
THICKER AND QUICKER: A JUMBO TOKEN FOR FAST PLAIN VISION TRANSFORMERS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 ViTs are general and accurate, and address many tasks, but ViTs are slow, and
012 are not always practical when efficiency is key. Existing methods for faster ViTs
013 design hybrid non-ViT architectures, losing generality, or shrink their tokens,
014 sacrificing accuracy. While many non-ViT architectures are both fast and accurate,
015 they cannot flexibly process other input shapes, pre-train by SOTA self-supervised
016 learning, reduce computation by dropping tokens, and more like ViTs can. We
017 make ViTs faster by reducing patch token width while *increasing* global token
018 width by adding a new Jumbo token. Our wider Jumbo token is processed by its
019 own wider FFN to increase model capacity. Yet our Jumbo FFN is efficient: it
020 processes a single token, for speed, and its parameters are shared across all layers,
021 for memory. Crucially, our Jumbo is *attention-only* and *non-hierarchical*, like a
022 plain ViT, so it is simple, scalable, flexible, and compatible with ViT methods new
023 and old. Jumbo improves over ViT baselines with Registers from Nano to Large
024 scales *while maintaining speed/throughput* on ImageNet-1K ($\uparrow 0.1\text{--}13\%$). Jumbo
025 also improves MAE pre-training ($\uparrow 4.9\%$ linear probing on ImageNet-1K), test-time
026 adaptation ($\uparrow 5.2\%$ on ImageNet-C), and time series modeling. Our Jumbo models
027 even achieve better speed-accuracy trade-offs than *specialized non-ViT* compute-
028 efficient models, while maintaining plain-ViT compatibility for practicality.
029

1 INTRODUCTION: ARCHITECTURE, ACCURACY, AND EFFICIENCY

030 For most model sizes, the vision transformer (ViT; [Dosovitskiy et al. \(2021\)](#)) is the go-to architecture
031 in computer vision—powering foundation models like DINOv2 ([Oquab et al., 2024](#)), language-
032 aligned models like CLIP ([Radford et al., 2021a](#)), segmentation models like SAM ([Kirillov et al.,
033 2023](#)), 3D vision models like DUST3R ([Wang et al., 2024](#)), and diffusion models like DiT ([Peebles
034 & Xie, 2022](#)). These are all “plain” ViTs, which are crucially *attention-only* and *non-hierarchical*.
035

036 At the smallest scales—offering the *highest speeds/throughputs*—plain ViTs are not competitive with
037 highly specialized architectures ([Yun & Ro, 2024](#)). We attribute the worse accuracy-speed of plain
038 ViTs to their *width* (number of channels). Existing work scales width *equally* across all tokens and
039 layers so higher speed requires lower width: ViT-Base(768) \rightarrow ViT-Small(384) \rightarrow ViT-Tiny(192).
040

041 We scale width differently across tokens and equally across layers. Our architecture adds a **Jumbo**
042 token, which replaces the conventional CLS token, that is $J \times$ wider than the patch tokens, with its
043 own wider feed-forward network (FFN), to effectively and efficiently boost model capacity. For
044 self-attention, the Jumbo token is split into $J \times$ as many tokens/heads, but the Jumbo FFN is only
045 applied to the one (merged) token to reduce time and shared across layers to reduce memory. Jumbo
046 keeps the defining traits of a plain ViT—attention-only and non-hierarchical—so Jumbo applies
047 anywhere a plain ViT does but at higher speed.

048 The simplicity of ViTs is due to their attention-only and non-hierarchical architecture. Multiple
049 uses of ViTs rely on this architectural “interface” for their computation and function. For instance,
050 this interface enables efficient sparse computation through masking/token dropping. Random token
051 dropping enables efficient training ([Liu et al., 2023; Dehghani et al., 2024; Leroy et al., 2024](#)) and
052 learned token dropping enables efficient deployment ([Bolya et al., 2023; Fuller et al., 2025](#)). Several
053 SoTA self-supervised learning (SSL) algorithms require token dropping for learning ([He et al., 2022;
Garrido et al., 2024; Wei et al., 2025; Venkataraman et al., 2025](#)). This same interface enables
flexible processing of different input shapes, like time series ([Nie et al., 2023](#)) or video ([Arnab et al.,](#)

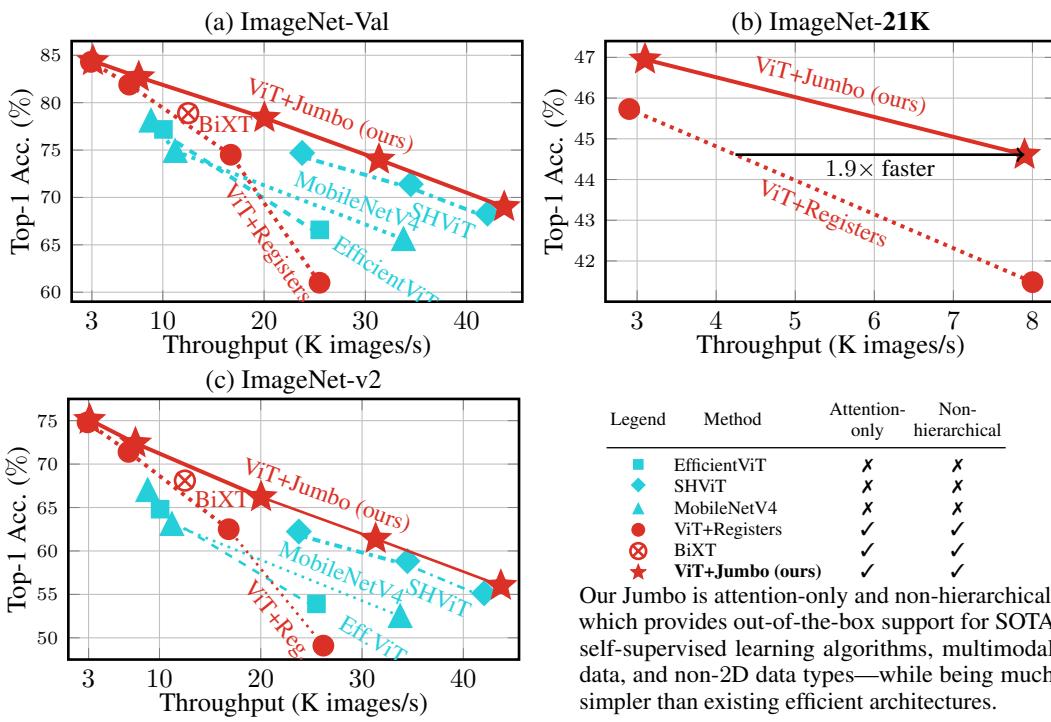


Figure 1: Plain ViTs are in red, and others are in blue. ViT+Jumbo outperforms SOTA compute-efficient architectures — while maintaining the advantages of plain ViTs. ViT+Jumbo outperforms ViT+Registers on ImageNet-1K and the more challenging ImageNet-21K dataset. Throughput is measured on an RTX 4090 GPU using PyTorch 2.6.0, `torch.compile`, and a 512 batch size.

2021). Moreover, many extensions and applications—from object detection and segmentation heads (Fang et al., 2023; Zhang et al., 2022) to test-time adaptation algorithms (Niu et al., 2023)—are designed for this plain ViT interface. Architectures that maintain ViT compatibility inherit all of this.

Our experiments show that Jumbo improves speed-accuracy performance across tasks, datasets, and modalities. ❶ **Image classification:** Jumbo outperforms ViTs by 0.1–13% on ImageNet-1K and 1.2–3.1% on ImageNet-21K while maintaining throughput and achieves the pareto frontier vs. compute-efficient architectures. ❷ **Self-Supervised Learning (SSL):** Jumbo improves MAE (He et al., 2022) pretraining measured with linear probing by 4.9% on ImageNet-1K at ViT-Base scale—this ViT-Base+Jumbo ties the ViT-Large baseline, with 2.3× fewer parameters, 3.5× fewer FLOPs, and 3.1× higher throughput. ❸ **Test-time adaptation (TTA):** Jumbo is more accurate and more robust with 5.2% improvement on ImageNet-C using a SOTA adaptation method for transformers (SAR (Niu et al., 2023)). ❹ **Time series:** Jumbo generalizes beyond vision to rank first across 20 time series benchmarks vs. transformer baselines.

Jumbo is such an efficient ViT-compatible architecture that it outperforms *highly specialized* existing architectures on ImageNet-1K (Fig. 1). This is notable because such compute-efficient architectures (Chen et al., 2023; Howard et al., 2017) sacrifice generality and compatibility with other techniques and applications. Even efficient architectures based on ViTs include convolutions, hierarchy, and batch normalization (Yun & Ro, 2024; Vasu et al., 2023b; Cai et al., 2023) that make them **incompatible** out of the box with SSL by MAE, TTA by SAR, time series, ViT heads, etc. *Jumbo delivers compute efficiency while maintaining plain-ViT compatibility.*

2 BACKGROUND AND RELATED WORK: GENERALISTS AND SPECIALISTS

2.1 VISION TRANSFORMERS: SIMPLE, FLEXIBLE, BUT NOT YET FAST

Jumbo extends ViTs. A ViT splits an image into a patch grid, $\mathbb{R}^{Y \times X \times C} \rightarrow \mathbb{R}^{N_y \times N_x \times P_y \times P_x \times C}$, where C is the number of channels, Y / X are the image height / width, N_y / N_x are the grid height /

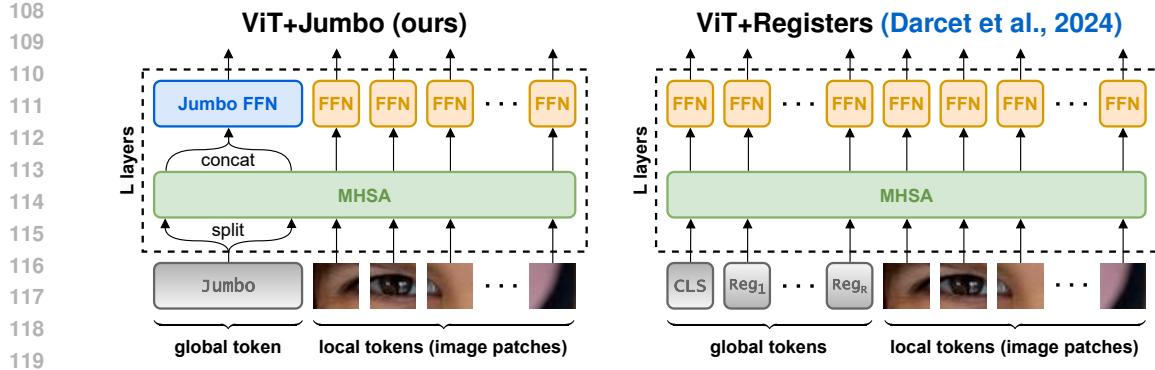


Figure 2: **(Left)** Our ViT+Jumbo method creates a wide global token that gets split into several tokens, with width equal to the patch width, prior to multi-headed self-attention (MHSA). After attention, the split Jumbo token is reassembled via concatenation, and is then processed by *its own FFN*. Patches are processed by *their own, shared FFN*. **(Right)** ViT+Registers creates register tokens all equal to the patch width — and all tokens are processed by a *shared FFN*. ViT+Jumbo enhances global processing as the (split) global tokens can interact via an expressive FFN, plus attention.

width, and P_y / P_x are the patch height / width in pixels (equal to $\frac{Y}{N_y} / \frac{X}{N_x}$). Next, they flatten the grid into a sequence and flatten the patches into vectors, $\mathbb{R}^{N_y \times N_x \times P_y \times P_x \times C} \rightarrow \mathbb{R}^{N \times D_{pix}}$, where N is the number of patches (equal to $N_y \cdot N_x$), and D_{pix} is the number of pixel values per patch (equal to $P_y \cdot P_x \cdot C$). Next, they apply a learnable linear projection to form patch embeddings, $\mathbb{R}^{N \times D_{pix}} \rightarrow \mathbb{R}^{N \times D}$, where D is the token width, also known as the embedding dimension. Next, they add position embeddings to patch embeddings. These operations produce patch tokens $\mathbf{x}^P \in \mathbb{R}^{N \times D}$ that represent local information—typically a 16×16 px square. Crucially for us, ViTs prepend a learnable CLS token \mathbf{x}^{CLS} to the sequence of patch tokens, $\mathbf{x} = \mathbf{x}^{CLS} \parallel_0 \mathbf{x}^P \in \mathbb{R}^{(N+1) \times D}$, where \parallel_0 denotes concatenation along the 0th (sequence) dimension. Finally, the input \mathbf{x} is processed by a plain transformer and the CLS token, having attended to all other tokens, can serve as the global representation of the image. ViT sizes vary w.r.t. depth and width. ViT-Large has 24 layers, others have 12 layers, while the widths vary $\{96, 128, 192, 384, 768, 1024\}$, corresponding to names $\{\text{Pico, Nano, Tiny, Small, Base, Large}\}$. Narrower ViTs require less computation and are thus faster.

A standard image size of 224×224 px and a standard patch size of 16×16 px result in 196 local tokens. A *single* CLS token—designed to aggregate global information for classification—provisions 1/197th of a model’s representational capacity to global information (and this fraction decreases with larger images and/or smaller patches). This allocation is imbalanced, and may not be optimal. Recent work finds evidence to support this intuition and proposes a fix: register tokens.

Registers. [Dariset et al. \(2024\)](#) find that ViTs learn to repurpose some patch tokens to behave like additional CLS tokens by collecting global information and discarding patch-specific local information. The same work proposes a fix: prepend extra learnable tokens—called registers $\mathbf{x}^{Reg} \in \mathbb{R}^{R \times D}$, where R is the number of registers—to the input sequence, $\mathbf{x} = \mathbf{x}^{CLS} \parallel_0 \mathbf{x}^{Reg} \parallel_0 \mathbf{x}^P \in \mathbb{R}^{(N+R+1) \times D}$. Registers improve accuracy (by $\sim 0.4\%$ on ImageNet-1K ([Russakovsky et al., 2015](#)) at ViT-Base) and reduce attention map artifacts/noise by provisioning more global capacity.

Registers are elegant, simple, and keep the plain ViT interface. In theory, registers can benefit any plain, non-causal transformer. These advantages account for registers’ *significant and immediate* impact including in applications beyond images ([Dong et al., 2024](#); [Vaquero et al., 2024](#); [Leigh et al., 2024](#); [Messaoud et al., 2025](#); [Hu et al., 2024](#); [Thimonier et al., 2024](#); [Omranpour et al., 2024](#)). Our Jumbo is inspired by ViT+Registers: see Fig. 2 for their relationship and key differences.

2.2 COMPUTE-EFFICIENT ARCHITECTURES: FAST, BUT NOT SIMPLE NOR FLEXIBLE

The Jumbo architecture is accurate and compute-efficient, so we highlight 3 architectures and use them as baselines for high-speed ViTs. ① EfficientViT ([Cai et al., 2023](#)) and ② SHViT ([Yun & Ro, 2024](#)) improve the efficiency of ViTs by incorporating efficient attention, pooling, and convolutional

162 layers. ③ MobileNetV4 (Qin et al., 2025) improves the efficiency of CNNs by leveraging many
163 strategies (and different strategies for different model sizes). These baselines represent the SOTA in
164 computational efficiency; please refer to Appendix A.2 for descriptions of these model architectures.
165

166 Beyond these, there is a rich literature on compute-efficient vision architectures. For example, several
167 efficient CNN-based architectures exist (Howard, 2017; Sandler et al., 2018; Howard et al., 2019;
168 Han et al., 2020; Tan et al., 2019; Vasu et al., 2023a); however, these are surpassed by MobileNetV4
169 (Qin et al., 2025). Since the invention of the ViT, there have been many compute-efficient “ViTs” that
170 incorporate efficiencies inspired by CNN-based approaches (Vasu et al., 2023b; Mehta & Rastegari,
171 2021; 2022; Li et al., 2023; Pan et al., 2022; Chen et al., 2022; Li et al., 2022). SHViT (Yun & Ro,
172 2024) has recently surpassed these architectures. Despite their impact and ingenuity, none of these
173 hybrid architectures meets the definition of a plain ViT, which is attention-only and non-hierarchical;
174 they thus lose many advantages of ViTs that we wish to keep. On the other hand, BiXT (Hiller et al.,
175 2024) models are an efficient extension of the Perceiver architecture (Jaegle et al., 2021) that keeps
the attention-only and non-hierarchical properties of ViTs, which are a natural comparison to Jumbo.
176

177 3 METHOD: A JUMBO TOKEN FOR A COMPUTE-EFFICIENT PLAIN ViT

178

179 3.1 DESIGN MOTIVATION AND INTUITION

180

181 **Capacity and Cost.** Although Jumbo adds a
182 wider token and FFN, the cost is minimal. *The*
183 *key insight is that a single wide token affords*
184 *much greater width and more processing with-*
185 *out slower speed.* As shown in Fig. 3, the main
186 drivers of computational cost (FLOPs per layer)
187 are sequence length and patch width, D . The
188 FLOP contribution from our Jumbo token is
189 comparatively negligible. Since our archi-
190 tecture shares Jumbo FFN parameters across all
191 ViT layers, its memory costs are also minimal.
192

193 **Non-hierarchical and attention-only.** Jumbo
194 preserves the non-hierarchical shape of ViTs
195 (also known as columnar or isotropic shape). By
196 foregoing convolutions, spatial information only
197 moves through attention. These two properties
have several advantages that we now discuss.

198 **Token Dropping / Masking.** Although convolutions are capable of processing a sparse subset of
199 patches via sparse compute kernels, these kernels can be complex, challenging to use, and require
200 updating when new hardware arrives. Furthermore, sparse convolutional kernels will never be as
201 efficient as simply indexing from a sequence—i.e., how transformers drop tokens. As a comparison,
202 ConvNeXt V2 (Woo et al., 2023) reports a $1.3\times$ speedup using a 60% masking ratio with the
203 Minkowski Engine v0.5.4 (Choy et al., 2019). Conversely, MAE (He et al., 2022) report $2.8 - 4.1\times$
204 speedups using a 75% masking ratio with plain ViTs. *Efficient token dropping is required for*
205 *SOTA SSL algorithms* (Assran et al., 2023; Fu et al., 2024; Garrido et al., 2024; Wei et al., 2025;
206 Venkataraman et al., 2025; Oquab et al., 2024). Token dropping also speeds up supervised training
207 (Dehghani et al., 2024). We demonstrate Jumbo’s token dropping ability in subsections 4.2 and 4.4.

208 **Other Data Modalities and Shapes.** These properties explain the input flexibility of transformers,
209 which Jumbo keeps. For example, 1D time series, 3D point clouds, or multimodal data; users need
210 only adjust tokenization strategies. We show a 1D time series application of Jumbo in subsection 4.5.

211 **Plain ViT’s Ecosystem.** These two properties—non-hierarchical and attention-only—maintain
212 support for methods invented for the plain ViT. For example, segmentation and object detection heads
213 (Fang et al., 2023; Liu et al., 2025; Zhang et al., 2022), which expect ViT’s unpooled feature map;
214 test-time adaptation methods (Niu et al., 2023), designed for the LayerNorm (Ba et al., 2016) *not*
215 BatchNorm (Ioffe & Szegedy, 2015); and attention improvements, such as Flash Attention (Dao et al.,
216 2022), which can speed up self-attention by $> 5\times$. *Jumbo supports these innovations out of the box.*

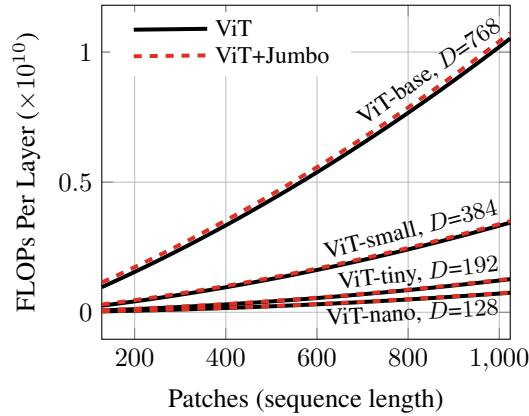


Figure 3: The cost of layers is largely determined by the number of patches and their width D . The cost of our Jumbo token ($J=6$) is negligible.

216 Crucially, *none* of the compute-efficient architectures in subsection 2.2 immediately benefit from
217 these advances, support other data modalities or token dropping, or integrate with the ViT ecosystem.
218

219 **Two hypotheses.** Jumbo asymmetrically increases the model capacity. Thus, ❶ we expect increasing
220 gains due to Jumbo with *decreasing* patch token width. ❷ We expect increasing gains due to Jumbo
221 with *increasing* task output dimensionality. We explore both of these hypotheses using experiments
222 with ViTs of different widths and datasets of different complexities.

223 3.2 DESIGN SPECIFICS FOR TOKEN-WIDTH ASYMMETRY

225 Exactly like the original ViT, Jumbo computes patch embeddings, $\mathbf{x}^P \in \mathbb{R}^{N \times D}$. Unlike the original
226 ViT, our method creates a Jumbo token that is J times wider than the patch width D , $\mathbf{x}^{\text{Jumbo}} \in \mathbb{R}^{J \cdot D}$.
227 Architecturally identical transformer layers then process these inputs.

228 Before self-attention, the Jumbo token is split into J tokens, $\|_J^1 \mathbf{x}^{\text{Jumbo}} : \mathbb{R}^{1 \times J \cdot D} \rightarrow \mathbb{R}^{J \times D}$, where
229 $\|_J^1$ denotes splitting into J segments along the 1st (feature) dimension. Next, the split Jumbo token is
230 concatenated with patch embeddings along the sequence dimension, $\mathbf{x} = \mathbf{x}^{\text{Jumbo}} \|_0 \mathbf{x}^P \in \mathbb{R}^{(N+J) \times D}$.
231 This sequence is sent through a plain multi-headed self-attention layer. Afterward, the Jumbo token is
232 extracted from the sequence by splitting along the sequence dimension, $\|_2^0 \mathbf{x} : \mathbb{R}^{(N+J) \times D} \rightarrow$
233 $(\mathbb{R}^{J \times D}, \mathbb{R}^{N \times D})$, where the first element contains the (still split) Jumbo token and the second element
234 contains the patch representations. Finally, the Jumbo token is reassembled through concatenation
235 along the channel dimension, $\mathbf{x}^{\text{Jumbo}} = \|_1 \mathbf{x}^{\text{Jumbo}} : \mathbb{R}^{J \times D} \rightarrow \mathbb{R}^{1 \times J \cdot D}$. These two splits and two
236 concatenations add negligible runtime overhead.

237 After self-attention, the Jumbo token is processed by its own FFN that does not share parameters
238 with the patch FFN. Fig. 2 indicates this by coloring the Jumbo and patch FFNs differently. After
239 processing by all layers, we project the Jumbo token to C class logits, $\mathbb{R}^{J \cdot D} \rightarrow \mathbb{R}^C$.

240 **Layer sharing.** We share our Jumbo FFN parameters across all layers to reduce memory use (through
241 fewer model parameters). All other model parameters are not shared across layers, as usual. Sharing
242 also acts as regularization. Empirically, we find sharing keeps (and sometimes increases) Jumbo’s
243 accuracy gains compared with *not* layer sharing—while effectively controlling memory use. Sharing
244 the FFN layer is thus the default in our Jumbo architecture.

246 4 EXPERIMENTS: ACCURACY, COMPUTE EFFICIENCY, AND GENERALITY

248 For all experiments, we measure throughput on an RTX 4090 GPU using PyTorch 2.6.0,
249 `torch.compile`, and a 512 batch size.

252 4.1 IMAGENET-1K EXPERIMENTS WITH COMPUTE-EFFICIENT BASELINES

253 **Setup.** We perform controlled experiments to evaluate Jumbo. Specifically, we train models from
254 scratch on ImageNet-1K (Russakovsky et al., 2015) at 128×128 px for 400 epochs, then for 20
255 epochs at 224×224 px. We leverage distillation to improve convergence, which is a common strategy.

256 We train each model architecture twice, once for each learning rate $\{1e-3, 3e-3\}$ (Touvron et al.,
257 2022; Yun & Ro, 2024) using a 1024 batch size with the AdamW optimizer (Loshchilov, 2017). We
258 report the results of the best learning rate for each model architecture. Please see Appendix A.3.1 &
259 A.4 for hyperparameters and complete results, respectively.

260 **Baselines.** We choose the high-speed models for each family: ❶ ViT+Registers {Nano, Tiny, Small,
261 Base} (Darcret et al., 2024), ❷ BiXT has 1 size (tiny), ❸ EfficientViT {B0, B1} (Cai et al., 2023), ❹
262 SHViT {S1, S2, S3} (Yun & Ro, 2024), and ❺ MobileNetV4 {Conv-Small, Conv-Medium, Hybrid-
263 Medium} (Qin et al., 2025). We compare these architectures with our high-speed ViT+Jumbo variants
264 {Pico, Nano, Tiny, Small, Base}. Darcret et al. (Darcret et al., 2024) show ViT+Registers with $R=16$
265 performs best, which we confirm in the appendix Table 7 and use in these experiments. We show
266 ViT+Jumbo is robust to the choice of J ; we use $J=6$ and study its effect in the appendix Table 12.

267 **Test Sets.** We test all models on the three most common ImageNet-1K test sets: ImageNet-Val
268 (Russakovsky et al., 2015), ImageNet-ReaL (Beyer et al., 2020), and ImageNet-v2 (Recht et al.,
269 2019). To further evaluate generalization we also test all models on ImageNet-HR (Fuller et al.,

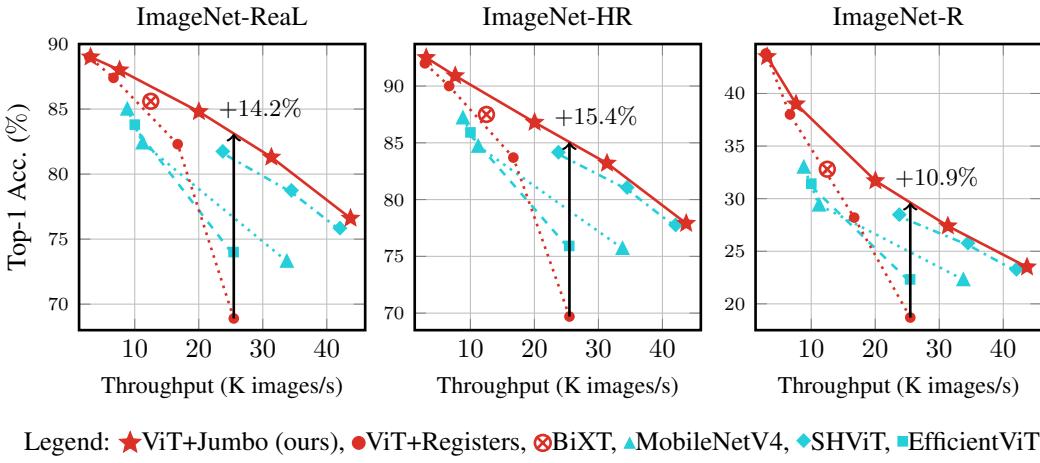


Figure 4: ViT+Jumbo achieves the Pareto frontier and is much simpler than specialized compute-efficient architectures. Results are plotted for each model’s best learning rate. Throughput is measured on an RTX 4090 GPU using PyTorch 2.6.0, `torch.compile`, and a 512 batch size.

for its image diversity and high-quality annotations, ImageNet-R (Hendrycks et al., 2021), for its out-of-distribution images.

Results. As illustrated in Fig 4, Jumbo achieves the Pareto frontier on ImageNet-1K. Crucially, Jumbo achieves these results while preserving the many advantages and simplicity of plain ViTs. Even matching the specialized compute-efficient architectures makes a strong case for ViT+Jumbo.

ViT+Jumbo outperforms ViT+Registers by 13% at the nano scale and 4% at the tiny scale, where such gains are significant. This confirms our first hypothesis that Jumbo’s gains should increase as we decrease the patch width, i.e., from Small (384) to Tiny (192) to Nano (128) (Figs. 1a, 4).

ViT+Jumbo is a clear choice if a researcher or practitioner requires high speed and out-of-the-box ViT compatibility for SSL algorithms or multimodal processing. ViT+Registers is not as accurate at high speed, while the specialized compute-efficient architectures do not support most SOTA SSL algorithms or flexible processing across modalities. Remote sensing (Rolf et al., 2024) and autonomous driving (Muhammad et al., 2020) are two of many applications where this combination of speed, SSL support, and multimodal processing is particularly valuable.

4.2 IMAGENET-21K EXPERIMENTS WITH ViT COMPARISONS

ImageNet-1K is a subset of the more challenging, original ImageNet (Deng et al., 2009), now referred to as ImageNet-21K. We use a common variant comprising 10,450 classes that includes processing to make a more accessible benchmark (Ridnik et al., 2021). This dataset provides more than 10 \times the number of classes and samples as ImageNet-1K, making it well suited to test our second hypothesis—that is, gains due to Jumbo should increase with increasing task-output dimensionality.

Setup. We train models from scratch on ImageNet-21K. Since training models on ImageNet-21K is expensive, we leverage a token dropping strategy to reduce costs. Specifically, we start training with a 90% token drop rate and linearly decrease this value to 10%; this halves the total number of tokens processed. Dehghani et al. (2024) demonstrate the effectiveness of this strategy, i.e., leveraging “masking” with plain supervised training. Plain ViTs support masking with minimal code changes. We train each model architecture once, for 50 epochs using a 3e-3 learning rate and a 1024 batch size with the AdamW optimizer (Loshchilov, 2017) (see the Appendix A.3.1 for other hyperparameters).

Baselines. We choose ViT+Registers {Small, Base} to compare with our ViT+Jumbo {Small, Base} sizes. This is a more narrow but valid comparison, as the plain ViT is the vision community’s preferred architecture at these scales. For ViT+Registers, we use $R=16$; for ViT+Jumbo, we use $J=3$ for the Small model and $J=3$ for the Base model.

324 **Results.** ViT+Jumbo outperforms ViT+Registers by 3.1% and 1.2% at ViT-Small and ViT-Base
 325 scales, respectively (see Fig. 1b). Gains due to Jumbo increase when scaling from ImageNet-1K to
 326 ImageNet-21K for a given model size, e.g., ViT-Small gains increase from 0.8% (Fig. 1a) to 3.1%.
 327 Thus, these findings confirm our second hypothesis that gains due to Jumbo should increase with
 328 increasing output dimensionality. Furthermore, for a given accuracy Jumbo is 1.9 \times faster (Fig. 1b).
 329

330 4.3 MASKED AUTOENCODING EXPERIMENTS

331 **Setup.** We pretrain Jumbo ViT-Base and ViT-Large models using masked autoencoding (MAE; (He
 332 et al., 2022)) using the default settings. This tests Jumbo’s ability in a standard SSL framework. This
 333 also tests Jumbo’s scalability to larger models (up to ViT-Large) and longer training schedules (up to
 334 1600 epochs on ImageNet-1K). These experiments are expensive, so we leverage free TPU resources,
 335 perform no hyperparameter tuning, and compare against plain ViT results obtained with the same
 336 MAE implementation. After pretraining, we linear probe on ImageNet-1K to obtain accuracies.
 337

338 **Table 1: MAE Pretraining.** Jumbo
 339 significantly outperforms standard ViT.
 340 Jumbo scales to these large MAE
 341 models and their long training sched-
 342 ules (1600 epochs for ViT-Base, 800
 343 epochs for ViT-Large). After pretrain-
 344 ing, we linearly probe to compute top-
 345 1 accuracy on ImageNet-1K.

Architecture	Speed K imgs/s	Params M	Memory GB	FLOPs G	Top-1 Acc. %
ViT-base	3.1	86.6	3.3	16.5	68.1
ViT-base+ Jumbo	3.1	130.7	3.9	16.9	73.0
ViT-large	1.0	304.4	5.0	59.7	73.0
ViT-large+ Jumbo	1.0	382.2	5.2	59.9	74.0

346 **Results.** Our ViT-Base+Jumbo MAE outperforms the baseline by 4.9% on ImageNet-1K. ViT-
 347 Base+Jumbo *ties* the ViT-Large MAE, while Jumbo is 3 \times faster with only 0.43 \times the parameters. This
 348 shows Jumbo can be applied to SSL by MAE to improve performance without further modification.
 349 The role of masking in the MAE suggests that the wider Jumbo token stores more global information.
 350 For this MAE, Jumbo is a more efficient way to scale model parameters than the wider ViT.
 351

353 4.4 ROBUSTNESS AND TEST-TIME ADAPTATION EXPERIMENTS

354 **Setup.** We measure robustness to corruption with and without adaptation. We follow SAR (Niu et al.,
 355 2023) exactly, swapping in ViT-S models with Registers or our Jumbo from Sec. 4.1, and measure
 356 robustness to 15 corruptions at the highest severity from ImageNet-C (Hendrycks & Dietterich, 2019).
 357

358 **Table 2: Test-Time Adaptation (TTA).** Jumbo improves plain-ViT robustness *without* TTA (avg.
 359 \uparrow 3.6%) and *with* TTA (avg. \uparrow 5.2%) on ImageNet-C. We follow SAR (Niu et al., 2023) and test across
 360 15 shifts at the highest severity. Jumbo is directly compatible with SOTA methods designed for ViTs,
 361 for instant use without tuning, unlike highly-specialized architectures (MobileNet, SHViT, ...).
 362

Method	Gauss.	Shot	Impul.	Defoc.	Glass	Motion	Zoom	Snow	Frost	Fog	Brit.	Contr.	Elastic	Pixel	JPEG	Avg.
Registers	13.6	14.2	13.0	29.3	20.3	34.9	28.7	49.0	50.4	56.6	73.5	47.8	29.0	45.6	56.1	37.5
Jumbo	25.9	26.6	25.8	31.2	21.4	33.3	30.6	53.1	51.9	57.3	75.2	49.4	30.5	47.5	57.1	41.1
Registers+SAR	38.9	39.2	41.5	48.2	48.7	56.5	32.1	62.0	59.4	68.9	76.1	61.5	59.1	65.5	66.1	54.9
Jumbo+SAR	45.2	49.6	51.2	53.3	53.2	61.1	44.5	66.2	58.5	71.7	77.5	67.1	65.2	69.0	69.0	60.1

363 **Results.** Jumbo is both more accurate than Registers (+0.8% on IN-Val) and more robust than
 364 Registers on corrupted data (+3.6% on IN-C). Test-time adaptation by SAR further increases the
 365 robustness gain to +5.2%. In principle test-time adaptation can apply to any architecture, but in
 366 practice methods specialize. SOTA methods such as SAR are designed for the plain ViT LayerNorm,
 367 and not the BatchNorm of SHViT, MobileNetV4, and EfficientViT, so ViT compatibility is a plus.
 368

375 4.5 TIME SERIES EXPERIMENTS

376 Jumbo can easily process different input shapes (beyond images) because it maintains the plain
 377 transformer interface. We apply Jumbo to time series inputs. PatchTST (Nie et al., 2023) is a SOTA

378 patch-based transformer for time series that we extend with registers (PatchTST+Registers) or Jumbo
379 (PatchTST+Jumbo).
380

381 **Setup.** We train models from scratch on ① 10 univariate time series datasets from the UCR archive
382 (Dau et al., 2018), and ② 10 multivariate time series datasets from the UEA archive (Bagnall et al.,
383 2018); both of which are commonly used benchmarks (Zerveas et al., 2021; Grover et al., 2024; Le
384 et al., 2024). For each dataset and model, we perform a hyperparameter sweep from the Cartesian
385 product of learning rate {3e-3, 1e-3, 3e-4, 1e-4}, and dropout {0.0, 0.1, 0.2}. More details are in
386 Appendix A.3.2. We report the best run and the average of all 12 runs per experiment in the appendix
387 Tables 13 & 14. To summarize these results, we compute the rank between models and then average
388 the ranks over the 10 univariate and 10 multivariate datasets.

389 **Baselines.** We compare PatchTST with our PatchTST+Jumbo method and our PatchTST+Registers
390 baseline. We experiment with 8 and 42 patches per sequence for all three models. Jumbo and registers
391 are both simple to adopt for PatchTST because they remain plain transformers.

392 **Table 3: Time series** rankings using PatchTST (Nie et al.,
393 2023) with Registers or Jumbo (*lower is better* and the best
394 is in bold). We rank over 10 univariate and 10 multivariate
395 datasets. “Best” is the best run of our 12-run hyperparame-
396 ter sweep and “Avg” is the average over the sweep. Jumbo
397 achieves the best ranking in all experiments. We use two
398 patch sizes: 8/42 (results are formatted likewise).

		PatchTST	PatchTST	
		Best	2.0/1.9	2.5/2.1
	Univar.	Avg	2.9/2.3	2.1/2.4
	Multivar.	Best	2.1/2.0	2.1/1.9
	Multivar.	Avg	2.7/2.6	2.0/2.4

	PatchTST	PatchTST	
	Registers	+Jumbo	
Univar.	2.5/2.1	1.5/1.7	
Multivar.	2.1/1.9	1.6/1.7	

400 **Results.** PatchTST+Jumbo outperforms strong PatchTST and PatchTST+Registers baselines (Tab. 3).
401 Jumbo gains the most with fewer patches and when considering overall results across hyperparameters.
402 These results establish that Jumbo can improve non-causal transformers beyond ViTs.
403

404 4.6 ABLATIONS

405 **Table 4: Jumbo’s shared FFN** increases accuracy and is mem-
406 ory efficient. Our Jumbo FFN
407 can be enlarged ($J=10$) for even
408 higher performance, at relatively
409 low cost. We report top-1 accuracy
410 on ImageNet-21K.
411

Architecture	Speed K imgs/s ↑	Params M	Memory GB ↓	FLOPs G ↓	Top-1 Acc. % ↑
Jumbo (Fig. 1b)	7.9	88.3	2.6	4.6	44.61
Jumbo without layer sharing	7.7	555.6	4.1	4.6	44.95
Jumbo without Jumbo FFN	8.4	45.8	2.2	4.4	43.64
Jumbo with LoRA, rank=8	7.7	88.8	2.5	4.6	44.94
Jumbo $J: 6 \rightarrow 10$	6.9	179.9	3.4	5.5	45.62

412 **Setup.** We follow our ImageNet-21K training recipe and ablate Jumbo’s design at ViT-Small scale to
413 better understand the contributions of the architecture and its design choices.
414

415 **Results.** (Tab. 4) Not sharing the Jumbo FFN across layers slightly improves accuracy at this scale.
416 However, we can fully recover from the drop with sharing by adapting the Jumbo FFN parameters
417 with LoRAs (Hu et al., 2022): we still share the Jumbo FFN across layers but apply layer-specific
418 LoRAs to specialize efficiently. LoRAs recover accuracy at negligible cost in speed and memory.
419 Jumbo without Jumbo FFNs performs well enough (2.2% better than ViT+Registers) but worse than
420 Jumbo: the main difference between this ablation and ViT+Registers is that it concatenates all global
421 tokens as input to the classifier (rather than discarding registers). Yet, our best ViT-Small includes the
422 Jumbo FFN: with $J=10$ its shared FFN achieves 45.6% top-1 accuracy. This Jumbo model beats
423 ViT-Small+Registers by 4.1% and matches ViT-Base+Registers (0.1% difference) with higher speed
424 (2.4× faster) and less memory.
425

426 4.7 ANALYSIS: HOW TO SCALE EFFICIENCY AND CAPACITY

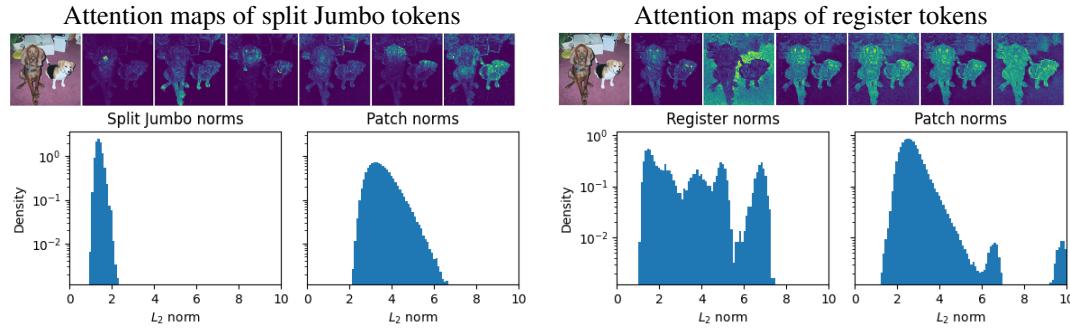
427 **Is Jumbo more accurate just because it has more parameters?** **No.** We take ViT-
428 B+Registers and increase its width 768→1024 to equalize the number of parameters with
429 our ViT-Base+Jumbo (Tab. 5 rows 1 & 3). These models differ in accuracy by 0.1%,
430

432
 433 Table 5: ViT-Base+Jumbo matches
 434 a *symmetrically wider* ViT+Registers
 435 with equal params; yet our Jumbo is
 436 1.7 \times faster. Jumbo also outperforms
 437 other ways of adding global capacity,
 438 e.g., 1 uses an FFN for patches, and
 439 a separate FFN for CLS+Reg. tokens,
 440 2 uses an FFN for patches+CLS, and
 441 separate FFN for Reg. tokens. We re-
 port top-1 accuracy on ImageNet-21K.
 442
 443

Architecture	Speed K imgs/s \uparrow	Params M	Memory GB \downarrow	FLOPs G \downarrow	Top-1 Acc. % \uparrow
ViT-Base models					
Jumbo	3.1	152.5	4.1	16.5	46.95
Reg. (Darcel et al., 2024)	2.9	93.9	3.5	18.2	45.73
Registers D: 768 \rightarrow 1024	1.8	162.9	4.5	32.4	47.08
ViT-Small models					
Jumbo	7.9	88.3	2.6	4.6	44.61
Reg. (Darcel et al., 2024)	8.0	25.7	2.3	4.6	41.48
Alt. 1: CLS+Reg. FFN	7.7	39.9	2.3	4.6	41.51
Alt. 2: Reg. FFN	7.7	39.9	2.3	4.6	42.11

444 yet Jumbo is more efficient with 1.7 \times the throughput, 0.5 \times the FLOPs, and 0.9 \times the memory.
 445 Our novel asymmetric-width design of the Jumbo token and FFN is crucial to its better efficiency.

446 **Alternate ViT+Register designs.** We experiment with two more architectures to investigate the role
 447 of adding separate FFNs for different types of tokens (Tab. 5). Alternative 1 has an FFN for all patch
 448 tokens with a *separate* FFN for the CLS and registers. Alternative 2 has an FFN for all patch tokens
 449 and the CLS token with a separate FFN for the registers. Neither model gains much: the asymmetric
 450 token width of Jumbo explains its success, and *not* the addition of more parameters alone.



462 Figure 5: Jumbo (left two subfigures) eliminates high-norm, outlier tokens in our measurements.
 463 According to Darcel et al. (Darcel et al., 2024), outlier tokens cause attention-map artifacts, and their
 464 presence can be reduced by adding registers (right two subfigures). By inspection, Jumbo also learns
 465 artifact-free attention maps, and split Jumbo tokens seem to specialize.

466 **Does Jumbo also reduce high-norm tokens?** Registers reduce high-norm, outlier tokens that cause
 467 attention map artifacts (Darcel et al., 2024). We test if Jumbo does the same. The ViT+Jumbo models
 468 we train are in fact *more effective* at reducing outlier tokens than ViT+Registers (Fig. 5). We also
 469 show attention maps in the Appendix A.6 where we again see a similar effect.

472 5 DISCUSSION: EFFICIENCY, GENERALITY, AND CAPACITY

473 **Limitations and Future Work.** In this work, we do not evaluate Jumbo in vision-language (e.g.,
 474 CLIP (Radford et al., 2021b)) or language-only applications (e.g., BERT (Devlin et al., 2019), which
 475 is non-causal and could benefit from Jumbo in theory). We save these applications for future work.

476 **Conclusion.** Jumbo is highly efficient, simple, and general: our Jumbo ViTs achieve SOTA accuracy-
 477 speed trade-offs by a targeted increase in the global computation and parameter capacity of any
 478 plain ViT. We show that upgrading a plain ViT with Jumbo improves accuracy at the same speed
 479 or maintains accuracy at faster speeds for supervised image classification, self-supervised learning,
 480 time series modeling, and test-time adaptation. Jumbo is the first attention-only and non-hierarchical
 481 architecture to outperform specialized compute-efficient architectures like EfficientViT (Cai et al.,
 482 2023). To do so Jumbo increases width *asymmetrically*, across tokens, and not across layers (in
 483 contrast to existing hierarchical models). While increasing model capacity can increase accuracy, it is
 484 critical to add capacity in the right places to *achieve high efficiency and maintain model flexibility* as
 485 we show with Jumbo.

486 REFERENCES

487

488 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lucic, and Cordelia Schmid.
489 ViViT: A Video Vision Transformer . In *2021 IEEE/CVF International Conference on Computer*
490 *Vision (ICCV)*, 2021. doi: 10.1109/ICCV48922.2021.00676.

491 Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
492 Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
493 predictive architecture. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
494 *Pattern Recognition*, pp. 15619–15629, 2023.

495 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
496 <https://arxiv.org/abs/1607.06450>.

497 Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
498 Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. URL
499 <https://arxiv.org/abs/1811.00075>.

500 Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are
501 we done with imagenet? *arXiv preprint arXiv:2006.07159*, 2020.

502 Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, and Alexander Kolesnikov.
503 Knowledge distillation: A good teacher is patient and consistent. In *Proceedings of the IEEE/CVF*
504 *conference on computer vision and pattern recognition*, pp. 10925–10934, 2022.

505 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and
506 Judy Hoffman. Token merging: Your vit but faster. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=JroZRaRw7Eu>.

507 Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. Efficientvit: Lightweight multi-scale
508 attention for high-resolution dense prediction. In *Proceedings of the IEEE/CVF International*
509 *Conference on Computer Vision*, pp. 17302–17313, 2023.

510 Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song Wen, Chul-Ho Lee, and S-H Gary Chan.
511 Run, don't walk: chasing higher flops for faster neural networks. In *Proceedings of the IEEE/CVF*
512 *conference on computer vision and pattern recognition*, pp. 12021–12031, 2023.

513 Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Xiaoyi Dong, Lu Yuan, and Zicheng
514 Liu. Mobile-former: Bridging mobilenet and transformer. In *Proceedings of the IEEE/CVF*
515 *conference on computer vision and pattern recognition*, pp. 5270–5279, 2022.

516 Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
517 convolutional neural networks. In *Proceedings of the IEEE/CVF conference on computer vision*
518 *and pattern recognition*, pp. 3075–3084, 2019.

519 Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
520 Learning augmentation policies from data. *arXiv preprint arXiv:1805.09501*, 2018.

521 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
522 efficient exact attention with io-awareness. *Advances in Neural Information Processing Systems*,
523 35:16344–16359, 2022.

524 Timothée Dariset, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
525 registers. In *The Twelfth International Conference on Learning Representations*, 2024. URL
526 <https://openreview.net/forum?id=2dn03LLiJ1>.

527 Hoang Anh Dau, Anthony J. Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
528 Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn J. Keogh. The UCR time series archive.
529 *arXiv preprint arXiv:1810.07758*, 2018.

530 Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
531 Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim M Alabdulmohsin, et al. Patch
532 n'pack: Navit, a vision transformer for any aspect ratio and resolution. *Advances in Neural*
533 *Information Processing Systems*, 36, 2024.

540 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
541 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
542 pp. 248–255. Ieee, 2009.

543 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
544 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
545 *the North American chapter of the association for computational linguistics: human language*
546 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

547 Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, Zijia Chen, Ameya Sunil Mahabaleshwarkar,
548 Shih-Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen, Yoshi Suhara, Yingyan Lin, Jan Kautz,
549 and Pavlo Molchanov. Hymba: A hybrid-head architecture for small language models, 2024. URL
550 <https://arxiv.org/abs/2411.13676>.

551 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
552 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
553 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
554 In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

555 Yuxin Fang, Shusheng Yang, Shijie Wang, Yixiao Ge, Ying Shan, and Xinggang Wang. Unleashing
556 vanilla vision transformer with masked image modeling for object detection. In *Proceedings of the*
557 *IEEE/CVF International Conference on Computer Vision*, pp. 6244–6253, 2023.

558 Letian Fu, Long Lian, Renhao Wang, Baifeng Shi, Xudong Wang, Adam Yala, Trevor Darrell,
559 Alexei A. Efros, and Ken Goldberg. Rethinking patch dependence for masked autoencoders. *arXiv*
560 *preprint arXiv:2401.14391*, 2024.

561 Anthony Fuller, Daniel Kyrollos, Yousef Yassin, and James R Green. Lookhere: Vision transformers
562 with directed attention generalize and extrapolate. In *The Thirty-eighth Annual Conference on*
563 *Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=o7DOGbZeyP>.

564 Anthony Fuller, Yousef Yassin, Junfeng Wen, Daniel G. Kyrollos, Tarek Ibrahim, James R. Green,
565 and Evan Shelhamer. Lookwhere? efficient visual recognition by learning where to look and what
566 to see from self-supervision, 2025. URL <https://arxiv.org/abs/2505.18051>.

567 Quentin Garrido, Mahmoud Assran, Nicolas Ballas, Adrien Bardes, Laurent Najman, and Yann
568 LeCun. Learning and leveraging world models in visual representation learning. *arXiv preprint*
569 *arXiv:2403.00504*, 2024.

570 Shivam Grover, Amin Jalali, and Ali Etemad. Segment, shuffle, and stitch: A simple layer for improv-
571 ing time-series representations. In *The Thirty-eighth Annual Conference on Neural Information*
572 *Processing Systems*, 2024. URL <https://openreview.net/forum?id=zm1LcgRpHm>.

573 Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. Ghostnet: More
574 features from cheap operations. In *Proceedings of the IEEE/CVF conference on computer vision*
575 and pattern recognition, pp. 1580–1589, 2020.

576 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
577 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
578 *vision and pattern recognition*, pp. 16000–16009, 2022.

579 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corrup-
580 tions and perturbations. *Proceedings of the International Conference on Learning Representations*,
581 2019.

582 Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
583 error linear units. *arXiv preprint arXiv:1606.08415*, 2016.

584 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
585 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
586 analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF international*
587 *conference on computer vision*, pp. 8340–8349, 2021.

594 Markus Hiller, Krista A. Ehinger, and Tom Drummond. Perceiving longer sequences with bi-
595 directional cross-attention transformers. In *Advances in Neural Information Processing Systems*
596 (*NeurIPS*), volume 37, pp. 94097–94129, 2024.

597

598 Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
599 Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
600 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 1314–1324, 2019.

601

602 Andrew G Howard. Mobilenets: Efficient convolutional neural networks for mobile vision applica-
603 tions. *arXiv preprint arXiv:1704.04861*, 2017.

604

605 Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
606 Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
607 mobile vision applications, 2017. URL <https://arxiv.org/abs/1704.04861>.

608

609 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
610 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International
Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

611

612 Yang Hu, Xiao Wang, Lirong Wu, Huatian Zhang, Stan Z Li, Sheng Wang, and Tianlong Chen. Fm-ts:
613 Flow matching for time series generation. *arXiv preprint arXiv:2411.07506*, 2024.

614

615 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
616 reducing internal covariate shift, 2015. URL <https://arxiv.org/abs/1502.03167>.

617

618 Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
619 Perceiver: General perception with iterative attention. In *International conference on machine
learning*, pp. 4651–4664. PMLR, 2021.

620

621 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
622 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
623 Segment anything. *arXiv:2304.02643*, 2023.

624

625 Xuan-May Le, Ling Luo, Uwe Aickelin, and Minh-Tuan Tran. Shapeformer: Shapelet transformer
626 for multivariate time series classification. In *Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining*, KDD ’24, pp. 1484–1494, New York, NY, USA,
627 2024. Association for Computing Machinery. doi: 10.1145/3637528.3671862. URL <https://doi.org/10.1145/3637528.3671862>.

628

629

630 Matthew Leigh, Samuel Klein, François Charton, Tobias Golling, Lukas Heinrich, Michael Kagan,
631 Inês Ochoa, and Margarita Osadchy. Is tokenization needed for masked particle modelling? *arXiv
preprint arXiv:2409.12589*, 2024.

632

633 Vincent Leroy, Jerome Revaud, Thomas Lucas, and Philippe Weinzaepfel. Win-win: Training
634 high-resolution vision transformers from two windows. In *The Twelfth International Confer-
635 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=N23A4ybMJr>.

636

637 Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
638 and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. *Advances in Neural
Information Processing Systems*, 35:12934–12949, 2022.

639

640 Yanyu Li, Ju Hu, Yang Wen, Georgios Evangelidis, Kamyar Salahi, Yanzhi Wang, Sergey Tulyakov,
641 and Jian Ren. Rethinking vision transformers for mobilenet size and speed. In *Proceedings of the
IEEE/CVF International Conference on Computer Vision*, pp. 16889–16900, 2023.

642

643 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
644 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
645 for open-set object detection. In *European Conference on Computer Vision*, pp. 38–55. Springer,
646 2025.

647

648 Yue Liu, Christos Matsoukas, Fredrik Strand, Hossein Azizpour, and Kevin Smith. Patchdropout:
649 Economizing vision transformers using patch dropout. In *Proceedings of the IEEE/CVF Winter*
650 *Conference on Applications of Computer Vision*, pp. 3953–3962, 2023.

651

652 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
653 A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and*
654 *pattern recognition*, pp. 11976–11986, 2022.

655

656 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

657

658 Sachin Mehta and Mohammad Rastegari. Mobilevit: light-weight, general-purpose, and mobile-
friendly vision transformer. *arXiv preprint arXiv:2110.02178*, 2021.

659

660 Sachin Mehta and Mohammad Rastegari. Separable self-attention for mobile vision transformers.
661 *arXiv preprint arXiv:2206.02680*, 2022.

662

663 Kaouther Messaoud, Matthieu Cord, and Alexandre Alahi. Towards generalizable trajectory prediction
664 using dual-level representation learning and adaptive prompting. *arXiv preprint arXiv:2501.04815*,
2025.

665

666 Khan Muhammad, Amin Ullah, Jaime Lloret, Javier Del Ser, and Victor Hugo C de Albuquerque.
667 Deep learning for safe autonomous driving: Current challenges and future directions. *IEEE*
668 *Transactions on Intelligent Transportation Systems*, 22(7):4316–4336, 2020.

669

670 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
671 64 words: Long-term forecasting with transformers. In *International Conference on Learning*
672 *Representations*, 2023.

673

674 Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiqian Wen, Yaofu Chen, Peilin Zhao, and Mingkui
675 Tan. Towards stable test-time adaptation in dynamic wild world. In *The Eleventh International*
676 *Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=g2YraF75Tj>.

677

678 Soroush Omranpour, Guillaume Rabusseau, and Reihaneh Rabbany. Higher order transform-
679 ers: Enhancing stock movement prediction on multimodal time-series data. *arXiv preprint*
680 *arXiv:2412.10540*, 2024.

681

682 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
683 dov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran,
684 Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
685 Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick
686 Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features with-
687 out supervision. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
688 <https://openreview.net/forum?id=a68SUT6zFt>. Featured Certification.

689

690 Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios
691 Tzimiropoulos, and Brais Martinez. Edgevits: Competing light-weight cnns on mobile devices
692 with vision transformers. In *European Conference on Computer Vision*, pp. 294–311. Springer,
693 2022.

694

695 William Peebles and Saining Xie. Scalable diffusion models with transformers. *arXiv preprint*
696 *arXiv:2212.09748*, 2022.

697

698 Danfeng Qin, Chas Leichner, Manolis Delakis, Marco Fornoni, Shixin Luo, Fan Yang, Weijun Wang,
699 Colby Banbury, Chengxi Ye, Berkin Akin, et al. Mobilenetv4: Universal models for the mobile
700 ecosystem. In *European Conference on Computer Vision*, pp. 78–96. Springer, 2025.

701

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
702 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
703 Learning transferable visual models from natural language supervision, 2021a. URL <https://arxiv.org/abs/2103.00020>.

702 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
703 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
704 models from natural language supervision. In *International conference on machine learning*, pp.
705 8748–8763. PMLR, 2021b.

706 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
707 generalize to imagenet? In *International conference on machine learning*, pp. 5389–5400. PMLR,
708 2019.

709 Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
710 the masses. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and*
711 *Benchmarks Track (Round 1)*, 2021. URL https://openreview.net/forum?id=Zkj_VcZ6ol.

712 Esther Rolf, Konstantin Klemmer, Caleb Robinson, and Hannah Kerner. Position: Mission critical –
713 satellite data is a distinct modality in machine learning. In *Proceedings of the 41st International*
714 *Conference on Machine Learning*, pp. 42691–42706, 2024.

715 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
716 Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
717 challenge. *International journal of computer vision*, 115:211–252, 2015.

718 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
719 bilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE conference on*
720 *computer vision and pattern recognition*, pp. 4510–4520, 2018.

721 Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit,
722 and Lucas Beyer. How to train your vit? data, augmentation, and regularization in vision
723 transformers. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL
724 <https://openreview.net/forum?id=4nPswr1KcP>.

725 Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
726 Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In *Proceedings of the*
727 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 2820–2828, 2019.

728 Hugo Thimonier, José Lucas De Melo Costa, Fabrice Popineau, Arpad Rimmel, and Bich-Liên
729 Doan. T-jepa: Augmentation-free self-supervised learning for tabular data. *arXiv preprint*
730 *arXiv:2410.05016*, 2024.

731 Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In *European conference*
732 *on computer vision*, pp. 516–533. Springer, 2022.

733 Lorenzo Vaquero, Yihong Xu, Xavier Alameda-Pineda, Víctor M Brea, and Manuel Mucientes. Lost
734 and found: Overcoming detector failures in online multi-object tracking. In *European Conference*
735 *on Computer Vision*, pp. 448–466. Springer, 2024.

736 Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. Mobileone:
737 An improved one millisecond mobile backbone. In *Proceedings of the IEEE/CVF conference on*
738 *computer vision and pattern recognition*, pp. 7907–7917, 2023a.

739 Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. Fastvit: A
740 fast hybrid vision transformer using structural reparameterization. In *Proceedings of the IEEE/CVF*
741 *International Conference on Computer Vision*, 2023b.

742 Shashanka Venkataramanan, Valentinos Pariza, Mohammadreza Salehi, Lukas Knobel, Spyros
743 Gidaris, Elias Ramzi, Andrei Bursuc, and Yuki M. Asano. Franca: Nested matryoshka clustering
744 for scalable visual representation learning, 2025. URL <https://arxiv.org/abs/2507.14137>.

745 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r:
746 Geometric 3d vision made easy. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
747 *and Pattern Recognition (CVPR)*, pp. 20697–20709, June 2024.

756 Yibing Wei, Abhinav Gupta, and Pedro Morgado. Towards latent masked image modeling for
757 self-supervised visual representation learning. In *European Conference on Computer Vision*, pp.
758 1–17. Springer, 2025.

759

760 Ross Wightman. Pytorch image models. [https://github.com/rwightman/](https://github.com/rwightman/pytorch-image-models)
761 pytorch-image-models, 2019.

762

763 Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
764 Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In
765 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
766 16133–16142, 2023.

767

768 Seokju Yun and Youngmin Ro. Shvit: Single-head vision transformer with memory efficient macro
769 design. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
(CVPR), pp. 5756–5767, 2024.

770

771 George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff.
772 A transformer-based framework for multivariate time series representation learning. In *Proceedings*
773 *of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, KDD ’21, pp.
2114–2124, 2021.

774

775 Bowen Zhang, Zhi Tian, Quan Tang, Xiangxiang Chu, Xiaolin Wei, Chunhua Shen, et al. Segvit:
776 Semantic segmentation with plain vision transformers. *Advances in Neural Information Processing*
777 *Systems*, 35:4971–4982, 2022.

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A APPENDIX
811

812 A.1 IMPACT STATEMENT
813

814 This work presents new designs and empirical results for deep network architectures for more accurate
815 and computationally efficient modeling applied to visual recognition and time series processing. This
816 general topic does not have more specific societal consequences aside from those inherited, good or
817 bad, from the adoption of machine learning.
818

819 A.2 COMPUTE-EFFICIENT ARCHITECTURE DESCRIPTIONS
820

821 ❶ EfficientViT Cai et al. (2023) is a hierarchical architecture with four stages and one head. Stages 1
822 and 2 consist of MBConv layers Sandler et al. (2018). Stages 3 and 4 consist of MBConv sublayers and
823 their novel EfficientViT sublayer, consisting of an efficient attention module and an FFN+DWConv
824 module Howard (2017). Their attention module creates queries, keys, and values of three scales via
825 three DWConvs, and then each set of queries, keys, and values undergoes efficient linear attention.
826 Finally, the head receives outputs from Stages 2, 3, and 4, and applies a final MBConv. EfficientViT
827 variants differ in stage depths and widths, as well as head width.
828

829 ❷ SHViT Yun & Ro (2024) is a hierarchical architecture with three stages. Stage 1 consists of a
830 DWConv+BatchNorm sublayer and an FFN sublayer. Stages 2 and 3 incorporate their novel single-
831 headed self-attention (SHSA) sublayer between the stage 1 sublayers. SHSA consists of performing
832 single-headed self-attention on a fraction of dimensions (1/4.67 ratio); the other dimensions pass
833 straight through, further reducing cost. Both FFN and SHSA sublayers also replace linear layers with
834 DWConv. SHViT variants differ in stage depths and widths.
835

836 ❸ MobileNetV4 Qin et al. (2025) variants use their FusedIB, ExtraDW, and Mobile MQA (multi-
837 query attention) modules along with MBConv, ConvNext-Like Liu et al. (2022), and FFN modules.
838 Variants differ in stage depths and widths, the number of stages, and stage architectures built with a
839 combination of the listed modules.
840

841 A.3 EXPERIMENTAL DETAILS
842

843 A.3.1 IMAGENET-1K AND -21K HYPERPARAMETERS
844

845 We pick these recipes based on findings in the literature—such as Touvron et al. (2022), Fuller et al.
846 (2024), Beyer et al. (2022), Dehghani et al. (2024), and Steiner et al. (2022)—and past experience
847 indicating that these recipes would result in strong models.
848

849 **ImageNet-1K training recipe:** 128 × 128 px images, 400 epochs, 1024 batch
850 size, PyTorch’s AdamW optimizer with a 0.05 weight decay, 1.0 clip grad norm,
851 deit3-base-patch16-224.fb-in22k-ft-in1k teacher Touvron et al. (2022) given
852 224 × 224 px images using Wightman (2019)’s implementation, KL divergence loss between
853 student and teacher logits Beyer et al. (2022), linear learning rate warmup for 10% of steps to
854 {1e-3, 3e-3} and cooldown using a cosine decay schedule to 1e-5, mixup $\alpha = 0.8$, cutmix $\alpha = 1$,
855 and 3-Augment data augmentation Touvron et al. (2022). Then we continue training at 224 × 224
856 px images, 20 epochs, 512 batch size, PyTorch’s AdamW optimizer with a 0.1 weight decay, 1.0
857 clip grad norm, deit3-large-patch16-224.fb-in22k-ft-in1k teacher Touvron et al.
858 (2022) given 224 × 224 px images using Wightman (2019)’s implementation, KL divergence loss
859 between student and teacher logits Beyer et al. (2022), linear learning rate warmup for 25% of steps
860 to 5e-5 and cooldown using a cosine decay schedule to 1e-5, mixup $\alpha = 0.8$, cutmix $\alpha = 1$, and
861 AutoAugment (“rand-m9-mstd0.5-inc1”) data augmentation Cubuk et al. (2018) following DEIT
862 III’s Touvron et al. (2022) high-res finetuning recipe.
863

864 **ImageNet-21K training recipe:** 224 × 224 px images, 50 epochs, 1024 batch size, PyTorch’s
865 AdamW optimizer with a 0.02 weight decay, 1.0 clip grad norm, cross-entropy loss, linear learning
866 rate warmup for 10% of steps to 3e-3 and cooldown using a cosine decay schedule to 1e-5, mixup
867 $\alpha = 0.8$, cutmix $\alpha = 0$, and 3-Augment data augmentation Touvron et al. (2022). To speed up
868 training, we also employ a token dropping strategy starting at 90%, linearly decreasing to 10%.
869

864 A.3.2 TIME SERIES EXPERIMENTS
865

866 We adopt the PatchTST Nie et al. (2023) architecture for our time series experiments. PatchTST is a
867 patch-based transformer architecture for time series processing. The method splits a univariate time
868 series into patches processed as they are in ViTs for classification, aside from position encoding (2D
869 vs. 1D). For multivariate series, each channel is processed *independently* using the shared transformer
870 backbone, with the final-layer `CLS` tokens from each channel concatenated before classification. We
871 extend this shared backbone with registers (PatchTST+Registers) and Jumbo (PatchTST+Jumbo).

872 We closely follow the PatchTST training recipe for our experiments, making minor adjustments
873 based on prior experience to enhance performance. This method remains competitive with recent
874 transformer-based benchmarks for time series classification Zerveas et al. (2021); Grover et al.
875 (2024); Le et al. (2024). Apart from variations in time series length, all experiments use the same
876 hyperparameters and methodology.

877 **PatchTST Hyperparameters:** The model comprises 3 encoder layers, each with 16 attention heads
878 and a token width of $D = 128$. The transformer FFN includes two linear layers with a GELU
879 activation Hendrycks & Gimpel (2016); the first expands the hidden dimension to 256, while the
880 second projects it back to 128. For PatchTST+Jumbo, we use $J = 4$. For PatchTST+Registers, R is
881 calculated according to Appendix A.3.3.

882 **Time Series training recipe:** We perform a hyperparameter sweep over the Cartesian product of
883 learning rates $\{3e-3, 1e-3, 3e-4, 1e-4\}$ and dropout rates $\{0.0, 0.1, 0.2\}$. Each configuration
884 uses either 8 or 42 equally sized patches of maximum possible length, with end-padding applied as
885 needed. The stride length is set to half the patch length. Unless stated otherwise, all experiments
886 follow the same setup: 100 epochs, 256 batch size, PyTorch’s AdamW optimizer with a 0.02
887 weight decay, cross-entropy loss, and a linear learning rate warmup for the first 10% of steps,
888 followed by a cooldown using cosine decay to $1e-8$. For large datasets, we reduce the number of
889 epochs to ensure efficient processing within a reasonable time frame; specifically, we train datasets
890 $\{\text{Sleep, Tiselac, FaceDetection}\}$ for 20 epochs.

891 Each dataset from the UEA and UCR archives includes a prescribed validation set. We create a new
892 50/50 test/validation split from each of these original validation sets, selecting the best run based on
893 validation performance. All reported results are from the *test* set.

894 The 20 datasets were selected in decreasing order of their number of training examples; datasets with
895 either (i) fewer than 42 total timesteps or (ii) significant data preparation issues were excluded.

896 A.3.3 FLOP DETAILS
897

898 To ensure a fair comparison, we configure PatchTST+Registers and PatchTST+Jumbo to have
899 approximately equal per-layer FLOPs by selecting the number of registers R in the former and the
900 Jumbo multiplier J in the latter accordingly. Additionally, we apply average pooling to the J split
901 segments of the Jumbo token to prevent a significant increase in the number of learnable parameters
902 of the classification head. This pooling produces a token of width D per channel before concatenation,
903 effectively serving the same role as a `CLS` token. The detailed per-layer FLOP calculation is provided
904 by the proposition below.

905 **Proposition 1.** Let P be the total number of local patch tokens, R the number of register tokens, D
906 the width, and J the Jumbo multiplier. Given an FFN hidden dimension of $2D$, and otherwise fixed
907 parameters, a Register architecture with R registers has the same per-layer FLOP count as a Jumbo
908 architecture with multiplier J if and only if
909

$$910 \quad R = -(2D + P) + \sqrt{(2D + P)^2 + (1 + 2D)J^2 + 2(D + P)J}$$

911 *Proof.* Let F denote the FLOP count. Given a sequence length of n tokens, each of width d , the
912 FLOP contributions from the MHSA and FFN sublayers in a single transformer layer with a FFN
913 hidden dimension of ld are given by
914

$$915 \quad F_{\text{MHSA}} = 4nd^2 + 2n^2d \text{ and } F_{\text{FFN}} = l^2nd^2 = 4nd^2$$

916 where we fix $l = 2$. For the Register architecture, $n = P + R$ and $d = D$ for both the MHSA and
917 the FFN contributions. For the Jumbo architecture, $n = P + J$ and $d = D$ for MHSA. The FFN

918 contribution is split; local patch tokens contribute with $n = P, d = D$ while the dedicated Jumbo
919 FFN has $n = 1, d = JD$. From summing the contributions, it follows that
920

$$F_{\text{Reg}} = 4(P + R)D^2 + 2(P + R)^2D + 4(P + R)D^2$$

$$F_{\text{Jumbo}} = 4(P + J)D^2 + 2(P + J)^2D + 4PD^2 + 4J^2D^2$$

923 Equating $F_{\text{Reg}} = F_{\text{Jumbo}}$ and solving for R gives the stated result. \square
924

925 In our time series experiments, we compute R , rounding to the nearest integer, to match the per-layer
926 FLOP count of a Jumbo architecture with multiplier J as closely as possible.
927

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 A.4 DETAILED IMAGENET-1K RESULTS
973

974 Table 6: All final results obtained on 224×224 px images (%).
975

976

Architecture	Size	Throughput 224^2 px	ImageNet-Val Top-1	ImageNet-Val Top-5	ImageNet-Real Top-1	ImageNet-Real Top-5	ImageNet-v2 Top-1	ImageNet-v2 Top-5	ImageNet-R Top-1	ImageNet-R Top-5	ImageNet-HR Top-1	ImageNet-HR Top-5
ViT+Jumbo	$D=96, J=6$	43.7K	69.0	88.5	76.6	92.3	56.0	79.0	23.5	37.1	77.9	92.6
	$D=128, J=6$	31.3K	74.0	91.5	81.3	94.7	61.4	83.4	27.4	42.6	83.2	95.0
	$D=192, J=6$	20.4K	78.4	94.0	84.8	96.3	66.2	87.0	31.7	47.3	86.8	96.2
	$D=384, J=6$	7.6K	82.7	96.4	88.0	97.8	72.4	90.6	39.0	55.6	90.9	98.3
ViT+Registers	$D=128, R=16$	25.5K	61.0	84.1	68.9	88.9	49.1	74.1	18.7	32.4	69.7	88.9
	$D=192, R=16$	16.7K	74.5	92.3	82.3	95.4	62.5	84.7	28.2	43.5	83.7	95.6
	$D=384, R=16$	6.6K	81.9	96.0	87.4	97.7	71.4	90.2	38.0	53.8	90.0	98.0
MobileNetV4	conv-small	33.7K	65.6	86.2	73.3	90.7	52.5	75.5	22.3	37.5	75.7	91.3
	conv-medium	11.2K	74.9	92.6	82.4	95.5	63.1	84.8	29.4	45.9	84.7	95.8
	hybrid-medium	8.8K	78.1	94.3	85.0	96.7	67.0	87.5	33.0	49.4	87.2	96.8
SHViT	S1	42.1K	67.9	88.2	75.7	92.2	54.7	78.2	23.1	38.0	77.6	92.7
	S2	34.5K	71.0	90.0	78.6	93.6	58.4	80.5	25.6	41.1	80.9	93.9
	S3	23.7K	74.3	92.0	81.6	95.0	61.8	83.5	28.3	43.9	84.0	95.4
EfficientViT	B0	25.2K	66.3	86.5	73.9	90.7	53.6	76.3	22.2	36.7	75.8	91.0
	B1	9.8K	76.9	93.5	83.7	96.2	64.5	85.9	31.3	47.2	85.8	96.4

994 Table 7: ViT+Registers results, obtained on 128×128 px images (%).
995

996

Patch Width	Num. Registers	Learning Rate	Throughput imgs/s	ImageNet-Val Top-1	ImageNet-Val Top-5	ImageNet-Real Top-1	ImageNet-Real Top-5	ImageNet-v2 Top-1	ImageNet-v2 Top-5	ImageNet-R Top-1	ImageNet-R Top-5	ImageNet-HR Top-1	ImageNet-HR Top-5
128	16	3e-3	107.0K	53.6	78.5	60.8	83.6	42.4	67.8	15.9	28.6	61.9	83.4
	16	1e-3		51.9	76.8	59.0	81.8	40.8	65.4	13.7	24.9	60.5	82.6
192	8	3e-3	65.7K	68.5	88.8	76.1	92.6	55.7	78.8	24.9	39.4	77.8	92.2
	16	3e-3	59.9K	68.8	88.9	76.6	92.6	55.9	79.4	24.8	38.9	78.5	92.5
	16	1e-3		66.1	87.2	74.0	91.2	54.2	77.0	22.9	36.2	75.4	91.6
384	8	3e-3	24.6K	77.8	93.9	84.3	96.2	65.8	86.3	33.3	48.6	86.8	96.5
	16	3e-3	21.8K	78.1	94.0	84.5	96.3	66.1	86.6	33.3	48.6	86.6	96.5
	16	1e-3		78.2	94.1	84.5	96.3	66.4	86.6	33.5	48.4	87.2	96.6

1007 Table 8: ViT+Jumbo results, obtained on 128×128 px images (%).
1008

1009

Patch Width	Learning Rate	Throughput imgs/s	ImageNet-Val Top-1	ImageNet-Val Top-5	ImageNet-Real Top-1	ImageNet-Real Top-5	ImageNet-v2 Top-1	ImageNet-v2 Top-5	ImageNet-R Top-1	ImageNet-R Top-5	ImageNet-HR Top-1	ImageNet-HR Top-5
96	3e-3	136.0K	62.4	83.7	69.6	88.1	49.3	72.9	20.1	33.5	71.4	89.1
	1e-3		60.8	82.9	68.0	87.3	48.3	71.8	18.9	31.6	70.3	87.6
128	3e-3	103.1K	67.7	87.5	75.0	91.2	54.3	77.6	24.1	37.5	76.6	92.1
	1e-3		68.4	87.9	75.6	91.6	55.2	78.0	23.8	37.6	77.0	92.1
192	3e-3	57.3K	73.3	91.2	80.2	94.1	60.5	82.1	28.0	42.2	82.7	94.6
	1e-3		73.5	91.3	80.3	94.1	60.5	81.8	27.8	42.2	82.8	94.4
384	3e-3	20.4K	79.3	94.4	85.3	96.5	67.3	87.0	34.3	49.5	88.3	96.8
	1e-3		79.3	94.5	85.1	96.6	66.7	86.7	33.4	48.4	87.7	96.6

Table 9: MobileNetV4 results, obtained on 128×128 px images (%).

Size	Learning Rate	Throughput <imgs s=""></imgs>	ImageNet-Val Top-1	ImageNet-Val Top-5	ImageNet-ReaL Top-1	ImageNet-ReaL Top-5	ImageNet-v2 Top-1	ImageNet-v2 Top-5	ImageNet-R Top-1	ImageNet-R Top-5	ImageNet-HR Top-1	ImageNet-HR Top-5
conv-small	$3e-3$	142.7K	62.1	83.6	69.2	88.1	49.1	72.8	20.4	34.3	71.8	89.4
	$1e-3$		60.0	82.0	67.2	86.7	47.6	71.4	18.9	32.2	69.8	87.7
conv-medium	$3e-3$	53.8K	73.3	91.5	80.5	94.6	60.6	82.9	27.7	42.8	83.2	95.3
	$1e-3$		72.2	90.7	79.4	94.0	59.5	81.7	27.0	42.0	82.0	94.6
hybrid-medium	$3e-3$	43.5K	74.9	92.4	81.8	95.3	62.4	84.0	29.5	44.8	84.4	95.5
	$1e-3$		75.2	92.5	82.0	95.3	63.0	84.5	29.1	44.5	84.2	95.4

Table 10: SHViT results, obtained on 128×128 px images (%).

Size	Learning Rate	Throughput <imgs s=""></imgs>	ImageNet-Val Top-1	ImageNet-Val Top-5	ImageNet-ReaL Top-1	ImageNet-ReaL Top-5	ImageNet-v2 Top-1	ImageNet-v2 Top-5	ImageNet-R Top-1	ImageNet-R Top-5	ImageNet-HR Top-1	ImageNet-HR Top-5
S1	$3e-3$	81.0K	63.5	84.9	70.9	89.1	50.8	74.5	22.2	35.7	73.7	90.0
	$1e-3$		63.5	85.1	71.0	89.3	50.9	74.4	21.3	34.7	72.9	90.5
S1	$3e-3$	76.1K	66.6	87.0	73.9	90.8	54.0	76.6	23.9	38.0	76.1	91.7
	$1e-3$		66.7	87.0	73.8	90.8	53.7	76.8	24.0	37.8	76.7	92.0
S3	$3e-3$	73.8K	70.5	89.8	77.7	93.1	58.1	80.4	26.6	41.0	80.4	93.8
	$1e-3$		71.2	90.0	78.3	93.3	58.6	80.7	26.7	40.7	80.7	93.9

Table 11: EfficientViT results, obtained on 128×128 px images (%).

Size	Learning Rate	Throughput <imgs s=""></imgs>	ImageNet-Val Top-1	ImageNet-Val Top-5	ImageNet-ReaL Top-1	ImageNet-ReaL Top-5	ImageNet-v2 Top-1	ImageNet-v2 Top-5	ImageNet-R Top-1	ImageNet-R Top-5	ImageNet-HR Top-1	ImageNet-HR Top-5
B0	$3e-3$	98.6K	59.5	81.9	66.8	86.7	46.8	70.3	18.6	32.0	69.3	87.6
	$1e-3$		60.8	82.6	68.0	87.2	48.3	71.6	19.3	32.6	70.4	87.7
B1	$3e-3$	38.7K	71.8	90.7	79.2	94.0	59.7	81.8	27.4	42.2	81.5	94.4
	$1e-3$		72.8	91.0	79.8	94.2	60.4	81.9	27.1	42.3	82.5	94.8

Table 12: ViT+Jumbo ablation results, obtained on 128×128 px images (%).

Patch Width	Jumbo Multiplier	Inner FFN Multiplier	Throughput 128^2 px	Throughput 224^2 px	ImageNet-Val Top-1	ImageNet-Val Top-5	ImageNet-ReaL Top-1	ImageNet-ReaL Top-5	ImageNet-v2 Top-1	ImageNet-v2 Top-5	ImageNet-HR Top-1	ImageNet-HR Top-5
192	2	2	71.6K	21.6K	70.0	89.6	77.5	93.1	57.3	80.0	26.1	40.9
		4	69.6K	21.5K	70.4	89.6	77.8	93.1	57.3	79.8	25.5	39.6
		1	69.6K	21.3K	71.5	90.4	78.8	93.7	59.2	81.3	26.9	41.7
	4	2	68.1K	21.2K	70.6	89.6	77.6	93.0	57.7	79.8	25.9	40.3
		4	64.9K	20.8K	72.2	90.6	79.2	93.6	59.3	81.1	26.6	41.2
	6	1	65.3K	20.9K	72.1	90.5	79.2	93.7	58.9	81.1	26.4	41.1
		2	63.5K	20.6K	71.8	90.2	78.7	93.3	58.2	80.6	25.8	39.8
384	2	4	56.5K	19.9K	73.0	90.7	79.6	93.7	59.4	81.2	26.8	41.3
		2	27.2K	8.7K	77.0	93.5	83.6	96.0	64.6	85.8	31.9	47.9
		4	26.1K	8.6K	78.1	94.0	84.4	96.3	65.9	86.1	32.8	48.7
		1	26.1K	8.6K	77.3	93.6	83.7	96.0	64.9	85.8	32.1	47.8
	4	2	24.5K	8.5K	77.9	93.9	84.0	96.3	65.7	85.9	32.7	48.6
		4	23.6K	8.3K	77.9	93.8	84.0	96.2	65.7	85.8	32.4	48.0
	6	1	23.9K	8.4K	77.6	93.6	84.0	96.1	65.8	85.8	32.1	47.9
		2	22.9K	8.2K	77.8	93.6	83.8	96.0	65.0	85.3	32.2	47.5
	4	4	19.5K	7.8K	78.3	93.8	84.2	96.1	66.1	86.0	32.9	48.6

1080 A.5 DETAILED TIMESERIES RESULTS
1081

1082 Table 13: Univariate time series classification results (%). “Best” refers to the best run of our 12-run
1083 hyperparameter sweep and “Avg” refers to the average over the sweep.
1084

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

		PatchTST/8	PatchTST/8 +Registers	PatchTST/8 +Jumbo	PatchTST/42	PatchTST/42 +Registers	PatchTST/42 +Jumbo
Sleep	Best	70.9	70.7	73.3	70.5	70.6	70.3
	Avg	67.5	67.7	68.3	67.2	67.1	67.6
InsectSound	Best	82.8	83.3	83.7	85.8	84.4	85.6
	Avg	76.7	76.0	78.7	78.7	78.7	79.7
FruitFlies	Best	92.2	90.9	92.2	95.2	95.0	95.1
	Avg	88.4	88.4	89.4	93.1	92.9	93.9
RightWhaleCalls	Best	94.3	93.8	95.1	96.7	97.0	96.1
	Avg	92.8	93.5	94.2	94.0	94.8	95.1
FaultDetectionA	Best	98.0	97.7	98.1	99.6	99.8	99.8
	Avg	94.6	95.2	97.2	99.2	99.2	99.5
ElectricDevices	Best	89.0	88.8	90.1	92.4	92.4	92.5
	Avg	81.6	83.2	84.0	85.1	85.2	88.1
Crop	Best	80.9	81.2	82.0	81.2	80.6	82.2
	Avg	69.4	70.9	72.0	68.7	68.3	68.7
FordB	Best	98.8	97.3	97.7	97.7	96.5	96.5
	Avg	95.4	96.0	96.6	95.7	94.9	94.8
FordA	Best	97.3	98.0	97.7	97.1	97.1	97.5
	Avg	96.1	96.6	97.2	95.5	95.7	96.0
MelbournePedestrian	Best	92.1	91.5	91.0	90.4	91.0	93.1
	Avg	81.8	82.8	83.9	83.5	83.8	84.9

1105
1106 Table 14: Multivariate time series classification results (%). “Best” refers to the best run of our 12-run
1107 hyperparameter sweep and “Avg” refers to the average over the sweep.
1108

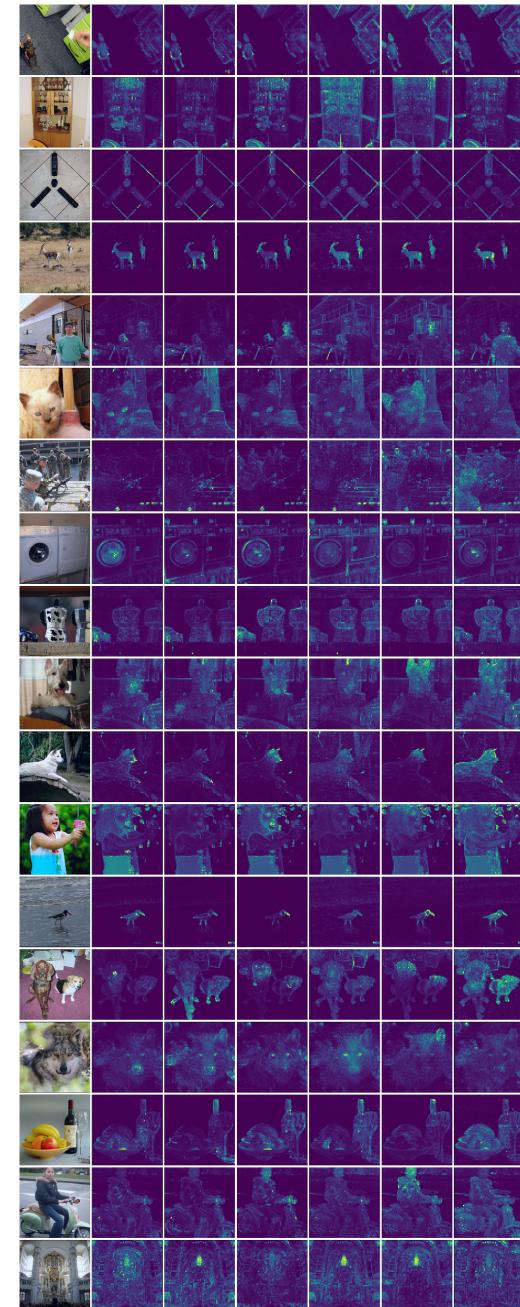
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

		PatchTST/8	PatchTST/8 +Registers	PatchTST/8 +Jumbo	PatchTST/42	PatchTST/42 +Registers	PatchTST/42 +Jumbo
Tiselac	Best	96.6	96.9	97.2	96.4	96.4	96.7
	Avg	86.9	87.8	90.1	84.7	85.0	87.9
WalkingSittingStanding	Best	96.0	96.0	96.5	98.0	97.6	97.6
	Avg	91.7	89.8	93.5	93.9	93.9	94.5
SpokenArabicDigits	Best	99.9	99.7	99.9	99.7	99.9	99.9
	Avg	99.5	99.6	99.6	99.6	99.5	99.7
FaceDetection	Best	87.8	88.1	87.5	86.8	86.6	84.8
	Avg	78.9	80.9	80.0	77.4	77.4	78.8
PhonemeSpectra	Best	56.3	57.1	59.1	57.6	60.3	58.9
	Avg	38.2	38.7	46.5	42.9	44.5	47.7
LSST	Best	78.7	79.5	79.9	74.6	75.7	79.9
	Avg	69.3	69.4	71.2	61.4	61.4	67.3
UWaveGestureLibrary	Best	92.7	88.5	87.5	94.8	99.0	94.8
	Avg	76.8	79.9	83.4	81.3	83.5	85.4
CharacterTrajectories	Best	99.0	98.0	99.6	98.7	99.3	98.4
	Avg	93.6	94.2	96.6	96.6	95.2	97.0
AsphaltPavementTypeCoordinates	Best	72.3	77.7	81.1	89.5	88.5	89.5
	Avg	72.7	75.8	77.0	81.2	82.1	83.7
MotorImagery	Best	87.5	83.3	77.1	79.2	66.7	87.5
	Avg	84.9	83.3	83.2	73.6	74.0	81.9

1134
1135

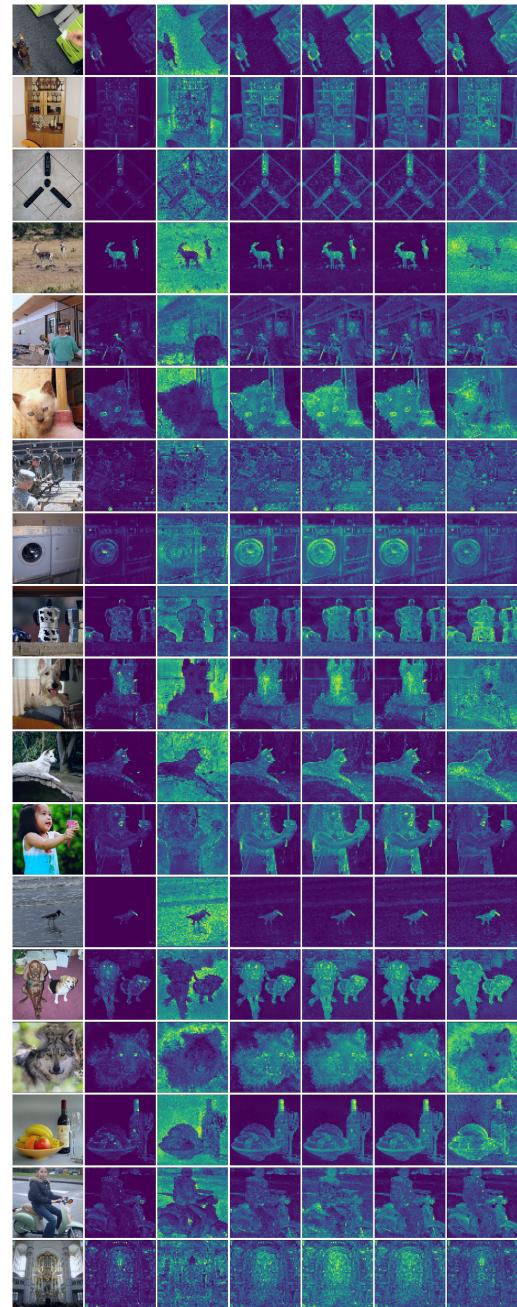
A.6 ATTENTION MAPS

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177



1178 (a) Attention maps of the Jumbo token split into 6
1179 smaller global tokens. Like ViT+Registers, ViT+Jumbo
1180 learns relatively artifact-free attention maps (as com-
pared with the attention maps in Dariset et al. (2024)).
1181

1182
1183
1184
1185
1186
1187



(b) Attention maps of the CLS and the first five register tokens.