
Implementing a Virtual Network System
among Containers

Songlin Jiang
songlin.jiang@aalto.fi

Tutor: Tuomas Aura

Abstract

This paper investigates the method of implementing a virtual network

system among containers. We first implement a testbed environment for

Virtual Private Network (VPN) systems in IPv4 (site-to-site, host-to-host)

and IPv6 (site-to-site). Then we compare VirtualBox-based Vagrant with

Docker Compose in realizing the same networking features. The result

shows that migrating the test from the Virtual Machines (VM) to the Docker

containers can save nearly 90% of CPU time and 94% of memory for the

VPN system. At the same time, the host machine still has no security risk

increase.

KEYWORDS: Container, Network, Cloud, VPN

1 Introduction

In recent years, container technologies, such as Docker, have received

much attention from the industry and academia as applications are mov-

ing to the cloud. Containers are much more efficient and lightweight than

virtual machines because containers share the Linux kernel with the host.

In contrast, virtual machines employ hardware virtualization and have

their own kernel instance, which consumes more resources [16].



It is still a common practice [11] to build and test network systems con-

figurations using virtual machines, which allows the network engineer to

experiment in a virtual environment before setting up the physical sys-

tem. In addition, virtual networks are sometimes also needed for auto-

mated integration tests, as developers may want to test the usability and

performance of their software under some specific network topology.

However, creating a virtual computing environment can be slow and

troublesome. The problems can worsen when testing virtual network sys-

tems with a large number of nodes on one host machine, as each network

component and host needs a virtual machine instance. It can be memory-

consuming to simultaneously run many virtual machine instances on one

host machine to simulate the network environment, which significantly

troubles testers working on personal computers short of memory. More-

over, Mac M1 / M2 chips are based on the ARM64 architecture, and vir-

tual machine hypervisors currently have limited support for ARM64 hard-

ware virtualization. In contrast, ARM64 is well supported by container

runtimes [12]. Furthermore, Containers are easy to launch on demand

in the cloud, and the cost is low because they can run within one vir-

tual machine. Running with virtual machines can significantly increase

the cost of Continuous Integration / Continuous Delivery (CI/CD) imple-

mentations in the cloud, as using nested virtualization with limited re-

sources is hard. Most importantly, building, storing, and managing multi-

platform virtual machine images in the cloud is also challenging. In con-

trast, Docker supports building multi-platform images [8] and uploading

them to Docker Hub.

Due to little research on implementing network systems using contain-

ers, this paper investigates the possibilities of implementing virtual net-

work systems based on Docker containers to overcome the disadvantages

of virtual machines mentioned above. This paper also analyzes the func-

tional and security limitations when virtual networks are implemented

this way.

This paper is organized as follows. Section 2 reviews the current tech-

nologies used for container networking. Section 3 explains our case study

of implementing a VPN system using Docker containers, while Section 4

explains the details of our implementation. Section 5 compares the VPN

system performance when implemented with the virtual machines and

containers. Finally, Section 6 provides the concluding remarks.



2 Docker Networking System

This section discusses the choice of the Docker container network driver

for implementing the virtual network system. It also discusses how to

enable routing, firewalls and IPv6 inside a container.

2.1 Network Drivers

Docker employs a pluggable networking subsystem. Several drivers can

provide the Docker network functionality. The default drivers include the

bridge, host, overlay, IPVLAN, MACVLAN, and none. We can choose one

of them to implement the virtual network system.

The none, host, and overlay drivers do not cater for our needs. Firstly,

the none driver disables all networking. Secondly, the host driver is un-

necessary as it can have security implications due to its nature of sharing

the same network stack with the host machine. In addition, the overlay is

not an appropriate option as we are simulating the network system only

on one host machine.

As a result, the possible candidates are bridge, IPVLAN, and MACVLAN.

When examining the details, the bridge learns Media Access Control (MAC)

addresses by checking the frame headers sent by the communicating hosts.

On the other hand, the MACVLAN is a trivial bridge that does not need to

learn as it already knows every MAC address it can receive [4]. IPVLAN

is similar to MACVLAN, except IPVLAN assigns the same MAC address

to all containers attached to it. In contrast, MACVLAN assigns a different

MAC address to each attached Docker container [5].

MACVLAN is the best choice for our needs. As we only use the driver

to implement the internal network, there is no need to use advanced flood

control and forwarding database manipulation that are specific to the

bridge driver. MACVLAN bridge mode allows the testbed network to run

layer 2 (data link layer) protocols, such as the Address Resolution Pro-

tocol (ARP) and Link Layer Discovery Protocol (LLDP). MACVLAN also

supports address configuration and discovery protocols, as well as other

multicast protocols, such as Dynamic Host Configuration Protocol (DHCP)

[17] and Precision Time Protocol (PTP) [1]. Moreover, according to Docker

documentation related to networking [9], MACVLAN networks are the

best choice when migrating from a VM setup, as MACVLAN makes the

container appear as a physical device with its own MAC address. Fur-

thermore, Gundall et al. [10] conduct benchmarks for different virtualiza-



tion technologies for the networking overhead. The result shows that the

MACVLAN driver performs best in throughput while requiring the least

CPU resources compared to the other network drivers.

2.2 Routing and Firewall

By default, Docker do not allow manipulating container network devices

and setting routing tables or firewalls inside the containers. These fea-

tures can be enabled by assigning the net_admin capability to the con-

tainer.

According to the capabilities man page [13], assigning the net_admin

capability to containers allows the following network-related operations:

1. Making interface configuration;

2. Administrating IP firewall, masquerading, and accounting;

3. Modifying routing tables;

4. Binding to any address for transparent proxying;

5. Setting the type-of-service (TOS);

6. Clearing driver statistics;

7. Setting the promiscuous mode;

8. Enabling multicasting;

9. Using setsockopt(2) to set the following socket options: SO_DEBUG,

SO_MARK, SO_PRIORITY (for a priority outside the range 0 to 6),

SO_RCVBUFFORCE, and SO_SNDBUFFORCE.

As we use the MACVLAN to build the internal network, all the network

manipulations mentioned above only work for the network components

that belong to the corresponding network namespace. There are no secu-

rity implications to the host network if we give net_admin capability to

the container with its network namespace.

2.3 IPv6

Configuring IPv6 networking in Docker [7] is also possible. Docker dis-

ables the IPv6 support by default. We can add the following content to the

daemon configuration file (default location at: /etc/docker/daemon.json)

or corresponding settings in Docker Desktop:

{ "ipv6": true, "fixed-cidr-v6": "fd00::/80" }



Client-A1

Client-A2

Client-B1

Client-B2

Gateway-A

Gateway-B

Router Gateway-S Server-S1

Site A
10.1.0.0/16

Site B
10.1.0.0/16

Public Internet
eth0 Cloud S

10.1.0.0/16
10.1.0.2

10.1.0.3

10.1.0.2

10.1.0.3

10.1.0.2

eth0
10.1.0.1

10.1.0.1

10.1.0.1
eth0

172.16.16.1
eth1

eth2
172.18.18.1

172.30.30.1
eth3
eth1

172.30.30.30

eth1
172.16.16.16

172.18.18.18
eth1

10.1.0.99

10.1.0.99
eth0

container 1

container 2

port 30000

port 30001

8080

8080

Figure 1. Host to Host

3 Case Study: VPN

This paper simulates a scenario where the IoT devices (clients) in two

sites, A and B, would like to connect to the server in the cloud S. The

topology is based on the Aalto University CS-E4300 Network Security

2022-2023 instance Project 2 [3], where site A, B, and cloud S both use the

private IP addresses to improve the security and save the IPv4 addresses.

Gateways A, B, and S connect sites A, B, and S to the public Internet. The

router in the topology represents the Internet between the sites and the

cloud. The address space between the gateway and the router simulates

public, routable IPv4 addresses, although they are all private. Site A, B,

and cloud S use the router to access the Internet.

In order to make the clients in both site A and site B connect to the cloud

server safely, this paper attempts to implement a virtual network testbed

for this networking exercise based on Docker containers. We experiment

with two types of VPN: site-to-site and host-to-host, using strongSwan, a

VPN implementation based on Internet Protocol Security (IPsec).

3.1 Host to Host

A host-to-host VPN connects different gateways together. IP packets then

get routed to different clients within the corresponding site according to

the routing table of the gateway [14].

Figure 1 shows the topology and corresponding address spaces under

such circumstances.



Client-A1

Client-A2

Client-B1

Client-B2

Gateway-A

Gateway-B

Router Gateway-S Server-S1

Site A
fc00:4300:a::/64

Site B
fc00:4300:b::/64

Public Internet
eth0 Cloud S

fc00:4300:c::/64fc00:4300:a::3

fc00:4300:a::4

fc00:4300:b::3

fc00:4300:b::4

fc00:4300:c::3

eth0
fc00:4300:a::2

fc00:4300:b::2

fc00:4300:c::2
eth0

fc00:4300:aaea::2
eth1

eth2
fc00:4300:aaeb::2

fc00:4300:aaec::2
eth3
eth1

fc00:4300:aaec::aaec

eth1
fc00:4300:aaea::aaea

fc00:4300:aaeb::aaeb
eth1

fc00:4300:a::99

fc00:4300:b::99
eth0

port 8080

Figure 2. Site to Site in IPv6

3.2 Site to Site

A site-to-site VPN connects different network systems located at different

sites together directly [2]. In this case, the address spaces of sites A, B

and the cloud network S should not overlap [15].

Our site-to-site VPN topology is almost the same as figure 1, except that

the address space for site B is 10.2.0.0/16, and cloud S is 10.3.0.0/16.

3.3 Site to Site in IPv6

Site to Site in IPv6 is similar to Site to Site VPN in IPv4 but replaces all

the address space in IPv6.

Figure 2 shows the topology and corresponding address space under

such circumstances.

4 Implementation

To manage the Docker containers, we use Docker Compose for orches-

tration. Based on the figures above, we make each network component a

separate container, assign the net_admin capability to each container, and

implement the network with the MACVLAN driver. We only connect the

router to the Docker default bridge network to enable connections to the

public Internet. Finally, we set up the routing and firewall and configured

the strongSwan IPsec with certificates.

We use Network Address Translation (NAT) masquerade for the gate-

way interface to prevent leaking local IP addresses outside their subnets

for routing. We bind the preconfigured local server IP address 10.1.0.99 or

10.2.0.99 to the interface eth0 of corresponding gateway A and B accord-



ing to their subnets.

We use strict firewall rules on the clients, assuming there should be no

need for the clients (IoT devices) to visit the Internet. We use iptables to

set up gateway A and B firewall rules for input and output. We accept

Internet Key Exchange (IKE) and Encapsulating Security Payload (ESP)

traffic (port 500 and 4500 in UDP) from and to the cloud. Finally, we drop

everything else, including the connection from and to the Internet.

As explained in the following sections, there are also some differences

between the two kinds of VPN setups, and between IPv4 and IPv6.

4.1 Host to Host

About routing, for gateway A and B, we redirect the traffic from the orig-

inal local server address 10.1.0.99 of port 8080 to cloud gateway S of port

8080 with Destination NAT. For gateway S, we redirect the traffic from

the client gateway A and B of port 8080 to corresponding ports (30000

and 30001) on the server s1 address.

There are overlapping network address spaces for host-to-host VPN.

Suppose we specify the IP address and subnet directly through Docker

Compose. In that case, there will be errors notifying us that ’Pool over-

laps with another one on this address space’. Although technically this

should not be a problem, as we are creating a separate internal network

without direct routing, Docker still forbids us.

We have addressed the issue of overlapping address space through a

method that can be likened to IP address spoofing. When we do not specify

the IP address of the network in Docker Compose, it will assign a random

address from the Docker address pool to the network interface. Now we

can modify the IP address and subnet of the interface to our desired one,

and no error will be thrown now.

In addition, for server S1, we use the Docker-in-Docker image to run

Docker containers inside the server S1 container. Running that image

requires the container to be privileged according to the documentation [6].

As a result, in practice, we must ensure the software running in server S1

is benign and poses no risk to the host machine. It can be acceptable in a

testbed network but not in production. Otherwise, we recommend having

a separate VM for the servers.



4.2 Site to Site

Concerning routing, for gateways A and B, we redirect the traffic from the

local address (10.1.0.99 and 10.2.0.99) of port 8080 to cloud server S1 on

port 8080 with Destination NAT.

For the firewall on gateways A and B, we also have to accept the post-

routing traffic to the cloud server 10.3.0.3.

There is no overlapping network address space within the site-to-site

VPN. Thus, we can specify the IP address and subnet directly through

Docker Compose. Additionally, we avoid using the IP address ending in

".1", as Docker does not allow us to assign that address to any container.

These addresses are reserved for gateways or routers on a particular net-

work (although we are simulating the Gateway and Router).

4.3 Site to Site in IPv6

Site to Site in IPv6 is similar to Site to Site in IPv4. Just replacing all

the IPv4 addresses with IPv6 would complete the job. The only differ-

ence is that, in addition to the existing configurations, we also have to

allow ICMPv6 traffic at the gateways for firewall rules. In IPv6, Neighbor

Discovery is a necessary component, replacing Address Resolution Pro-

tocol (ARP) in IPv4. This way, IPv6 Neighbor Discovery can work, and

different containers can communicate within their subnet. We also need

ICMPv6 for Destination Unreachable messages.

5 Evaluation

This section summarizes the result of our experiment. It makes a compar-

ison between the virtual-machine-based testbed and our container-based

testbed.

5.1 Usability and Portability

We can use Docker Buildx [8] to create the testing environment images for

multiple platforms with only one machine, then upload them to Docker

Hub for reusing. Developers do not need to be aware of the different pro-

cessor architectures when starting the container-based testbed. In con-

trast, VM monitors, such as VirtualBox, usually do not have a centralized

image hub. The developer must choose the right image based on the ar-



Table 1. Performance Test Result in Average

Solution Boot Time1 Memory2

Docker Compose 75 s 278 MB

Vagrant + VirtualBox 689 s 4.5 GB

chitecture before running the VM testbed.

Most importantly, the Docker setup can run in M1/M2-based macOS

with Docker Desktop. In contrast, the VM ones cannot be run due to the

limited support of VirtualBox for ARM64.

The shell script commands for all the routing and firewall configurations

in Docker containers and VMs are identical. Hence migrating configura-

tions from the VMs to the Docker containers is easy. We can simultane-

ously start the site-to-site and host-to-host VPN setup in Docker without

interfering with each other.

5.2 Performance

We use Docker Engine 23.0.1 to run the containers and VirtualBox 7.0.6

to run the Virtual Machines. Table 1 reflects the average situation for

all the three implementations. Table 1 shows that our container solution

significantly reduces the fresh boot time1 for the whole VPN system by

nearly 90%. It dramatically reduces the memory consumption2 by nearly

94% as well.

5.3 Security

We can check the current virtual network devices with the command ls

/sys/devices/virtual/net -l. It shows different results when executing

from the host machine and inside the container, indicating that the net-

work stacks inside containers are entirely isolated from the host machine.

5.4 Limitations

There are also some limitations of the Docker networking model, which

cause several observable differences compared to VMs. However, these

limitations generally have workarounds to bypass and will not stop us

from adopting container solutions.

1Also include the running environment building time for the host platform
2Maximum value during the whole running process



1. We cannot have overlapped IP address ranges in different virtual net-

work interfaces assigned by Docker. The only way to do that is to config-

ure the IP addresses manually inside containers.

2. We are not allowed to assign the IP address ending in ".1" to a Docker

container, and we will only get a warning if we do that in a VM. Similar

to the previous limitation, a workaround is to assign the IP addresses

ending in ".1" manually inside containers.

In addition, if we want to test the scalability of the network software and

run Docker containers inside a Docker container, that container needs to

be privileged. Such requirements may cause some security risks, but this

is unnecessary for implementing virtual networks.

6 Conclusion

This paper investigates how to construct the testbed network environ-

ment through the case study of container-based and VM-based VPN con-

figurations. Containers are much more lightweight than virtual machines.

As a mature virtualization technology, containers can realize every func-

tionality we require, similar to virtual machines, while increasing no se-

curity risk to the host machine.

We hope this paper can inspire researchers and engineers to migrate

their testing environment related to network systems from VMs into con-

tainers.

Source code for this paper: https://github.com/HollowMan6/Implement-

VPN-System-with-Containers/tree/main/src

References

[1] Giuliano Albanese, Robert Birke, Georgia Giannopoulou, Sandro Schön-
born, and Thanikesavan Sivanthi. Evaluation of networking options for
containerized deployment of real-time applications. In 2021 26th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation
(ETFA ), 2021.

[2] Aung, Si Thu and Thein, Thandar. Comparative Analysis of Site-to-Site
Layer 2 Virtual Private Networks. In 2020 IEEE Conference on Computer
Applications(ICCA), 2020.

[3] Aura, Tuomas and Peltonen, Aleksi and Bui, Thanh. Tuomaura/CS-e4300_
testbed: TESTBED network setup for Student Projects, Dec 2022. GitHub
Repository.



[4] Cha, Jae-Geun and Kim, Sun Wook. Design and Evaluation of Container-
based Networking for Low-latency Edge Services. In 2021 International
Conference on Information and Communication Tech Convergence (ICTC),
pages 1287–1289, 2021. IEEE.

[5] Claassen, Joris and Koning, Ralph and Grosso, Paola. Linux containers
networking: Performance and scalability of kernel modules. In NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management Symposium,
pages 713–717, 2016.

[6] Docker contributors. Docker-in-Docker image README, February 2023.
Docker Hub.

[7] Docker contributors. Enable ipv6 support, February 2023. Docker Docu-
mentation.

[8] Docker contributors. Multi-platform images, March 2023. Docker Docu-
mentation.

[9] Docker contributors. Networking overview, February 2023. Docker Docu-
mentation.

[10] Gundall, Michael and Reti, Daniel and Schotten, Hans D. Application of
Virtualization Technologies in Novel Industrial Automation: Catalyst or
Show-Stopper? In 2020 IEEE 18th International Conference on Industrial
Informatics (INDIN), volume 1, pages 283–290, 2020.

[11] Hauser, Frederik and Häberle, Marco and Schmidt, Mark and Menth, Mich.
P4-IPsec: Site-to-Site and Host-to-Site VPN With IPsec in P4-Based SDN.
IEEE Access, 8:139567–139586, 2020.

[12] Kaiser, Shahidullah and Haq, Md. Sadun and Tosun, Ali Saman and Kork-
maz, Turgay. Container Technologies for ARM Architecture: A Comprehen-
sive Survey of the State-of-the-Art. IEEE Access, 10:84853–84881, 2022.

[13] Linux contributors. Capabilities(7), February 2023. Linux Man Page.

[14] Du Meng. Implementation of a host-to-host vpn based on udp tunnel and
openvpn tap interface in java and its performance analysis. In 2013 8th
International Conference on Computer Science & Education, pages 940–943.
IEEE, 2013.

[15] Oğuzhan Akyıldız and İbrahim Kök and Feyza Yıldırım Okay and Suat
Özdemir. A P4-assisted task offloading scheme for Fog networks: An in-
telligent transportation system scenario. Internet of Things, 22:100695,
2023. Elsevier.

[16] Sharma, Prateek and Chaufournier, Lucas and Shenoy, Prashant and Tay,
Y. C. Containers and Virtual Machines at Scale: A Comparative Study. In
Proceedings of the 17th International Middleware Conference, Middleware
’16. ACM, 2016.

[17] Arne Wendt and Thorsten Schüppstuhl. Proxying ros communications —
enabling containerized ros deployments in distributed multi-host environ-
ments. In 2022 IEEE/SICE International Symposium on System Integra-
tion (SII), pages 265–270, 2022.


