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ABSTRACT

This paper presents a novel approach towards to the creation of a foundational
model for aligning neural data and visual stimuli representations by leveraging
the power of contrastive learning. We worked with EEG, MEG and fMRI. The
capabilities of our framework are showcased through three key experiments: de-
coding visual information from neural data, encoding images into neural repre-
sentations, and converting between neural modalities. The results demonstrate the
model’s ability to accurately capture semantic information across different brain
imaging techniques, illustrating its potential in decoding, encoding, and modality
conversion tasks.

1 INTRODUCTION

The non-invasive measurement of neural activity is crucial to understand the human brain. The ad-
vent of Artificial Intelligence has propelled the field of neuroscience into the use of novel paradigms,
including a wide array of encoding/decoding models. These models have shown remarkable profi-
ciency in interpreting various sensory inputs, encompassing vision, auditory processing, and mo-
tor imagery, among others. Key to this endeavor are non-invasive neural correlates like Elec-
troencephalography (EEG), Magnetoencephalography (MEG), and functional Magnetic Resonance
Imaging (fMRI). Each of these modalities offers a unique window into brain activity, capturing com-
plementary aspects of its response to external stimuli and providing insights into the perceptual and
representational processes within. In this context, our study introduces a step forward in the realm of
neural foundation models for vision. We aim to harmonize disparate modalities drawn from diverse
EEG, MEG, and fMRI datasets acquired during a vision task, creating a unified representation that
transcends the limitations of individual modalities. Our approach leverages the power of contrastive
learning to align representations across these varied neural correlates, and is anchored in the image
representations provided by CLIP (Contrastive Language–Image Pretraining) model (Radford et al.,
2021) as depicted in Fig 1. We assess the capabilities of our framework in performing an array of
tasks through information retrieval as depicted in Fig 2. We demonstrate the model’s capability in
a) decoding, wherein it can discern and retrieve images corresponding to neural activity recorded
during experiments; b) encoding, where it exhibits its potential to predict neural activity patterns
from visual stimuli; c) modality conversion, demonstrating the model’s ability to translate semantic
content across different neural measurement modalities. This approach not only bridges the gap
between neural activity and visual perception but also paves the way for a deeper understanding
of how the brain processes and internalizes the visual world. Our work, therefore, stands at the
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Figure 1: Schematic representation of our proposed model, illustrating the alignment of various
neural datasets from different modalities into a unified representation space utilizing a frozen CLIP
Image encoder.

intersection of neuroscience and artificial intelligence, offering a novel lens through which we can
view and interpret the complex narrative of neural activity. It represents a step toward the direc-
tion of a foundation model for the neuroscience of vision, providing a framework for exploring and
understanding the ways in which our brains engage with and make sense of the visual stimuli that
permeate our environment.

1.1 RELATED WORK

Encoding and decoding in vision neuroscience have evolved from classical methods to advanced
neural network-based models. fMRI has emerged as a promising tool to extract information with
deep learning connecting biological hypotheses and computational models. In this context, classical
encoding predicts brain activity from stimuli, while decoding anticipates stimuli from brain activity,
and it has been shown that both tasks can benefit from a combined approach (Naselaris et al., 2011).
Several models have been used for a wide variety of encoding and decoding approaches (Zafar
et al., 2015) to analyze fMRI time series to decode visual stimuli, aiming to reconstruct the images
linked to observed fMRI patterns or brain activity. Approaches like VAE-GAN have been applied
to map fMRI activity to latent representations of human faces using linear models (VanRullen &
Reddy, 2019). Additionally, sparse linear regression has predicted CNN features for natural images
from fMRI data (Horikawa & Kamitani, 2017). Recently, diffusion models, noted for their excel-
lent image generation, have become integral to decoding, often employing semantic techniques and
multi-step decoding processes (Takagi & Nishimoto, 2023; Chen et al., 2022; Ferrante et al., 2023c;
Ozcelik & VanRullen, 2023; Ferrante et al., 2023b). In general, recent advances leverage deep neu-
ral networks and large datasets to model complex visual and language representations, enhancing
the accuracy of both encoding and decoding models (LeBel et al., 2023; Tang et al., 2023; Antonello
et al., 2023; Caucheteux & King, 2022; Caucheteux et al., 2023; Défossez et al., 2023; Oota et al.,
2023; Conwell et al., 2023). As a noteworthy example, the Algonauts challenge and subsequent
studies emphasize the effectiveness of both pretrained multimodal transformers and tailored models
for specific brain regions (Gifford et al., 2023; Adeli et al., 2023; Nguyen et al., 2023; Yang et al.,
2023; Choksi et al., 2022). It is also worth mentioning toools like MindEye, which maps brain ac-
tivity to multimodal latent spaces for precise image retrieval and reconstruction using a contrastive
method (Scotti et al., 2023), and DREAM, which replicates image reconstruction from fMRI data,
emulating the human visual system (Xia et al., 2023).

Advancements in high temporal resolution modalities have contributed significantly to the progress
in encoding and decoding research within neuroscience. Previous efforts have leveraged linear mod-
els for tasks such as image classification from brain activity, prediction of brain activity based on im-
age representations, and inter-modal comparison using representational similarity analysis (Robin-
son et al., 2019; Gifford et al., 2022). Although these studies incorporated image embeddings,
their classification scope remained constrained. Progressing beyond linear approaches, deep neural
networks have been employed to classify diverse data types, including speech, mental load, and
images, from EEG signals (Défossez et al., 2023; Palazzo et al., 2020). Electroencephalography
(EEG), Magnetoencephalography (MEG), and functional Magnetic Resonance Imaging (fMRI) are
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Figure 2: The top panel illustrates the ’Decoding’ experiment, where neural data is processed to ’de-
code’ and retrieve visually related images from a dataset. The middle panel depicts the ’Encoding’
experiment, where an image is used to predict and retrieve neural data that could be associated with
the visual perception of that image. The bottom panel shows the ’Modality Conversion’ experiment,
demonstrating the translation of neural data from one modality, such as EEG, into another, such as
fMRI, aiming to find semantically similar brain activity across modalities

important in non-invasive brain research, each characterized by distinct advantages and limitations.
EEG is esteemed for its exceptional temporal resolution, enabling precise temporal tracking of the
brain’s electrical activity and the observation of rapid neural dynamics. However, its spatial reso-
lution is limited, posing challenges in accurately localizing neural activity. MEG, while offering
temporal resolution comparable to EEG, provides slightly better spatial resolution by measuring
neural activity’s magnetic fields. Nonetheless, MEG’s higher costs and lower accessibility limit its
widespread use. In contrast, fMRI offers superior spatial resolution, allowing for detailed mapping
of brain activity through blood flow changes, albeit with a temporal resolution inferior to that of
EEG and MEG, restricting its ability to capture quick neural changes.

Our model extends beyond conventional constraints by using the principles of contrastive learning,
a technique that has yielded promising outcomes in recent fMRI (Scotti et al., 2023) and MEG de-
coding investigations (Défossez et al., 2023). These studies, while they bear methodological resem-
blance to our work, predominantly concentrate on decoding within a singular modality, employing
contrastive learning for data retrieval only and in conjunction with other generative methods for
stimulus reconstruction. Contrastive learning differentiates between analogous (positive) and non-
analogous (negative) data pairs, thereby facilitating the discernment and alignment of semantically
congruent representations. In our approach, this methodology is applied not solely to decoding but
also to encoding. Through the application of contrastive learning, our model establishes a bidirec-
tional linkage between the visual and neural domains. Moreover, we introduce the concept of neural
modality conversion, enabling the translation of semantic content from one neural measurement
modality, such as EEG, into another, such as fMRI or MEG. This innovation opens new pathways
for comprehensive neural analysis, fostering a more integrated understanding of brain functionality
by capitalizing on the synergistic strengths of each modality. The primary contribution of our work
is the development of a unified framework adept at managing decoding, encoding, and neural modal-
ity conversion, representing a significant advancement beyond existing models that are limited to a
single task and modality. By aligning EEG, MEG, and fMRI data through contrastive learning, our
model surmounts the inherent limitations of these modalities, offering a versatile infrastructure for
the interpretation of neural signals.
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2 MATERIAL AND METHODS

Our goal is to make a step towards a shared representation of neural data, i.e. a sort of ”foundation
model of neural representation”. To solve this task we leveraged a powerful and well-established
pretrained model for obtaining image representations - the CLIP Image encoder. We focus on vision
processing, hence selecting a set of human vision datasets where neural activity is measured with
different techniques like EEG, MEG and fMRI.

2.1 DATA

EEG: The EEG data for this study were sourced from the ImageNetEEG dataset (Spampinato et al.,
2019), involving six participants and 40 ImageNet categories (Deng et al., 2009), totaling 2,000
images recorded at 1000 Hz. The recording protocol involved multiple sessions and sequences,
resulting in 11,466 EEG sequences after quality filtering. Preprocessing included notch and band-
pass filtering, normalization, and segmentation into 40 ms windows for time-frequency decomposi-
tion, producing EEG spectrogram images for model training. To avoid overestimated performances
highlighted in (Li et al., 2018), a conservative data splitting approach was adopted as described in
(Palazzo et al., 2020), ensuring more accurate performance assessments.

MEG: For Magnetoencephalography, Our methodology was evaluated using the ”THINGS-MEG”
dataset (Hebart et al., 2023). This dataset involved four participants (two female and two male, av-
erage age 23.25 years) who participated in 12 MEG sessions. During these sessions, participants
were shown 22,448 distinct images from the THINGS database (Hebart et al., 2019) spanning 720
different categories. Out of this extensive collection, a smaller group of 200 images (each from a
unique category) was repeatedly presented to the subjects. Each image was displayed for 500 mil-
liseconds, followed by a variable fixation period ranging from 800 to 1200 milliseconds. To enhance
our retrieval set and demonstrate our method’s robustness, we also incorporated an additional 3,659
images from the THINGS dataset that were not shown to the participants. For MEG data preprocess-
ing, we adopted a straightforward approach. The initial step involved downsampling the raw data
from the 272 MEG radial gradiometer channels from 1,200 Hz to 120 Hz, followed by centering
and standardizing the data. The MEG data was then segmented into epochs extending from 500 ms
before to 1000 ms after the onset of each stimulus. The final preprocessing step involved baseline
correction, achieved by deducting the average signal value, recorded from the beginning of each
epoch to the stimulus onset, for every channel.

fMRI: In our study, the Natural Scenes Dataset (NSD) (Allen et al., 2022) was utilized. This ex-
tensive fMRI dataset includes data from eight individuals who were shown images from the COCO
dataset. Our focus was on four of these subjects (consistent with subjects used in comparable de-
coding studies), resulting in a dataset comprising 8,859 images and 24,980 fMRI trials for training,
and 982 images and 2,770 fMRI trials for testing per participant. To enhance the signal-to-noise
ratio, images shown up to three times had their trials averaged. The spatial dimensionality of the
fMRI data, recorded at a resolution of 1.8mm, was reduced to about 15,000 voxels. This reduc-
tion was achieved by applying the NSDGeneral ROI mask, which encompasses several visual areas.
Selecting this ROI was crucial for improving the signal-to-noise ratio and reducing the complexity
of the data, allowing for a more focused analysis of both low-level and high-level visual features.
Temporally, dimensionality reduction was accomplished by using precalculated betas from a Gen-
eral Linear Model (GLM) with a fitted Hemodynamic Response Function (HRF), as detailed in the
NSD paper, and further denoised as described therein.

2.2 NEURAL VISION ALIGNMENT

We focused on aligning the neural representations of different modalities with image representations
derived from the CLIP model, specifically aiming to approximate the CLS (Classification) embed-
dings of images using the pretrained CLIP Image encoder, denoted as h. For each neural modality,
we designed a distinct neural module, represented as fn. This module is essentially a composite
function, fn = gn ◦an, consisting of two primary components. The first component, an, is an align-
ment layer tasked with harmonizing the neural data from various subjects into a unified representa-
tion space. Once aligned, these representations are processed by gn, a shared network that further
refines them to closely match the visual representations produced by the image encoder. To illus-
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Figure 3: Comparative Results of Multimodal Neural Decoding. The image showcases the original
visual stimuli and the images retrieved using decoding modules for fMRI, EEG, and MEG data.
Each block corresponds to a different modality, illustrating the model’s ability to identify and retrieve
images that closely resemble or are semantically related to the original stimulus

trate, consider a subject s who observes an image img while their neural activity n is being recorded.
Using our neural model, we generate a representation zi = f(n, s) = g(a(n, s)). Concurrently, we
derive the corresponding image representation zj through the image encoder: zj = h(img). Follow-
ing their generation , these representations, are normalize and the contrastive CLIP loss is calculated
forming the basis of our training regimen. The neural networks for MEG and EEG data are struc-
tured as convolutional neural networks (CNNs), offering an architecture for processing spatial and
temporal patterns in the data. In contrast, the network for fMRI data is configured as a Multilayer
Perceptron (MLP), suited for handling the high-dimensional and spatially complex nature of fMRI
data.

All networks were implemented using the PyTorch framework and trained using the AdamW op-
timizer. The training parameters were a learning rate of 3 × 10−4, weight decay set at 1 × 10−3,
and a batch size of 256. The training process spanned over 30 epochs, ensuring adequate learning
while preventing overfitting, leaving room for performance improvement through hyperparameter
and neural architecture search in future works. The contrastive loss function in our model aligns
the representations of different modalities with the CLIP model’s image representations. Given two
normalized representation vectors zi and zj , the function proceeds as follows: First, both vectors are
normalized using the L2 norm to ensure they lie on a unit hypersphere zi =

zi
∥zi∥2

and zj =
zj

∥zj∥2
.

Then, the similarities (logits) are computed by taking the dot product of zi and the transpose of

zj , scaled by a temperature parameter τ , so logits =
ziz

T
j

τ Instead, the targets are defined as a
sequence of indices, representing the matching pairs in the batch: targets = [0, 1, 2, . . . , N − 1],
then transformed into one-hot encoded vectors to compute the cross-entropy.

where N is the batch size. The loss is then calculated using the cross-entropy between the logits and
the targets in their one-hot encoded version, so they’re 1 at index i and 0 everywhere else, thus:

L = −
N∑
i=1

log

(
exp(logitsii/τ)∑N
j=1 exp(logitsij/τ)

)
(1)

This formulation of the contrastive loss function efficiently aligns the neural representations zi with
the corresponding image representations zj by maximizing cosine similarity for positive pairs and
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minimizing it for negative pairs, modulated by the temperature parameter τ , which is a hyperparam-
eter set as 1 in our experiments but can be also be learned or modulated during the training.

2.3 EXPERIMENTS

We demonstrate the versatility of our model through three distinct experiments, each showcasing a
unique application in neural data analysis.

Decoding Visual Information: This involves starting with neural data (EEG, MEG, or fMRI) and
projecting it into a common representation space using the corresponding neural model. Concur-
rently, we process all images in the test set specific to each modality (comprising 337 for EEG,
2400 for MEG, and 982 for fMRI) and compute their similarities. The goal is to retrieve the top-n
images that most closely match the neural signal representation. This process effectively allows us
to ”decode” the neural data into potential visual images that the subject might have been perceiving.

Encoding Experiment: Here, we begin with an image, pass it through the image encoder, and
simultaneously process all neural data of a particular modality through the neural encoder. We
then search for the top-n neural representations in the shared space and retrieve the corresponding
neural data in the test set. This approach enables us to obtain ”encoded” neural representations
corresponding to the given image.

Modality Conversion: Here we capitalize on the alignment of all modalities in the same represen-
tation space. For instance, given the fMRI representation of a subject who has viewed a specific
image, we might ask: what could be the EEG or MEG activity resulting in viewing a semantically
similar image? To answer this, we encode the sample from our input modality and the target search
set from the desired output modality, selecting the top-n matches based on similarity. To validate
the effectiveness of this modality conversion, we compare the images associated with the source
modality during data acquisition with those linked to the target modality.

These experiments collectively illustrate the robustness and multifaceted capabilities of our model,
offering significant advancements in the fields of neural encoding, decoding, and inter-modality
translation.

2.4 EVALUATION

To assess the performance of our model, we employed various metrics that gauge its proficiency in
extracting relevant semantic information from neural data.

Decoding Performance Evaluation: For decoding, the evaluation methodology is straightforward.
The ImageNetEEG and THINGS MEG datasets have distinct classes (40 and 720, respectively),
allowing us to calculate and compare top1 and top5 accuracy directly against chance levels and
established baselines like (Palazzo et al., 2020). In contrast, the Natural Scene Dataset (NSD) used
for fMRI comprises complex scenes from the COCO dataset without distinct classes. To evaluate
decoding performance in this context, we employed the CLIP 2-way accuracy metric, comparing
with the state of the art (Scotti et al., 2023). For consistency and ease of comparison, we extended
this measure to the EEG and MEG settings as well.

Encoding Performance Measurement: In the encoding scenario, where images are input to re-
trieve neural data, we faced the challenge of neural data being inherently difficult to interpret and
visualize. To ascertain whether relevant information was captured, we relied on an indirect metric.
Each sample of neural data is associated with a specific image viewed during the vision experiments.
Encoding these images, we get candidate neural representations of stimuli. We then compute the
CLIP 2-way accuracy between the related neural activity relative encoded image (ground truth) and
the retrieved activities with the encoding model. This process involves starting with an image, ob-
taining candidate neural data, and then visually comparing the representations of the related images
of these candidates with the original image. A successful encoding process would typically result in
the selection of neural data associated with the observation of semantically similar images.

Modality Conversion Evaluation: The approach for evaluating modality conversion is similar. We
initiate the process with neural data from one modality and obtain representations in another. Of
course, given that all datasets are from different subjects, we also get activity on another subject,
the one that in principle has the closest representation in the common space. The performance of
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Table 1: Various metrics to assess model performance in the decoding experiment. ”Baselines”
columns refer to top1 and top5 chance level, while ”retrieval dataset size” is useful to put CLIP
2-way accuracy in context with other works

Neural Module top1
accu-
racy

top5
accu-
racy

CLIP 2
way

baseline
accu-
racy
(%)

baseline
top5
(%)

Retrieval
dataset
size

Number
of
classes

EEG (ImageNet) 40,0 54,3 79,4 2,5 12,5 332 40
MEG (THINGS) 1,2 6,1 60,1 0,13 0,65 2400 720
fMRI (NSD) - - 90,3 - - 982 -

this aspect of our model is gauged using the CLIP 2-way accuracy between the images related to
the source and target modalities. This metric effectively measures how well our model translates
semantic information across different neural modalities.

Overall, these diverse evaluation strategies offer a comprehensive understanding of our model’s
capabilities in decoding, encoding, and modality conversion, ensuring a thorough validation of its
effectiveness in handling complex neural datasets.

3 RESULTS

The model’s performance in decoding neural data into corresponding visual stimuli is quantified
and presented in Table 1. The EEG module achieved a top1 accuracy of 40,0% and a top5 accuracy
of 54.3%, which is a substantial improvement over the baseline chance level accuracy figures of
2.5% for top1 and 12.5% for top5, Notably, this module’s CLIP 2-way accuracy reached 79.4%,
indicating the model’s capability to decode EEG data with high reliability. Unfortunately, directly
comparing these performances with literature could be difficult, because some recent work with ap-
prently impressive performances (Bai et al., 2023; Palazzo et al., 2017; Kavasidis et al., 2017) on this
dataset have been seen to rely on contamination between train and test data due to an incorrect use
of preprocessing choices on raw data for this event design as stated in (Li et al., 2018). When com-
paring results with work that explicitly preprocess data in order to avoid this confouding factor, we
found performances that are on par with recent works (Palazzo et al., 2020; Ferrante et al., 2023a),
reporting top1 accuracy within range (39-45%) for multisubject network trained for classification.
For the MEG module, which faced the greater complexity of the THINGS dataset (720 classes),
the model achieved a top1 accuracy of 1.2% and a top5 accuracy of 6.1%, which corresponds to 10
times the baseline chance level accuracies of 0.13% for top1 and 0.65% for top5. The CLIP 2-way
accuracy stood at 60.1%, This demonstrates the model’s adeptness in handling a more extensive and
varied set of images, comprising a total of 2,400 images. Again, these results are comparable with
recent work on the same dataset which focused only on decoding of MEG images (Benchetrit et al.,
2023) where top5 accuracy was tested in several settings with performances in range [1-8 %]. The
fMRI module’s decoding performance was particularly notable, achieving a CLIP 2-way accuracy
of 90.3% with the NSD dataset. Our results align well with findings from recent literature(Takagi &
Nishimoto, 2023; Ferrante et al., 2023b; Ozcelik & VanRullen, 2023; Chen et al., 2022; Scotti et al.,
2023), though direct comparisons are challenging due to the varied focus and methodologies of these
studies. Many of these works concentrate on the detailed reconstruction of stimuli using complex
pipelines that involve regressing fMRI data to a latent space, generating images, and then computing
CLIP 2-way accuracy between the generated and actual images. These processes typically involve
training individual models for each subject. Despite these differences, the performance metrics re-
ported in these studies, which generally fall within the range of [77-95 %], are comparable to our
results. This situates our approach within the high-performance spectrum for multisubject settings.
This high accuracy, obtained with a retrieval set of 982 images, underscores the model’s proficiency
in decoding complex scene representations from fMRI data. Fig 3 provides details on the model’s
decoding capabilities with fMRI, EEG, and MEG data. In fMRI Decoding, the model’s quality is
evident. For example, when presented with a stimulus of grazing animals, the fMRI module accu-
rately retrieves other images of animals in similar pastoral settings. This level of detail suggests the
model’s strong semantic grasp, as it not only identifies the subject of the image but also the context
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in which it is situated. The EEG Decoding column showcases a broad understanding of the visual
stimulus categories. Good examples are showcased by the piano and elephant cases (first and last
row of EEG panel in Fig 3), indicating its capacity to capture the broader concepts of objects and
animals. MEG Decoding presents a blend of moderately related and thematically similar images. A
notable example is the retrieval of images of leopards and penguins in response to a stimulus of the
jaguar (first row), demonstrating the model’s nuanced semantic retrieval. However, the module also
retrieves images that are thematically related but not identical, such as different fruits and vegetables
in response to a stimulus of a specific type, suggesting a wider semantic reach of the MEG module
compared to fMRI.

Figure 4: Encoding Experiment Re-
sults Displaying Image-to-Brain Activ-
ity Correlation. Rows illustrate the re-
sults for EEG, MEG, and fMRI modal-
ities. The leftmost images are the en-
coded stimuli, and the subsequent im-
ages represent images related to the
brain activities retrieved by the model.

In the encoding experiment, the model’s efficacy in map-
ping visual stimuli to neural activities was reflected in
the figure 4 for each modality. The EEG encoding re-
sults, showing a high semantic correlation with the orig-
inal encoded image, achieved a CLIP 2-way accuracy of
85.5%. The MEG encoding results depicted a somewhat
broader semantic range, achieving a CLIP 2-way accu-
racy of 58.8%, suggesting potential areas for refinement.
The fMRI encoding, with the highest precision in match-
ing the semantic content of the original image, reached a
CLIP 2-way accuracy of 87.8%. The figure 4 effectively
showcases the encoding proficiency of our model, trans-
forming visual stimuli into corresponding neural activity
representations across various modalities. In the EEG
Encoding section (first two rows of the image), for ex-
ample, the model skillfully associates an elephant image
with EEG activity that reflects similar scenes, indicating
a nuanced understanding of the visual to neural transla-
tion. The MEG Encoding portion reveals a diverse set of
images linked to the encoded images. Even some broader
semantic categories matching could be found (things with
airplane and some animals with elephant) probably the
signal is modest and the retrieval fails very often, suggest-
ing that there is room for improvement in image encoding
and decoding to and from MEG signals. Lastly, fMRI En-
coding stands out with its precise correlation of images to
fMRI activity, capturing both direct and contextually re-

lated scenes, affirming the model’s high precision in encoding complex visual information. Overall,
the figure illustrates the model’s capability to accurately encode visual stimuli into neural repre-
sentations, suggesting its potential application in predicting brain activity from visual inputs across
EEG, MEG, and fMRI data modalities.

Lastly, the modality conversion experiment results, as detailed in Table 2, indicated the model’s
capability to accurately transform neural information across modalities. The normalized accuracies
for conversions like fMRI to MEG were exceptionally high (95.40%), highlighting the model’s
ability to preserve semantic content through the conversion process. These conversions demonstrate
the model’s potential to provide a harmonized representation of brain activity, bridging the gap
between different brain imaging techniques.

Collectively, these results underscore the capabilities of our model that can solve several tasks,
reaching high performances on par with recent literature in neural decoding tasks, showing also its
potential in encoding visual content into neural patterns, and its proficiency in converting neural
information across modalities, setting a foundation for future breakthroughs in multimodal neural
data analysis and interpretation.

4 DISCUSSION

The development of our neural foundation model stands as a pioneering stride towards an integrated
understanding of the brain’s mechanisms through neural data. This work signifies the first step in
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Table 2: Conversion modality CLIP-2way accuracies and their normalized values respect of the
decoding perfromances.

Conversion Clip 2 way decoding accuracy Normalized Clip 2 way decoding accuracy
fMRI to EEG 0.6710 0.8370
MEG to EEG 0.6790 0.8470
fMRI to MEG 0.5679 0.9540
EEG to MEG 0.5594 0.9396
EEG to fMRI 0.7648 0.8598
MEG to fMRI 0.7928 0.8912

creating a foundational framework akin to what has been seen with large language models in the
field of natural language processing. It encapsulates a multi-modal approach that not only decodes
but also aligns neural representations from a variety of datasets and modalities, bringing us closer
to a cohesive neural language. A pivotal aspect of this model is its capacity for multi-modal (and
subject) representation alignment, effectively creating a shared representation space that harmonizes
individual variability. This is particularly reminiscent of the convergence of different languages and
dialects into a singular, coherent narrative—where the model serves as an interpreter of the brain’s
complex ’dialects’ of activity. However, aligning data from disparate neural recording modalities
comes with several challenges, ranging from technical discrepancies to the resolution of spatiotem-
poral data. This work has navigated some of these complexities, yet the integration process remains
a sophisticated and elaborate task. However, the model presented is not without its limitations. It has
currently non-generative nature and the reliance on diverse, pre-existing datasets indicate that it re-
mains a proof-of-concept. Looking to the future, our goal is to turn this model into a generative tool
that could revolutionize data augmentation and facilitate virtual experiments. The addition of fur-
ther modalities such as language and audio, alongside more extensive fMRI, EEG, and MEG data,
could pave the way for a comprehensive ”latent brain representation.” This representation would
transcend individual modalities, offering a more holistic view of brain activity. In addition to tech-
nical advancements in the field, one must not forget the critical issue of neural data privacy. As
our models become increasingly capable of decoding detailed information from neural signals, the
imperative for privacy safeguards grows. All datasets used in this study are in the public domain,
and participant consent was meticulously obtained. Nevertheless, future developments could lead to
models that decode personal data from minimal scanning, necessitating minimal cooperation from
participants. This raises the specter of privacy concerns, as well as the ethical use of such technol-
ogy. It is crucial that we engage in proactive discussions on these topics to avoid potential misuse
of neural decoding technologies and ensure that model-generated content can be distinguished from
true subject experiences, preventing the propagation of harmful material. In sum, while this first step
towards a neural foundation model marks a possible advancement in our approach to understanding
and interpreting neural data, it also beckons us to contemplate the ethical framework within which
such technology should operate. As we enhance the model’s capabilities and expand its applications,
we must concurrently fortify the ethical boundaries that will preserve the privacy and integrity of
individual neural data.

5 CONCLUSION

This paper introduces a new step towards a neural foundation model that aligns representations of
multi-modal neural datasets using contrastive learning, marking a significant advance in the field
of neuroscience. Our model has demonstrated considerable success in decoding, encoding, and
converting neural signals, showing its potential to unravel the complex semantics of brain activity.
While promising, the model’s current non-generative nature and reliance on diverse datasets indicate
areas for future enhancement. The next steps involve expanding the model’s capabilities to include
generative abilities and additional modalities, moving towards a comprehensive representation of
brain activity. Crucially, this research also highlights the emergent issue of neural data privacy,
necessitating a collaborative effort to establish ethical guidelines for future advancements. As we
continue to explore the depths of neural data interpretation, we remain committed to advancing
scientific understanding while upholding the utmost respect for individual privacy and data integrity.
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