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ABSTRACT

Mechanism design is often described as inverse game theory: rather than analyzing
equilibria of a game, the designer specifies rules to induce desirable outcome at
equilibrium. We present a computational framework for optimal dynamic mech-
anism design with evolving agent types. We cast the problem as a constrained
optimization over partially observable Markov games, with incentive compatibil-
ity and individual rationality encoded as constraints. To solve it, we develop a
min–max optimization approach and propose two methods for handling partial
observability: (i) Bayesian belief-state tracking with convergence guarantees in
discrete-type settings, and (ii) recurrent neural embeddings that scale to continuous
types. In bandit auction experiments, our framework recovers known single-item
benchmarks and discovers new incentive-compatible mechanisms in multi-item
environments lacking analytical solutions.

1 INTRODUCTION

Mechanism design is often described as inverse game theory: rather than predicting equilibrium
outcomes in a given game, the principal (i.e., the designer) begins with a desired outcome and works
backwards to design rules of interaction so that strategic behavior by self-interested agents yields
the desired outcome (i.e., equilibrium). Dynamic mechanism design (DMD) extends this paradigm
to environments where decisions unfold over multiple periods and agents’ types (i.e., their private
information) evolve over time. This problem is pivotal in many real-world applications, such as
auctions for multi-period goods (e.g., spectrum licenses), long-term contracting in supply chains, and
subscription-based services. The added comlexity of temporal and informational dynamics makes
DMD especially challenging, and explicit mechanism characterizations are rare.

An important strand of the dynamic mechanism design literature studies profit-maximizing mecha-
nisms in dynamic settings with evolving private information (Courty & Hao, 2000; Battaglini, 2005;
Eso & Szentes, 2007; Kakade et al., 2013). In particular, Pavan et al. (2014) synthesize earlier
work and develop a comprehensive dynamic contracting framework that accommodates arbitrary
horizons, multiple agents, a continuum of types, and serial correlation with dependence on past
allocations—serving as the dynamic counterpart to the Myersonian static framework (Myerson,
1981). Despite the generality of the framework, successful mechanism characterization is only
achieved for restrictive settings (e.g., dynamics follows a specific form and, most importantly, types
are unidimensional) — a limitation shared by analytical approaches.

In this paper, we approach DMD from the inverse-game perspective. An inverse game contains
a parameterized game in which the agents’ equilibrium behavior is known (via data or analytics),
and the goal is to find parameters of the game that induce the observed behavior. Goktas et al.
(2024) employed representation learning within this perspective: they represent parameterized games
as expressive neural networks and search the induced game space for parameters that rationalize
the given equilibrium. A solution to this inverse game is called an inverse equilibrium (Goktas
et al., 2024). An insight that makes this inverse-game perspective promising for DMD is: while
computing the mapping from a game to its equilibria is PPAD-hard even in simple normal-form
games (Daskalakis et al., 2009), computing the inverse mapping—from observed behavior to its
inverse equilibrium—is polynomial-time tractable for a large class of games (Goktas et al., 2024).
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Applying this perspective to DMD, we represent mechanisms using expressive neural networks and
establish a mapping from the network’s parameter space, to the parameterized mechanism space,
and the space of corresponding induced games. We then explore the mechanism-induced game
space, searching for parameters that rationalize any desired outcome i.e., inverse equilibria. In this
framework, such inverse equilibria are mechanisms.

By the dynamic revelation principle (Sugaya & Wolitzky, 2021), without loss of generality, we
restrict our attention to direct dynamic mechanisms that are incentive compatible (IC), i.e., truthful
reporting constitutes an equilibrium in the induced game. Together with individual rationality (IR)
(i.e., voluntary participation constraints), these conditions define the target space of mechanisms. That
is, it suffices to search the space of mechanism-induced games for parameters that rationalize truthful
reporting—i.e., to search for an inverse truthful equilibrium—and incentivize agents to participate.
We extend this perspective to optimal mechanism design by nesting the aforementioned constraints
of the mechanism-induced game within a bilevel optimization, i.e., we search for an inverse truthful
equilibrium that optimizes the principal’s objective.

This inverse-game perspective resonates with the paradigm of automated mechanism design (AMD)
(Conitzer & Sandholm, 2002; 2004; Zhang & Conitzer, 2021), especially recent work in the area
of differentiable economics (DE) (Dütting et al., 2023). DE can be reinterpreted through this lens:
by optimizing mechanisms subject to zero-regret incentive-compatibility constraints, DE implicitly
enforces truthful reporting as an equilibrium of an induced game, i.e., DE is a search through the space
of inverse truthful equilibria for an optimal mechanism. DE has been applied to unidimensional static
mechanism design problems, recovering known analytical solutions, and to multidimensional static
mechanism design problems, where analytical methods break down. Similarly, our work recovers
known analytical solutions to unidimensional dynamic mechanism design problems, and immediately
generalizes to multidimensional dynamic mechanism design problems.

Contribution. This paper introduces a computational framework for optimal dynamic mechanism
design. Our approach builds on the intuition that mechanism design is inherently inverse game theory,
and leverages modern differentiable tools to explore the mechanism-induced game space directly.

In Section 3, we develop a general model of DMD, extending the framework in Pavan et al. (2014).
Specifically, we utilize partially observable Markov games (POMGs) as the foundational game
model, as it captures the partial observability and dynamic nature of the problem. We then formulate
optimal DMD as an optimization problem over the induced game space. In Section 4, we propose
a solution procedure with two approaches for handling partial observability: 1. explicit Bayesian
belief updates, which reduce POMGs to Markov games and yield polynomial-time convergence to
IC+IR mechanisms—locally optimal in discrete-type compressed-information settings and globally
optimal in contextual-bandit settings and 2. recurrent neural embeddings of private information,
which bypass explicit belief tracking and scale to continuous types. In Section 5, we evaluate our
approaches in bandit auctions: in discrete-type and continuous-type single-item auctions, belief-state
tracking and RNN-based private information embeddings find IC+IR mechanisms that achieve the
same expected revenue as analytical benchmarks (Pavan et al., 2014) respectively, while in multi-item
settings, where closed-form solutions are not known, our methods discover mechanisms that satisfy
IC and IR constraints and achieve high payoff for the principal.

2 PRELIMINARIES

For readability, detailed notation and definitions are deferred to Appendix B.

Parameterized Partially Observable Markov Games. Given a parameter space Θ with parameter
θ ∈ Θ ⊆ Rd, a parameterized partially observable Markov game (POMG) is a tuple Yθ .

=
(n, T,S,A, P, γ, µ, r,O, O,θ,Θ), within the space of parameterized POMGs ZΘ, s.t.:

• Horizon T : A positive integer or∞.
• State space S: A nonempty Borel space.
• Action spaces {Ai}i∈[n]: Each Ai is a nonempty Borel space, and we denote the space of joint

actions by A =×i∈[n]
Ai.

• Parameterized transition kernel P : S×S×A×Θ→ [0, 1]: P is a Borel-measurable stochastic
kernel on S given S ×A×Θ.

• Discount factor γ.
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• Initial state distribution µ ∈ ∆(S): A probability measure on S.
• Parameterized reward functions {ri : S × A × Θ → R}i∈[n]: Each ri is a Borel-measurable

function from S ×A×Θ to R.
• Observation spaces {Oi}i∈[n]: Each Oi is a nonempty Borel space, and we denote the space of

joint observations by O =×i∈[n]
Oi.

• Observation kernels {Oi : Oi × S → [0, 1]}i∈[n]: Each Borel-measurable Oi is a stochastic
kernel on Oi given S,1 with the joint observation kernel O : O × S → [0, 1].

The game initiates at time τ = 0 in some state s0 ∼ µ drawn from an initial state distribution µ.
At each time period τ ∈ [(T − 1)∗], each player i ∈ [n] first receives observation oi,τ which is
stochastically generated via the observation kernel Oi(doi,τ | sτ ), plays an action ai,τ ∈ Ai, and
receives a reward ri(sτ ,aτ ;θ). The game then transitions to a new state sτ+1, following probability
distribution P (dsτ+1 | sτ ,aτ ;θ).

Define Ii,τ = (Oi × Ai)
τ × Oi as the τ th information space for player i, with ιi,τ =

((oi,k, ai,k)
τ−1
k=0, oi,τ ) ∈ Ii,τ as the τ th information vector for player i. Likewise, define Hτ =

(S×O×A)τ+1 as the τ th history space, and hτ = (sk,ok,ak)
τ
k=0 ∈ Hτ as then τ th history vector.

A policy for player i is a sequence πi = (πi,0, πi,1, · · · , πi,T−1) such that for each τ ∈ [T ∗], πi,τ is
a universally measurable stochastic kernel on Ai given Ii,τ . If, for each ιi,τ ∈ Ii,τ , πi,τ (dai,τ | ιi,τ )
assigns mass one to some point in Ai, πi is deterministic. In this case, by a slight abuse of notation,
πi can be considered a sequence of universally measurable mappings πi,τ : Ii,τ → Ai. We refer to
the space of all deterministic policies for player i as PPO

i . As usual, π .
= (π1, . . . ,πn) ∈ PPO .

=

×i∈[n]
PPO
i denotes a deterministic policy profile.

Given a policy profile π ∈ P and an initial state distribution µ ∈ ∆(S0), we denote the τ th-step
history distribution measure on Hτ by νπ ,θ ,τ

µ (see Appendix B for formal definition). Given a

policy profile π ∈ P , player i’s payoff Ui(π ;θ)
.
= EH∼νπ,θ ,T−1

µ

[∑T−1
τ=0 γ

τri(Sτ , Aτ ;θ)
]
. For all

π ,π′ ∈ PPO, the cumulative regret of π relative to π′ is Ψ(π ,π′;θ)
.
=

∑
i∈[n] Ui(π

′
i,π−i;θ)−

Ui(π ;θ). Moreover, given a deterministic policy profile π ∈ PPO, the exploitability of π is
φ(π ;θ)

.
= maxπ′∈P Ψ(π ,π′;θ), which represents the sum of the players’ maximal unilateral

payoff deviations. As usual, an ε-Bayesian Nash equilibrium (ε-BNE) of a POMG Yθ is a policy
profile π∗ ∈ PPO such that for all players i ∈ [n], Ui(π

∗;θ) ≥ maxπi∈Pi
Ui(πi,π

∗
−i;θ)− ε. In

particular, a Bayesian Nash equilibrium is realized when ε = 0.

3 OPTIMAL DYNAMIC MECHANISM DESIGN

Dynamic Mechanism Design A dynamic mechanism design (DMD) problem D .
=

(n,T, T ,X ,ω, F,u, u0, γ) comprises a principal and n agents. At each time period τ ∈ [T ∗],
each agent receives a private type ti,τ ∈ Ti (when τ = 0, ti,0 is drawn from the initial type distribu-
tion ωi ∈ ∆(Ti), with product measure ω =

⊗
i∈i ωi), sends report t̂i,τ ∈ Ti to the principal, and

receives an outcome xi,τ ∈ Xi, which is publicly observed by all agents2 3. Agent i will then receive
immediate reward ui(ti,τ ,x

τ ) given her current type and all past joint outcomes, and principal will
receive u0(tτ ,x

τ ) given current type profile and past joint outcomes. Then, each agent i’s type ti,τ
evolves to ti,τ+1, according to the probability distribution Fi(ti,τ+1 | ti,τ ,xτ ).4 We denote the joint
type evolution kernels by F : T × T ×

⋃T
τ=1 X τ → [0, 1].

1More generally, each observation kernel is a stochastic kernel on Oi given A×S, but we simplify it here to
keep the model concise.

2This assumption is consistent with the literature (Bergemann & Välimäki, 2019).
3For convenience, for all i ∈ [n] and 0 ≤ τ ≤ T , let xτi = (xi,k)

τ
k=0, tτi = (ti,k)

τ
k=0, and t̂τi = (t̂i,k)

τ
k=0

denote the collection of agent i’s past outcomes, past types, and past reports from time period 0 to τ , respectively.
An analogous notation extends joint outcome, type profile, and report profile.

4We assume the environment satisfies the Markov property: each agent’s reward ui,τ depends only on her
current type ti,τ rather than all past types tτi ; principal’s reward is similar; the type transition kernel Fi depends
only on the current type ti,τ rather than all past types tτi . This assumption is not strictly necessary, as one could
always augment the state space with type histories, but it enables a more tractable computational analysis.
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Given a DMD D, a dynamic (direct) mechanism is an outcome rule g :
⋃T

τ=1 T τ → X that maps
past report profiles t̂τ ∈ T τ+1 of any length τ + 1 to a joint outcome xτ = g(t̂τ ). We denote the
space of dynamic (direct) mechanisms by G .

For all agents i ∈ [n] participating inD, a reporting strategy is a collection {πi,τ : T τ+1
i ×T τ

i ×X τ →
Ti}T−1

τ=0 , where each πi,τ (t
τ
i , t̂

τ−1
i ,xτ−1) is agent i’s report at time τ when her current and past true

types are tτi , her reported past types are t̂τ−1
i , and the joint past outcomes are xτ−1. Truthtelling

is the reporting strategy that always reports true types, i.e., πi,τ (t
τ
i , t̂

τ−1
i ,xτ−1) = ti,τ , for all

τ ∈ [(T − 1)∗].

A solution to a DMD problem is a mechanism that is (i) incentive compatible (IC), meaning each agent
maximizes cumulative reward by truthfully reporting, and (ii) individually rational (IR), meaning each
agent has incentive to participate. Thus, this problem can naturally viewed as a sequential decision-
making problem for the principal, with global IC and IR constraints. The state-of-the-art DMD
literature (Pavan et al., 2014) takes exactly this perspective, but the difficulty lies in reducing global
IC constraints to recursive (i.e., local) IC constraints and encoding them back into the optimization.
While this difficulty can be resolved in unidimensional-type settings, all known techniques break
down in multi-dimensional type spaces.

Parameter space Θ
Equilibrium space = Policy profile space P

θ 7→ g
θ 7→ Yθ

∼=

Parameterized POMG space ZΘ

Parameterized mechanism space GΘ∼=

BNE(θ )

π
Inverse

BNE(π)

π† = truthful report policy profile

Inverse BNE(π†
)

= IC Mechanisms

IR Mechanisms

Find an optimal θ∗

within this intersection

θ
(∗)

Figure 1: Illustration of mapping between spaces.

To tackle multi-dimensional DMD problems,
we follow the paradigm of inverse game theory
(Goktas et al., 2024). That is, we parameterize
dynamic mechanisms using expressive neural
network representations, and then establish a
mapping between the network’s parameter space
Θ, the parameterized dynamic mechanism space
GΘ, and the space of their induced games ZΘ.
This mapping enables us to directly explore the
induced game space, searching for parameters
for which truthful reporting is an equilibrium
and voluntary participation is incentivized, by-
passing the need for recursive characterizations as shown in Figure 1 .

Inverse Game-Theoretic Formulation of Dynamic Mechanism Design Consider a class of
parameterized dynamic mechanisms GΘ for a DMD problemD. For each parameter θ ∈ Θ, gθ ∈ GΘ
is a parameterized (direct) dynamic mechanism, which induces an Agents POMG Yθ , where

• The state space S =
⋃T−1

τ=0 T ×X τ ×T τ : each sτ = (tτ ,x
τ−1, t̂τ−1) ∈ S encodes the current

type profile tτ , past joint outcomes xτ−1, and past report profiles t̂τ−1.
• The action spaces {Ai = Ti}i∈[n] are type spaces, and the agents’ actions are their reports.
• The parameterized transition kernel P : S × S × A × Θ → [0, 1] is defined as
P (sτ+1 | sτ ,aτ ;θ) = 1{xτ}(g

θ (t̂τ−1,aτ ))1{t̂τ}(t̂
τ−1,aτ )F (tτ+1 | tτ ,xτ ), for all sτ =

(tτ ,x
τ−1, t̂τ−1) and sτ+1 = (tτ+1,x

τ , t̂τ ).
• The discount factor γ is inherited from D.
• The initial state distribution µ ∈ ∆(S) is defined as µ(s0) = ω(t0), for all s0 = (t0).
• The parameterized reward functions ri : S × A × Θ → R are defined as ri(sτ ,aτ ;θ) =
ui(ti,τ , (x

τ−1, gθ (t̂τ−1,aτ ))), for all sτ = (tτ ,x
τ−1, t̂τ−1).

• The observation spaces {Oi = X ×Ti}i∈[n] are the Cartesian products of the joint outcome and
individual type spaces. At each time step τ ∈ T , agent i observes the last joint outcome and her
current true type, i.e., oi,τ = (xτ−1, ti,τ ).

• The observation kernels {Oi : Oi×S → [0, 1]}i∈[n] are defined as oi,τ = (x, ti), Oi,τ (oi,τ+1 |
sτ ) = 1{x}(xτ−1)1{ti}(ti,τ ), for all sτ = (tτ ,x

τ−1, t̂τ−1).

Note that in this formulation, the τ th information space for player i, Ii,τ = (Oi × Ai)
τ × Oi =

T τ+1
i × T τ

i × X τ , is the space of her past and current true types, her past reports, and past joint
outcomes. Therefore, πi = (πi,0, · · · , πi,T−1) is a deterministic policy, where each πi,τ : Ii,τ → Ai

is a measurable mapping, corresponding to a reporting strategy for i.

4
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We can now formally define the DMD incentive compatibility and individual rationality conditions.
Consider a DMD problem D, a parameterized (direct) dynamic mechanism gθ , and the associated
Agents POMG Yθ . Let π† be the policy profile corresponding to the truthtelling strategy profile. We
say that gθ is (i) Bayesian incentive compatible (BIC) if π† is a Bayesian-Nash equilibrium of Yθ

and (ii) Bayesian individually rational (BIR) if Ui(π
†;θ) ≥ 0, for all agents i ∈ [n].

Optimal Dynamic Mechanism Design Having formally defined BIC and BIR, we can now formalize
optimal DMD: to identify a BIC, BIR dynamic mechanism that maximizes the principal’s expected
payoff. In this section, we formulate this task as an optimization problem over the mechanism-induced
parameterized game space—in particular, as a search for an optimal inverse truthful equilibrium.

Consider a DMD problem D, a parameterized (direct) dynamic mechanism gθ , and the associated
Agents POMG Yθ . Based on Yθ , we can further define the principal’s parameterized reward functions
r0 as, for any sτ = (tτ ,x

τ−1, t̂τ−1), r0(sτ , aτ ;θ) = u0(tτ , (x
τ−1, gθ (t̂τ−1,aτ ))) and the prin-

cipal’s payoff function given policy profile π as U0(π) = EH∼νπ,θ ,T−1
µ

[∑T−1
τ=0 γ

τr0(Sτ , Aτ ;θ)
]
.

Therefore, the principal’s expected payoff induced by the agents’ play in Yθ corresponds exactly to
her expected payoff in D.

Let π† be the policy profile of Yθ that corresponds to truthtelling. We claim that gθ is a BIC and
BIR parameterized (direct) dynamic mechanism that maximizes the principal’s payoff over the time
horizon iff θ solves the following optimization problem:

max
θ∈Θ

v(θ)
.
= E

H†∼ν
π†,θ ,T−1
µ

[
T−1∑
τ=0

γτr0(S
†
τ , A

†
τ ;θ)

]
(1)

s.t. max
π∈PPO

ψ(θ ,π)
.
=

∑
i∈[n]

E
H∼ν

(πi,π
†
−i

),θ ,T−1

µ′

H†∼νπ†,θ ,T−1
µ

[
T−1∑
τ=0

γτ
(
ri(Sτ , Aτ ;θ)− ri(S

†
τ , A

†
τ ;θ)

)]
= 0 (2)

hi(θ)
.
= E

H†∼ν
π†,θ ,T−1
µ

[
T−1∑
τ=0

γτri(S
†
τ , A

†
τ ;θ)

]
≥ 0 ∀i ∈ [n] (3)

where v(θ) = U0(π
†;θ) is the principal’s payoff under π†, ψ(θ,π) = Ψ(π†,π ;θ) is the cu-

mulative regret of π vs. π†, and hi(θ) = Ui(π
†;θ) is player i’s payoff under π†. In this way,

eq. (1) maximizes the principal’s expected payoff over the parameter space; eq. (2) enforces incentive
compatibility by requiring the exploitability of π† in Yθ to be zero, meaning no agent can gain
by unilaterally deviating from truthful reporting; and eq. (3) guarantees individual rationality (i.e.,
voluntary participation), since each agent’s payoff is non-negative.

The intuitive approach to solving this constrained optimization problem is to apply Lagrangian
relaxation. However, a major drawback of this method is that the optimal multiplier can become
excessively large, complicating the solution process. To address this, we propose an alternative
method that solves the optimization problem without requiring computation of the optimal Lagrangian
multiplier. Specifically, we transfer the problem to find the largest δ ∈ R s.t.

min
θ∈Θ

max
π∈PPO

f(θ,π ; δ)
.
= |v(θ)− δ|+αψ(θ,π) + βh(θ) = 0 (4)

where h(θ) .=
∑

i∈[n]|hi(θ)|, α, β ∈ R+ scales ψ and h respectively. In this formulation, we search
over target principal payoffs δ, and for each δ we test whether a BIC and BIR dynamic mechanism
exists by solving the min-max optimization problem in eq. (4). The minimizer selects parameters
to achieve the target payoff, ensure individual rationality, and rationalize π† by minimizing its
exploitability, while the maximizer chooses per-agent deviations to challenge the rationality of π†.
Theorem 3.1. Let δ∗ ∈ R be the largest real number such that

min
θ∈Θ

max
π∈PPO

f(θ,π ; δ) = |v(θ)− δ∗|+αψ(θ,π) + βh(θ) = 0,

with (θ∗,π∗) being the min-max solution, i.e., f(θ∗,π∗; δ) = minθ∈Θ maxπ∈PPO f(θ,π ; δ), then
gθ

∗
is the optimal BIC and BIR dynamic mechanism in the mechanism class GΘ, and δ∗ corresponds

to the optimal principal payoff.

5
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4 COMPUTATIONAL RESULTS

In this section, we present an algorithm for the problem introduced above and describe two
approaches to addressing the partial observability in the min–max optimization (eq. (4)): one
that, under suitable assumptions, guarantees polynomial-time convergence in the discrete-type,
compressed-information setting, and another that applies more broadly to general scenarios.

Algorithm 1 Two-Timescale SGDA

Require: Θ,W, ηθ , ηw , T,θ
(0),w(0),w†

Ensure: (θ(t),w(t))Tt=0

1: Build gradient estimator f̂ associated with Yθ .
2: for t = 0, . . . , T − 1 do

3: Sample H ∼ ×i∈[n]
ν
(w

(t)
i ,w†

−i),θ
(t)T−1

µ ,

H† ∼ νw†,θ(t),T−1
µ

4: θ(t+1) ← ΠΘ

[
θ(t) − η(t)θ f̂θ (θ

(t),w(t);H , H†)
]

5: w(t+1) ← ΠP

[
w(t) + η

(t)
w f̂w (θ(t),w(t);H , H†)

]
6: end for
7: return (θ(t),w(t))Tt=0

We use a binary-search-like procedure to
search for target principal payoff δ. Start-
ing with an interval [ℓ, u], the algorithm
repeatedly bisects the interval and calls a
two-timescale SGDA routine (Algorithm 1,
(Daskalakis et al., 2021)) to solve for eq. (4)
on the midpoint c = l+u

2 . If the routine
finds a parameter θ that makes the objec-
tive nearly feasible (value ≤ ε), we in-
crease the lower bound to c; otherwise, we
decrease the upper bound. This process
continues until the interval is within preci-
sion ε, at which point the last feasible θ is
returned.

Although the binary-search framework re-
duces the optimization problem to solving
a sequence of feasibility checks, the central difficulty lies in solving the min–max objective itself.
First, we note that π ∈ PPO is a function with a continuous domain. Therefore, as is usual in
reinforcement learning, we want to use policy gradient to solve the maximizer’s problem. To do
so, we restrict the maximizer’s space to a policy class PW parameterized byW ⊆ Rl. Redefining
ψ(θ,w)

.
= ψ(θ,πw ) for all πw ∈ PW , we aim to solve the problem

min
θ∈Θ

max
w∈W

f(θ,w; δ)
.
= |v(θ)− δ|+αψ(θ,w) + βh(θ). (5)

Running Algorithm 1 on f requires an estimate of∇f w.r.t. both θ and w . As both gradients involves
expectations over histories, we assume that we can simulate trajectories of play from the deviation

history distribution H
.
=

(
H1, . . . , Hn

)T∼×i∈[n]
ν
(πw

i ,π
†
−i),θ ,T−1

µ and the truthful reporting history

distribution H† ∼ νπ
†,θ ,T−1

µ , and that doing so provides both value and gradient information for the
rewards and transition probabilities along simulated trajectories. That is, we rely on a differentiable
game simulator (see, for instance, Suh et al. (2022)), a stochastic first-order oracle that returns the
gradients of the rewards and transition probabilities, which we query to estimate ∇f.

A central challenge in sampling history trajectories is the partial observability of the game: agents
never observe the full state, as each agent’s type evolves stochastically and remains hidden from
both the principal and the other agents. Policies must therefore depend only on private information
ιi,τ , making standard RL methods inapplicable. To address this, we introduce two complementary
representations of private information: (i) explicit Bayesian belief, which reduce the POMG to a
Markov game in the discrete-type setting (Section 4.1), and (ii) recurrent neural encoders, which
embed agent-specific private information through RNNS and scale to continuous types and complex
environments where exact inference is infeasible (Section D.1).

4.1 BELIEF-BASED REPRESENTATION OF PRIVATE INFORMATION

Our first approach represents beliefs explicitly by maintaining Bayesian distributions over the state
space. Although types are hidden, their distributions evolve predictably given the prior, the transition
kernel, and past outcomes, so Bayes’ rule reduces the POMG to a Markov game (MG). At each step
τ ∈ [(T − 1)∗], each player’s belief bi,τ is a sufficient statistic for their private information, and the
joint belief forms the belief state bτ (formal reduction in Appendix B.1.2). We assume finite type
spaces so that beliefs lie in a simplex,5 and note that public outcomes suffice for belief updates since
transitions depend on reports only through induced outcomes. Finally, we focus on infinite-horizon

5Extensions to continuous types require approximations such as particle filtering or function approximation,
trading off precision and tractability.

6
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environments, enabling the use of modern RL results (Bhandari & Russo, 2022; Daskalakis et al.,
2021) for polynomial-time convergence guarantees.

Before proceeding to the reduction, we must address a challenge that prevents polynomial-time conver-
gence: the dimensionality of the state space in Yθ . Since each state encodes the entire history of joint
outcomes and reports, the state space becomes uncountable in the infinite-horizon setting. To manage
this, we assume there exist compression maps Φx :

⋃T−1
τ=0 X τ → Rdx , Φt̂ :

⋃T−1
τ=0 T τ → Rdt̂

that summarize past outcome and report histories into fixed-dimensional vectors, and corresponding
forward compression maps

−→
Φx : (Φx(x

τ ),xτ+1) 7→ Φx(x
τ+1),

−→
Φt̂ :

(
Φt̂(t̂

τ ), t̂τ+1

)
7→ Φt̂(t̂

τ+1),
that propagate these compressed representations forward as new outcomes and reports are real-
ized. Moreover, we assume agent’s and principal’s immediate reward and agents’ type transition
kernels depend on past joint outcomes xτ−1 only through Φx(x

τ−1); every dynamic mechanism
g depend on past report profiles t̂τ−1 only through Φt̂(t̂

τ−1) 6, so we just need to keep track of
Φx(x

τ−1),Φt̂(t̂
τ−1) in the state space. For instance, in bandit auctions (see Section 5), each buyer’s

type transition depends only on their total past allocation count, so we can define Φx(x
τ ) =

∑τ
k=0 xk,

which implies only the cumulative sum of past outcomes is retained.

In this way, some information is inevitably lost, but we retain precisely the statistics that are payoff-
relevant for the mechanism and the agents, thereby avoiding an explosion in the state space.

Now, for any gθ ∈ GΘ, let CPOMθ denote the compressed POMG defined above, which
we call the Compressed Agent POMG. Its Markov game reduction is given by Mθ .

=
(n, T,B,A, P ′, γ, µ′, r′,θ,Θ), which we refer to as the Compressed Agent Belief MG Mθ (see
Section B.1.2 for details). We denote the principal payoff and player payoffs in this game by U ′

0 and
(U ′

i)i∈[n] respectively, and we denote the players’ action values under policy profile π by qπi .

For any i ∈ [n] and any deterministic policy πi ∈ PPO
i in CPOMθ , there exists an equivalent

Markov policy π′
i ∈ PMarkov

i in the corresponding Belief MGMθ . Therefore, we translate the
maximization problem maxπ∈PPO ψ(θ,π) to maxπ∈PMarkov ψ(θ,π), Without loss of generality7,
we can further restrict to the set of Markov stationary policy profiles PMS. We overload notation by
parameterizing PMS directly byW , so each πw is a randomized Markov stationary policy profile in
Mθ .

Without any additional assumptions, f(θ,w; δ) = |v(θ)− δ|+αψ(θ,w)+βh(θ) is in general non-
convex-non-concave, and even non-smooth in θ , which makes the associated min–max optimization
problem highly challenging. Without additional structural assumptions, first-order methods lack
polynomial-time guarantees for finding even ε-stationary solution.

So first, to handle the non-smoothness introduced by absolute values, we approximate the absolute
values through a smooth surrogate, namely the κ-scaled pseudo-Huber function ϕκ defined as
ϕκ(x) =

√
x2 + κ2 − κ for all x ∈ R, with smoothing parameter κ > 0. Thus, our smoothed

objective function becomes fκ(θ,w; δ) = ϕκ(v(θ)− δ) + αψ(θ,w) +
∑

i∈[n] ϕκ(hi(θ)).

By imposing additional conditions on policy parametrization, mechanism parameterization, and the
original DMD problem (Assumption 1-3, Appendix C), we can ensure that our objective f, and hence
fκ, is gradient-dominated in w , and thus obtain polynomial-time convergence to an approximate
stationary point of smoothed max-value function Vκ(θ)

.
= maxw∈W fκ(θ,w; δ), which corresponds

to an first-order locally-optimal BIC+BIR mechanism (Theorem 4.1, (a)). Assumption 1 has three
roles: it guarantees the policy parameterization is expressive enough to capture best responses,
requires smoothness of the mapping from parameters to actions (and thus of the objective), and
imposes structural conditions onM that yield gradient dominance of the objective. Assumption 2
places analogous constraints on the mechanism parameter space, but only requires smoothness of the

6For every agent i, we redefine ui(ti,τ ,x
τ ) as ui(ti,τ ,Φx(x

τ−1),xτ ), Fi(ti,τ+1 | ti,τ ,xτ ) as Fi(ti,τ+1 |
ti,τ ,Φx(x

τ−1),xτ ), and for the principal, we redefine u0(t0,τ ,x
τ ) as u0(tτ ,Φx(x

τ−1),xτ ). Finally, for any
dynamic mechanism g, we redefine g(t̂τ ) as g(Φt̂(t̂

τ−1), t̂τ ).
7Since ψ decomposes into n separate policy optimization problems—one for each player deviating while

others remain truthful—each deviation reduces to solving a stationary infinite-horizon discounted belief-MDP.
By standard MDP theory (Puterman, 1994), such problems admit optimal policies that are stationary (possibly
randomized).

7
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mapping from mechanism parameters to outcomes. Finally, Assumption 3 assumes smooth reward
functions and type-transition kernels, further ensuring smoothness of the objective.

Moreover, if the DMD environment is contextual-bandit–like—that is, transitions are independent
of outcomes (Assumption 4, Appendix C)—then under additional assumptions on the mechanism
parameterization, we obtain polynomial-time convergence to the min–max solution (θ∗,w∗) of f,
where θ∗ corresponds to the globally optimal BIC, BIR mechanism (Theorem 4.1(b)).

Finally, we define the equilibrium distribution mismatch coefficient ∥∂δπ
†,θ

µ /∂µ∥∞ as the Radon-
Nikodym derivative of the state occupancy distribution of the truthful-reporting profile π† w.r.t. the
initial state distribution µ. This coefficient, which measures the inherent difficulty of reaching states
under π†, is closely related to other distribution mismatch coefficients introduced in the analysis of
policy gradient methods (Agarwal et al., 2020). With this definition in hand, we can finally show
polynomial-time convergence of two-timescale stochastic GDA (Algorithm 1).
Theorem 4.1. Suppose Assumption 1-3 hold. For any ε ∈ (0, 1), if Algorithm 1 is running on
fκ with inputs that satisfy ηθ , ηw ≍ poly(ε, ∥∂δπ

∗
µ /∂µ∥∞, 1

1−γ , ℓ
−1
∇fκ

, ℓ−1
fκ

), then there exists T ∈

poly
(
ε−1, (1− γ)−1, ∥∂δπ

∗
µ /∂µ∥∞, ℓ∇fκ , ℓfκ , diam(Θ×W), η−1

θ

)
and k ≤ T s.t.

(a) θ
(T)
best = θ(k) is a (ε, ε/2ℓfκ)-stationary point of Vκ, i.e., there exists θ∗ ∈ Θ s.t. ∥θ(T )

best − θ∗∥≤ ε/2ℓfκ and
minh∈DVκ(θ∗)∥h∥≤ ε.

(b) Moreover, if we further assume that Assumption 4 holds and for all gθ ∈ GΘ, θ 7→ gθ (t̂τ ) is affine for all τ ∈
[(T −1)∗], t̂τ ∈ T τ+1, θ(T )

best satisfies that maxw∈W fκ(θ
(T)
best,w)−minθ∈Θ maxw∈W fκ(θ ,w; δ) ≤ ε.

Furthermore, maxw∈W f(θ
(T)
best,w; δ)−minθ∈Θ maxw∈W f(θ ,w; δ) ≤ ε+ (n+ 1)κ.

4.2 NEURAL EMBEDDING OF PRIVATE INFORMATION

While explicit belief tracking provides a principled reduction from POMGs to MGs, it becomes
intractable in continuous type spaces: maintaining exact beliefs requires operating in infinite-
dimensional spaces, which is computationally prohibitive. To address this limitation, we adopt
a recurrent neural architecture for information representation.

It consists of two complementary components: a public encoder, which processes commonly observed
signals such as the normalized time step and past joint outcomes into a public embedding cτ , and
a collection of private encoders, one for each agent, which maintain agent-specific hidden states
(hi,τ )i∈[n] by fusing private observations (past types and reports) with the evolving public embedding.
For each agent i, the pair (cτ , hi,τ ) serves as a sufficient statistics of the information available at
time τ , i.e., ιi,τ , and serves as input to the policy network. This design follows common practice in
POMDPs and multi-agent RL (Hausknecht & Stone, 2017; Venkatraman et al., 2017; Foerster et al.,
2016), where recurrent architectures are employed to capture and update information over time (see
Appendix D.1 for details).

5 EXPERIMENTS: OPTIMAL BANDIT AUCTION

We evaluate our framework in Bandit Auction environments, a canonical example of dynamic
mechanism design where buyers’ types evolve through a bandit process and the principal repeatedly
chooses allocations (incurring costs) and payments. The bandit auction admits closed-form optimal
allocation rules via virtual index policies, making it a practical and interpretable testbed. We study
both discrete and continuous type spaces, using belief-based representations in the former and neural
embeddings in the latter. In each case, we consider single-item auctions—benchmarked against
the unidimensional results of Pavan et al. (2014)—and multi-item auctions, where no benchmark
solutions exist. This design validates our methods in tractable single-item settings and demonstrates
scalability to more complex multi-item environments8.

Bandit . The Bandit Auction is a setting where a profit-maximizing seller runs a sequence of auctions
over T periods, selling m indivisible, non-storable goods to n buyers whose valuations evolve when
they win goods. This captures applications such as repeated sponsored search auctions, where

8Code available at here.
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advertisers update valuations based on click profitability. A bandit auction can be viewed as a DMD
problem defined in Appendix D.2.

Experiment Description. We evaluate our framework across four settings (discrete vs. continuous
types; single vs. multi-item), using n = 2, horizon T = 5, and m = 2 in multi-item auctions. Valua-
tion spaces and transition functions are specified in Table 2, Appendix D.3. Any mechanism parameter
θ is assessed by profit loss |v(θ)− δ|, IR loss

∑
i|hi(θ)|, and exploitability maxπ∈PPO ψ(π ,θ).

Our training proceeds in two stages: (i) a hyperparameter search over learning rates and scaling
coefficients (α, β); and (ii) with the best configuration, running Algorithm 1 for up to 10,000 epochs
per profit target δ, retaining mechanisms only when all three losses are below 0.1.

Network Architecture. We provide a high-level overview of the mechanism and policy network
architectures here, with full details deferred to Appendix D.4.

Mechanism Network. Our mechanism network takes four inputs—current types, current reports,
cumulative allocations, and past reports. Each is encoded by a dedicated MLP, with report histories
summarized via attention. The embeddings are concatenated into a shared representation from
which allocation and payment heads are derived. Key features (types, reports, allocations) use larger
embeddings, while histories provide lower-dimensional context.

LIR Expoit Max Profit

Discrete Single-Item Benchmark - - 6.5089
Ours 0.0975 0.0938 6.5089

Multi-Item Ours 0.0215 0.0010 16.6

Continuous Single-Item Benchmark - - 9.7066
Ours 0.0685 0.0341 9.7066

Multi-Item Ours 0.0425 0.0490 17.65

Table 1: Performance summary.

Figure 2: Convergence of exploitability, profit loss,
and IR loss (left to right) across four settings: dis-
crete–single, discrete–multi, continuous–single, and con-
tinuous–multi (top to bottom)

Policy Networks. Our policy networks use a pro-
totype–residual architecture (Silver et al., 2019;
Johannink et al., 2018), with the truthful policy
as the prototype (a zero-regret baseline) and a
residual network learning profitable deviations.

• Discrete types. Input includes Bayesian be-
liefs and private information; output is a
logit vector over reports. The prototype is
the one-hot truthful report, scaled by a learn-
able parameter, with the residual network
adding deviations.

• Continuous types. Input combines recurrent
embeddings of private information with the
raw (bounded) type. Each coordinate is nor-
malized, mapped into logit space, adjusted
by the residual, and projected back via sig-
moid and rescaling to produce the final re-
port.

Details are in Appendix D.4.

Experiment Results. In the single-item set-
tings, our mechanisms recover the known opti-
mal benchmarks of Pavan et al. (2014), while
in the multi-item settings, where analytical so-
lutions continue to elude us, they achieve high profits. Convergence is faster in the single-item
case, while the multi-item case requires more training but still reaches low exploitability and IR loss.
Table 1 reports the final performance, and Figure 2 illustrates the convergence dynamics across all
four settings.

6 CONCLUSION

We presented a computational framework for optimal dynamic mechanism design through the inverse-
game perspective, casting mechanism design as the search for an optimal inverse truthful equilibrium
in a parameterized game space. Our optimization enforces incentive compatibility and individual
rationality as equilibrium constraints. Our algorithm provides convergence guarantees for discrete-
type settings and handles continuous-type settings with recurrent neural embeddings. Experiments
in bandit auctions show that the framework recovers known analytical benchmarks in single-item
settings and discovers high-payoff, incentive-compatible mechanisms in multi-item environments
without closed-form solutions. Looking forward, we are interested in evaluating the framework
beyond profit maximization, incorporating richer objectives (e.g. welfare) to better align with the
goals of real-world applications.
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