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ABSTRACT

ViTs are general and accurate, and address many tasks, but ViTs are slow, and
are not always practical when efficiency is key. Existing methods for faster ViTs
design hybrid non-ViT architectures, losing generality, or shrink their tokens,
sacrificing accuracy. While many non-ViT architectures are both fast and accurate,
they cannot flexibly process other input shapes, pre-train by SOTA self-supervised
learning, reduce computation by dropping tokens, and more like ViTs can. We
make ViTs faster by reducing patch token width while increasing global token
width by adding a new Jumbo token. Our wider Jumbo token is processed by its
own wider FFN to increase model capacity. Yet our Jumbo FFN is efficient: it
processes a single token, for speed, and its parameters are shared across all layers,
for memory. Crucially, our Jumbo is attention-only and non-hierarchical, like a
plain ViT, so it is simple, scalable, flexible, and compatible with ViT methods new
and old. Jumbo improves over ViT baselines with Registers from Nano to Large
scales while maintaining speed/throughput on ImageNet-1K (↑0.1−13%). Jumbo
also improves MAE pre-training (↑4.9% linear probing on ImageNet-1K), test-time
adaptation (↑5.2% on ImageNet-C), and time series modeling. Our Jumbo models
even achieve better speed-accuracy trade-offs than specialized non-ViT compute-
efficient models, while maintaining plain-ViT compatibility for practicality.

1 INTRODUCTION: ARCHITECTURE, ACCURACY, AND EFFICIENCY

For most model sizes, the vision transformer (ViT; Dosovitskiy et al. (2021)) is the go-to architecture
in computer vision—powering foundation models like DINOv2 (Oquab et al., 2024), language-
aligned models like CLIP (Radford et al., 2021a), segmentation models like SAM (Kirillov et al.,
2023), 3D vision models like DUST3R (Wang et al., 2024), and diffusion models like DiT (Peebles
& Xie, 2022). These are all “plain” ViTs, which are crucially attention-only and non-hierarchical.

At the smallest scales—offering the highest speeds/throughputs—plain ViTs are not competitive with
highly specialized architectures (Yun & Ro, 2024). We attribute the worse accuracy-speed of plain
ViTs to their width (number of channels). Existing work scales width equally across all tokens and
layers so higher speed requires lower width: ViT-Base(768)→ViT-Small(384)→ViT-Tiny(192).

We scale width differently across tokens and equally across layers. Our architecture adds a Jumbo
token, which replaces the conventional CLS token, that is J× wider than the patch tokens, with its
own wider feed-forward network (FFN), to effectively and efficiently boost model capacity. For
self-attention, the Jumbo token is split into J× as many tokens/heads, but the Jumbo FFN is only
applied to the one (merged) token to reduce time and shared across layers to reduce memory. Jumbo
keeps the defining traits of a plain ViT—attention-only and non-hierarchical—so Jumbo applies
anywhere a plain ViT does but at higher speed.

The simplicity of ViTs is due to their attention-only and non-hierarchical architecture. Multiple
uses of ViTs rely on this architectural “interface” for their computation and function. For instance,
this interface enables efficient sparse computation through masking/token dropping. Random token
dropping enables efficient training (Liu et al., 2023; Dehghani et al., 2024; Leroy et al., 2024) and
learned token dropping enables efficient deployment (Bolya et al., 2023; Fuller et al., 2025). Several
SoTA self-supervised learning (SSL) algorithms require token dropping for learning (He et al., 2022;
Garrido et al., 2024; Wei et al., 2025; Venkataramanan et al., 2025). This same interface enables
flexible processing of different input shapes, like time series (Nie et al., 2023) or video (Arnab et al.,
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(c) ImageNet-v2
Legend Method Attention-

only
Non-

hierarchical

EfficientViT ✗ ✗
SHViT ✗ ✗
MobileNetV4 ✗ ✗
ViT+Registers ✓ ✓
BiXT ✓ ✓
ViT+Jumbo (ours) ✓ ✓

Our Jumbo is attention-only and non-hierarchical,
which provides out-of-the-box support for SOTA
self-supervised learning algorithms, multimodal
data, and non-2D data types—while being much
simpler than existing efficient architectures.

Figure 1: Plain ViTs are in red , and others are in blue . ViT+Jumbo outperforms SOTA compute-
efficient architectures — while maintaining the advantages of plain ViTs. ViT+Jumbo outperforms
ViT+Registers on ImageNet-1K and the more challenging ImageNet-21K dataset. Throughput is
measured on an RTX 4090 GPU using PyTorch 2.6.0, torch.compile, and a 512 batch size.

2021). Moreover, many extensions and applications—from object detection and segmentation heads
(Fang et al., 2023; Zhang et al., 2022) to test-time adaptation algorithms (Niu et al., 2023)—are
designed for this plain ViT interface. Architectures that maintain ViT compatibility inherit all of this.

Our experiments show that Jumbo improves speed-accuracy performance across tasks, datasets,
and modalities. 1 Image classification: Jumbo outperforms ViTs by 0.1−13% on ImageNet-1K
and 1.2−3.1% on ImageNet-21K while maintaining throughput and achieves the pareto frontier vs.
compute-efficient architectures. 2 Self-Supervised Learning (SSL): Jumbo improves MAE (He
et al., 2022) pretraining measured with linear probing by 4.9% on ImageNet-1K at ViT-Base scale—
this ViT-Base+Jumbo ties the ViT-Large baseline, with 2.3× fewer parameters, 3.5× fewer FLOPs,
and 3.1× higher throughput. 3 Test-time adaptation (TTA): Jumbo is more accurate and more
robust with 5.2% improvement on ImageNet-C using a SOTA adaptation method for transformers
(SAR (Niu et al., 2023)). 4 Time series: Jumbo generalizes beyond vision to rank first across 20
time series benchmarks vs. transformer baselines.

Jumbo is such an efficient ViT-compatible architecture that it outperforms highly specialized existing
architectures on ImageNet-1K (Fig. 1). This is notable because such compute-efficient architectures
(Chen et al., 2023; Howard et al., 2017) sacrifice generality and compatibility with other techniques
and applications. Even efficient architectures based on ViTs include convolutions, hierarchy, and batch
normalization (Yun & Ro, 2024; Vasu et al., 2023b; Cai et al., 2023) that make them incompatible
out of the box with SSL by MAE, TTA by SAR, time series, ViT heads, etc. Jumbo delivers compute
efficiency while maintaining plain-ViT compatibility.

2 BACKGROUND AND RELATED WORK: GENERALISTS AND SPECIALISTS

2.1 VISION TRANSFORMERS: SIMPLE, FLEXIBLE, BUT NOT YET FAST

Jumbo extends ViTs. A ViT splits an image into a patch grid, RY×X×C → RNy×Nx×Py×Px×C ,
where C is the number of channels, Y / X are the image height / width, Ny / Nx are the grid height /

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

split

concat

MHSA

FFN FFN FFN FFN FFN FFN FFN

CLS Reg1 RegR

global tokens local tokens (image patches)

L 
la

ye
rs

ViT+Registers (Darcet et al., 2024)

MHSA

FFN FFN FFN

Jumbo

global token local tokens (image patches)

L 
la

ye
rs

ViT+Jumbo (ours)

Jumbo FFN FFN

ViT+Jumbo (ours) ViT+Registers (Darcet et al., 2024)

Figure 2: (Left) Our ViT+Jumbo method creates a wide global token that gets split into several tokens,
with width equal to the patch width, prior to multi-headed self-attention (MHSA). After attention, the
split Jumbo token is reassembled via concatenation, and is then processed by its own FFN. Patches
are processed by their own, shared FFN. (Right) ViT+Registers creates register tokens all equal
to the patch width — and all tokens are processed by a shared FFN. ViT+Jumbo enhances global
processing as the (split) global tokens can interact via an expressive FFN, plus attention.

width, and Py / Px are the patch height / width in pixels (equal to Y
Ny

/ X
Nx

). Next, they flatten the
grid into a sequence and flatten the patches into vectors, RNy×Nx×Py×Px×C → RN×Dpix , where
N is the number of patches (equal to Ny · Nx), and Dpix is the number of pixel values per patch
(equal to Py · Px · C). Next, they apply a learnable linear projection to form patch embeddings,
RN×Dpix → RN×D, where D is the token width, also known as the embedding dimension. Next, they
add position embeddings to patch embeddings. These operations produce patch tokens xP ∈ RN×D

that represent local information—typically a 16 × 16 px square. Crucially for us, ViTs prepend a
learnable CLS token xCLS to the sequence of patch tokens, x = xCLS∥0xP ∈ R(N+1)×D, where ∥0
denotes concatenation along the 0th (sequence) dimension. Finally, the input x is processed by a
plain transformer and the CLS token, having attended to all other tokens, can serve as the global
representation of the image. ViT sizes vary w.r.t. depth and width. ViT-Large has 24 layers, others
have 12 layers, while the widths vary {96, 128, 192, 384, 768, 1024}, corresponding to names
{Pico, Nano, Tiny, Small, Base, Large}. Narrower ViTs require less computation and are thus faster.

A standard image size of 224× 224 px and a standard patch size of 16× 16 px result in 196 local
tokens. A single CLS token—designed to aggregate global information for classification—provisions
1/197th of a model’s representational capacity to global information (and this fraction decreases with
larger images and/or smaller patches). This allocation is imbalanced, and may not be optimal. Recent
work finds evidence to support this intuition and proposes a fix: register tokens.

Registers. Darcet et al. (2024) find that ViTs learn to repurpose some patch tokens to behave
like additional CLS tokens by collecting global information and discarding patch-specific local
information. The same work proposes a fix: prepend extra learnable tokens—called registers
xReg ∈ RR×D, where R is the number of registers—to the input sequence, x = xCLS∥0xReg∥0xP ∈
R(N+R+1)×D. Registers improve accuracy (by ∼0.4% on ImageNet-1K (Russakovsky et al., 2015)
at ViT-Base) and reduce attention map artifacts/noise by provisioning more global capacity.

Registers are elegant, simple, and keep the plain ViT interface. In theory, registers can benefit any
plain, non-causal transformer. These advantages account for registers’ significant and immediate
impact including in applications beyond images (Dong et al., 2024; Vaquero et al., 2024; Leigh et al.,
2024; Messaoud et al., 2025; Hu et al., 2024; Thimonier et al., 2024; Omranpour et al., 2024). Our
Jumbo is inspired by ViT+Registers: see Fig. 2 for their relationship and key differences.

2.2 COMPUTE-EFFICIENT ARCHITECTURES: FAST, BUT NOT SIMPLE NOR FLEXIBLE

The Jumbo architecture is accurate and compute-efficient, so we highlight 3 architectures and use
them as baselines for high-speed ViTs. 1 EfficientViT (Cai et al., 2023) and 2 SHViT (Yun & Ro,
2024) improve the efficiency of ViTs by incorporating efficient attention, pooling, and convolutional
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layers. 3 MobileNetV4 (Qin et al., 2025) improves the efficiency of CNNs by leveraging many
strategies (and different strategies for different model sizes). These baselines represent the SOTA in
computational efficiency; please refer to Appendix A.2 for descriptions of these model architectures.

Beyond these, there is a rich literature on compute-efficient vision architectures. For example, several
efficient CNN-based architectures exist (Howard, 2017; Sandler et al., 2018; Howard et al., 2019;
Han et al., 2020; Tan et al., 2019; Vasu et al., 2023a); however, these are surpassed by MobileNetV4
(Qin et al., 2025). Since the invention of the ViT, there have been many compute-efficient “ViTs” that
incorporate efficiencies inspired by CNN-based approaches (Vasu et al., 2023b; Mehta & Rastegari,
2021; 2022; Li et al., 2023; Pan et al., 2022; Chen et al., 2022; Li et al., 2022). SHViT (Yun & Ro,
2024) has recently surpassed these architectures. Despite their impact and ingenuity, none of these
hybrid architectures meets the definition of a plain ViT, which is attention-only and non-hierarchical;
they thus lose many advantages of ViTs that we wish to keep. On the other hand, BiXT (Hiller et al.,
2024) models are an efficient extension of the Perceiver architecture (Jaegle et al., 2021) that keeps
the attention-only and non-hierarchical properties of ViTs, which are a natural comparison to Jumbo.

3 METHOD: A JUMBO TOKEN FOR A COMPUTE-EFFICIENT PLAIN VIT

3.1 DESIGN MOTIVATION AND INTUITION
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Figure 3: The cost of layers is largely determined
by the number of patches and their width D. The
cost of our Jumbo token (J=6) is negligible.

Capacity and Cost. Although Jumbo adds a
wider token and FFN, the cost is minimal. The
key insight is that a single wide token affords
much greater width and more processing with-
out slower speed. As shown in Fig. 3, the main
drivers of computational cost (FLOPs per layer)
are sequence length and patch width, D. The
FLOP contribution from our Jumbo token is
comparatively negligible. Since our architec-
ture shares Jumbo FFN parameters across all
ViT layers, its memory costs are also minimal.

Non-hierarchical and attention-only. Jumbo
preserves the non-hierarchical shape of ViTs
(also known as columnar or isotropic shape). By
foregoing convolutions, spatial information only
moves through attention. These two properties
have several advantages that we now discuss.

Token Dropping / Masking. Although convolutions are capable of processing a sparse subset of
patches via sparse compute kernels, these kernels can be complex, challenging to use, and require
updating when new hardware arrives. Furthermore, sparse convolutional kernels will never be as
efficient as simply indexing from a sequence—i.e., how transformers drop tokens. As a comparison,
ConvNeXt V2 (Woo et al., 2023) reports a 1.3× speedup using a 60% masking ratio with the
Minkowski Engine v0.5.4 (Choy et al., 2019). Conversely, MAE (He et al., 2022) report 2.8− 4.1×
speedups using a 75% masking ratio with plain ViTs. Efficient token dropping is required for
SOTA SSL algorithms (Assran et al., 2023; Fu et al., 2024; Garrido et al., 2024; Wei et al., 2025;
Venkataramanan et al., 2025; Oquab et al., 2024). Token dropping also speeds up supervised training
(Dehghani et al., 2024). We demonstrate Jumbo’s token dropping ability in subsections 4.2 and 4.4.

Other Data Modalities and Shapes. These properties explain the input flexibility of transformers,
which Jumbo keeps. For example, 1D time series, 3D point clouds, or multimodal data; users need
only adjust tokenization strategies. We show a 1D time series application of Jumbo in subsection 4.5.

Plain ViT’s Ecosystem. These two properties—non-hierarchical and attention-only—maintain
support for methods invented for the plain ViT. For example, segmentation and object detection heads
(Fang et al., 2023; Liu et al., 2025; Zhang et al., 2022), which expect ViT’s unpooled feature map;
test-time adaptation methods (Niu et al., 2023), designed for the LayerNorm (Ba et al., 2016) not
BatchNorm (Ioffe & Szegedy, 2015); and attention improvements, such as Flash Attention (Dao et al.,
2022), which can speed up self-attention by > 5×. Jumbo supports these innovations out of the box.
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Crucially, none of the compute-efficient architectures in subsection 2.2 immediately benefit from
these advances, support other data modalities or token dropping, or integrate with the ViT ecosystem.

Two hypotheses. Jumbo asymmetrically increases the model capacity. Thus, 1 we expect increasing
gains due to Jumbo with decreasing patch token width. 2 We expect increasing gains due to Jumbo
with increasing task output dimensionality. We explore both of these hypotheses using experiments
with ViTs of different widths and datasets of different complexities.

3.2 DESIGN SPECIFICS FOR TOKEN-WIDTH ASYMMETRY

Exactly like the original ViT, Jumbo computes patch embeddings, xP ∈ RN×D. Unlike the original
ViT, our method creates a Jumbo token that is J times wider than the patch width D, xJumbo ∈ RJ·D.
Architecturally identical transformer layers then process these inputs.

Before self-attention, the Jumbo token is split into J tokens, |1J xJumbo : R1×J·D → RJ×D, where
|1J denotes splitting into J segments along the 1st (feature) dimension. Next, the split Jumbo token is
concatenated with patch embeddings along the sequence dimension, x = xJumbo∥0xP ∈ R(N+J)×D.
This sequence is sent through a plain multi-headed self-attention layer. Afterward, the Jumbo token
is extracted from the sequence by splitting along the sequence dimension, |02 x : R(N+J)×D →
(RJ×D,RN×D), where the first element contains the (still split) Jumbo token and the second element
contains the patch representations. Finally, the Jumbo token is reassembled through concatenation
along the channel dimension, xJumbo = ∥1xJumbo : RJ×D → R1×J·D. These two splits and two
concatenations add negligible runtime overhead.

After self-attention, the Jumbo token is processed by its own FFN that does not share parameters
with the patch FFN. Fig. 2 indicates this by coloring the Jumbo and patch FFNs differently. After
processing by all layers, we project the Jumbo token to C class logits, RJ·D → RC .

Layer sharing. We share our Jumbo FFN parameters across all layers to reduce memory use (through
fewer model parameters). All other model parameters are not shared across layers, as usual. Sharing
also acts as regularization. Empirically, we find sharing keeps (and sometimes increases) Jumbo’s
accuracy gains compared with not layer sharing—while effectively controlling memory use. Sharing
the FFN layer is thus the default in our Jumbo architecture.

4 EXPERIMENTS: ACCURACY, COMPUTE EFFICIENCY, AND GENERALITY

For all experiments, we measure throughput on an RTX 4090 GPU using PyTorch 2.6.0,
torch.compile, and a 512 batch size.

4.1 IMAGENET-1K EXPERIMENTS WITH COMPUTE-EFFICIENT BASELINES

Setup. We perform controlled experiments to evaluate Jumbo. Specifically, we train models from
scratch on ImageNet-1K (Russakovsky et al., 2015) at 128×128 px for 400 epochs, then for 20
epochs at 224×224 px. We leverage distillation to improve convergence, which is a common strategy.

We train each model architecture twice, once for each learning rate {1e−3, 3e−3} (Touvron et al.,
2022; Yun & Ro, 2024) using a 1024 batch size with the AdamW optimizer (Loshchilov, 2017). We
report the results of the best learning rate for each model architecture. Please see Appendix A.3.1 &
A.4 for hyperparameters and complete results, respectively.

Baselines. We choose the high-speed models for each family: 1 ViT+Registers {Nano, Tiny, Small,
Base} (Darcet et al., 2024), 2 BiXT has 1 size (tiny), 3 EfficientViT {B0, B1} (Cai et al., 2023), 4

SHViT {S1, S2, S3} (Yun & Ro, 2024), and 5 MobileNetV4 {Conv-Small, Conv-Medium, Hybrid-
Medium} (Qin et al., 2025). We compare these architectures with our high-speed ViT+Jumbo variants
{Pico, Nano, Tiny, Small, Base}. Darcet et al. (Darcet et al., 2024) show ViT+Registers with R=16
performs best, which we confirm in the appendix Table 7 and use in these experiments. We show
ViT+Jumbo is robust to the choice of J ; we use J=6 and study its effect in the appendix Table 12.

Test Sets. We test all models on the three most common ImageNet-1K test sets: ImageNet-Val
(Russakovsky et al., 2015), ImageNet-ReaL (Beyer et al., 2020), and ImageNet-v2 (Recht et al.,
2019). To further evaluate generalization we also test all models on ImageNet-HR (Fuller et al.,
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Figure 4: ViT+Jumbo achieves the Pareto frontier and is much simpler than specialized compute-
efficient architectures. Results are plotted for each model’s best learning rate. Throughput is measured
on an RTX 4090 GPU using PyTorch 2.6.0, torch.compile, and a 512 batch size.

2024), for its image diversity and high-quality annotations, ImageNet-R (Hendrycks et al., 2021), for
its out-of-distribution images.

Results. As illustrated in Fig 4, Jumbo achieves the Pareto frontier on ImageNet-1K. Crucially,
Jumbo achieves these results while preserving the many advantages and simplicity of plain ViTs.
Even matching the specialized compute-efficient architectures makes a strong case for ViT+Jumbo.

ViT+Jumbo outperforms ViT+Registers by 13% at the nano scale and 4% at the tiny scale, where
such gains are significant. This confirms our first hypothesis that Jumbo’s gains should increase as
we decrease the patch width, i.e., from Small (384) to Tiny (192) to Nano (128) (Figs. 1a, 4).

ViT+Jumbo is a clear choice if a researcher or practitioner requires high speed and out-of-the-box
ViT compatibility for SSL algorithms or multimodal processing. ViT+Registers is not as accurate
at high speed, while the specialized compute-efficient architectures do not support most SOTA
SSL algorithms or flexible processing across modalities. Remote sensing (Rolf et al., 2024) and
autonomous driving (Muhammad et al., 2020) are two of many applications where this combination
of speed, SSL support, and multimodal processing is particularly valuable.

4.2 IMAGENET-21K EXPERIMENTS WITH VIT COMPARISONS

ImageNet-1K is a subset of the more challenging, original ImageNet (Deng et al., 2009), now
referred to as ImageNet-21K. We use a common variant comprising 10,450 classes that includes
processing to make a more accessible benchmark (Ridnik et al., 2021). This dataset provides more
than 10× the number of classes and samples as ImageNet-1K, making it well suited to test our second
hypothesis—that is, gains due to Jumbo should increase with increasing task-output dimensionality.

Setup. We train models from scratch on ImageNet-21K. Since training models on ImageNet-21K is
expensive, we leverage a token dropping strategy to reduce costs. Specifically, we start training with
a 90% token drop rate and linearly decrease this value to 10%; this halves the total number of tokens
processed. Dehghani et al. (2024) demonstrate the effectiveness of this strategy, i.e., leveraging
“masking” with plain supervised training. Plain ViTs support masking with minimal code changes.
We train each model architecture once, for 50 epochs using a 3e−3 learning rate and a 1024 batch size
with the AdamW optimizer (Loshchilov, 2017) (see the Appendix A.3.1 for other hyperparameters).

Baselines. We choose ViT+Registers {Small, Base} to compare with our ViT+Jumbo {Small, Base}
sizes. This is a more narrow but valid comparison, as the plain ViT is the vision community’s
preferred architecture at these scales. For ViT+Registers, we use R=16; for ViT+Jumbo, we use J=6
for the Small model and J=3 for the Base model.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Results. ViT+Jumbo outperforms ViT+Registers by 3.1% and 1.2% at ViT-Small and ViT-Base
scales, respectively (see Fig. 1b). Gains due to Jumbo increase when scaling from ImageNet-1K to
ImageNet-21K for a given model size, e.g., ViT-Small gains increase from 0.8% (Fig. 1a) to 3.1%.
Thus, these findings confirm our second hypothesis that gains due to Jumbo should increase with
increasing output dimensionality. Furthermore, for a given accuracy Jumbo is 1.9× faster (Fig. 1b).

4.3 MASKED AUTOENCODING EXPERIMENTS

Setup. We pretrain Jumbo ViT-Base and ViT-Large models using masked autoencoding (MAE; (He
et al., 2022)) using the default settings. This tests Jumbo’s ability in a standard SSL framework. This
also tests Jumbo’s scalability to larger models (up to ViT-Large) and longer training schedules (up to
1600 epochs on ImageNet-1K). These experiments are expensive, so we leverage free TPU resources,
perform no hyperparameter tuning, and compare against plain ViT results obtained with the same
MAE implementation. After pretraining, we linear probe on ImageNet-1K to obtain accuracies.

Table 1: MAE Pretraining. Jumbo
significantly outperforms standard ViT.
Jumbo scales to these large MAE
models and their long training sched-
ules (1600 epochs for ViT-Base, 800
epochs for ViT-Large). After pretrain-
ing, we linearly probe to compute top-
1 accuracy on ImageNet-1K.

Architecture Speed
K imgs/s

Params
M

Memory
GB

FLOPs
G

Top-1 Acc.
%

ViT-base 3.1 86.6 3.3 16.5 68.1
ViT-base+Jumbo 3.1 130.7 3.9 16.9 73.0
ViT-large 1.0 304.4 5.0 59.7 73.0
ViT-large+Jumbo 1.0 382.2 5.2 59.9 74.0

Results. Our ViT-Base+Jumbo MAE outperforms the baseline by 4.9% on ImageNet-1K. ViT-
Base+Jumbo ties the ViT-Large MAE, while Jumbo is 3× faster with only 0.43× the parameters. This
shows Jumbo can be applied to SSL by MAE to improve performance without further modification.
The role of masking in the MAE suggests that the wider Jumbo token stores more global information.
For this MAE, Jumbo is a more efficient way to scale model parameters than the wider ViT.

4.4 ROBUSTNESS AND TEST-TIME ADAPTATION EXPERIMENTS

Setup. We measure robustness to corruption with and without adaptation. We follow SAR (Niu et al.,
2023) exactly, swapping in ViT-S models with Registers or our Jumbo from Sec. 4.1, and measure
robustness to 15 corruptions at the highest severity from ImageNet-C (Hendrycks & Dietterich, 2019).

Table 2: Test-Time Adaptation (TTA). Jumbo improves plain-ViT robustness without TTA (avg.
↑3.6%) and with TTA (avg. ↑5.2%) on ImageNet-C. We follow SAR (Niu et al., 2023) and test across
15 shifts at the highest severity. Jumbo is directly compatible with SOTA methods designed for ViTs,
for instant use without tuning, unlike highly-specialized architectures (MobileNet, SHViT, ...).

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Registers 13.6 14.2 13.0 29.3 20.3 34.9 28.7 49.0 50.4 56.6 73.5 47.8 29.0 45.6 56.1 37.5
Jumbo 25.9 26.6 25.8 31.2 21.4 33.3 30.6 53.1 51.9 57.3 75.2 49.4 30.5 47.5 57.1 41.1

Registers+SAR 38.9 39.2 41.5 48.2 48.7 56.5 32.1 62.0 59.4 68.9 76.1 61.5 59.1 65.5 66.1 54.9
Jumbo+SAR 45.2 49.6 51.2 53.3 53.2 61.1 44.5 66.2 58.5 71.7 77.5 67.1 65.2 69.0 69.0 60.1

Results. Jumbo is both more accurate than Registers (+0.8% on IN-Val) and more robust than
Registers on corrupted data (+3.6% on IN-C). Test-time adaptation by SAR further increases the
robustness gain to +5.2%. In principle test-time adaptation can apply to any architecture, but in
practice methods specialize. SOTA methods such as SAR are designed for the plain ViT LayerNorm,
and not the BatchNorm of SHViT, MobileNetV4, and EfficientViT, so ViT compatibility is a plus.

4.5 TIME SERIES EXPERIMENTS

Jumbo can easily process different input shapes (beyond images) because it maintains the plain
transformer interface. We apply Jumbo to time series inputs. PatchTST (Nie et al., 2023) is a SOTA
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patch-based transformer for time series that we extend with registers (PatchTST+Registers) or Jumbo
(PatchTST+Jumbo).

Setup. We train models from scratch on 1 10 univariate time series datasets from the UCR archive
(Dau et al., 2018), and 2 10 multivariate time series datasets from the UEA archive (Bagnall et al.,
2018); both of which are commonly used benchmarks (Zerveas et al., 2021; Grover et al., 2024; Le
et al., 2024). For each dataset and model, we perform a hyperparameter sweep from the Cartesian
product of learning rate {3e−3, 1e−3, 3e−4, 1e−4}, and dropout {0.0, 0.1, 0.2}. More details are in
Appendix A.3.2. We report the best run and the average of all 12 runs per experiment in the appendix
Tables 13 & 14. To summarize these results, we compute the rank between models and then average
the ranks over the 10 univariate and 10 multivariate datasets.

Baselines. We compare PatchTST with our PatchTST+Jumbo method and our PatchTST+Registers
baseline. We experiment with 8 and 42 patches per sequence for all three models. Jumbo and registers
are both simple to adopt for PatchTST because they remain plain transformers.

Table 3: Time series rankings using PatchTST (Nie et al.,
2023) with Registers or Jumbo (lower is better and the best
is in bold). We rank over 10 univariate and 10 multivariate
datasets. “Best” is the best run of our 12-run hyperparame-
ter sweep and “Avg” is the average over the sweep. Jumbo
achieves the best ranking in all experiments. We use two
patch sizes: 8/42 (results are formatted likewise).

PatchTST PatchTST
+Registers

PatchTST
+Jumbo

Univar. Best 2.0/1.9 2.5/2.1 1.5/1.7
Avg 2.9/2.3 2.1/2.4 1.0/1.3

Multivar. Best 2.1/2.0 2.1/1.9 1.6/1.7
Avg 2.7/2.6 2.0/2.4 1.3/1.0

Results. PatchTST+Jumbo outperforms strong PatchTST and PatchTST+Registers baselines (Tab. 3).
Jumbo gains the most with fewer patches and when considering overall results across hyperparameters.
These results establish that Jumbo can improve non-causal transformers beyond ViTs.

4.6 ABLATIONS

Table 4: Jumbo’s shared FFN
increases accuracy and is mem-
ory efficient. Our Jumbo FFN
can be enlarged (J=10) for even
higher performance, at relatively
low cost. We report top-1 accuracy
on ImageNet-21K.

Architecture Speed
K imgs/s ↑

Params
M

Memory
GB ↓

FLOPs
G ↓

Top-1 Acc.
% ↑

Jumbo (Fig. 1b) 7.9 88.3 2.6 4.6 44.61
Jumbo without layer sharing 7.7 555.6 4.1 4.6 44.95
Jumbo without Jumbo FFN 8.4 45.8 2.2 4.4 43.64
Jumbo with LoRA, rank=8 7.7 88.8 2.5 4.6 44.94
Jumbo J : 6→10 6.9 179.9 3.4 5.5 45.62

Setup. We follow our ImageNet-21K training recipe and ablate Jumbo’s design at ViT-Small scale to
better understand the contributions of the architecture and its design choices.

Results. (Tab. 4) Not sharing the Jumbo FFN across layers slightly improves accuracy at this scale.
However, we can fully recover from the drop with sharing by adapting the Jumbo FFN parameters
with LoRAs (Hu et al., 2022): we still share the Jumbo FFN across layers but apply layer-specific
LoRAs to specialize efficiently. LoRAs recover accuracy at negligible cost in speed and memory.
Jumbo without Jumbo FFNs performs well enough (2.2% better than ViT+Registers) but worse than
Jumbo: the main difference between this ablation and ViT+Registers is that it concatenates all global
tokens as input to the classifier (rather than discarding registers). Yet, our best ViT-Small includes the
Jumbo FFN: with J=10 its shared FFN achieves 45.6% top-1 accuracy. This Jumbo model beats
ViT-Small+Registers by 4.1% and matches ViT-Base+Registers (0.1% difference) with higher speed
(2.4× faster) and less memory.

4.7 ANALYSIS: HOW TO SCALE EFFICIENCY AND CAPACITY

Is Jumbo more accurate just because it has more parameters? No. We take ViT-
B+Registers and increase its width 768→1024 to equalize the number of parameters with
our ViT-Base+Jumbo (Tab. 5 rows 1 & 3). These models differ in accuracy by 0.1%,
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Table 5: ViT-Base+Jumbo matches
a symmetrically wider ViT+Registers
with equal params; yet our Jumbo is
1.7× faster. Jumbo also outperforms
other ways of adding global capacity,
e.g., 1 uses an FFN for patches, and
a separate FFN for CLS+Reg. tokens,
2 uses an FFN for patches+CLS, and
separate FFN for Reg. tokens. We re-
port top-1 accuracy on ImageNet-21K.

Architecture Speed
K imgs/s ↑

Params
M

Memory
GB ↓

FLOPs
G ↓

Top-1 Acc.
% ↑

ViT-Base models
Jumbo 3.1 152.5 4.1 16.5 46.95
Reg. (Darcet et al., 2024) 2.9 93.9 3.5 18.2 45.73
Registers D: 768→1024 1.8 162.9 4.5 32.4 47.08

ViT-Small models
Jumbo 7.9 88.3 2.6 4.6 44.61
Reg. (Darcet et al., 2024) 8.0 25.7 2.3 4.6 41.48
Alt. 1 : CLS+Reg. FFN 7.7 39.9 2.3 4.6 41.51
Alt. 2 : Reg. FFN 7.7 39.9 2.3 4.6 42.11

yet Jumbo is more efficient with 1.7× the throughput, 0.5× the FLOPs, and 0.9× the memory.
Our novel asymmetric-width design of the Jumbo token and FFN is crucial to its better efficiency.

Alternate ViT+Register designs. We experiment with two more architectures to investigate the role
of adding separate FFNs for different types of tokens (Tab. 5). Alternative 1 has an FFN for all patch
tokens with a separate FFN for the CLS and registers. Alternative 2 has an FFN for all patch tokens
and the CLS token with a separate FFN for the registers. Neither model gains much: the asymmetric
token width of Jumbo explains its success, and not the addition of more parameters alone.

Attention maps of split Jumbo tokens Attention maps of register tokens

Figure 5: Jumbo (left two subfigures) eliminates high-norm, outlier tokens in our measurements.
According to Darcet et al. (Darcet et al., 2024), outlier tokens cause attention-map artifacts, and their
presence can be reduced by adding registers (right two subfigures). By inspection, Jumbo also learns
artifact-free attention maps, and split Jumbo tokens seem to specialize.

Does Jumbo also reduce high-norm tokens? Registers reduce high-norm, outlier tokens that cause
attention map artifacts (Darcet et al., 2024). We test if Jumbo does the same. The ViT+Jumbo models
we train are in fact more effective at reducing outlier tokens than ViT+Registers (Fig. 5). We also
show attention maps in the Appendix A.6 where we again see a similar effect.

5 DISCUSSION: EFFICIENCY, GENERALITY, AND CAPACITY

Limitations and Future Work. In this work, we do not evaluate Jumbo in vision-language (e.g.,
CLIP (Radford et al., 2021b)) or language-only applications (e.g., BERT (Devlin et al., 2019), which
is non-causal and could benefit from Jumbo in theory). We save these applications for future work.

Conclusion. Jumbo is highly efficient, simple, and general: our Jumbo ViTs achieve SOTA accuracy-
speed trade-offs by a targeted increase in the global computation and parameter capacity of any
plain ViT. We show that upgrading a plain ViT with Jumbo improves accuracy at the same speed
or maintains accuracy at faster speeds for supervised image classification, self-supervised learning,
time series modeling, and test-time adaptation. Jumbo is the first attention-only and non-hierarchical
architecture to outperform specialized compute-efficient architectures like EfficientViT (Cai et al.,
2023). To do so Jumbo increases width asymmetrically, across tokens, and not across layers (in
contrast to existing hierarchical models). While increasing model capacity can increase accuracy, it is
critical to add capacity in the right places to achieve high efficiency and maintain model flexibility as
we show with Jumbo.
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A APPENDIX

A.1 IMPACT STATEMENT

This work presents new designs and empirical results for deep network architectures for more accurate
and computationally efficient modeling applied to visual recognition and time series processing. This
general topic does not have more specific societal consequences aside from those inherited, good or
bad, from the adoption of machine learning.

A.2 COMPUTE-EFFICIENT ARCHITECTURE DESCRIPTIONS

1 EfficientViT Cai et al. (2023) is a hierarchical architecture with four stages and one head. Stages 1
and 2 consist of MBConv layers Sandler et al. (2018). Stages 3 and 4 consist of MBConv sublayers and
their novel EfficientViT sublayer, consisting of an efficient attention module and an FFN+DWConv
module Howard (2017). Their attention module creates queries, keys, and values of three scales via
three DWConvs, and then each set of queries, keys, and values undergoes efficient linear attention.
Finally, the head receives outputs from Stages 2, 3, and 4, and applies a final MBConv. EfficientViT
variants differ in stage depths and widths, as well as head width.

2 SHViT Yun & Ro (2024) is a hierarchical architecture with three stages. Stage 1 consists of a
DWConv+BatchNorm sublayer and an FFN sublayer. Stages 2 and 3 incorporate their novel single-
headed self-attention (SHSA) sublayer between the stage 1 sublayers. SHSA consists of performing
single-headed self-attention on a fraction of dimensions (1/4.67 ratio); the other dimensions pass
straight through, further reducing cost. Both FFN and SHSA sublayers also replace linear layers with
DWConv. SHViT variants differ in stage depths and widths.

3 MobileNetV4 Qin et al. (2025) variants use their FusedIB, ExtraDW, and Mobile MQA (multi-
query attention) modules along with MBConv, ConvNext-Like Liu et al. (2022), and FFN modules.
Variants differ in stage depths and widths, the number of stages, and stage architectures built with a
combination of the listed modules.

A.3 EXPERIMENTAL DETAILS

A.3.1 IMAGENET-1K AND -21K HYPERPARAMETERS

We pick these recipes based on findings in the literature—such as Touvron et al. (2022), Fuller et al.
(2024), Beyer et al. (2022), Dehghani et al. (2024), and Steiner et al. (2022)—and past experience
indicating that these recipes would result in strong models.

ImageNet-1K training recipe: 128 × 128 px images, 400 epochs, 1024 batch
size, PyTorch’s AdamW optimizer with a 0.05 weight decay, 1.0 clip grad norm,
deit3-base-patch16-224.fb-in22k-ft-in1k teacher Touvron et al. (2022) given
224 × 224 px images using Wightman (2019)’s implementation, KL divergence loss between
student and teacher logits Beyer et al. (2022), linear learning rate warmup for 10% of steps to
{1e−3, 3e−3} and cooldown using a cosine decay schedule to 1e−5, mixup α = 0.8, cutmix α = 1,
and 3-Augment data augmentation Touvron et al. (2022). Then we continue training at 224× 224
px images, 20 epochs, 512 batch size, PyTorch’s AdamW optimizer with a 0.1 weight decay, 1.0
clip grad norm, deit3-large-patch16-224.fb-in22k-ft-in1k teacher Touvron et al.
(2022) given 224× 224 px images using Wightman (2019)’s implementation, KL divergence loss
between student and teacher logits Beyer et al. (2022), linear learning rate warmup for 25% of steps
to 5e−5 and cooldown using a cosine decay schedule to 1e−5, mixup α = 0.8, cutmix α = 1, and
AutoAugment (“rand-m9-mstd0.5-inc1”) data augmentation Cubuk et al. (2018) following DEIT
III’s Touvron et al. (2022) high-res finetuning recipe.

ImageNet-21K training recipe: 224 × 224 px images, 50 epochs, 1024 batch size, PyTorch’s
AdamW optimizer with a 0.02 weight decay, 1.0 clip grad norm, cross-entropy loss, linear learning
rate warmup for 10% of steps to 3e−3 and cooldown using a cosine decay schedule to 1e−5, mixup
α = 0.8, cutmix α = 0, and 3-Augment data augmentation Touvron et al. (2022). To speed up
training, we also employ a token dropping strategy starting at 90%, linearly decreasing to 10%.
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A.3.2 TIME SERIES EXPERIMENTS

We adopt the PatchTST Nie et al. (2023) architecture for our time series experiments. PatchTST is a
patch-based transformer architecture for time series processing. The method splits a univariate time
series into patches processed as they are in ViTs for classification, aside from position encoding (2D
vs. 1D). For multivariate series, each channel is processed independently using the shared transformer
backbone, with the final-layer CLS tokens from each channel concatenated before classification. We
extend this shared backbone with registers (PatchTST+Registers) and Jumbo (PatchTST+Jumbo).

We closely follow the PatchTST training recipe for our experiments, making minor adjustments
based on prior experience to enhance performance. This method remains competitive with recent
transformer-based benchmarks for time series classification Zerveas et al. (2021); Grover et al.
(2024); Le et al. (2024). Apart from variations in time series length, all experiments use the same
hyperparameters and methodology.

PatchTST Hyperparameters: The model comprises 3 encoder layers, each with 16 attention heads
and a token width of D = 128. The transformer FFN includes two linear layers with a GELU
activation Hendrycks & Gimpel (2016); the first expands the hidden dimension to 256, while the
second projects it back to 128. For PatchTST+Jumbo, we use J = 4. For PatchTST+Registers, R is
calculated according to Appendix A.3.3.

Time Series training recipe: We perform a hyperparameter sweep over the Cartesian product of
learning rates {3e−3, 1e−3, 3e−4, 1e−4} and dropout rates {0.0, 0.1, 0.2}. Each configuration
uses either 8 or 42 equally sized patches of maximum possible length, with end-padding applied as
needed. The stride length is set to half the patch length. Unless stated otherwise, all experiments
follow the same setup: 100 epochs, 256 batch size, PyTorch’s AdamW optimizer with a 0.02
weight decay, cross-entropy loss, and a linear learning rate warmup for the first 10% of steps,
followed by a cooldown using cosine decay to 1e−8. For large datasets, we reduce the number of
epochs to ensure efficient processing within a reasonable time frame; specifically, we train datasets
{Sleep, Tiselac, FaceDetection} for 20 epochs.

Each dataset from the UEA and UCR archives includes a prescribed validation set. We create a new
50/50 test/validation split from each of these original validation sets, selecting the best run based on
validation performance. All reported results are from the test set.

The 20 datasets were selected in decreasing order of their number of training examples; datasets with
either (i) fewer than 42 total timesteps or (ii) significant data preparation issues were excluded.

A.3.3 FLOP DETAILS

To ensure a fair comparison, we configure PatchTST+Registers and PatchTST+Jumbo to have
approximately equal per-layer FLOPs by selecting the number of registers R in the former and the
Jumbo multiplier J in the latter accordingly. Additionally, we apply average pooling to the J split
segments of the Jumbo token to prevent a significant increase in the number of learnable parameters
of the classification head. This pooling produces a token of width D per channel before concatenation,
effectively serving the same role as a CLS token. The detailed per-layer FLOP calculation is provided
by the proposition below.

Proposition 1. Let P be the total number of local patch tokens, R the number of register tokens, D
the width, and J the Jumbo multiplier. Given an FFN hidden dimension of 2D, and otherwise fixed
parameters, a Register architecture with R registers has the same per-layer FLOP count as a Jumbo
architecture with multiplier J if and only if

R = −(2D + P ) +
√
(2D + P )2 + (1 + 2D)J2 + 2(D + P )J

Proof. Let F denote the FLOP count. Given a sequence length of n tokens, each of width d, the
FLOP contributions from the MHSA and FFN sublayers in a single transformer layer with a FFN
hidden dimension of ld are given by

FMHSA = 4nd2 + 2n2d and FFFN = l2nd2 = 4nd2

where we fix l = 2. For the Register architecture, n = P +R and d = D for both the MHSA and
the FFN contributions. For the Jumbo architecture, n = P + J and d = D for MHSA. The FFN
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contribution is split; local patch tokens contribute with n = P, d = D while the dedicated Jumbo
FFN has n = 1, d = JD. From summing the contributions, it follows that

FReg = 4(P +R)D2 + 2(P +R)2D + 4(P +R)D2

FJumbo = 4(P + J)D2 + 2(P + J)2D + 4PD2 + 4J2D2

Equating FReg = FJumbo and solving for R gives the stated result.

In our time series experiments, we compute R, rounding to the nearest integer, to match the per-layer
FLOP count of a Jumbo architecture with multiplier J as closely as possible.
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A.4 DETAILED IMAGENET-1K RESULTS

Table 6: All final results obtained on 224× 224 px images (%).

Architecture Size Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-R ImageNet-HR
2242 px Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ViT+Jumbo

D=96, J=6 43.7K 69.0 88.5 76.6 92.3 56.0 79.0 23.5 37.1 77.9 92.6
D=128, J=6 31.3K 74.0 91.5 81.3 94.7 61.4 83.4 27.4 42.6 83.2 95.0
D=192, J=6 20.4K 78.4 94.0 84.8 96.3 66.2 87.0 31.7 47.3 86.8 96.2
D=384, J=6 7.6K 82.7 96.4 88.0 97.8 72.4 90.6 39.0 55.6 90.9 98.3

ViT+Registers
D=128, R=16 25.5K 61.0 84.1 68.9 88.9 49.1 74.1 18.7 32.4 69.7 88.9
D=192, R=16 16.7K 74.5 92.3 82.3 95.4 62.5 84.7 28.2 43.5 83.7 95.6
D=384, R=16 6.6K 81.9 96.0 87.4 97.7 71.4 90.2 38.0 53.8 90.0 98.0

MobileNetV4
conv-small 33.7K 65.6 86.2 73.3 90.7 52.5 75.5 22.3 37.5 75.7 91.3

conv-medium 11.2K 74.9 92.6 82.4 95.5 63.1 84.8 29.4 45.9 84.7 95.8
hybrid-medium 8.8K 78.1 94.3 85.0 96.7 67.0 87.5 33.0 49.4 87.2 96.8

SHViT
S1 42.1K 67.9 88.2 75.7 92.2 54.7 78.2 23.1 38.0 77.6 92.7
S2 34.5K 71.0 90.0 78.6 93.6 58.4 80.5 25.6 41.1 80.9 93.9
S3 23.7K 74.3 92.0 81.6 95.0 61.8 83.5 28.3 43.9 84.0 95.4

EfficientViT B0 25.2K 66.3 86.5 73.9 90.7 53.6 76.3 22.2 36.7 75.8 91.0
B1 9.8K 76.9 93.5 83.7 96.2 64.5 85.9 31.3 47.2 85.8 96.4

Table 7: ViT+Registers results, obtained on 128× 128 px images (%).

Patch Num. Learning Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-R ImageNet-HR
Width Registers Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

128 16 3e−3 107.0K 53.6 78.5 60.8 83.6 42.4 67.8 15.9 28.6 61.9 83.4
16 1e−3 51.9 76.8 59.0 81.8 40.8 65.4 13.7 24.9 60.5 82.6

192
8 3e−3 65.7K 68.5 88.8 76.1 92.6 55.7 78.8 24.9 39.4 77.8 92.2

16 3e−3 59.9K 68.8 88.9 76.6 92.6 55.9 79.4 24.8 38.9 78.5 92.5
16 1e−3 66.1 87.2 74.0 91.2 54.2 77.0 22.9 36.2 75.4 91.6

384
8 3e−3 24.6K 77.8 93.9 84.3 96.2 65.8 86.3 33.3 48.6 86.8 96.5

16 3e−3 21.8K 78.1 94.0 84.5 96.3 66.1 86.6 33.3 48.6 86.6 96.5
16 1e−3 78.2 94.1 84.5 96.3 66.4 86.6 33.5 48.4 87.2 96.6

Table 8: ViT+Jumbo results, obtained on 128× 128 px images (%).

Patch Learning Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-R ImageNet-HR
Width Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

96 3e−3 136.0K 62.4 83.7 69.6 88.1 49.3 72.9 20.1 33.5 71.4 89.1
1e−3 60.8 82.9 68.0 87.3 48.3 71.8 18.9 31.6 70.3 87.6

128 3e−3 103.1K 67.7 87.5 75.0 91.2 54.3 77.6 24.1 37.5 76.6 92.1
1e−3 68.4 87.9 75.6 91.6 55.2 78.0 23.8 37.6 77.0 92.1

192 3e−3 57.3K 73.3 91.2 80.2 94.1 60.5 82.1 28.0 42.2 82.7 94.6
1e−3 73.5 91.3 80.3 94.1 60.5 81.8 27.8 42.2 82.8 94.4

384 3e−3 20.4K 79.3 94.4 85.3 96.5 67.3 87.0 34.3 49.5 88.3 96.8
1e−3 79.3 94.5 85.1 96.6 66.7 86.7 33.4 48.4 87.7 96.6
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Table 9: MobileNetV4 results, obtained on 128× 128 px images (%).

Size Learning Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-R ImageNet-HR
Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

conv-small 3e−3 142.7K 62.1 83.6 69.2 88.1 49.1 72.8 20.4 34.3 71.8 89.4
1e−3 60.0 82.0 67.2 86.7 47.6 71.4 18.9 32.2 69.8 87.7

conv-medium 3e−3 53.8K 73.3 91.5 80.5 94.6 60.6 82.9 27.7 42.8 83.2 95.3
1e−3 72.2 90.7 79.4 94.0 59.5 81.7 27.0 42.0 82.0 94.6

hybrid-medium 3e−3 43.5K 74.9 92.4 81.8 95.3 62.4 84.0 29.5 44.8 84.4 95.5
1e−3 75.2 92.5 82.0 95.3 63.0 84.5 29.1 44.5 84.2 95.4

Table 10: SHViT results, obtained on 128× 128 px images (%).

Size Learning Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-R ImageNet-HR
Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

S1 3e−3 81.0K 63.5 84.9 70.9 89.1 50.8 74.5 22.2 35.7 73.7 90.0
1e−3 63.5 85.1 71.0 89.3 50.9 74.4 21.3 34.7 72.9 90.5

S1 3e−3 76.1K 66.6 87.0 73.9 90.8 54.0 76.6 23.9 38.0 76.1 91.7
1e−3 66.7 87.0 73.8 90.8 53.7 76.8 24.0 37.8 76.7 92.0

S3 3e−3 73.8K 70.5 89.8 77.7 93.1 58.1 80.4 26.6 41.0 80.4 93.8
1e−3 71.2 90.0 78.3 93.3 58.6 80.7 26.7 40.7 80.7 93.9

Table 11: EfficientViT results, obtained on 128× 128 px images (%).

Size Learning Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-R ImageNet-HR
Rate imgs/s Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

B0 3e−3 98.6K 59.5 81.9 66.8 86.7 46.8 70.3 18.6 32.0 69.3 87.6
1e−3 60.8 82.6 68.0 87.2 48.3 71.6 19.3 32.6 70.4 87.7

B1 3e−3 38.7K 71.8 90.7 79.2 94.0 59.7 81.8 27.4 42.2 81.5 94.4
1e−3 72.8 91.0 79.8 94.2 60.4 81.9 27.1 42.3 82.5 94.8

Table 12: ViT+Jumbo ablation results, obtained on 128× 128 px images (%).

Patch Jumbo Inner FFN Throughput Throughput ImageNet-Val ImageNet-ReaL ImageNet-v2 ImageNet-HR ImageNet-R
Width Multiplier Multiplier 1282 px 2242 px Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

192

2 2 71.6K 21.6K 70.0 89.6 77.5 93.1 57.3 80.0 26.1 40.9 79.3 93.2
4 69.6K 21.5K 70.4 89.6 77.8 93.1 57.3 79.8 25.5 39.6 79.7 93.3

4
1 69.6K 21.3K 71.5 90.4 78.8 93.7 59.2 81.3 26.9 41.7 80.8 93.7
2 68.1K 21.2K 70.6 89.6 77.6 93.0 57.7 79.8 25.9 40.3 80.4 93.5
4 64.9K 20.8K 72.2 90.6 79.2 93.6 59.3 81.1 26.6 41.2 81.8 94.1

6
1 65.3K 20.9K 72.1 90.5 79.2 93.7 58.9 81.1 26.4 41.1 80.8 94.2
2 63.5K 20.6K 71.8 90.2 78.7 93.3 58.2 80.6 25.8 39.8 80.7 93.6
4 56.5K 19.9K 73.0 90.7 79.6 93.7 59.4 81.2 26.8 41.3 82.3 93.9

384

2 2 27.2K 8.7K 77.0 93.5 83.6 96.0 64.6 85.8 31.9 47.9 85.8 96.4
4 26.1K 8.6K 78.1 94.0 84.4 96.3 65.9 86.1 32.8 48.7 86.1 96.4

4
1 26.1K 8.6K 77.3 93.6 83.7 96.0 64.9 85.8 32.1 47.8 86.5 96.2
2 24.5K 8.5K 77.9 93.9 84.0 96.3 65.7 85.9 32.7 48.6 86.7 96.2
4 23.6K 8.3K 77.9 93.8 84.0 96.2 65.7 85.8 32.4 48.0 86.2 96.2

6
1 23.9K 8.4K 77.6 93.6 84.0 96.1 65.8 85.8 32.1 47.9 86.7 96.2
2 22.9K 8.2K 77.8 93.6 83.8 96.0 65.0 85.3 32.2 47.5 86.6 96.0
4 19.5K 7.8K 78.3 93.8 84.2 96.1 66.1 86.0 32.9 48.6 87.0 96.3
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A.5 DETAILED TIMESERIES RESULTS

Table 13: Univariate time series classification results (%). “Best” refers to the best run of our 12-run
hyperparameter sweep and “Avg” refers to the average over the sweep.

PatchTST/8 PatchTST/8
+Registers

PatchTST/8
+Jumbo PatchTST/42 PatchTST/42

+Registers
PatchTST/42

+Jumbo

Sleep Best 70.9 70.7 73.3 70.5 70.6 70.3
Avg 67.5 67.7 68.3 67.2 67.1 67.6

InsectSound Best 82.8 83.3 83.7 85.8 84.4 85.6
Avg 76.7 76.0 78.7 78.7 78.7 79.7

FruitFlies Best 92.2 90.9 92.2 95.2 95.0 95.1
Avg 88.4 88.4 89.4 93.1 92.9 93.9

RightWhaleCalls Best 94.3 93.8 95.1 96.7 97.0 96.1
Avg 92.8 93.5 94.2 94.0 94.8 95.1

FaultDetectionA Best 98.0 97.7 98.1 99.6 99.8 99.8
Avg 94.6 95.2 97.2 99.2 99.2 99.5

ElectricDevices Best 89.0 88.8 90.1 92.4 92.4 92.5
Avg 81.6 83.2 84.0 85.1 85.2 88.1

Crop Best 80.9 81.2 82.0 81.2 80.6 82.2
Avg 69.4 70.9 72.0 68.7 68.3 68.7

FordB Best 98.8 97.3 97.7 97.7 96.5 96.5
Avg 95.4 96.0 96.6 95.7 94.9 94.8

FordA Best 97.3 98.0 97.7 97.1 97.1 97.5
Avg 96.1 96.6 97.2 95.5 95.7 96.0

MelbournePedestrian Best 92.1 91.5 91.0 90.4 91.0 93.1
Avg 81.8 82.8 83.9 83.5 83.8 84.9

Table 14: Multivariate time series classification results (%). “Best” refers to the best run of our 12-run
hyperparameter sweep and “Avg” refers to the average over the sweep.

PatchTST/8 PatchTST/8
+Registers

PatchTST/8
+Jumbo PatchTST/42 PatchTST/42

+Registers
PatchTST/42

+Jumbo

Tiselac Best 96.6 96.9 97.2 96.4 96.4 96.7
Avg 86.9 87.8 90.1 84.7 85.0 87.9

WalkingSittingStanding Best 96.0 96.0 96.5 98.0 97.6 97.6
Avg 91.7 89.8 93.5 93.9 93.9 94.5

SpokenArabicDigits Best 99.9 99.7 99.9 99.7 99.9 99.9
Avg 99.5 99.6 99.6 99.6 99.5 99.7

FaceDetection Best 87.8 88.1 87.5 86.8 86.6 84.8
Avg 78.9 80.9 80.0 77.4 77.4 78.8

PhonemeSpectra Best 56.3 57.1 59.1 57.6 60.3 58.9
Avg 38.2 38.7 46.5 42.9 44.5 47.7

LSST Best 78.7 79.5 79.9 74.6 75.7 79.9
Avg 69.3 69.4 71.2 61.4 61.4 67.3

UWaveGestureLibrary Best 92.7 88.5 87.5 94.8 99.0 94.8
Avg 76.8 79.9 83.4 81.3 83.5 85.4

CharacterTrajectories Best 99.0 98.0 99.6 98.7 99.3 98.4
Avg 93.6 94.2 96.6 96.6 95.2 97.0

AsphaltPavementTypeCoordinates Best 72.3 77.7 81.1 89.5 88.5 89.5
Avg 72.7 75.8 77.0 81.2 82.1 83.7

MotorImagery Best 87.5 83.3 77.1 79.2 66.7 87.5
Avg 84.9 83.3 83.2 73.6 74.0 81.9
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A.6 ATTENTION MAPS

(a) Attention maps of the Jumbo token split into 6
smaller global tokens. Like ViT+Registers, ViT+Jumbo
learns relatively artifact-free attention maps (as com-
pared with the attention maps in Darcet et al. (2024)).

(b) Attention maps of the CLS and the first five register
tokens.
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