rolf, Konstantin Klemmer, Caleb Robinson, and Hannah Kerner. Position: Mission critical —
satellite data is a distinct modality in machine learning. In Proceedings of the 41st International
Conference on Machine Learning, pp. 42691-42706, 2024.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211-252, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510—4520, 2018.

Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit,
and Lucas Beyer. How to train your vit? data, augmentation, and regularization in vision
transformers. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL
https://openreview.net/forum?id=4nPswr1KcP.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 2820-2828, 2019.

Hugo Thimonier, José Lucas De Melo Costa, Fabrice Popineau, Arpad Rimmel, and Bich-Lién
Doan. T-jepa: Augmentation-free self-supervised learning for tabular data. arXiv preprint
arXiv:2410.05016, 2024.

Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In European conference
on computer vision, pp. 516-533. Springer, 2022.

Lorenzo Vaquero, Yihong Xu, Xavier Alameda-Pineda, Victor M Brea, and Manuel Mucientes. Lost
and found: Overcoming detector failures in online multi-object tracking. In European Conference
on Computer Vision, pp. 448—466. Springer, 2024.

Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. Mobileone:
An improved one millisecond mobile backbone. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 7907-7917, 2023a.

Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. Fastvit: A
fast hybrid vision transformer using structural reparameterization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023b.

Shashanka Venkataramanan, Valentinos Pariza, Mohammadreza Salehi, Lukas Knobel, Spyros
Gidaris, Elias Ramzi, Andrei Bursuc, and Yuki M. Asano. Franca: Nested matryoshka clustering
for scalable visual representation learning, 2025. URL https://arxiv.org/abs/2507,
14137.

Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r:

Geometric 3d vision made easy. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 20697-20709, June 2024.

14

https://openreview.net/forum?id=Zkj_VcZ6ol
https://openreview.net/forum?id=Zkj_VcZ6ol
https://openreview.net/forum?id=4nPswr1KcP
https://arxiv.org/abs/2507.14137
https://arxiv.org/abs/2507.14137

Yibing Wei, Abhinav Gupta, and Pedro Morgado. Towards latent masked image modeling for
self-supervised visual representation learning. In European Conference on Computer Vision, pp.
1-17. Springer, 2025.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch—image—models, 2019.

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16133-16142, 2023.

Seokju Yun and Youngmin Ro. Shvit: Single-head vision transformer with memory efficient macro
design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5756-5767, 2024.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff.
A transformer-based framework for multivariate time series representation learning. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery &; Data Mining, KDD ’21, pp.
2114-2124, 2021.

Bowen Zhang, Zhi Tian, Quan Tang, Xiangxiang Chu, Xiaolin Wei, Chunhua Shen, et al. Segvit:
Semantic segmentation with plain vision transformers. Advances in Neural Information Processing
Systems, 35:4971-4982, 2022.

15

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

A APPENDIX

A.1 IMPACT STATEMENT

This work presents new designs and empirical results for deep network architectures for more accurate
and computationally efficient modeling applied to visual recognition and time series processing. This
general topic does not have more specific societal consequences aside from those inherited, good or
bad, from the adoption of machine learning.

A.2 COMPUTE-EFFICIENT ARCHITECTURE DESCRIPTIONS

@ EfficientViT |Cai et al.| (2023) is a hierarchical architecture with four stages and one head. Stages 1
and 2 consist of MBConv layers|Sandler et al.| (2018). Stages 3 and 4 consist of MBConv sublayers and
their novel EfficientViT sublayer, consisting of an efficient attention module and an FFN+DWConv
module Howard| (2017). Their attention module creates queries, keys, and values of three scales via
three DWConvs, and then each set of queries, keys, and values undergoes efficient linear attention.
Finally, the head receives outputs from Stages 2, 3, and 4, and applies a final MBConv. EfficientViT
variants differ in stage depths and widths, as well as head width.

® SHVIT |Yun & Ro| (2024) is a hierarchical architecture with three stages. Stage 1 consists of a
DWConv+BatchNorm sublayer and an FFN sublayer. Stages 2 and 3 incorporate their novel single-
headed self-attention (SHSA) sublayer between the stage 1 sublayers. SHSA consists of performing
single-headed self-attention on a fraction of dimensions (1/4.67 ratio); the other dimensions pass
straight through, further reducing cost. Both FFN and SHSA sublayers also replace linear layers with
DWConv. SHVIT variants differ in stage depths and widths.

© MobileNetV4|Qin et al.|(2025) variants use their FusedIB, ExtraDW, and Mobile MQA (multi-
query attention) modules along with MBConv, ConvNext-Like [Liu et al.|(2022)), and FFN modules.
Variants differ in stage depths and widths, the number of stages, and stage architectures built with a
combination of the listed modules.

A.3 EXPERIMENTAL DETAILS

A.3.1 IMAGENET-1K AND -21K HYPERPARAMETERS

We pick these recipes based on findings in the literature—such asTouvron et al.[(2022), [Fuller et al.
(2024), Beyer et al.| (2022), Dehghani et al.| (2024), and |Steiner et al.|(2022)—and past experience
indicating that these recipes would result in strong models.

ImageNet-1K training recipe: 128 x 128 px images, 400 epochs, 1024 batch
size, PyTorch’s AdamW optimizer with a 0.05 weight decay, 1.0 clip grad norm,
deit3-base-patchl6-224.fb-in22k-ft-inlk teacher Touvron et al| (2022) given
224 x 224 px images using Wightman| (2019))’s implementation, KL. divergence loss between
student and teacher logits [Beyer et al.| (2022), linear learning rate warmup for 10% of steps to
{1e—3, 3e—3} and cooldown using a cosine decay schedule to le—5, mixup o = 0.8, cutmix o = 1,
and 3-Augment data augmentation Touvron et al.|(2022). Then we continue training at 224 x 224
px images, 20 epochs, 512 batch size, PyTorch’s AdamW optimizer with a 0.1 weight decay, 1.0
clip grad norm, deit3-large-patchl6-224.fb-in22k-ft-inlk teacher Touvron et al.
(2022) given 224 x 224 px images using ' Wightman|(2019)’s implementation, KL divergence loss
between student and teacher logits [Beyer et al.| (2022), linear learning rate warmup for 25% of steps
to be—5 and cooldown using a cosine decay schedule to 1e—5, mixup a = 0.8, cutmix o = 1, and
AutoAugment (“rand-m9-mstd0.5-inc1”) data augmentation |Cubuk et al.| (2018)) following DEIT
III’s Touvron et al.| (2022) high-res finetuning recipe.

ImageNet-21K training recipe: 224 x 224 px images, 50 epochs, 1024 batch size, PyTorch’s
AdamW optimizer with a 0.02 weight decay, 1.0 clip grad norm, cross-entropy loss, linear learning
rate warmup for 10% of steps to 3e—3 and cooldown using a cosine decay schedule to le—5, mixup
a = 0.8, cutmix a = 0, and 3-Augment data augmentation [Touvron et al.| (2022). To speed up
training, we also employ a token dropping strategy starting at 90%, linearly decreasing to 10%.

16

A.3.2 TIME SERIES EXPERIMENTS

We adopt the PatchTST Nie et al.|(2023) architecture for our time series experiments. PatchTST is a
patch-based transformer architecture for time series processing. The method splits a univariate time
series into patches processed as they are in ViTs for classification, aside from position encoding (2D
vs. 1D). For multivariate series, each channel is processed independently using the shared transformer
backbone, with the final-layer CLS tokens from each channel concatenated before classification. We
extend this shared backbone with registers (PatchTST+Registers) and Jumbo (PatchTST+Jumbo).

We closely follow the PatchTST training recipe for our experiments, making minor adjustments
based on prior experience to enhance performance. This method remains competitive with recent
transformer-based benchmarks for time series classification [Zerveas et al.| (2021); |Grover et al.
(2024); ILe et al.|(2024). Apart from variations in time series length, all experiments use the same
hyperparameters and methodology.

PatchTST Hyperparameters: The model comprises 3 encoder layers, each with 16 attention heads
and a token width of D = 128. The transformer FFN includes two linear layers with a GELU
activation |Hendrycks & Gimpel (2016)); the first expands the hidden dimension to 256, while the
second projects it back to 128. For PatchTST+Jumbo, we use J = 4. For PatchTST+Registers, R is
calculated according to Appendix [A.3.3]

Time Series training recipe: We perform a hyperparameter sweep over the Cartesian product of
learning rates {3e—3, le—3, 3e—4, le—4} and dropout rates {0.0, 0.1, 0.2}. Each configuration
uses either 8 or 42 equally sized patches of maximum possible length, with end-padding applied as
needed. The stride length is set to half the patch length. Unless stated otherwise, all experiments
follow the same setup: 100 epochs, 256 batch size, PyTorch’s AdamW optimizer with a 0.02
weight decay, cross-entropy loss, and a linear learning rate warmup for the first 10% of steps,
followed by a cooldown using cosine decay to 1le—8. For large datasets, we reduce the number of
epochs to ensure efficient processing within a reasonable time frame; specifically, we train datasets
{Sleep, Tiselac, FaceDetection} for 20 epochs.

Each dataset from the UEA and UCR archives includes a prescribed validation set. We create a new
50/50 test/validation split from each of these original validation sets, selecting the best run based on
validation performance. All reported results are from the fest set.

The 20 datasets were selected in decreasing order of their number of training examples; datasets with
either (i) fewer than 42 total timesteps or (ii) significant data preparation issues were excluded.

A.3.3 FLOP DETAILS

To ensure a fair comparison, we configure PatchTST+Registers and PatchTST+Jumbo to have
approximately equal per-layer FLOPs by selecting the number of registers R in the former and the
Jumbo multiplier J in the latter accordingly. Additionally, we apply average pooling to the J split
segments of the Jumbo token to prevent a significant increase in the number of learnable parameters
of the classification head. This pooling produces a token of width D per channel before concatenation,
effectively serving the same role as a CLS token. The detailed per-layer FLOP calculation is provided
by the proposition below.

Proposition 1. Let P be the total number of local patch tokens, R the number of register tokens, D
the width, and J the Jumbo multiplier. Given an FFN hidden dimension of 2D, and otherwise fixed
parameters, a Register architecture with R registers has the same per-layer FLOP count as a Jumbo
architecture with multiplier J if and only if

R=—-(2D+P)+ /(2D + P)2+ (1+2D)J2 +2(D + P)J

Proof. Let F denote the FLOP count. Given a sequence length of n tokens, each of width d, the
FLOP contributions from the MHSA and FFN sublayers in a single transformer layer with a FFN
hidden dimension of [d are given by

Fvusa = 4nd? + 2n2d and Fren = 2nd? = 4nd?

where we fix [= 2. For the Register architecture, n = P + R and d = D for both the MHSA and
the FEN contributions. For the Jumbo architecture, n = P + J and d = D for MHSA. The FFN

17

contribution is split; local patch tokens contribute with n = P,d = D while the dedicated Jumbo
FFN hasn = 1,d = JD. From summing the contributions, it follows that

Freg = 4(P + R)D* + 2(P + R)*D + 4(P + R)D?
Flumbo = 4(P + J)D* + 2(P 4 J)2D + 4PD? + 4J° D?

Equating Fre; = Flumbo and solving for R gives the stated result. O]
q g g g g

In our time series experiments, we compute R, rounding to the nearest integer, to match the per-layer
FLOP count of a Jumbo architecture with multiplier J as closely as possible.

18

A.4 DETAILED IMAGENET-1K RESULTS

Table 6: All final results obtained on 224 x 224 px images (%).

Throughput ImageNet-Val ImageNet-RealL ImageNet-v2 ImageNet-R ImageNet-HR

Architecture Size 224% px Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
9 J=6 437K 69.0 885 766 923 560 79.0 235 371 779 926

ViT-+Jumbo D=1 8, J=6 31.3K 740 915 813 947 614 834 274 426 832 950
D=192, J=6 204K 784 940 848 963 66.2 87.0 31.7 473 86.8 96.2

D=384, J=6 7.6K 827 964 88.0 978 724 90.6 390 556 909 983

D=128, R=16 255K 61.0 84.1 689 889 491 741 187 324 69.7 889
ViT+Registers D=192, R=16 16.7K 745 923 823 954 625 847 282 435 837 956
D=384, R=16 6.6K 819 960 874 9777 714 902 38.0 538 90.0 98.0

conv-small 33.7K 65.6 862 733 907 525 755 223 375 757 913
MobileNetV4 conv-medium 11.2K 749 926 824 955 63.1 848 294 459 847 958
hybrid-medium 8.8K 78.1 943 850 967 670 875 33.0 494 872 96.8

S1 42.1K 679 882 757 922 547 782 231 380 77.6 927

SHViT S2 345K 71.0 90.0 78.6 936 584 805 256 41.1 809 939
S3 237K 743 920 81.6 950 61.8 835 283 439 840 954

EfficientViT BO 25.2K 663 865 739 907 536 763 222 367 758 910
B1 9.8K 769 935 837 962 645 859 313 472 858 964

Table 7: ViT+Registers results, obtained on 128 x 128 px images (%).

Patch Num. Learning Throughput ImageNet-Val ImageNet-Real. ImageNet-v2 ImageNet-R ImageNet-HR
Width Registers Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

128 16 3e—3 107.0K 53.6 785 60.8 83.6 424 678 159 286 619 834
16 le—3 ’ 519 768 59.0 81.8 40.8 654 1377 249 60.5 826
8 3e—3 65.7K 685 888 76.1 92,6 557 788 249 394 778 922
192 16 3e—3 59 9K 68.8 889 766 926 559 794 248 389 785 925
16 le—3 ’ 66.1 872 740 912 542 770 229 362 754 0916
8 3e—3 24.6K 77.8 939 843 962 658 863 333 486 86.8 965
384 16 3e—3 21.8K 78.1 940 845 963 66.1 86.6 333 486 86.6 965
16 le—3 ’ 782 941 845 963 664 866 335 484 872 96.6

Table 8: ViT+Jumbo results, obtained on 128 x 128 px images (%).

Patch Learning Throughput ImageNet-Val ImageNet-Real. ImageNet-v2 ImageNet-R ImageNet-HR
Width Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

9 3e—3 136.0K 624 837 696 8.1 493 729 20.1 335 714 89.1
le—3 ' 60.8 829 68.0 873 483 718 189 316 703 876
128 3e—3 103.1K 67.7 875 750 912 543 776 241 375 76.6 92.1
le—3 ' 684 879 756 91,6 552 780 238 376 77.0 921
192 3e—3 573K 733 912 802 941 60.5 82.1 28.0 422 827 94.6
le—3 ’ 73,5 913 803 941 60.5 81.8 27.8 422 828 944
384 3e—3 20.4K 793 944 853 965 673 87.0 343 495 883 968
le—3 ’ 793 945 851 96.6 667 867 334 484 877 96.6

19

Table 9: MobileNetV4 results, obtained on 128 x 128 px images (%).

Learning Throughput ImageNet-Val ImageNet-Real. ImageNet-v2 ImageNet-R ImageNet-HR

Size Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
conv-small 3e—3 142.7K 62.1 836 692 881 49.1 728 204 343 71.8 894
le—3 ’ 60.0 820 672 8.7 476 714 189 322 69.8 87.7
conv-medium 3e—3 538K 733 915 805 946 606 829 277 428 832 953
le—3 ' 722 907 794 940 595 81.7 27.0 420 820 94.6
hybrid-medium 3e—3 435K 749 924 818 953 624 840 295 448 844 955
Y le—3 ’ 752 925 82.0 953 63.0 845 29.1 445 842 954
Table 10: SHVIT results, obtained on 128 x 128 px images (%).
Size Learning Throughput ImageNet-Val ImageNet-Real. ImageNet-v2 ImageNet-R ImageNet-HR
Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
s1 3e—3 81.0K 635 849 709 8.1 508 745 222 357 737 90.0
le—3 ’ 635 851 710 8.3 509 744 213 347 729 905
S 3e—3 76.1K 66.6 87.0 739 90.8 540 76.6 239 380 76.1 0917
le—3 ’ 66.7 87.0 738 90.8 537 768 240 378 76.7 92.0
$3 3e—3 73.8K 70.5 898 777 931 581 804 266 41.0 804 938
le—3 ’ 712 90.0 783 933 586 80.7 267 40.7 80.7 93.9

Table 11: EfficientViT results, obtained on 128 x 128 px images (%).

Learning Throughput ImageNet-Val ImageNet-RealL ImageNet-v2 ImageNet-R ImageNet-HR

Size Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
BO 3e—3 98.6K 59.5 819 668 867 468 703 186 320 693 87.6
le—3 ’ 60.8 826 68.0 872 483 716 193 326 704 877
Bl 3e—3 387K 71.8 90.7 792 940 59.7 81.8 274 422 815 944
le—3 ’ 728 91.0 79.8 942 604 819 27.1 423 825 948

Table 12: ViT+Jumbo ablation results, obtained on 128 x 128 px images (%).

Patch Jumbo Inner FEN Throughput Throughput ImageNet-Val ImageNet-Real. ImageNet-v2 ImageNet-HR ImageNet-R
Width Multiplier Multiplier 1282 px 224% px Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

’ 2 71.6K 21.6K 700 896 775 931 573 800 26.1 409 793 932

4 69.6K 21.5K 704 896 778 931 573 798 255 396 79.7 933

1 69.6K 21.3K 715 904 788 937 592 813 269 417 80.8 937

192 4 2 68.1K 21.2K 70.6 896 77.6 930 5777 798 259 403 804 935
4 64.9K 20.8K 722 906 792 936 593 8l.1 266 412 81.8 94.1

1 65.3K 209K 72.1 905 79.2 937 589 81.1 264 41.1 80.8 942

6 2 63.5K 20.6K 71.8 902 787 933 582 806 258 398 80.7 93.6

4 56.5K 19.9K 73.0 90.7 79.6 937 594 812 268 413 823 939

’ 2 27.2K 8. 7K 770 935 836 960 646 858 319 479 858 964

4 26.1K 8.6K 78.1 940 844 963 659 86.1 328 487 86.1 964

1 26.1K 8.6K 773 936 837 960 649 858 321 478 865 96.2

384 4 2 245K 8.5K 7719 939 84.0 963 657 859 327 486 86.7 96.2
4 23.6K 8.3K 779 938 84.0 962 657 858 324 480 862 96.2

1 239K 8.4K 776 936 84.0 96.1 658 858 321 479 86.7 96.2

6 2 22.9K 8.2K 778 936 838 960 650 853 322 475 86.6 96.0

4 19.5K 7.8K 783 938 842 961 66.1 86.0 329 486 87.0 96.3

20

A.5 DETAILED TIMESERIES RESULTS

Table 13: Univariate time series classification results (%). “Best” refers to the best run of our 12-run
hyperparameter sweep and “Avg” refers to the average over the sweep.

bt/ PUCHTST/S PachTST/S | - PaichTST/A2 PatchTST/42
+Registers +Jumbo +Registers +Jumbo

Steep Best 70.9 70.7 733 705 70.6 703
Avg 615 67.7 68.3 672 67.1 67.6
InsectSound Best 82.8 83.3 83.7 85.8 84.4 85.6
Avg 767 76.0 78.7 787 78.7 79.7
EruitElies Best 922 90.9 922 9522 95.0 95.1
Avg 884 88.4 89.4 93.1 92.9 93.9
. Best 943 93.8 95.1 96.7 97.0 9.1
RightWhaleCalls = /0 9533 935 942 94.0 94.8 95.1
. Best 98.0 97.7 98.1 99.6 99.8 99.8
FaultDetectionA /0 9476 9522 9722 99.2 99.2 99.5
Electricbevices | Best 890 88.8 90.1 92.4 92.4 925
Avg 816 83.2 84.0 85.1 85.2 88.1
Crop Best 80.9 81.2 82.0 81.2 80.6 82.2
Avg 69.4 70.9 72.0 68.7 68.3 68.7
FordB Best 98.8 973 97.7 97.7 96.5 96.5
Avg 954 96.0 96.6 95.7 94.9 94.8
FordA Best 973 98.0 97.7 97.1 97.1 975
Avg 961 96.6 972 95.5 95.7 96.0
MelbournePedessian BEt 921 91.5 91.0 90.4 91.0 93.1
Avg 818 82.8 83.9 83.5 83.8 84.9

Table 14: Multivariate time series classification results (%). “Best” refers to the best run of our 12-run
hyperparameter sweep and “Avg” refers to the average over the sweep.

PatchTST/8 PatchTST/8 PatchTST/42 PatchTST/42
PatchTST/8 +Registers +Jumbo PatchTST/42 +Registers +Jumbo

Tiselac Best 96.6 96.9 97.2 96.4 96.4 96.7
Avg 86.9 87.8 90.1 84.7 85.0 87.9
NP . Best 96.0 96.0 96.5 98.0 97.6 97.6
WalkingSittingStanding Ave 917 89.8 935 93.9 93.9 94.5
SpokenArabicDigits Best 99.9 99.7 99.9 99.7 99.9 99.9
Avg 99.5 99.6 99.6 99.6 99.5 99.7
FaceDetection Best 87.8 88.1 87.5 86.8 86.6 84.8
Avg 78.9 80.9 80.0 77.4 77.4 78.8
PhonemeSpectra Best 56.3 57.1 59.1 57.6 60.3 58.9
Avg 38.2 38.7 46.5 42.9 44.5 47.7
LSST Best 78.7 79.5 79.9 74.6 75.7 79.9
Avg 69.3 69.4 71.2 61.4 61.4 67.3
. Best 92.7 88.5 87.5 94.8 99.0 94.8
UWaveGestureLibrary Ave 768 79.9 83.4 81.3 835 85.4
CharacterTrajectories Best 99.0 98.0 99.6 98.7 99.3 98.4
Avg 93.6 94.2 96.6 96.6 95.2 97.0
AsphaltPavementTypeCoordinates if/?gt ;%; ;;; g;(l) g?; gg? 22;
Motorlmagery Best 87.5 83.3 77.1 79.2 66.7 87.5
Avg 84.9 83.3 83.2 73.6 74.0 81.9

21

A.6 ATTENTION MAPS

|

E...... E...-.
(a) Attention maps of the Jumbo token split into 6 (b) Attention maps of the CLS and the first five register

smaller global tokens. Like ViT+Registers, ViT+Jumbo tokens.
learns relatively artifact-free attention maps (as com-

pared with the attention maps in (2024)).

]

22

	Introduction: Architecture, Accuracy, and Efficiency
	Background and Related Work: Generalists and Specialists
	Vision Transformers: Simple, Flexible, but not yet Fast
	Compute-efficient Architectures: Fast, but not Simple nor Flexible

	Method: A Jumbo token for a Compute-Efficient Plain ViT
	Design Motivation and Intuition
	Design Specifics for Token-Width Asymmetry

	Experiments: Accuracy, Compute Efficiency, and Generality
	ImageNet-1K Experiments with Compute-Efficient Baselines
	ImageNet-21K Experiments with ViT Comparisons
	Masked Autoencoding Experiments
	Robustness and Test-Time Adaptation Experiments
	Time Series Experiments
	Ablations
	Analysis: How to Scale Efficiency and Capacity

	Discussion: Efficiency, Generality, and Capacity
	Appendix
	Impact Statement
	Compute-efficient Architecture Descriptions
	Experimental Details
	ImageNet-1K and -21K Hyperparameters
	Time Series Experiments
	FLOP Details

	Detailed ImageNet-1K Results
	Detailed Timeseries Results
	Attention Maps

