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ABSTRACT

Hierarchical clustering is a cornerstone of unsupervised learning, yet it has been a
neglected method in modern deep learning. To enable deep hierarchical clustering,
the unique geometry of hyperbolic space offers an ideal setting, renowned for its
ability to embed tree-like structures with minimal distortion. However, prior at-
tempts have been hampered by significant limitations, including geometric rigidity,
a lack of scalability to large datasets, and imprecise formulations of key operations.
This paper introduces a novel deep hyperbolic clustering framework that directly
addresses these shortcomings through three key advancements. First, we present
a generalized and rectified definition of the hyperbolic lowest common ancestor
for both the Poincaré Ball and the Lorentz models of arbitrary curvature. Second,
to address the critical issue of scalability, we employ a deep encoder that learns
clusters in an exceptionally low-dimensional space compared to state of the art
Euclidean methods. This makes our approach highly efficient and feasible for large-
scale datasets. Finally, we introduce HoroPCA++, an improved and numerically
stable dimensionality reduction technique for more faithful and lower distorted
visualizations of the resulting hierarchies.

1 INTRODUCTION

Hierarchical clustering is a fundamental unsupervised task that organizes data into a nested hierarchy
based on similarity. A key challenge in this domain is to produce hierarchies that are not only
algorithmically sound but also meaningful, a quality often measured by objective functions like
Dasgupta’s cost by (Dasgupta, 2016). The function effectively penalizes a hierarchy if pairs of very
similar points are only merged high up in the tree within a large sub-cluster. Therefore, minimizing
this cost encourages the creation of hierarchies. The central problem we address is the optimization
of this cost function within a continuous geometric framework, which offers a more flexible and
powerful alternative to traditional discrete, combinatorial approaches.

The use of hyperbolic geometry for this task is particularly interesting and important because its
geometric properties are intrinsically suited to represent hierarchical data. Unlike Euclidean space,
which exhibits polynomial volume growth, hyperbolic space grows exponentially, allowing it to
embed tree-like structures with significantly lower distortion (Sarkar, 2012; Bowditch, 2006; Gromov,
1987). This inherent advantage leads to more efficient and compact data representations, which
can mitigate overfitting and provide a powerful inductive bias for a variety of learning tasks. By
improving methods for clustering within this space, we can unlock more faithful and robust ways to
discover latent hierarchical structures in complex datasets.

Working with a hyperbolic space is challenging. The geometric properties that make hyperbolic space
so powerful also make it difficult to work with. Naive approaches designed for Euclidean space fail
because they do not account for the principles of non-Euclidean geometry. Fundamental operations,
such as finding the Lowest Common Ancestor (LCA) of two points, are not straightforward and require
complex calculations involving geodesics and non-linear projections. Furthermore, implementing
these operations is fraught with practical difficulties, including numerical instability that can arise
from repeated computations and the risk of inverting near-singular matrices during optimization.

Although the seminal work of (Chami et al., 2020) introduced a continuous relaxation of Dasgupta’s
cost in hyperbolic space, this framework suffers from several critical limitations that have prevented
its widespread application. First, previous solutions are geometrically rigid, being restricted to the
Poincaré Ball model and assuming a fixed curvature. Second, they lack scalability, making them
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impractical for large datasets common in modern machine learning. Third, their formulation of the
hyperbolic LCA is geometrically imprecise, necessitating a formal correction. Finally, existing visual-
ization techniques like HoroPCA (Chami et al., 2021) are not generalized to arbitrary curvatures and
suffer from numerical instabilities. Our work differs by directly addressing these four shortcomings,
proposing a framework that is more general, scalable, and theoretically sound.

Our approach is built on three key technical advancements:

• First, we rectify and generalize the definition of the hyperbolic LCA that is applicable to
both the Poincaré Ball and Hyperboloid model across arbitrary curvatures, unifying these
geometric settings.

• Second, to address scalability, we develop a deep clustering method that learns latent
similarity representations using a contrastive encoder, enabling our framework to process
large-scale datasets efficiently.

• Third, we present HoroPCA++, a numerically stable and generalized visualization technique
to produce faithful low-distortion embeddings of the learned hierarchies.

Empirically, our method achieves state-of-the-art clustering performance on benchmark datasets,
outperforming prior work on metrics such as Dasgupta’s cost, Dendrogram Purity, Normalized Mutual
Information (NMI) and Adjusted Rand Index (ARI).

2 RELATED WORK

Hyperbolic Representation Learning. Hyperbolic space provides a natural geometric framework
for representing hierarchical data. Its defining characteristic of exponential volume growth enables
low-distortion embeddings of tree-like structures even in two dimensions (Sala et al., 2018; Chepoi
et al., 2012). This exponential scaling directly mirrors the branching structure of hierarchical
data, where the number of nodes grows exponentially with tree depth (Sarkar, 2012; Bowditch,
2006; Gromov, 1987). In contrast, Euclidean space only exhibits polynomial volume growth,
creating a fundamental mismatch with hierarchical structures that leads to a high distortion when
embedding trees (Linial et al., 1995). Thus, hyperbolic space offers several computational advantages:
embeddings require fewer dimensions to preserve structural relationships, reduced model complexity,
mitigation of overfitting, and its intrinsic geometry promotes hierarchies without explicit architectural
constraints. Building on this foundation, our work introduces a self-contained deep clustering
algorithm that directly leverages these geometric benefits of hyperbolic space.

Hierarchical Clustering in Hyperbolic Space. The foundational work by (Chami et al., 2020) in-
troduced a continuous relaxation of Dasgupta’s cost, enabling continuous optimization of hierarchical
clustering objectives within deep learning frameworks. However, this approach suffers from three
fundamental limitations that restrict its practical applicability. First, the method exhibits geometric
rigidity by constraining optimization to the Poincaré Ball with fixed curvature, limiting its flexibility
across diverse data manifolds. Second, the proposed architecture suffers from severe scalability
constraints, as the network complexity scales linearly with the size of the dataset O(nd), rendering
it computationally infeasible for modern large-scale datasets prevalent in computer vision, natural
language processing, and network analysis. Third, the original definition of the hyperbolic lowest
common ancestor is geometrically imprecise, necessitating a formal rectification. Our work addresses
these critical shortcomings through a novel scalable deep clustering framework that incorporates:
(i) the rectified LCA formulation, (ii) support for multiple hyperbolic space models with arbitrary
curvatures, and (iii) computational efficiency suitable for large-scale applications.
Another distinct, feature-based approach was proposed by (Monath et al., 2019), where each node in
the hierarchy is represented by a continuous vector, and parent-child links are formed by minimizing
a child-parent dissimilarity function. In contrast, our work follows the similarity-based paradigm
of (Chami et al., 2020), optimizing a global cost function over leaf embeddings rather than learning
explicit routing decisions.

Deep Clustering in Euclidean Space. Our approach to scalability is inspired by the paradigm of
Deep Clustering (DC), which has become central to modern unsupervised learning. The core idea
is to jointly optimize a deep neural network, such as an autoencoder, for representation learning
alongside a clustering-specific loss function. This process encourages the network to learn a ”cluster-
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friendly” latent space in which data points belonging to the same group are drawn closer together.
Foundational methods like DEC (Xie et al., 2016), IDEC (Guo et al., 2017), and DCN (Yang et al.,
2017) demonstrated the power of this approach in Euclidean space. However, these methods are
designed exclusively for Euclidean geometry and cannot be directly applied to hyperbolic space.
Our work is the first to integrate a modern, autoencoder-based DC framework with the geometric
principles of hyperbolic hierarchical clustering, thereby solving the critical scalability problem of
prior hyperbolic methods.

Hyperbolic Dimensionality Reduction. Visualizing hyperbolic latent spaces requires spe-
cialized dimensionality reduction techniques that respect the geometry of the hyperbolic space.
HoroPCA (Chami et al., 2021) is a widely adopted method that extends principal component analysis
to hyperbolic geometries. Unlike other hyperbolic PCA techniques such as Principal Geodesic Anal-
ysis (Fletcher et al., 2004) or Barycentric Subspace Analysis (Pennec, 2018) that rely on geodesic
projections, HoroPCA projects points along horospheres – surfaces in hyperbolic space that are
locally isometric to Euclidean planes. Horospherical projections preserve distances between points,
resulting in low-dimensional representations with reduced distortion. However, HoroPCA is limited
to specific curvatures and exhibits numerical instabilities in practice. To address these limitations, we
introduce HoroPCA++, a novel numerically robust extension that generalizes to arbitrary curvatures.

3 BACKGROUND

3.1 HYPERBOLIC SPACE

Our work employs two canonical models of hyperbolic space: the Poincaré Ball and the Hyperboloid.
While these models capture the same underlying hyperbolic geometry, they provide distinct represen-
tations and offer unique views. The two isometrically equivalent models are mathematically defined
as simply-connected Riemannian manifolds (M, gM) with constant negative sectional curvature
−c, where c ∈ R>0. This negative curvature fundamentally distinguishes hyperbolic geometry from
both Euclidean (zero curvature) and spherical (positive curvature) geometries. For ease of exposition,
we omit sub- and super-scripts denoting the dimensionality, curvature, etc., whenever they can be
inferred from the context.

Poincaré Ball. The n-dimensional Poincaré Ball (Pn
c , g

P) is defined as the open ball of ra-
dius 1/

√
c centered at the origin Pn

c =
{
x ∈ Rn : ||x||2 < 1/c

}
, endowed with the Riemannian

metric gPx = 2
1−c ||x||2 g

E
x, where gEx denotes the standard Euclidean metric tensor. This con-

formal relationship to Euclidean space can also be expressed by the family of inner products{
⟨u,v⟩x : TxPn

c × TxPn
c → R, (u,v) 7→ 2 ⟨u,v⟩

1−c ||x||2 = λcx⟨u,v⟩
}
x∈P

induced by the metric. Here,

TxPn
c denotes the tangent space with base point x ∈ Pn

c and ⟨., .⟩ the standard Euclidean dot product.

Hyperboloid. The n-dimensional Hyperboloid model (Hn
c , gH) is defined as the forward sheet

of a two-sheeted hyperboloid embedded within the (n + 1)-dimensional Minkowski space R1,n

with Hn
c =

{
(x0, . . . , xn) ∈ Rn+1 : ⟨x,x⟩L = −1/c, x0 > 0

}
. That is, the ambient space is the

(n+ 1)-dimensional Minkowski space R1,n, which is a real vector space Rn+1 endowed with the
Minkowski inner product, an indefinite bilinear form defined as ⟨x,y⟩L = −x20 + x21 + · · · + x2n
for x,y ∈ Rn+1. The Riemannian metric on Hn

c is then obtained by restricting ⟨., .⟩L to the tangent
spaces of the Hyperboloid, yielding a positive-definite metric as required for a Riemannian manifold.

Hyperbolic Encoding and Decoding. To retrieve hyperbolic latent representations from Euclidean
ones, we employ a two-step encoding process that maps Euclidean vectors to the hyperbolic manifold
M. Given an input vector v ∈ Rn, we first apply a projection map ϕ to view v as a tangent
vector of the manifold’s origin 0̄, and then use the exponential map exp0̄ to project it onto M:

Rn ϕ−→ T0̄M
exp0̄−−−→ M. The exponential map exp0̄ : T0̄M → M maps tangent vectors v ∈ T0̄M

to points on the manifold M such that the parametric curve t ∈ [0, 1] 7→ exp0̄(tv) traces the unique
geodesic (shortest path) connecting the manifold’s origin 0̄ and exp0̄(v).

In order to recover Euclidean latent representations from hyperbolic ones, we reverse the hyperbolic
encoding operations through the inverse mappings. That is, we first apply the logarithmic map
log0̄ to project points from the hyperbolic manifold back to the tangent space, followed by the
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inverse projection ϕ−1 to recover Euclidean vectors: M log0̄−−→ T0̄M
ϕ−1

−−→ Rn. The logarithmic map
log0̄ : M → T0̄M is the local inverse to exp0̄ and maps the points x ∈ M from the manifold back
to the tangent space T0̄M, by finding v ∈ T0̄M such that exp0̄(v) = x. The explicit formulas for
these operations in both the Poincaré Ball and Hyperboloid models are provided in the Appendix A.7.

3.2 HIERARCHICAL CLUSTERING IN HYPERBOLIC SPACE

Dasgupta’s Discrete Hierarchical Clustering Cost. Hierarchical clustering organizes data into tree
structures that capture meaningful relationships at multiple scales. To this aim, Dasgupta (Dasgupta,
2016) introduced a formal measure to quantify the quality of a hierarchy T for a given set of points
and their pairwise similarities w. It is defined as: CDasgupta(T ;w) =

∑
i,j wij |leaves(T [i ∨ j])|. The

objective encourages similar points (high wij) to be clustered together early in the hierarchy, placing
them closer to the leaves and farther from the root than dissimilar points, resulting in a small subtree
size with a small number of leaves |leaves(T [i∨ j])| for their Lowest Common Ancestor (LCA) i∨ j.

Continuous Relaxation in Hyperbolic Space. To make Dasgupta’s cost optimizable, (Wang
& Wang, 2018) first proposed an equivalent formulation based on triplets, which we present in
Appendix A.6. Building on this, (Chami et al., 2020) developed a continuous, differentiable
relaxation by leveraging the natural tree-like structure of hyperbolic space. The core idea is to replace
discrete LCA operations with continuous hyperbolic analogues and non-differentiable functions
such as the indicator function 1 with differentiable ones. Chami’s hyperbolic hierarchical clustering
objective is:

CChami(Z;w, τ) =
∑
i,j,k

(
wij + wik + wjk −

〈(
wij

wik

wjk

)
, στ

(
d0̄(zi ∨ zj)
d0̄(zi ∨ zk)
d0̄(zj ∨ zk)

)〉)
+ 2

∑
i,j

wij (1)

where Z = {z1, . . . ,zn} are the hyperbolic embeddings of the data, wij is the pairwise similarity
of zi and zj , d0̄(zi ∨ zj) is the distance of the hyperbolic LCA zi ∨ zj to the manifold’s origin 0̄
(Table 10), and στ is the temperature-scaled softmax function with parameter τ . This hyperbolic
formulation can be optimized with standard gradient-based methods and yields (1 + ε)-optimal
minimizers with respect to Dasgupta’s discrete hierarchical clustering cost.

4 DEEP HYPERBOLIC CLUSTERING

4.1 MODEL ARCHITECTURE

As illustrated in Figure 1, we use an autoencoder architecture for our experiments on image datasets.
The encoder transform Euclidean inputs into hyperbolic latent representations following our hyper-
bolic encoding schema (3.1). The Euclidean decoder reverses this process to reconstruct the output
and does not employ any specialized hyperbolic layers.

In our architecture, we employ established hyperbolic linear layers to process representations within
the hyperbolic space. Specifically, we use a Poincaré Ball linear layer and a Hyperboloid model
linear layer. These layers generalize standard affine transformations to their respective hyperbolic
geometries, ensuring that outputs remain on the manifold. The full mathematical formulations for
these layers are provided in the appendix in SectionA.4.1.

Figure 1: Model Architecture
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4.2 HYPERBOLIC LOWEST COMMON ANCESTORS

The concept of LCAs in trees has a natural analogue in hyperbolic geometry that exploits the tree-like
structure of hyperbolic space. However, existing definitions require rectification to ensure consistency
with the discrete case.

Limitations of Existing Hyperbolic LCA Definitions. Previous work by Chami (Chami et al.,
2020) defined the hyperbolic LCA of two points x,y ∈ M as the point on the geodesic Γx,y that
is closest to the manifold’s origin 0̄. This closest point is obtained through the geodesic orthogonal
projection πΓ(0̄) of the origin 0̄ onto the geodesic. While geometrically intuitive, this definition
exhibits a critical flaw. It fails to properly handle cases where one point is an ancestor of the other in
the implied tree structure. In such cases, the orthogonal projection falls outside the geodesic segment
connecting the two points, violating the fundamental property that LCAs should lie between their
descendants as illustrated by Figure 2.

Figure 2: Illustration of the flaw in the pre-
vious hyperbolic LCA definition by (Chami
et al., 2020). While the ”wrong LCA point”
(orange) lies on the full geodesic (dashed
line), it falls outside the geodesic segment
(solid line) connecting its two descendants, a
problem corrected by the rectified LCA defi-
nition proposed in this work.

Rectified Hyperbolic LCA Definitions. To address this limitation, we propose a rectified definition
that ensures the hyperbolic LCA lies on the geodesic segment γx,y ⊂ Γx,y between points x and y.
This rectification preserves the essential properties of tree-based LCAs while maintaining geometric
consistency.

Definition 4.1. Let x,y be two points in either hyperbolic space model M, and let p = πΓ(0̄)
denote the geodesic orthogonal projection of the origin 0̄ onto the geodesic Γx,y. The hyperbolic
lowest common ancestor x ∨ y is defined as:

x ∨ y =


0̄, if cos(∠x0̄y) = −1

argminz∈{x,y} d0̄(z), if cos(∠x0̄y) > cos(∠x0̄p) or cos(∠x0̄y) > cos(∠y0̄p) or
cos(∠x0̄y) = 1

p, otherwise

The three cases in this definition correspond to distinct geometric configurations. The first case
handles antipodal points, where the LCA is naturally the manifold’s origin. The second case identifies
ancestor-descendant relationships by comparing angular distances, ensuring the LCA is the closest
ancestor rather than a point outside the connecting segment. The third case applies the standard
orthogonal projection when both points lie on the same side of the origin and the projection falls
within their connecting segment. In the following propositions, whose proofs are stated in Appendix
A.2, we summarize the geodesic orthogonal projection πΓ(0̄) in the respective manifolds, which
serves as input to the rectified LCA definition (4.1).

Proposition 4.2. Let x,y ∈ Pn
c be two points in the Poincaré Ball that are not collinear. The

geodesic orthogonal projection of the origin onto the geodesic Γx,y connecting x and y is given by:

πΓ(0̄) =

1−

√
||z||2 − 1

c

||z||

 z, where (2)

z =

[
(1 + c||y||2)⟨x,y⟩ − (1 + c||x||2)||y||2

]
x+

[
(1 + c||x||2)⟨x,y⟩ − (1 + c||y||2)||x||2

]
y

2 c (|⟨x,y⟩|2 − ||x||2||y||2)
.
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Proposition 4.3. Let x,y ∈ Hn
c be two points in the Hyperboloid. The geodesic orthogonal

projection of the origin onto the geodesic Γx,y connecting x and y is given by:

πΓ(0̄) =
αx+ βy√

−c ⟨αx+ βy, αx+ βy⟩L
, where (3)

α =

√
c (x0 + c⟨x,y⟩L y0)
1− (c⟨x,y⟩L)2

, β =

√
c (y0 + c⟨x,y⟩L x0)
1− (c⟨x,y⟩L)2

.

4.3 LOSS FUNCTION

Our models are trained end-to-end by jointly optimizing two objectives (Figure 1). Our total loss
function combines a reconstruction loss with a hierarchical clustering loss: Ltotal = Lrecon + λLLCA,
where Lrecon is the autoencoder’s reconstruction loss, LLCA is a normalized version of the hyperbolic
hierarchical clustering loss (1), and λ ∈ R>0 is a balancing hyperparameter.

Reconstruction Loss. Lrecon ensures that the model learns high-quality latent representation by
minimizing discrepancies between the inputs and their reconstructions, measured by the Mean
Squared Error.

Hierarchical Clustering Loss. LLCA constitutes the core of our approach, organizing embeddings
within the hyperbolic latent space according to their hierarchical relationships. This loss builds upon
the continuous, differentiable relaxation of Dasgupta’s cost function 1. We define pairwise similarity
between datapoints as: wij =

1
1+dM(zi,zj)

, where dM(zi, zj) denotes the pairwise geodesic distance
between the embedded tree nodes i and j.

Triplet Sampling. Direct implementations of LLCA require evaluating all possible triplets (i, j, k)
in the dataset, resulting in O(n3) computational complexity for n datapoints per optimization step.
Even for moderate batch sizes this disagrees with our scalability objectives. Thus, we adopt a triplet
sampling strategy, following prior work (Chami et al., 2020), that provides an unbiased stochastic
estimate of the global objective LLCA while maintaining computational efficiency.

Loss Normalization. To facilitate stable training dynamics and enable fair comparisons across
datasets with varying scales, we normalize the hierarchical clustering loss LLCA to [0, 1]:

Lnorm =
Ltotal − Lmin

Lmax − Lmin
, where (4)

Lmin =
∑

i,j,k min(wij + wik, wij + wjk, wik + wjk) + 2
∑

i,j wij

Lmax =
∑

i,j,k max(wij + wik, wij + wjk, wik + wjk) + 2
∑

i,j wij

5 HOROPCA++

This section introduces HoroPCA++, a numerically robust dimensionality reduction method that ex-
tends the original HoroPCA (Chami et al., 2021) to hyperbolic space models with arbitrary curvatures.
Our method addresses critical computational challenges while significantly broadening applicability
across different hyperbolic geometries. For a comprehensive background on horospherical projections
and theoretical foundations, we refer readers to the original HoroPCA paper. Here, we focus on the
novel algorithmic contributions and improvements of HoroPCA++.

Generalized Ideal Points. Like its predecessor, HoroPCA++, starts by selecting k principal
components represented by ideal points q1, . . . , qk. These points at infinity with respect to the
hyperbolic space model correspond to directional vectors that parametrize the low dimensional target
submanifold. To accommodate arbitrarily curved hyperbolic spaces, we formalize ideal points as
follows.

Definition 5.1. For the Poincaré Ball, the set of ideal points q ∈ In−1
P is defined as its topological

boundary In−1
P =

{
q ∈ Rn : ||q||2 = 1/c

}
. For the Hyperboloid, the set of ideal points In−1

H is
defined as its asymptotic null cone In−1

H =
{
q ∈ Rn+1 : ⟨q, q⟩L = 0

}
.
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In the Hyperboloid model, ideal points represent specific directions rather than individual vectors,
making them independent of the curvature c. However, while the ideal points themselves are
curvature-independent in this representation, the horospherical projection operations remain curvature-
dependent, necessitating our generalized approach. During optimization, these ideal points are
iteratively refined to maximize the variance of projected data while preserving its geometric structure.

Algorithm Overview and Numerical Stability. In the following, we highlight further key en-
hancements of HoroPCA++(HPCA++) from the viewpoint of data representations in the Poincaré
Ball. After initialization, the original HoroPCA(HPCA) algorithm iteratively refines candidate ideal
points through the following steps: (i) mapping data and ideal points from the Poincaré Ball to the
Hyperboloid (ii) computing horospherical projections in the Hyperboloid (iii) mapping projected
points back to the Poincaré Ball, and (iv) measuring variance in the low-dimensional representation to
update ideal points. This process continues until convergence. HoroPCA++ introduces two critical im-
provements to this framework. First, we eliminate unnecessary transitions between geometric models,
which contribute to computational overhead and accumulate precision errors, by conducting the entire
optimization directly in the Hyperboloid. Second, we address fundamental numerical instabilities
that arise in horospherical projection computations. Although Chami et al. (2021) correctly identified
the computational advantages of the Hyperboloid model – where horospherical projections reduce to
solving two linear equation systems – their implementation suffers from ill-conditioned linear systems
during optimization, leading to numerical instability. HoroPCA++ resolves this through a novel
application of the Sherman–Morrison formula (A.1) combined with regular re-orthonormalization of
ideal points, enabling direct computation of matrix inverses for these rank-1 perturbed linear systems
and ensuring robust convergence.

Balanced Tree Phylo Tree Diseases CS Ph.D.

distortion (↓) σ2 (↑) distortion (↓) σ2 (↑) distortion (↓) σ2 (↑) distortion (↓) σ2 (↑)

BSA 0.51±0.00 3.01±0.01 0.61±0.03 18.50±1.76 0.56±0.02 4.74±0.28 0.68±0.04 8.07±0.67
PGA 0.57±0.00 2.49±0.01 0.61±0.02 16.28±0.97 0.61±0.03 4.76±0.15 0.72±0.02 6.98±0.67
HPCA 0.20±0.00 7.15±0.00 0.14±0.02 67.27±1.74 0.15±0.01 15.54±0.14 0.19±0.03 35.48±1.40
HPCA++ 0.20±0.00 7.15±0.00 0.12±0.01 68.95±1.94 0.14±0.00 15.64±0.02 0.18±0.03 35.43±1.33

Table 1: Dimensionality reduction performance on 10-dimensional hyperbolic embeddings reduced
to two dimensions. Performance is measured by distortion and Fréchet variance (σ2). All results
reported are averaged over 5 runs. Best in bold.

6 EVALUATION

The evaluation of hierarchical clustering is multifaceted. While standard flat clustering metrics such
as Normalized Mutual Information (NMI) and the Adjusted Rand Index (ARI) can measure the
quality of a specific partition, they are insufficient for assessing the structure of the resulting hierarchy
itself. To provide a more comprehensive assessment, we adopt metrics specifically designed for
hierarchies. Following prior work in hyperbolic clustering, we use Dasgupta’s cost as a primary
metric to evaluate the quality and improvement of the learned tree structure. Additionally, we
employ Dendrogram Purity, another established metric that measures the homogeneity of clusters
throughout the hierarchy. To ensure a robust comparison, we report scores for both of these metrics
by constructing dendrograms from our learned embeddings using three standard linkage criteria:
average, complete, and ward.

To demonstrate the efficacy of our framework, we conduct a two-part evaluation. First, we assess
the quality of the learned embeddings for standard flat clustering tasks against state-of-the-art deep
Euclidean methods. Second, we evaluate the quality of the learned hierarchical structure itself, which
is the primary goal of our work. All experiments are performed on the MNIST, FMNIST, KMNIST,
and GTSRB datasets, with reported results representing the mean and standard deviation across 10
random seeds.
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Figure 3: Hyperbolic Embeddings of MNIST on the Poincaré Disk

6.1 QUALITY OF LEARNED EMBEDDINGS

We first evaluate the ”cluster-friendliness” of the latent space by comparing against prominent deep
Euclidean baselines (DEC, IDEC, DCN). Our selection of these foundational methods is intentional.
The primary goal of this comparison is not to compete with the latest state-of-the-art in Euclidean flat
clustering, but to establish that our hyperbolic autoencoder learns meaningful representations that
are competitive with architecturally similar Euclidean models. DEC, IDEC, and DCN are seminal
works that, like our method, are based on jointly optimizing an autoencoder’s representation with
a clustering loss. This allows for a direct and fair comparison of the embedding quality, isolating
the geometric differences rather than confounding the results with orthogonal advances from other
paradigms like contrastive learning. Table 2 shows the performance of these end-to-end methods
alongside our learned embeddings, when paired with standard clustering algorithms such as spectral
clustering. Performance is measured using NMI and ARI. Additional results with agglomerative
clustering can be found in the appendix Tables 89.

Table 2: Flat Clustering Performance Comparison. Datasets are organized as columns for direct
comparison. The highest score for each metric and dataset is in bold. Results reported as mean with
standard deviation over 10 seeds.

MNIST FMNIST KMNIST GTSRB
Method NMI ARI NMI ARI NMI ARI NMI ARI
DEC 49.6±23.08 37.19±20.0 55.45±2.0 37.52±2.46 31.81±3.34 19.44±2.70 4.19±0.42 0.9±0.1
IDEC 55.53±1.68 44.33±1.97 56.13±1.29 35.72±1.73 36.03±1.52 22.77±2.06 12.96±2.9 2.27±0.62
DCN 55.56±2.24 43.77±2.78 56.45±1.35 36.13±1.87 36.16±1.66 22.84±2.09 13.5±0.39 2.64±0.01

Ours (Poincaré) + Spectral Clustering 72.39±6.3 61.38±8.73 59.91±1.55 41.62±2.84 40.01±3.93 24.58±3.61 33.1±2.16 9.±0.677
Ours (Hyperboloid) + Spectral Clustering 74.3±5.3 62.19±9.27 62.6±1.32 42.57±1.94 41.51±3.26 24.99±3.59 33.22±2.46 9.45±0.79

6.2 EVALUATION OF HIERARCHICAL STRUCTURE

The core contribution of our work is the ability to learn a meaningful hierarchy. We evaluate this
directly using two dedicated metrics: Dasgupta’s cost, which our model is designed to optimize, and
Dendrogram Purity. A lower Dasgupta’s cost and a higher Dendrogram Purity signify a higher-quality
hierarchy. Additional results can be found in the appendix Table 7.

As shown in Table 3, our method achieves a low Dasgupta’s cost, directly validating its success in
optimizing the hierarchical objective. Furthermore, the high Dendrogram Purity scores confirm that
the resulting hierarchies are composed of homogeneous clusters at all levels. We observe that Ward
linkage, which aims to minimize intra-cluster variance, consistently produces the highest quality
hierarchies when paired with our embeddings.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Hierarchical Quality Assessment. Dasgupta’s cost (sampled as described in Section 4.3) and
Dendrogram Purity with ward linkage

Dataset Metric Ours (Poincaré) Ours (Hyperboloid)

MNIST Dasgupta’s Cost 115290 ± 15395 159634 ± 20176
Dendrogram Purity 71.06 ± 8.78 71.67 ± 0.1

FMNIST Dasgupta’s Cost 34821 ± 743 166409 ± 3171
Dendrogram Purity 47.1 ± 2.33 51.5 ± 1.68

KMNIST Dasgupta’s Cost 107956 ± 13785 176307 ± 5729
Dendrogram Purity 31.26 ± 3.36 34.01 ± 2.74

GTSRB Dasgupta’s Cost 83224 ± 11754 494739 ± 292744
Dendrogram Purity 10.4 ± 0.65 10.9 ± 1.77

6.3 ABLATION STUDY

Since the learning dynamics of deep hierarchical clustering in hyperbolic space are not yet well
understood, we conducted several ablation studies to characterize our model’s behavior and sensitivity
to key design choices. We systematically investigated the following components whose results are
reported in the appendix in section A.4.3:

• Curvature: Our study on the effect of curvature c on the MNIST dataset revealed that model
performance is highly sensitive to this hyperparameter. We found that no single curvature
value was optimal across all metrics. For instance, a lower curvature (c=0.1) achieved the
best Dendrogram Purity with Ward linkage, while a higher curvature (c=1.0) yielded the
best performance with complete and average linkage. This finding underscores that the ideal
geometry is task-dependent and supports our conclusion that treating curvature as a fixed
hyperparameter is a limitation.

• Numerical Precision: We also analyzed the impact of floating-point precision by comparing
training runs using 64-bit (Float64) and 32-bit (Float32) precision. Our results showed a
notable drop in performance for both NMI and ARI when using the lower 32-bit precision.
This confirms that the geometric computations in our model are sensitive to numerical
precision and that using 64-bit precision is crucial for achieving stable results.

7 CONCLUSION

In this work, we introduced a deep hyperbolic hierarchical clustering framework that addresses critical
limitations of prior methods. By presenting a rectified and generalized definition of the hyperbolic
Lowest Common Ancestor (LCA), employing a scalable autoencoder architecture, and developing the
numerically robust HoroPCA++ for visualization, our approach achieves state-of-the-art performance
on several benchmark datasets. The framework is more scalable, geometrically precise, and flexible
than previous approaches, supporting both the Poincaré Ball and Hyperboloid models with arbitrary
curvature.
Despite these contributions, our work has limitations. The model was evaluated on standard bench-
marks of moderate complexity, and its performance on large-scale, high-resolution datasets with a
vast number of classes has not been assessed. The current feed-forward network architecture, while
effective, may lack the capacity to capture intricate features in more complex data. Furthermore,
while our methods improve numerical robustness, computations in hyperbolic space remain sensitive
to floating-point precision. Finally, treating the manifold’s curvature as a fixed hyperparameter
imposes a uniform geometric structure on all datasets, which may not be optimal for capturing their
unique intrinsic hierarchies.
Future work will focus on integrating our hyperbolic objective with more powerful network archi-
tectures, such as CNNs and Transformers, to tackle more complex datasets. A key direction is to
develop methods that allow the manifold’s curvature to be learned as a model parameter, enabling the
geometry to adapt to the data’s intrinsic structure. Scaling these methods to even larger datasets and
exploring their application to non-image data, such as text and graphs, remains an exciting avenue for
further research.
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REPRODUCIBILITY

Our code and models are publicly available under https://anonymous.4open.science/r/
hyperbolic-clustering-D73C and our hyperbolic math library https://anonymous.
4open.science/r/hyperbolic-math-1002 as well. Additionally we report all hyperpa-
rameters used for our experiments in the appenidx in Section 4.

LLM USAGE

In some paragraphs, we used LLMs as a post-processing step to improve wording and grammar.
While we did not copy anything above sentence level, we drew inspiration for shortening or phrasing
more elegantly. Text, figures, and content of the paper are our own work and have not been generated,
updated, or processed with LLM usage.

ETHICS STATEMENT

Our work focuses on foundational research in unsupervised learning and hyperbolic geometry, with
the potential to advance scientific discovery in various fields. As with any general-purpose clustering
algorithm, there is potential for misuse in applications not intended by the authors. This is particularly
relevant as we plan to release pretrained models to facilitate reproducibility and future research. We
believe the benefits of open research in enabling positive applications outweigh the risks of potential
misuse, but we encourage users to consider the ethical implications of their specific applications.

For example, in sensitive domains such as medical diagnostics or financial fraud detection, while our
method could help identify meaningful patient subgroups or transaction patterns, algorithmic errors
could lead to negative consequences. Such applications must be deployed with caution. Therefore,
we strongly recommend that any real-world deployment of this technology, particularly in high-stakes
environments, includes robust testing, fairness audits, and meaningful human oversight.
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A APPENDIX

A.1 MATHEMATICAL PRELIMINARIES

Fast Inversion of Rank-1 Perturbed Invertible Square Matrices
Lemma A.1. Let A ∈ Rn×n be an invertible square matrix and u,v ∈ Rn be column vectors. Then
A+ uvT is invertible if and only if 1 + vTA−1u ̸= 0. In this case, its inverse is given by

(A+ uv⊤)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (5)

Proof We refer the reader for this proof to the original paper (Hager, 1989).

A.2 HYPERBOLIC LOWEST COMMON ANCESTORS

Before deriving the explicit formulas for geodesic orthogonal projections in the Poincaré Ball and the
Hyperboloid, we briefly recap the form of geodesics in each hyperbolic space.

1. Poincaré Ball: In the Poincaré Ball, geodesics are arcs of circles that intersect the boundary
sphere ∂Pn

c orthogonally. In the special case where these circles pass through the origin, the
geodesics are straight lines through the origin, which occurs when the points are collinear
with the origin.

2. Hyperboloid: In the Hyperboloid, geodesics are intersections of Hn
c with 2-dimensional

linear subspaces of the ambient Minkowski space R1,n.

Proposition 4.2 Let x,y ∈ Pn
c be two points in the Poincaré Ball that are not collinear. The

geodesic orthogonal projection of the origin onto the geodesic Γx,y connecting x and y is given by:

πΓ(0̄) =

1−

√
||z||2 − 1

c

||z||

 z, where (6)

z =

[
(1 + c||y||2)⟨x,y⟩ − (1 + c||x||2)||y||2

]
x+

[
(1 + c||x||2)⟨x,y⟩ − (1 + c||y||2)||x||2

]
y

2 c (|⟨x,y⟩|2 − ||x||2||y||2)
.

Proof By assumption, x and y are non-collinear points on the Poincaré Ball, i.e. the geodesic Γx,y

is an arc of a circle that meets the boundary Pn
c orthogonally. Using the circle inversion property with

respect to the boundary sphere ∂Pn
c = {x ∈ Rn : ||x||2 = 1/c}, we can compute the inverses of x

and y:
x−1 =

x

c||x||2
, y−1 =

y

c||y||2
.

These points satisfy ||x|| · ||x−1|| = 1/c and ||y|| · ||y−1|| = 1/c.

Finding Conditions on the Circle Center By construction, the points x,y,x−1,y−1 all lie on the
same circle Γ. Thus, we can construct two perpendicular-bisecting hyperplanes to design conditions
the center z has to satisfiy.

First perpendicular bisector condition:〈
z − x+ x−1

2
,x− x−1

〉
= 0 ⇐⇒ ⟨z,x⟩ = 1 + c||x||2

2c
. (7)

Second perpendicular bisector condition:〈
z − y + y−1

2
,y − y−1

〉
= 0 ⇐⇒ ⟨z,y⟩ = 1 + c||y||2

2c
. (8)

Span condition:

z = αx+ βy. (9)
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Solving for the Coefficients Combining condition 7 and 9:

⟨αx+ βy,x⟩ = α||x||2 + β ⟨x,y⟩ = 1 + c||x||2

2c
(10)

Combining condition 8 and 9:

⟨αx+ βy,y⟩ = α⟨x,y⟩+ β||y||2 =
1 + c||y||2

2c
. (11)

Expressing α in equation 10

α =
1 + c||x||2

2c||x||2
− β⟨x,y⟩

||x||2
(12)

and by substituting for it in condition 11 we can determine β

β =
(1 + c||x||2)⟨x,y⟩ − (1 + c||y||2)||x||2

2 c (|⟨x,y⟩|2 − ||x||2||y||2)
(13)

and α via equation 12

α =
(1 + c||y||2)⟨x,y⟩ − (1 + c||x||2)||y||2

2 c (|⟨x,y⟩|2 − ||x||2||y||2)
. (14)

Center of the Circle The center of the circle Γ whose arc is a geodesic connecting x and y is then

z =

[
(1 + c||y||2)⟨x,y⟩ − (1 + c||x||2)||y||2

]
x+

[
(1 + c||x||2)⟨x,y⟩ − (1 + c||y||2)||x||2

]
y

2 c (|⟨x,y⟩|2 − ||x||2||y||2)
(15)

Geodesic Projection Since the circle Γ meets the boundary orthogonally, we have

1

c
= ||z||2 − r2 ⇐⇒ r =

√
||z||2 − 1

c
(16)

where r is the radius of Γ. Moreover, we have that the geodesic orthogonal projection πΓ(0̄) lies on
the line from the origin to z, and is the point on Γ closest to the origin. This gives us:

πΓ(0̄) = (||z|| − r)
z

||z||
(17)

and using 16, we get the formula for the geodesic orthogonal projection

πΓ(0̄) = (||z|| − r)
z

||z||
=

1−

√
||z||2 − 1

c

||z||

 z.

Proposition 4.3 Let x,y ∈ Hn
c be two points in the Hyperboloid. The geodesic orthogonal

projection of the origin onto the geodesic Γx,y connecting x and y is given by:

πΓ(0̄) =
αx+ βy√

−c ⟨αx+ βy, αx+ βy⟩L
, where (18)

α =

√
c (x0 + c⟨x,y⟩L y0)
1− (c⟨x,y⟩L)2

, β =

√
c (y0 + c⟨x,y⟩L x0)
1− (c⟨x,y⟩L)2

.
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Proof The geodesic orthogonal projection of πΓ(0̄) can be computed in two steps:

1. Compute the orthogonal projection πspan{x,y}(0̄) of the origin 0̄ onto the linear subspace
span{x,y} with respect to the Minkwoski inner product ⟨., .⟩L.

2. Rescale πspan{x,y}(0̄) to be a point on the Hyperboloid:

πΓ(0̄) =
πspan{x,y}(0̄)√

−c ⟨πspan{x,y}(0̄),πspan{x,y}(0̄)⟩L

Let M = [x|y] ∈ R(n+1)×2 denote the matrix with column-vectors x,y ∈ Rn+1, 0̄ ∈ Rn+1

the Hyperboloid’s origin written as column-vector, B = diag[−1, 1, . . . , 1] ∈ R(n+1)×(n+1) the
matrix associated with the Minkowski inner product, and ρ := ⟨x,y⟩L. The orthogonal projection
πspan{x,y}(0̄) with respect to ⟨., .⟩L is given by

πspan{x,y}(0̄) =M(MTBM)−1MTB 0̄

Since MTBM ∈ R2×2 is a symmetric matrix with main diagonal entries {⟨x,x⟩L, ⟨y,y⟩L} =
{−1/c,−1/c} and off-diagonal element ρ we can apply Lemma A.1 to directly express the inverse.
For this we set A = (−1/c − ρ) I2 ∈ R2×2, u = (ρ, ρ)

T ∈ R2, and v = (1, 1) ∈ R2. Then A is
invertible and 1 + vTA−1u = 1−cρ

1+cρ ̸= 0 since x ̸= y. Thus,

(MTBM)−1 = (A+ uv⊤)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
=

−c
1− (cρ)2

[
1 cρ
cρ 1

]
Next, we compute MTB 0̄ = (−x0/

√
c,−y0/

√
c)

T ∈ R2 and put everything together:

πspan{x,y}(0̄) =M(MTBM)−1MTB 0̄ = [x|y] −c
1− (cρ)2

[
1 cρ
cρ 1

] [− x0√
c

− y0√
c

]
=

=

√
c

1− (cρ)2
((x0 + cρy0)x+ (cρx0 + y0)y) .

Re-substituting for ρ and defining α =
√
c (x0+c⟨x,y⟩L y0)
1−(c⟨x,y⟩L)2 , β =

√
c (y0+c⟨x,y⟩L x0)
1−(c⟨x,y⟩L)2 yields

πspan{x,y}(0̄) = αx+βy. Finally, rescaling πspan{x,y}(0̄) such that it is a point on the Hyperboloid
yields the desired result.

A.3 HOROPCA++

To ensure that the hyperbolic PCA components reflect the true variance and relationships within
the data, we frechét mean center the data prior to employing HoroPCA and HoroPCA++. For ease
of exposition, we present a side-by-side comparison of the original HoroPCA and our improved
HoroPCA++ for inputs x ∈ Pn

c and Q =
[
qT
1 | . . . |qT

k

]
for qi ∈ In−1

P .

HoroPCA
0. –

1. Repeat:

(a) Q⊥
P = QR[QP]

(b) QH = ϕI(Q
⊥
P )

(c) xH = ϕ(xP)

(d) # Horospherical Projection
Compute πQH(xH)

(e) πQP(xP) = ψ(πQH(xH))

(f) Compute LP(πQP(xP))

(g) Update QP

HoroPCA++
0. xH = ϕ(xP)

1. Repeat:

(a) Q⊥
P = QR[QP]

(b) QH = ϕI(Q
⊥
P )

(c) –
(d) # Horospherical Projection

Compute πQH(xH)

(e) –
(f) Compute LH(πQH(xH))

(g) Update QP

Here, Q⊥
P denotes the row-wise orthogonalized matrix of ideal points, ϕ, ϕL, ψ the mappings between

them with respect to the hyperbolic space models, LP, andLH the loss functions measuring the
generalized variance −var = −(dpw

M (πM))2/n with dpwM (πM) denoting the pair-wise geodesic distance

14
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of the projected points πM. In particular, for both algorithms to work we need to define mappings
that maps ideal points from the Poincare Ball to the Hyperboloid and vice-versa. The following
mappings are generalized to arbitrary curvatures and are compatible with the usual stereographic
projections (Chami et al., 2021; Mishne et al., 2023).

Definition A.2. Let x ∈ In−1
P and y ∈ In−1

H . The maps

ϕI : In−1
P → In−1

H , x 7→
(
1,
√
c x1, . . . ,

√
c xn

)
, (19)

ψI : In−1
H → In−1

P , y 7→
(

y1√
c y0

, . . . ,
yn√
c y0

)
(20)

Horospherical Projection To compute the horospherical projection in the Hyperboloid the follow-
ing two linear equation systems need to be solved to compute the coefficients z of data x being pro-
jected onto linear Minkowski subspaces: (i) Q⊥

HB(Q⊥
H )

T z = Q⊥
HBx (ii) Q⊥

HB(Q⊥
H )

T z = Q⊥
HBx.

Here, B = diag[−1, 1, . . . , 1] ∈ R(n+1)×(n+1) is the matrix associated with the Minkowski inner
product. Both systems can be efficiently solved by computing the inverse (Q⊥

HB(Q⊥
H )

T )−1. Through
the orthogonalization of QP in the algorithm and the mapping ϕI we ensure that the lower (n× n)
submatrix ofQ⊥

HB(Q⊥
H )

T is orthonormal. Further, since the rows ofQH are vectors of the asymptotic
null cone In−1

H both the first row and column of Q⊥
HB(Q⊥

H )
T is the unit vector [1,0]T ∈ Rn+1. This

allows us to describe Q⊥
HB(Q⊥

H )
T as rank-1 perturbed matrix and compute its inverse directly via the

Sherman-Morrison formula (Lemma A.1) making the solution robust to numerical imprecisions. For
this we set A = In ∈ R(n+1)×(n+1), u = (−1, . . . ,−1)T ∈ Rn+1, and v = (1, . . . , 1) ∈ Rn+1.

HoroPCA Experiments To compare HoroPCA++ against its predecessor HoroPCA, we pre-
process all datasets in accordance with the original paper and average the results over 5 runs using
seed 44. We compare the differences on the task of dimensionality reduction which is of our interest.
More specifically, we report on all datasets which includes a fully balanced tree, a phylogenetic
tree, a biological graph comprising of diseases’ relationships and a graph of Computer Science (CS)
Ph.D. advisor-advisee relationships (Sala et al., 2018). These datasets have 40, 344, 516 and 1025
nodes, respectively. As evaluation metrics we compute the distance-preservation after projection π,
measured by the average distortion

distortion =
1(|S|
2

) ∑
x̸=y∈S

|dM(π(x), π(y))− dM(x,y)|
dM(x,y)

and the frechét variance
σ2
M(S) :=

1

|S|
∑
x∈S

dM(x, µ(S))2,

where µ(S) is frechét mean.

A.4 EXPERIMENTS

A.4.1 HYPERBOLIC LAYERS

In our architecture we employ two distinct hyperbolic linear encoding layers (Figure 1), each tailored
to a specific model of hyperbolic space:

Poincaré Ball Linear Layer++ (HyperbolicLinearPP) Shimizu et al. (2021) hyperbolic linear
layer generalizes the Euclidean fully-connected layer to the Poincaré Ball model by interpreting the
output coordinates of the affine transformation yk = ⟨ak, x⟩ − bk as signed hyperbolic distances to
the Euclidean coordinate axes:

y = fz,r(x) =
w

1 +
√
1 + c||w||2

, where w =

(
1√
c
sinh

(√
c vz,rk (x)

))K

k=1

, (21)

vz,rk (x) =
2 ||z||√

c
sinh−1

(
(1− λx) sinh(2

√
c r) +

√
c λx cosh(2

√
c r)

〈
z

||z||
,x

〉)
. (22)
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Fully Hyperbolic Convolutional Neural Networks (FHCNN) Bdeir et al. (2024); Chen et al.
(2021) hyperbolic linear layer generalizes the Euclidean fully-connected layer for the Hyperboloid
model by first applying a linear operation (Wx+ b) to the hyperbolic input x ∈ Hn

c followed by a
normalization ensuring that the layer’s output lies on the Hyperboloid and falls within a certain range:

y = fW,b(x) =

√(λσ(αW,b
0 )

)2
+ 1

c

λσ(α0)
α1:n

||α1:n||

 where αW,b = (αW,b
0 ,αW,b

1:n )T =Wx+ b, (23)

where σ is the sigmoid function, b is the bias term, and λ > 0 controls the layer’s range.

A.4.2 HYPERPARAMETER

Parameter Value
General Training
Seeds 728, 395, 291, 18, 887, 93, 108, 480, 868, 134
Batch size 512
Optimizer RiemannianSGD
Precision float64

Pretraining
Epochs 1000
Learning rate 1× 10−3

Weight decay 1× 10−4

Clustering
Epochs 1200
Learning rate 1× 10−2

Weight decay 1× 10−4

LR Scheduler Warmup Cosine (20 epochs)

Architecture
Model Type Feed-forward AE
Hidden Dims [512, 256, 64, 16]
Latent Dim 4 (MNIST/KMNIST), 6 (FMNIST)
Manifold Poincaré Ball
Curvature (c) 0.1
Activation Swish
Hyperbolic Encoding HyperbolicLinearPP(Poincare)/FHCNN(Hyperboloid)
Hyperbolic Decoding Log EuclideanLinear

LCA Loss
Temperature (τ ) 0.01
Subsample Size 150

Table 4: Hyperparameters for all dataset experiments(MNIST, FMNIST, KMNIST, GTSRB).

A.4.3 ABLATION STUDIES RESULTS

Table 5 shows the performance on MNIST across Dendrogram Purity (DP), Spectral NMI, and ARI
for different values of curvature c. The following results were obtained on MNIST using the same
seed and spectral clustering. In Table 6 we compare the float 64-bit precision to float 32-bit. The
performance drop with 32-bit precision suggests that some geometric operations, like orthogonal
projections or distance calculations, accumulate errors that can degrade the quality of the learned
embeddings.
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Table 5: Ablation study on the effect of curvature c for the MNIST dataset. All other hyperparameters
are held constant as described in Table 4. Performance is measured by Dendrogram Purity (DP,
Ward and Complete linkage), Spectral Clustering NMI, and Adjusted Rand Index (ARI). The best
performance for each metric is highlighted in bold.

Curvature (c) DP Ward DP Complete Spectral NMI ARI
10.0 64.6 46.03 68.1 56.9
7.5 55.4 42.6 58.1 43.1
5.0 62.9 50.86 74.2 65.3
2.5 76.7 55.42 78.0 70.2
2.0 73.5 56.27 76.6 69.6
1.0 76.9 65.0 69.82 69.8
0.5 72.8 57.93 74.1 62.9
0.1 81.3 64.6 79.7 71.4

Table 6: Comparison of numerical precision on MNIST for spectral clustering. The Float32 results
represent the mean and standard deviation over 3 seeds.

Model Precision NMI Score (%)

Poincaré Ball Float32 74.22± 1.8
Float64 78.96± 0.642

Hyperboloid Float32 75.69± 4.6
Float64 77.81± 0.025

A.5 ADDITIONAL RESULTS

In this section we provide additional results for dendrogram purity and agglomerative clustering.

Table 7: Dendrogram Purity scores across different datasets, models, and linkage methods. Values
are reported as mean ± standard deviation.

Dataset Model Complete Average Single Ward

FMNIST Poincaré 0.393± 0.030 0.464± 0.020 0.363± 0.026 0.471± 0.023
Hyperboloid 0.448± 0.007 0.501± 0.018 0.391± 0.022 0.515± 0.019

GTSRB Poincaré 0.096± 0.004 0.110± 0.007 0.090± 0.002 0.104± 0.006
Hyperboloid 0.089± 0.010 0.105± 0.020 0.084± 0.019 0.109± 0.018

KMNIST Poincaré 0.268± 0.029 0.315± 0.034 0.208± 0.028 0.313± 0.035
Hyperboloid 0.280± 0.013 0.328± 0.020 0.238± 0.021 0.34± 0.027

MNIST Poincaré 0.551± 0.087 0.713± 0.069 0.538± 0.073 0.710± 0.088
Hyperboloid 0.562± 0.073 0.718± 0.066 0.549± 0.047 0.716± 0.100
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Table 8: Agglomerative Clustering NMI scores for different models and linkage methods. Values are
reported as mean ± standard deviation.

Dataset Model Complete Average Single

FMNIST Poincaré 0.498± 0.029 0.567± 0.031 0.002± 0.0001
Hyperboloid 0.537± 0.013 0.593± 0.011 0.002± 0.0001

GTSRB Poincaré 0.300± 0.010 0.324± 0.017 0.013± 0.004
Hyperboloid 0.218± 0.091 0.221± 0.108 0.031± 0.018

KMNIST Poincaré 0.313± 0.035 0.341± 0.033 0.002± 0.0005
Hyperboloid 0.304± 0.021 0.347± 0.027 0.002± 0.0002

MNIST Poincaré 0.599± 0.079 0.717± 0.045 0.002± 0.0003
Hyperboloid 0.606± 0.063 0.722± 0.032 0.002± 0.0002

Table 9: Agglomerative Clustering ARI scores for different models and linkage methods. Values are
reported as mean ± standard deviation.

Dataset Model Complete Average Single

FMNIST Poincaré 0.325± 0.034 0.383± 0.037 ≈ 0.0
Hyperboloid 0.368± 0.014 0.401± 0.021 ≈ 0.0

GTSRB Poincaré 0.076± 0.007 0.086± 0.005 0.0001± 0.0001
Hyperboloid 0.035± 0.040 0.042± 0.050 0.0011± 0.0012

KMNIST Poincaré 0.174± 0.030 0.180± 0.025 ≈ 0.0
Hyperboloid 0.158± 0.017 0.177± 0.017 ≈ 0.0

MNIST Poincaré 0.447± 0.096 0.564± 0.077 ≈ 0.0
Hyperboloid 0.455± 0.086 0.575± 0.046 ≈ 0.0

A.6 COST FUNCTION FORMULATION

Wang’s Equivalent Formulation Dasgupta’s 3.2 original formulation’s use of |leaves(T [i ∨ j])|
makes it difficult to optimize directly. Thus, Wang (Wang & Wang, 2018) restated CDasgupta(T ;w) in
terms of the relationships between all triplets (i, j, k):

CWang(T ;w) =
∑
i,j,k

(wij + wik + wjk − wijk(T ;w)) + 2
∑
i,j

wij , (24)

where wijk(T ;w) = wij1[{i, j}|k}] + wik1[{i, k}|j}] + wjk1[{j, k}|i}] and 1[{i, j}|k}] = 1 if
”i ∨ j is a descendant of i ∨ j ∨ k”.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.7 HYPERBOLIC ENCODING AND DECODING MAPS

The following table details the formulas for the exponential (exp0) and logarithmic (log0) maps used
for hyperbolic encoding and decoding.

Poincaré Ball Hyperboloid

Origin 0̄ = (0, 0, . . . , 0) 0̄ = (1/√c, 0, . . . , 0)

Exp0̄(v) v 7→ tanh(
√
c ||v||)√

c ||v|| v v 7→ cosh
(√

c ⟨v,v⟩L
)
0̄+

sinh
(√

c ⟨v,v⟩L
)

√
c ⟨v,v⟩L

v

Log0̄(x) x 7→ tanh−1(
√
c ||x||)√

c ||x|| x x 7→
(
0, cosh−1(

√
c x0)√

c x2
0−1

x

)
d0̄(x)

2 tanh−1(
√

c ||x||)√
c

cosh−1(
√
c x0)√

c

Table 10: Summary of encoding/decoding operations in the Poincaré Ball and the Hyperboloid model
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