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ABSTRACT

Mechanism design is often described as inverse game theory: rather than analyzing
equilibria of a game, the designer specifies rules to induce desirable outcome at
equilibrium. We present a computational framework for optimal dynamic mech-
anism design with evolving agent types. We cast the problem as a constrained
optimization over partially observable Markov games, with incentive compatibil-
ity and individual rationality encoded as constraints. To solve it, we develop a
min—max optimization approach and propose two methods for handling partial
observability: (i) Bayesian belief-state tracking with convergence guarantees in
discrete-type settings, and (ii) recurrent neural embeddings that scale to continuous
types. In bandit auction experiments, our framework recovers known single-item
benchmarks and discovers new incentive-compatible mechanisms in multi-item
environments lacking analytical solutions.

1 INTRODUCTION

Mechanism design is often described as inverse game theory: rather than predicting equilibrium
outcomes in a given game, the principal (i.e., the designer) begins with a desired outcome and works
backwards to design rules of interaction so that strategic behavior by self-interested agents yields
the desired outcome (i.e., equilibrium). Dynamic mechanism design (DMD) extends this paradigm
to environments where decisions unfold over multiple periods and agents’ types (i.e., their private
information) evolve over time. This problem is pivotal in many real-world applications, such as
auctions for multi-period goods (e.g., spectrum licenses), long-term contracting in supply chains, and
subscription-based services. The added comlexity of temporal and informational dynamics makes
DMD especially challenging, and explicit mechanism characterizations are rare.

An important strand of the dynamic mechanism design literature studies profit-maximizing mecha-
nisms in dynamic settings with evolving private information (Courty & Hao, 2000; Battaglini, 2005;
Eso & Szentes, 2007; Kakade et al., 2013). In particular, Pavan et al. (2014) synthesize earlier
work and develop a comprehensive dynamic contracting framework that accommodates arbitrary
horizons, multiple agents, a continuum of types, and serial correlation with dependence on past
allocations—serving as the dynamic counterpart to the Myersonian static framework (Myerson,
1981). Despite the generality of the framework, successful mechanism characterization is only
achieved for restrictive settings (e.g., dynamics follows a specific form and, most importantly, types
are unidimensional) — a limitation shared by analytical approaches.

In this paper, we approach DMD from the inverse-game perspective. An inverse game contains
a parameterized game in which the agents’ equilibrium behavior is known (via data or analytics),
and the goal is to find parameters of the game that induce the observed behavior. Goktas et al.
(2024) employed representation learning within this perspective: they represent parameterized games
as expressive neural networks and search the induced game space for parameters that rationalize
the given equilibrium. A solution to this inverse game is called an inverse equilibrium (Goktas
et al., 2024). An insight that makes this inverse-game perspective promising for DMD is: while
computing the mapping from a game to its equilibria is PPAD-hard even in simple normal-form
games (Daskalakis et al., 2009), computing the inverse mapping—from observed behavior to its
inverse equilibrium—is polynomial-time tractable for a large class of games (Goktas et al., 2024).
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Applying this perspective to DMD, we represent mechanisms using expressive neural networks and
establish a mapping from the network’s parameter space, to the parameterized mechanism space,
and the space of corresponding induced games. We then explore the mechanism-induced game
space, searching for parameters that rationalize any desired outcome i.e., inverse equilibria. In this
framework, such inverse equilibria are mechanisms.

By the dynamic revelation principle (Sugaya & Wolitzky, 2021), without loss of generality, we
restrict our attention to direct dynamic mechanisms that are incentive compatible (IC), i.e., truthful
reporting constitutes an equilibrium in the induced game. Together with individual rationality (IR)
(i-e., voluntary participation constraints), these conditions define the target space of mechanisms. That
is, it suffices to search the space of mechanism-induced games for parameters that rationalize truthful
reporting—i.e., to search for an inverse truthful equilibrium—and incentivize agents to participate.
We extend this perspective to optimal mechanism design by nesting the aforementioned constraints
of the mechanism-induced game within a bilevel optimization, i.e., we search for an inverse truthful
equilibrium that optimizes the principal’s objective.

This inverse-game perspective resonates with the paradigm of automated mechanism design (AMD)
(Conitzer & Sandholm, 2002; 2004; Zhang & Conitzer, 2021), especially recent work in the area
of differentiable economics (DE) (Diitting et al., 2023). DE can be reinterpreted through this lens:
by optimizing mechanisms subject to zero-regret incentive-compatibility constraints, DE implicitly
enforces truthful reporting as an equilibrium of an induced game, i.e., DE is a search through the space
of inverse truthful equilibria for an optimal mechanism. DE has been applied to unidimensional static
mechanism design problems, recovering known analytical solutions, and to multidimensional static
mechanism design problems, where analytical methods break down. Similarly, our work recovers
known analytical solutions to unidimensional dynamic mechanism design problems, and immediately
generalizes to multidimensional dynamic mechanism design problems.

Contribution. This paper introduces a computational framework for optimal dynamic mechanism
design. Our approach builds on the intuition that mechanism design is inherently inverse game theory,
and leverages modern differentiable tools to explore the mechanism-induced game space directly.

In Section 3, we develop a general model of DMD, extending the framework in Pavan et al. (2014).
Specifically, we utilize partially observable Markov games (POMGs) as the foundational game
model, as it captures the partial observability and dynamic nature of the problem. We then formulate
optimal DMD as an optimization problem over the induced game space. In Section 4, we propose
a solution procedure with two approaches for handling partial observability: 1. explicit Bayesian
belief updates, which reduce POMGs to Markov games and yield polynomial-time convergence to
IC+IR mechanisms—locally optimal in discrete-type compressed-information settings and globally
optimal in contextual-bandit settings and 2. recurrent neural embeddings of private information,
which bypass explicit belief tracking and scale to continuous types. In Section 5, we evaluate our
approaches in bandit auctions: in discrete-type and continuous-type single-item auctions, belief-state
tracking and RNN-based private information embeddings find IC+IR mechanisms that achieve the
same expected revenue as analytical benchmarks (Pavan et al., 2014) respectively, while in multi-item
settings, where closed-form solutions are not known, our methods discover mechanisms that satisfy
IC and IR constraints and achieve high payoff for the principal.

2 PRELIMINARIES

For readability, detailed notation and definitions are deferred to Appendix B.

Parameterized Partially Observable Markov Games. Given a parameter space © with parameter
0 € © C R4 a parameterized partially observable Markov game (POMG) is a tuple )¢ =
(n,T,8, A, P,v,u,7,0,0,80,0), within the space of parameterized POMGs Z©, s.t.:

» Horizon T": A positive integer or co.

* State space S: A nonempty Borel space.

* Action spaces {A; };c[n): Each A; is a nonempty Borel space, and we denote the space of joint
actions by A = Xie[n] A;.

o Parameterized transition kernel P : S x S x A x © — [0, 1]: P is a Borel-measurable stochastic
kernel on S given S x A x ©.

* Discount factor ~.
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* Initial state distribution i € A(S): A probability measure on S.

* Parameterized reward functions {r; : S x A x © — R};¢[,: Each r; is a Borel-measurable
function from & x A x © to R.

* Observation spaces {O; }i[,): Each O; is a nonempty Borel space, and we denote the space of
joint observations by O = X, €[] O;.

* Observation kernels {O; : O; x S — [0, 1]};¢[,,: Each Borel-measurable O; is a stochastic
kernel on O; given S,' with the joint observation kernel O : O x S — [0, 1].

The game initiates at time 7 = 0 in some state sy ~ g drawn from an initial state distribution .
At each time period 7 € [(T — 1)*], each player ¢ € [n] first receives observation o; , which is
stochastically generated via the observation kernel O;(do; , | s;), plays an action a, , € A;, and
receives a reward r;(s,, a.; 0). The game then transitions to a new state s, 1, following probability
distribution P(ds™ ! | s™,a.;0).

Define Z; ; = (O; x A;)" x O; as the 7th information space for player i, with ¢,
(04,5, a; k);;é, 0i.r) € Z; ; as the Tth information vector for player i. Likewise, define H, =
(8 x O x A)™+1 as the Tth history space, and h. = (si, 0k, a;,)i_, € H, as then 7th history vector.
A policy for player i is a sequence m; = (7, o, T; 1, *,7; p_y) such that for each 7 € [T™], 7, _is
a universally measurable stochastic kernel on A; given Z; ;. If, foreach ¢, , € Z; ,, m; (da; . | ¢; ;)
assigns mass one to some point in A;, 7, is deterministic. In this case, by a slight abuse of notation,
; can be considered a sequence of universally measurable mappings 7, . : Z; » — A;. We refer to
the space of all deterministic policies for player i as PY©. Asusual, w = (7y,...,m,) € PPO =
X; €] PFO denotes a deterministic policy profile.

Given a policy profile 7 € P and an initial state distribution 1 € A(Sy), we denote the Tth-step
history distribution measure on H, by 1/;’;’9’7 (see Appendix B for formal definition). Given a

policy profile 7w € P, player i’s payoff U;(w;0) = E, _ ~0.7-1 23;01 i (Sr, A 0)} For all

0)—
U,(m;0). Moreover, given a deterministic policy profile w € PFO, the exploitability of 7 is
o(mw;0) = max,cp U(m,w’;0), which represents the sum of the players’ maximal unilateral
payoff deviations. As usual, an e-Bayesian Nash equilibrium (s-BNE) of a POMG )/ is a policy
profile 7 € P such that for all players i € [n], U;(7*;0) > maxy cp U;(m;, 7% ;;0) —¢c. In
particular, a Bayesian Nash equilibrium is realized when € = 0.

m, 7' € PYO, the cumulative regret of 7 relative to 7’ is ¥ (mw, 7’;0) = Zie[n] U,(wl,7_

%)

3 OPTIMAL DYNAMIC MECHANISM DESIGN

Dynamic Mechanism Design A dynamic mechanism design (DMD) problem D =
(n,T,T,X,w, F,u,u,,7) comprises a principal and n agents. At each time period 7 € [T™],
each agent receives a private type ¢; - € 7; (when 7 = 0, ¢; ¢ is drawn from the initial type distribu-
tion w; € A(7;), with product measure w = ®i€i w;), sends report tAi,T € 7; to the principal, and
receives an outcome x; . € X;, which is publicly observed by all agents” °. Agent i will then receive
immediate reward u,(t; r, ") given her current type and all past joint outcomes, and principal will
receive ug (¢, ") given current type profile and past joint outcomes. Then, each agent i’s type ¢; ,
evolves to t; -1, according to the probability distribution F;(t; 41 | t; -, 7). We denote the joint
type evolution kernels by F' : T x T X Ule X7 —[0,1].

"More generally, each observation kernel is a stochastic kernel on (; given A x S, but we simplify it here to
keep the model concise.

>This assumption is consistent with the literature (Bergemann & Vilimiki, 2019).

3For convenience, for all i € [n]and 0 < 7 < T, let 27 = (i 1)5—0> t7 = (ti.x)heo, and &7 = (£ 1)7—0
denote the collection of agent ¢’s past outcomes, past types, and past reports from time period 0 to 7, respectively.
An analogous notation extends joint outcome, type profile, and report profile.

“We assume the environment satisfies the Markov property: each agent’s reward u; , depends only on her
current type ¢; - rather than all past types ¢; ; principal’s reward is similar; the type transition kernel F; depends
only on the current type ¢; - rather than all past types ¢; . This assumption is not strictly necessary, as one could
always augment the state space with type histories, but it enables a more tractable computational analysis.
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Given a DMD D, a dynamic (direct) mechanism is an outcome rule g : Ule T7 — A& that maps

past report profiles £, € 77! of any length 7 + 1 to a joint outcome x, = g(£”). We denote the
space of dynamic (direct) mechanisms by G.

. s . . . . . . LT+l
For all agents ¢ € [n] participating in D, a reporting strategy is a collection {7%,7 CTTTXTT X XT —
T f;ol, where each ; _(¢] £7=1 2™~1) is agent 4’s report at time 7 when her current and past true

177
types are t], her reported past types are fz_l, and the joint past outcomes are 27 ~!. Truthtelling
is the reporting strategy that always reports true types, i.e., win(t[, f{_l, ™) = t;, for all
Te[(T-1)].

A solution to a DMD problem is a mechanism that is (i) incentive compatible (IC), meaning each agent
maximizes cumulative reward by truthfully reporting, and (ii) individually rational (IR), meaning each
agent has incentive to participate. Thus, this problem can naturally viewed as a sequential decision-
making problem for the principal, with global IC and IR constraints. The state-of-the-art DMD
literature (Pavan et al., 2014) takes exactly this perspective, but the difficulty lies in reducing global
IC constraints to recursive (i.e., local) IC constraints and encoding them back into the optimization.
While this difficulty can be resolved in unidimensional-type settings, all known techniques break
down in multi-dimensional type spaces.

To tackle multi-dimensional DMD problems,
we follow the paradigm of inverse game theory
(Goktas et al., 2024). That is, we parameterize
dynamic mechanisms using expressive neural
network representations, and then establish a
mapping between the network’s parameter space .
©, the parameterized dynamic mechanism space
G®, and the space of their induced games Z©.
This mapping enables us to directly explore the
induced game space, searching for parameters
for which truthful reporting is an equilibrium
and voluntary participation is incentivized, by-
passing the need for recursive characterizations as shown in Figure 1 .

7! = truthful report policy pybfile

POMG space 2

Figure 1: Ilustration of mapping between spaces.

Inverse Game-Theoretic Formulation of Dynamic Mechanism Design  Consider a class of
parameterized dynamic mechanisms G for a DMD problem D. For each parameter 6 € 0, ¢° € G©
is a parameterized (direct) dynamic mechanism, which induces an Agents POMG VY, where

* The state space S = Uf;ol T x X" xT7:eachs, = (t,, 27!, £7~1) € S encodes the current
type profile ¢, past joint outcomes &7 !, and past report profiles £7 .

* The action spaces {A; = T }ie[,,) are type spaces, and the agents’ actions are their reports.

* The parameterized transition kernel P : & x § x A x © — [0,1] is defined as
P(srq1 | sr,a,30) = 1z 4 (g° (1, aT))]l{iT}(fT’l, a )F(t;41 | tr,x,), forall s, =
(t7—7 iL‘T_l, f-,—,l) and Sr41 = (t-,—+1, x", 'ET)

* The discount factor -y is inherited from D.

* The initial state distribution p € A(S) is defined as p(sg) = w(tp), for all so = (¢g).

* The parameterized reward functions r; : S x A x © — R are defined as r;(s,,a.;0) =
u;(tir, (271 g% (7 a,))), forall s, = (t,, 271, 7 1).

* The observation spaces {O; = & X T }ie[n are the Cartesian products of the joint outcome and
individual type spaces. At each time step 7 € T, agent ¢ observes the last joint outcome and her
current true type, i.e., 0; » = (T;_1,t; ).

* The observation kernels {O; : O; x S — [0, 1] };¢[,,) are defined as 0; » = (,;), O+ (05,711 |
57) = Ngy(@r—1) Ly, (Lir), forall s, = (., R A )

Note that in this formulation, the 7th information space for player ¢, Z; , = (O; x A;)™ x O; =
77“ x T,T x X7, is the space of her past and current true types, her past reports, and past joint
outcomes. Therefore, 7, = (7, o, -+, 7, 7_;) is a deterministic policy, where each m; . : Z; - — A;
is a measurable mapping, corresponding to a reporting strategy for 3.
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We can now formally define the DMD incentive compatibility and individual rationality conditions.
Consider a DMD problem D, a parameterized (direct) dynamic mechanism gg, and the associated
Agents POMG )9 . Let ! be the policy profile corresponding to the truthtelling strategy profile. We
say that g9 is (i) Bayesian incentive compatible (BIC) if ! is a Bayesian-Nash equilibrium of )
and (i) Bayesian individually rational (BIR) if U,(m';0) > 0, for all agents i € [n)].

Optimal Dynamic Mechanism Design Having formally defined BIC and BIR, we can now formalize
optimal DMD: to identify a BIC, BIR dynamic mechanism that maximizes the principal’s expected
payoff. In this section, we formulate this task as an optimization problem over the mechanism-induced
parameterized game space—in particular, as a search for an optimal inverse truthful equilibrium.

Consider a DMD problem D, a parameterized (direct) dynamic mechanism ¢?, and the associated
Agents POMG )° . Based on )?, we can further define the principal’s parameterized reward functions

ro as, for any s, = (t,, ™, #7Y), ro(sr,a,;0) = ug(ts, (7', ¢%(#""!,a.))) and the prin-
cipal’s payoff function given policy profile 7 as Uy(7) = E,; ~.6.7-1 {23;01 Y ro(Sr, A, 9)} .
u

Therefore, the principal’s expected payoff induced by the agents’ play in J? corresponds exactly to
her expected payoff in D.

Let 7w be the policy profile of }® that corresponds to truthtelling. We claim that ¢¢ is a BIC and
BIR parameterized (direct) dynamic mechanism that maximizes the principal’s payoff over the time
horizon iff 8 solves the following optimization problem:

T-1
maxwv(0) = E |:Z v ro(SE, Al 6) 1)

6co ~t,0,7-1
HTNVM

7=0

T—1
st max $(0,m) =) E [Zv*(ri(ST,AT;O)—m<SI,AI;0))}=o )
weP ie[n]HNV(wi,wii),a,T—l =0

w!

HTNV:T,G,T—l

T—1
hi(@)= E [an(Si,AI;e) >0 Vi€ [n] 3)
=0

HTNV,’[T’Q’T_l

where v(0) = Uy(w';0) is the principal’s payoff under 7', (8, 7) = U(w' ;) is the cu-
mulative regret of 7 vs. 7f, and h;(@) = U,(w'; ) is player i’s payoff under 7. In this way,
eq. (1) maximizes the principal’s expected payoff over the parameter space; eq. (2) enforces incentive
compatibility by requiring the exploitability of 7! in Y to be zero, meaning no agent can gain
by unilaterally deviating from truthful reporting; and eq. (3) guarantees individual rationality (i.e.,
voluntary participation), since each agent’s payoff is non-negative.

The intuitive approach to solving this constrained optimization problem is to apply Lagrangian
relaxation. However, a major drawback of this method is that the optimal multiplier can become
excessively large, complicating the solution process. To address this, we propose an alternative
method that solves the optimization problem without requiring computation of the optimal Lagrangian
multiplier. Specifically, we transfer the problem to find the largest § € R s.t.

min max f(6,m;0) = |v(0) - d|+a (0, m) + Sh(6) =0 4
where 1(6) =3, (,,)1hi(0)]. @, B € Ry scales 1 and h respectively. In this formulation, we search

over target principal payoffs §, and for each § we test whether a BIC and BIR dynamic mechanism
exists by solving the min-max optimization problem in eq. (4). The minimizer selects parameters
to achieve the target payoff, ensure individual rationality, and rationalize 7! by minimizing its
exploitability, while the maximizer chooses per-agent deviations to challenge the rationality of 7.

Theorem 3.1. Let 6* € R be the largest real number such that

min max f(0,m;0) = |v(0) —0"[+ayp(6, ) + Sh(0) =0,

with (0%, w*) being the min-max solution, i.e., f(0*, 7w*;0) = mingce max,cpro f(0,7;0), then
g% is the optimal BIC and BIR dynamic mechanism in the mechanism class G©, and 5* corresponds
to the optimal principal payoff.
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4 COMPUTATIONAL RESULTS

In this section, we present an algorithm for the problem introduced above and describe two
approaches to addressing the partial observability in the min—max optimization (eq. (4)): one
that, under suitable assumptions, guarantees polynomial-time convergence in the discrete-type,
compressed-information setting, and another that applies more broadly to general scenarios.
We use a binary-search-like procedure to

search for target principal payoff d. Start- Algorithm 1 Two-Timescale SGDA

ing with an interval [¢,u], the algorithm :
repeatedly bisects the interval and calls a Require: O, W, 10,1, T, 0, w) wf
two-timescale SGDA routine (Algorithm 1, Ensure: (0 (t)a w(t))tT:O R

(Daskalakis et al., 2021)) to solve foreq. (4)  1: Build gradient estimator f associated with ).

on the midpoint ¢ = HT“ If the routine  2: fort =0,...,7—1do
finds a parameter 6 that makes the objec- _ (w® wh,),e"T=1
tive nearly feasible (value < &), we in- = Sample H ~ X, . ¥y ’

crease the lower bound to c; otherwise, we Ht ~ Vﬁ"tﬂ(” T—1

decrease the upper bound. This process 1 )=~
continues until the interval is within preci- 4 61+ Tl [B(t) — g " fo (0", w: H, HT)}
sion €, at which point the last feasible 6 is 5. t+1) 11, [w(t) + 1% fur (60w H HT)}
returned.

6: end for
Although the binary-search framework re- 7. return (), w(®) )tT: 0

duces the optimization problem to solving
a sequence of feasibility checks, the central difficulty lies in solving the min—max objective itself.
First, we note that = € PFO is a function with a continuous domain. Therefore, as is usual in
reinforcement learning, we want to use policy gradient to solve the maximizer’s problem. To do
s0, we restrict the maximizer’s space to a policy class P"Y parameterized by W C R!. Redefining
P(0,w) = (0, 7) forall ¥ € P, we aim to solve the problem

min max f(8,w; ) = |v(8) — d|+ay (8, w) + Sh(6). Q)

Running Algorithm 1 on f requires an estimate of V f w.r.t. both 8 and w. As both gradients involves
expectations over histories, we assume that we can simulate trajectories of play from the deviation

.l )0, . .
history distribution H = (H',..., H")" ~ X_ (ri®m=:9 771 and the truthful reporting history

distribution H' ~ u[{T’G*T‘l, and that doing so provides both value and gradient information for the

rewards and transition probabilities along simulated trajectories. That is, we rely on a differentiable
game simulator (see, for instance, Suh et al. (2022)), a stochastic first-order oracle that returns the
gradients of the rewards and transition probabilities, which we query to estimate V f.

A central challenge in sampling history trajectories is the partial observability of the game: agents
never observe the full state, as each agent’s type evolves stochastically and remains hidden from
both the principal and the other agents. Policies must therefore depend only on private information
t; -» making standard RL methods inapplicable. To address this, we introduce two complementary
representations of private information: (i) explicit Bayesian belief, which reduce the POMG to a
Markov game in the discrete-type setting (Section 4.1), and (ii) recurrent neural encoders, which
embed agent-specific private information through RNNS and scale to continuous types and complex
environments where exact inference is infeasible (Section D.1).

4.1 BELIEF-BASED REPRESENTATION OF PRIVATE INFORMATION

Our first approach represents beliefs explicitly by maintaining Bayesian distributions over the state
space. Although types are hidden, their distributions evolve predictably given the prior, the transition
kernel, and past outcomes, so Bayes’ rule reduces the POMG to a Markov game (MG). At each step
T € [(T' — 1)*], each player’s belief b; ; is a sufficient statistic for their private information, and the
joint belief forms the belief state b, (formal reduction in Appendix B.1.2). We assume finite type
spaces so that beliefs lie in a simplex,’ and note that public outcomes suffice for belief updates since
transitions depend on reports only through induced outcomes. Finally, we focus on infinite-horizon

SExtensions to continuous types require approximations such as particle filtering or function approximation,
trading off precision and tractability.
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environments, enabling the use of modern RL results (Bhandari & Russo, 2022; Daskalakis et al.,
2021) for polynomial-time convergence guarantees.

Before proceeding to the reduction, we must address a challenge that prevents polynomial-time conver-
gence: the dimensionality of the state space in ))?. Since each state encodes the entire history of joint
outcomes and reports, the state space becomes uncountable in the infinite-horizon setting. To manage
this, we assume there exist compression maps @ : Uf;()l X7 — R, @ UZ:_Ol T™ — R%
that summarize past outcome and report histories into fixed-dimensional vectors, and corresponding
forward compression maps <I>—w> (Pp(xT), Trg1) = Pp(z™ L), 5: (@i (E7), Erp1) o (£,
that propagate these compressed representations forward as new outcomes and reports are real-
ized. Moreover, we assume agent’s and principal’s immediate reward and agents’ type transition
kernels depend on past joint outcomes =7 ! only through ®,(z"~!); every dynamic mechanism
g depend on past report profiles "' only through <I>£(f7_1) %, so we just need to keep track of
(2771, <I>£(£T_1) in the state space. For instance, in bandit auctions (see Section 5), each buyer’s
type transition depends only on their total past allocation count, so we can define ®,(27) = > _ Tk,
which implies only the cumulative sum of past outcomes is retained.

In this way, some information is inevitably lost, but we retain precisely the statistics that are payoff-
relevant for the mechanism and the agents, thereby avoiding an explosion in the state space.

Now, for any ¢° € G°, let CPOM? denote the compressed POMG defined above, which
we call the Compressed Agent POMG. Its Markov game reduction is given by M?% =
(n,T,B, A, P',v,u',r',0,0), which we refer to as the Compressed Agent Belief MG M? (see
Section B.1.2 for details). We denote the principal payoff and player payoffs in this game by U}, and
(U{)ie[n) respectively, and we denote the players’ action values under policy profile 7 by 7.

For any i € [n] and any deterministic policy w; € PFO in CPOM?®, there exists an equivalent
Markov policy 7, € PMarkoV in the corresponding Belief MG M? . Therefore, we translate the
maximization problem max,. cpro (0, 1) t0 Max, cpmarkov ¥ (6, ), Without loss of generality’,

we can further restrict to the set of Markov stationary policy profiles PMS. We overload notation by
parameterizing PMS directly by W, so each 7% is a randomized Markov stationary policy profile in

MO

Without any additional assumptions, f(0,w;d) = |v(0) — 6|+ay (0, w) + Bh(O) is in general non-
convex-non-concave, and even non-smooth in 8, which makes the associated min—max optimization
problem highly challenging. Without additional structural assumptions, first-order methods lack
polynomial-time guarantees for finding even e-stationary solution.

So first, to handle the non-smoothness introduced by absolute values, we approximate the absolute
values through a smooth surrogate, namely the k-scaled pseudo-Huber function ¢,, defined as
dx(x) = Va? + k? — k for all z € R, with smoothing parameter £ > 0. Thus, our smoothed
objective function becomes  f,.(0,w; ) = ¢, (v(0) — 6) + av (0, w) + 32, cp,) Dx(hi(0)).

By imposing additional conditions on policy parametrization, mechanism parameterization, and the
original DMD problem (Assumption 1-3, Appendix C), we can ensure that our objective f, and hence
fx» 1s gradient-dominated in w, and thus obtain polynomial-time convergence to an approximate
stationary point of smoothed max-value function V,;(0) = maxq,cw fx (0, w; ), which corresponds
to an first-order locally-optimal BIC+BIR mechanism (Theorem 4.1, (a)). Assumption | has three
roles: it guarantees the policy parameterization is expressive enough to capture best responses,
requires smoothness of the mapping from parameters to actions (and thus of the objective), and
imposes structural conditions on M that yield gradient dominance of the objective. Assumption 2
places analogous constraints on the mechanism parameter space, but only requires smoothness of the

SFor every agent 4, we redefine w; (£ -, ") as u; (ti -, Pu(@™ 1), 2. ), Fi(tizi1 | tir, ") as Fi(tir+1 |
tir, ®x(x” 1), "), and for the principal, we redefine ug(to,-, £7) as ug (-, Pe(x™ 1), 2.). Finally, for any
dynamic mechanism g, we redefine g(£7) as g(®; ("), £7).

"Since 1) decomposes into n separate policy optimization problems—one for each player deviating while
others remain truthful—each deviation reduces to solving a stationary infinite-horizon discounted belief-MDP.
By standard MDP theory (Puterman, 1994), such problems admit optimal policies that are stationary (possibly
randomized).
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mapping from mechanism parameters to outcomes. Finally, Assumption 3 assumes smooth reward
functions and type-transition kernels, further ensuring smoothness of the objective.

Moreover, if the DMD environment is contextual-bandit—like—that is, transitions are independent
of outcomes (Assumption 4, Appendix C)—then under additional assumptions on the mechanism
parameterization, we obtain polynomial-time convergence to the min—max solution (6*, w*) of f,
where 8* corresponds to the globally optimal BIC, BIR mechanism (Theorem 4.1(b)).

Finally, we define the equilibrium distribution mismatch coefficient ||357IT‘9 /01|l as the Radon-
Nikodym derivative of the state occupancy distribution of the truthful-reporting profile 7w w.r.t. the
initial state distribution p. This coefficient, which measures the inherent difficulty of reaching states
under 7', is closely related to other distribution mismatch coefficients introduced in the analysis of
policy gradient methods (Agarwal et al., 2020). With this definition in hand, we can finally show
polynomial-time convergence of two-timescale stochastic GDA (Algorithm 1).

Theorem 4.1. Suppose Assumption 1-3 hold. For any ¢ € (0,1), if Algorithm 1 is running on
e with inputs that satisfy ng,mw = poly(e, ||95F /o ses ﬁ, fglfﬁ, é;ﬁl), then there exists T €

poly (6*1, (1= )L 11955 Jou ]l o L 5, + L, , diam (O x W),ngl) and k < T s.t.

(a) Ol(fezt = 0W isa (e,/2¢,, )-stationary point of Vi, i.e., there exists 8" € © s.t. \|9$§t — 0" ||< /245, and
minpepy, o+ || h] < €

(b) Moreover, ifwe further assume that Assumption 4 holds and for all ¢° € G®, 8 — ¢° (£7) is affine forall T €
(T-1)"]& €T, OgS)t satisfies that maXay cyy f,i(Ogit, w) —mingce Maxwew fx(0,w;d) < e.

Furthermore, max.,, cw f(Ogit,w; 0) — mingce maxwew f(0,w;d) < e+ (n+ 1)k

4.2 NEURAL EMBEDDING OF PRIVATE INFORMATION

While explicit belief tracking provides a principled reduction from POMGs to MGs, it becomes
intractable in continuous type spaces: maintaining exact beliefs requires operating in infinite-
dimensional spaces, which is computationally prohibitive. To address this limitation, we adopt
a recurrent neural architecture for information representation.

It consists of two complementary components: a public encoder, which processes commonly observed
signals such as the normalized time step and past joint outcomes into a public embedding ¢, and
a collection of private encoders, one for each agent, which maintain agent-specific hidden states
(hi,r)ien) by fusing private observations (past types and reports) with the evolving public embedding.
For each agent i, the pair (c;, h; -) serves as a sufficient statistics of the information available at
time 7, i.e., ¢; ., and serves as input to the policy network. This design follows common practice in
POMDPs and multi-agent RL (Hausknecht & Stone, 2017; Venkatraman et al., 2017; Foerster et al.,
2016), where recurrent architectures are employed to capture and update information over time (see
Appendix D.1 for details).

5 EXPERIMENTS: OPTIMAL BANDIT AUCTION

We evaluate our framework in Bandit Auction environments, a canonical example of dynamic
mechanism design where buyers’ types evolve through a bandit process and the principal repeatedly
chooses allocations (incurring costs) and payments. The bandit auction admits closed-form optimal
allocation rules via virtual index policies, making it a practical and interpretable testbed. We study
both discrete and continuous type spaces, using belief-based representations in the former and neural
embeddings in the latter. In each case, we consider single-item auctions—benchmarked against
the unidimensional results of Pavan et al. (2014)—and multi-item auctions, where no benchmark
solutions exist. This design validates our methods in tractable single-item settings and demonstrates
scalability to more complex multi-item environments®.

Bandit . The Bandit Auction is a setting where a profit-maximizing seller runs a sequence of auctions
over 1" periods, selling m indivisible, non-storable goods to n buyers whose valuations evolve when
they win goods. This captures applications such as repeated sponsored search auctions, where

8Code available at here.
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advertisers update valuations based on click profitability. A bandit auction can be viewed as a DMD
problem defined in Appendix D.2.

Experiment Description. We evaluate our framework across four settings (discrete vs. continuous
types; single vs. multi-item), using n = 2, horizon 7' = 5, and m = 2 in multi-item auctions. Valua-
tion spaces and transition functions are specified in Table 2, Appendix D.3. Any mechanism parameter
0 is assessed by profit loss [v(8) — J[, IR loss ) .|h;(0)|, and exploitability max, cpro 1 (7,0).
Our training proceeds in two stages: (i) a hyperparameter search over learning rates and scaling
coefficients («, 8); and (ii) with the best configuration, running Algorithm 1 for up to 10,000 epochs
per profit target §, retaining mechanisms only when all three losses are below 0.1.

Network Architecture. We provide a high-level overview of the mechanism and policy network
architectures here, with full details deferred to Appendix D.4.

Mechanism Network. Our mechanism network takes four inputs—current types, current reports,
cumulative allocations, and past reports. Each is encoded by a dedicated MLP, with report histories
summarized via attention. The embeddings are concatenated into a shared representation from
which allocation and payment heads are derived. Key features (types, reports, allocations) use larger
embeddings, while histories provide lower-dimensional context.

Policy Networks. Our policy networks use a pro- L Expoit  Max Profit
- : : : . . Benchmark - - 6.5089
totype .re51dual archltectur.e (Silver et al., 20}9, Discrere | Single-ltem Oore 00975 00938 62089
ohannink et al. w1 e tru ul polic Multi-Item Ours 0.0215 0.0010 16.6

Joh k et al., 2018), with the truthful policy

: . Benchmark - - 9.7066
as Fhe prototype (a zero-regret basehne) apd A | Continuons | Single-ttem | PSRRI el 0066
residual network learning profitable deviations. Multi-Tem Ours | 00425 0.0490 1765

* Discrete types. Input includes Bayesian be-
liefs and private information; output is a
logit vector over reports. The prototype is it Mech I 1005, PolcyIr: 1005, Al 5, et 125 roft goat: 6508868
the one-hot truthful report, scaled by a learn- = W\%\ W !M
able parameter, with the residual network . .
adding deviations. vt teen 11005, poey s 1 05 e, e g 166 iz

» Continuous types. Input combines recurrent || w 8
embeddings of private information with the - e s vy e i e e s
raw (bounded) type. Each coordinate is nor-
malized, mapped into logit space, adjusted
by the residual, and projected back via sig- T ol wroson, s st o s o g 1155
moid and rescaling to produce the final re- | . -

port. -

Details are in Appendix D.4.

Table 1: Performance summary.

05

=

o
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
epoch epoch epoch

Experiment Results. In the single-item set- Figure 2: Convergence of exploitability, profit loss,
tings, our mechanisms recover the known opti- and IR loss (left to right) across four settings: dis-
mal benchmarks of Pavan et al. (2014), while grete—smgle, dlscrete—multl, continuous—single, and con-
in the multi-item settings, where analytical so- nuous—multi (top to bottom)

lutions continue to elude us, they achieve high profits. Convergence is faster in the single-item
case, while the multi-item case requires more training but still reaches low exploitability and IR loss.
Table 1 reports the final performance, and Figure 2 illustrates the convergence dynamics across all
four settings.

6 CONCLUSION

We presented a computational framework for optimal dynamic mechanism design through the inverse-
game perspective, casting mechanism design as the search for an optimal inverse truthful equilibrium
in a parameterized game space. Our optimization enforces incentive compatibility and individual
rationality as equilibrium constraints. Our algorithm provides convergence guarantees for discrete-
type settings and handles continuous-type settings with recurrent neural embeddings. Experiments
in bandit auctions show that the framework recovers known analytical benchmarks in single-item
settings and discovers high-payoff, incentive-compatible mechanisms in multi-item environments
without closed-form solutions. Looking forward, we are interested in evaluating the framework
beyond profit maximization, incorporating richer objectives (e.g. welfare) to better align with the
goals of real-world applications.



