
Splitting with Importance-aware Updating for
Heterogeneous Federated Learning with Large Language Models

Yangxu Liao * 1 2 Wenke Huang * 1 2 Guancheng Wan * 2 Jian Liang 1 2 Bin Yang 2 Mang Ye + 2

Abstract

Federated learning provides an efficient privacy-
preserving distributed training framework for
large language models, addressing the growing
scarcity of publicly available training data while
enabling the utilization of private datasets. While
integrating large language model fine-tuning with
federated learning emerges as a promising re-
search direction, researchers pay limited atten-
tion to non-IID instruction-following scenarios.
Our key insight is decomposing client updates
into consensus and divergence components, en-
abling the model to maintain core capabilities
while adapting to domain-specific knowledge. We
propose a novel federated learning framework
called FedICU (Splitting with ImportanCe-aware
Updating for Heterogeneous Federated Learning
with Large Language Models), which introduces
an aggregation mechanism that dynamically bal-
ances these components based on their contri-
bution to global model performance, while im-
plementing an importance-aware parameter up-
dating strategy to prevent catastrophic forget-
ting and domain overfitting. Extensive experi-
ments across diverse domains demonstrate that
FedICU significantly outperforms existing feder-
ated learning approaches in terms of both general-
ization performance and domain adaptation. Our
code is available at https://github.com/
liaosunny123/FedICU.

*Equal contribution 1Guangdong Laboratory of Artificial In-
telligence and Digital Economy (SZ), Shenzhen, China 2National
Engineering Research Center for Multimedia Software, School of
Computer Science, Wuhan University, Wuhan, China. Correspon-
dence to: Mang Ye <yemang@whu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1: Motivation. In the current process of Large Lan-
guage Model Supervised Fine-tuning, the following issues
exist: (a) Heterogeneous client distributions and varying
instruction quality in Supervised Fine-tuning impair global
model performance. (b) Ineffective preservation of general
capabilities during federated training of large language mod-
els fine-tuning.

1. Introduction
Federated learning is a collaborative paradigm, allowing
multiple clients to train a shared global model collabora-
tively without privacy leakage (McMahan et al., 2017b;
Reddi et al., 2020; McMahan et al., 2017a; Huang et al.,
2022; 2023c). Large language models (LLMs) (Achiam
et al., 2023; Ouyang et al., 2022; Touvron et al., 2023;
Devine, 2024; Liu et al., 2023; Wang et al., 2024) emerge
as a transformative technology across main fields in recent
years (Imani et al., 2023; Didolkar et al., 2024; Chen et al.,
2023; Fang et al., 2025a; Jiang et al., 2025). While trained
on large public datasets, these large language models demon-
strate significant success in solving general problems across
various domains. However, the scarcity of high-quality
public training data becomes a critical bottleneck for large
language model development (Kaddour et al., 2023), with
predictions suggesting the exhaustion of such data by 2026
(Villalobos et al., 2022). Although existing approaches
attempt to address this challenge through datasets combi-
nation (Wang et al., 2023) or self-generated data (Wang
et al., 2022), these methods often fall short - the former is
limited by data availability (Kaplan et al., 2020), while the
latter risks model degradation (Alemohammad et al., 2023;

1

https://github.com/liaosunny123/FedICU
https://github.com/liaosunny123/FedICU

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

Muennighoff et al., 2023). Although substantial private
datasets exist, their direct utilization is frequently restricted
by privacy concerns. Notable large language models, such
as BloombergGPT (Wu et al., 2023), FinGPT (Yang et al.,
2023b) and etc., successfully leverage private datasets, high-
lighting the potential value of these resources. This situation
presents an opportunity for federated learning, which en-
ables the utilization of private, high-quality datasets while
maintaining privacy (Li et al., 2020), potentially offering a
solution to the ongoing challenge of data scarcity in large
language model development (Zhuang et al., 2023).

To address these challenges, numerous researchers develop
diverse frameworks to train or fine-tune large language mod-
els on geographically distributed private datasets (Li et al.,
2024b; Fan et al., 2023; Xu et al., 2023b). In particular,
researchers focus on integrating the large language model
Supervised Fine-Tuning (SFT) module (Gunel et al., 2020;
Ye et al., 2024) into the federated learning framework, such
as FederatedScope-LLM (Kuang et al., 2024), Shepherd
(He et al., 2021) and OpenFedLLM (Ye et al., 2024). These
studies utilize LoRA for fine-tuning the global model on
geographically distributed datasets, enhancing the model
capabilities while allowing it to leverage knowledge from
private datasets. However, these frameworks demonstrate an
excessive focus on classical federated learning algorithms,
simply embedding the LLM supervised fine-tuning process
within the federated learning framework without consider-
ing the unique characteristics of language model training,
such as the base ability and the domain-specific knowledge.
This oversight potentially limits the effectiveness of feder-
ated learning in scenarios where LLMs need to maintain
their general capabilities while acquiring domain-specific
knowledge. In a nutshell, the aforementioned discussions
motivate us to rethink: How can we effectively incorporate
intrinsic characteristics of the LLM, particularly the interac-
tion between general and domain-specific knowledge, into
federated fine-tuning frameworks?

Preliminarily, numerous existing works perform LLM super-
vised fine-tuning through FedAvg. In this paradigm, each
local dataset operates an independent client that receives the
LoRA parameters distributed from the global LLM in the
server. These clients conduct training on their local datasets
and transmit the updated gradients back to the global model.
The global model then averages these gradient updates and
iteratively repeats this process. However, when dealing with
heterogeneous downstream instructions of different clients,
simple averaging of client-side LoRA parameters may not
achieve optimal performance, since the global LLM typi-
cally exhibits bias toward specific local distributions rather
than maintaining true global optimality. Considering that
LLM training typically involves pre-training a foundation
model followed by fine-tuning, we hypothesize the existence
of two distinct factors: one that maximally preserves the

foundation model capabilities, and another that optimally
captures domain-specific characteristics. To investigate this
hypothesis, we perform decomposition analysis on LoRA
parameters and discover convergence factor, which express
the general ability of the model, and divergence factor,
which expresses the especial ability of the model, in the
process of supervised fine-tuning of LLM on the federated
learning. Based on this observation, we raise the follow-
ing question: 1) How can we ensure effective instruction
learning during federated fine-tuning on the heteroge-
neous instruction preferences and varying quality levels?
Furthermore, in terms of client-side updates, we find that
extracting local features during client training is crucial for
the global model. An effective training method should bet-
ter capture features from datasets, perform sparse updates
to the global model to preserve the base model ability and
improve communication efficiency. However, in the current
method, the state-of-the-art model algorithm found by Ye
et al. (2024) simply uploads all the LoRA parameters. This
indiscriminate parameter aggregation can result in the global
model overfitting to specific client distributions while losing
its general capabilities. Based on this, we further propose
another question: 2) How can we preserve and transfer the
general capabilities of LLMs while enabling them to adapt
to domain-specific knowledge?

To address the two issues mentioned above, this paper pro-
poses an innovative framework to help the global model
to absorb the instruction knowledge from heterogeneous
clients, enhancing generalization. To address problem 1, we
propose the Consensus-Divergence Splitting, which com-
bines consensus aggregation and divergence alignment, op-
timizing the global aggregation process and improving the
performance of the global model. For problem 2, during lo-
cal updates, we introduce the Importance-Aware Updating,
which focuses on uploading significantly altered parame-
ters while disregarding minimal changes. The mask en-
ables the global model to accurately capture the direction of
meaningful updates, addressing the problem of catastrophic
forgetting and improving communication efficiency.

Our primary contribution in this paper can be summarized
as following three points:

(1) We discover that LLM fine-tuning can be decoupled into
consensus factor and divergence factor, and identify their
specific meaning in the SFT, which has practical significance
in the federated large language model fine-tuning.

(2) We propose a novel framework for federated fine-tuning
of large language models during the SFT stage. To address
domain knowledge drift across clients, we adopt a hybrid
optimization strategy that combines consensus-based aggre-
gation with divergence alignment. This ensures balanced
integration of knowledge from diverse downstream tasks.
During the client uploading process, we focus on making pa-

2

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

rameter updates effective and meaningful. Applying sparse
updates to the global model, we preserve previously learned
knowledge and maintain the model’s generalization ability.

(3) Through extensive experiments, we demonstrate that
our framework achieves significant improvements in model
generalization ability compared to existing approaches.

2. Related Work
2.1. Parameter Efficient Fine-Tuning for Large

Language Models

The emergence of Large Language Models (LLMs) has
demonstrated remarkable capabilities across various natural
language processing tasks (Achiam et al., 2023; Touvron
et al., 2023; Dubey et al., 2024; Li et al., 2024a; Wang et al.,
2024; Huang et al., 2023b; Bi et al., 2025a;c). However,
adapting these models to downstream tasks through con-
ventional fine-tuning poses significant computational and
resource challenges (Houlsby et al., 2019; Valipour et al.,
2022; Bi et al., 2025b; Fang et al., 2025b; 2024). In re-
sponse to these challenges, the development of Parameter
Efficient Fine-Tuning (PEFT) methods has gained signifi-
cant attention, as these methods aim to reduce computational
overhead while maintaining model performance (Xu et al.,
2023a). Current approaches can be categorized into three
main directions: i) Adapter-based methods (Houlsby et al.,
2019; Pfeiffer et al., 2020; He et al., 2021; Edalati et al.,
2022) introduce additional neural network layers for task-
specific adaptation. These methods insert trainable modules
between the original transformer layers while keeping the
pre-trained parameters frozen, thereby enabling efficient
parameter-sharing across tasks while maintaining model
performance. ii) Prompting techniques (Petrov et al., 2023;
Li & Liang, 2021) modify input sequences to guide model
behavior through learnable or hard-coded prompts, effec-
tively allowing models to leverage task-specific knowledge
without extensive fine-tuning of the base model parameters.
iii) Low-rank adaptation approaches, particularly LoRA
(Hu et al., 2021), decompose weight updates into low-rank
matrices (θ′ = θ +BA), significantly reducing the number
of trainable parameters while preserving the model ability to
learn task-specific adaptations. This approach is founded on
the observation that the weight updates during fine-tuning
often have a low intrinsic rank. While LoRA has become
the dominant approach in SFT due to its efficiency, its effec-
tiveness in distributed settings remains largely unexplored.

2.2. Federated Learning for Large Language Models

Federated learning has emerged as a promising paradigm
for privacy-preserving collaborative training (Kairouz et al.,
2019; Wan et al., 2024; 2025; Yang et al., 2023a; Huang
et al., 2023a; Wan et al., 2024). Its integration with large

language models effectively addresses the critical challenge
of leveraging private datasets while maintaining data privacy
(Li et al., 2024b). Several recent works have made initial
attempts in this direction. Fan et al. (2023) explored tradi-
tional federated learning tasks for large language models
fine-tuning, while Xu et al. (2023b) focused on improving
computational efficiency on client devices. Additionally
Kuang et al. (2024) investigated federated instruction tuning
using FedAvg, and Ye et al. (2024) proposed a framework
encompassing both SFT and RLHF processes, combining
large language models training processes with classical fed-
erated learning algorithms using LoRA-based fine-tuning.
However, these existing methods exhibit several critical
limitations: i) Some primarily focus on computational effi-
ciency without addressing different downstream instructions
heterogeneity in federated settings. ii) The interaction be-
tween PEFT methods and federated learning remains poorly
understood, especially in terms of parameter aggregation
and convergence properties. To address these limitations,
we propose a novel framework that specifically addresses
these challenges by jointly considering the client upload
process and global aggregation process in non-IID settings.
Through our careful design of the consensus-divergence
mechanism and importance-aware parameter masking up-
date strategy, our method not only achieves robust perfor-
mance but also maintaining the efficiency benefits of LoRA-
based fine-tuning.

3. Methodology
3.1. Preliminaries

LoRA (Hu et al., 2021) is employed to enhance the effi-
ciency of fine-tuning by focusing on the internal rank varia-
tions that occur during parameter updates in the fine-tuning
process. For fine-tuning a pre-trained model θ ∈ Rd×k,
LoRA keeps the pre-trained model parameter matrix frozen
and utilizes two lower-rank matrices, θA ∈ Rd×r and
θB ∈ Rr×k, to represent the update ∆θ. This process
can be formulated as Equation (1):

θ′ = θ + (θA × θB)︸ ︷︷ ︸
∆θ

, (1)

where r ≪ min(d, k) is the rank of the decomposition.

During training, θ remains frozen, while θA and θB are
updated. Initially, θB is initialized using the Kaiming dis-
tribution, and θA is set to a zero matrix, ensuring θ′ = θ at
the start. Any low-dimensional decomposition method can
be applied for ∆θ, as shown in Dettmers et al. (2023) and
Rajabzadeh et al. (2024).

In federated learning, multiple clients collaborate with a
central server to train a global model on different datasets.
In this framework, each client maintains its private dataset
and performs local training, while the server coordinates the

3

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

Figure 2: Architecture illustration of the Splitting and Updating components. The two key components are shown at the
top (a) and bottom (b) of the image, with nodes of different classes marked in different colors. (a) Consensus-Divergence
Splitting (Section 3.2) module splits the LoRA updates into consensus and divergence parts, applying consensus aggregation
through delta averaging and divergence alignment using cosine similarity. (b) Importance-Aware Updating (Section 3.3)
component computes every parameter importance based on the difference between the global model and the local model,
selecting important knowledge from LLM clients for updates. Best viewed in color. Zoom in for details.

learning process through model aggregation. Specifically,
during the i-th iteration, each client k trains its local model
θik using its own dataset and sends the model updates to the
server. The server then aggregates these local models to
generate an updated global model θi, which is subsequently
distributed back to the clients for the next round of train-
ing, where client k obtains its next local model θi+1

k as the
formula below Equation (2):

θi+1
k ← θi ←

∑N
k=1

nk

n θik, (2)

where θk is the model of k-th client, nk is the size of the
dataset for the k-th client, n is the total dataset size, and N
is the number of clients.

In Fed LLM training, a common approach to reduce com-
munication costs is to utilize LoRA, which updates only
a subset of parameters instead of the entire model. In the
FedAvg method with LoRA, the global model θi is updated
as follows Equation (3):

∆θi ←
∑N

k=1
nk

n ∆θik, (3)

where ∆θi is the LoRA model of the global model at i-th
round, and ∆θik represents the LoRA model of the k-th local
client model at i-th round.

We can compute the global model by adding the θA × θB
to the frozen base model θ, meaning that the global model
θ′ after training is given by Equation (4):

θ′ = θ +∆θ = θ + θA × θB , (4)

where θA × θB represents the LoRA matrix split by ∆θ.

However, two significant problems can arise with this train-
ing method: (1) Naive parameter aggregation across clients
can impair model convergence and degrade general capa-
bilities, especially when dealing with heterogeneous down-
stream instruction fine-tuning tasks (Guo et al., 2024; Zhu
et al., 2021; Cho et al., 2024). (2) Not all knowledge ac-
quired by clients from their private datasets contributes
meaningfully to global model performance. Incorporating
non-essential parameter updates can bias the global model
toward suboptimal local minima. Moreover, indiscriminate
parameter updates risk catastrophic forgetting, where the
model loses previously acquired knowledge and suffers de-
graded generalization capabilities (Dou et al., 2024; Yang
et al., 2024; Han et al., 2024; Zhu et al., 2024; Lee et al.,
2022; Kim et al., 2024).

3.2. Consensus-Divergence Splitting

Motivation. Existing federated learning approaches for
large language model supervised fine-tuning focus solely on
aggregating client-side LoRA parameter matrices, failing
to leverage interpretable nature of the LoRA or address
the model drift that occurs when clients train on diverse
instruction tasks (Zhu et al., 2021).

Consensus-Divergence Splitting. To address the challenge
of heterogeneous clients training on different downstream in-
struction tasks in federated LLM supervised fine-tuning, we

4

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

Figure 3: Visualization of similarity matrices between different
updating parameters of all the clients different layers are shown
as follows: (a) Similarity of LoRA matrices without decomposi-
tion, (b) Similarity of divergence matrices, and (c) Similarity of
consensus matrices. The The results indicate that the differences
between distributed LLM behavior become more pronounced after
decomposition into consensus and divergence.

propose decomposing each client parameter matrix into mag-
nitude and directional components inspired by Salimans &
Kingma (2016). Our decomposition is motivated by two key
observations: (1) the magnitude of parameter updates often
reflects general instruction capabilities across clients, while
(2) the directional changes capture client-specific adapta-
tions, which are specialized for specific downstream tasks.
Formally, for the LoRA update matrix θi ∈ Rr×d of client
k at i-th iteration, we split it using formula below, as Equa-
tion (5):

∆θik = ||∆θik||c︸ ︷︷ ︸
consensus

· ∆θik
||∆θik||c︸ ︷︷ ︸
divergence

, (5)

where ||∆θik||c ∈ Rr denotes the column-wise L2 norm that
captures the scale of updates across the low-rank dimension
r, and ∆θi

k

||∆θi
k||c

represents the normalized directions.

To empirically validate our approach, we conduct experi-
ments with four clients on non-IID datasets and perform
aggregation using the FedAvg (McMahan et al., 2017b). We
compute the similarity of the LoRA matrices across differ-
ent clients and visualize the results using a heat map, as
shown in Figure 3.

Our analysis reveals that the client drift becomes more ap-
parent after splitting parameter matrices into magnitude and
direction components. Specifically, the differences between
the clients are more pronounced in the Divergence Similar-
ity Matrix, while the Consensus Similarity Matrix shows
minimal variation between clients.

Based on these observations above, we can draw two key
conclusions: (1) The decomposition method provides better
discrimination of client differences compared to the base
LoRA method. (2) The decomposition effectively separates
two distinct aspects of the model: the direction matrix cap-
tures client-specific divergence characteristics, while the
magnitude component reflects shared consensus patterns
across heterogeneous clients.

Consensus Aggregation. Let M i
k = ||∆θik||c denote the

consensus vector of client k at iteration i, which captures the
magnitude component of the decomposed LoRA parameters
and M i denote the global model consensus vector at itera-
tion i. To aggregate these consensus vectors across clients,
we compute the average change in updates relative to the
previous global consensus state.

During local training, each client LLM extracts knowledge
from its private dataset. We propose to aggregate these
updates by averaging the differences relative to the previ-
ous global consensus, which ensures that new knowledge
acquired by each client is incorporated uniformly into the
global model, following the formula outlined below:

M i = M i−1 +
∑N

k=0(M
i
k−Mi−1)

N . (6)

We can prove that this averaging strategy is optimal under
certain conditions. Consider the consensus vector M i

k of
the k-th client at iteration i, which can be modeled as the
formula below, Equation (7):

M i
k = M∗ + ξk, (7)

where M∗ represents the true global consensus and ξk ∼
N (0, σ2I) denotes the noise term. For any linear unbiased
estimator M̂ =

∑N
k=1 αkM

i
k satisfying

∑N
k=1 αk = 1, its

variance is given by Equation (8):

Var(M̂) =
∑N

k=1 α
2
kσ

2. (8)

Using the method of Lagrange multipliers, we can prove
that the variance is minimized when αk = 1

N for all k
(see Appendix H). This theoretical foundation supports our
practical approach of averaging the consensus vectors across
clients to achieve optimal aggregation when the noise of the
consensus is the same, which can be observed in Figure 3
and proved in a experiment conducted in the Appendix F.

Divergence Aggregation. Let V i
k =

∆θi
k

||∆θi
k||c

denote the di-
vergence vector of client k at i-th iteration, which captures
the divergence component of the decomposed LoRA param-
eters and V i denote the global model divergence vector at
i-th iteration. To aggregate the divergence, we introduce
an adaptive weighting scheme based on the pairwise cosine
similarities between client updates.

For each client divergence vector V i
k , we decompose it with

LoRA down projection Ai
k ∈ Rd×r and LoRA up pro-

jection Bi
k ∈ Rr×k. We perform vector-wise aggregation

along their respective dimensions. Specifically, for the down
projection matrix Ai

k, we iterate over columns to obtain r-
dimensional vectors, while for the up projection matrix Bi

k,
we iterate over rows to obtain d-dimensional vectors. For
each vector slice, we compute the pairwise cosine similar-
ities to form a similarity matrix S ∈ Rn×n, following the
formula as Equation (9):

Spq = cos(vp, vq) =
vp·vq

∥vp∥∥vq∥ , (9)

5

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

where p, q index the clients, and vp, vq represent the corre-
sponding vector slices from clients p and q.

We then compute each client k average similarity score
across all other clients as Equation (10):

sk = 1
n−1

∑
j ̸=k Skj , (10)

where j ∈ {1, 2, ..., n}.

The client contribution weights are determined through
temperature-scaled softmax as Equation (11):

wk = exp(sk/τ)∑n
j=1 exp(sj/τ)

. (11)

Given the computed weights, we update the global diver-
gence vector through a weighted aggregation of client up-
dates relative to the previous global state as Equation (12):

V i = V i−1 +
∑n

k=1 wk(V
i−1
k − V i−1), (12)

where V i and V i−1 denote the global divergence vectors at
iterations i and i− 1 respectively, V i

k represents the diver-
gence vector of client k at iteration i, wk is the computed
weight for client k, and n is the total number of clients.

Our weighting scheme ensures effective instruction learning
during federated fine-tuning while accounting for client het-
erogeneity. The approach balances consensus compatibility
with client-specific update directions through the divergence
weights, effectively mitigating knowledge drift while pre-
serving diverse instruction knowledge across clients.

Rationale for Weighting Our weighting scheme combines
cosine similarity with temperature-scaled softmax, which
can be theoretically formulated as the following optimiza-
tion problem Equation (13):

minw KL(w|p) + T
∑n

k=1 wk log
1
s̄k
, (13)

where KL(w|p) represents the KL divergence between
weight distribution w and uniform distribution p, and s̄k
denotes the average similarity score for client k.

The first term encourages weight diversity, while the sec-
ond term enforces similarity consistency, with temperature
parameter T controlling the trade-off between these objec-
tives. This optimization formulation naturally leads to our
softmax weighting scheme in Equation (11). We choose
cosine similarity as our metric due to its scale-invariance
and computational efficiency in high-dimensional spaces,
making it particularly effective for divergence vectors in
large language models.

Convergence Analysis. We provide theoretical guarantees
for the convergence of our proposed algorithm. The details
can be found in the Appendix G.

Algorithm 1 FedICU
Input: Communication rounds T , number of clients N , local train-

ing epochs E, temperature τ , learning rate η, momentum
coefficient β

Output: Final global LoRA model parameters θT

Initialize global LoRA model parameters θ0 and client k local
model θ0k = θ0

Initialize momentum buffers m0
k = 0 for each client k

for i = 1 to T do
Client-side
for each client k ∈ {1, . . . , N} in parallel do

θik ← θi−1

for local epoch e = 1 to E do
Update θik using local data

end
∆θik ← θik − θi−1 // Equation (15)
mi

k ← βmi−1
k + (1− β)∆θik

I ← σ(|θ
i−1|−µ(|θi−1|)
σ(|θi−1|)+ϵ

) // Equation (14)

G← σ(
|mi

k|−µ(|mi−1
k

|)
σ(|mi−1

k
|)+ϵ

) // Equation (16)

W [v]←

{
1 if G[v] > I[v]

0 otherwise
// Equation (17)

θik ←W ⊙ (θi−1 +mi
k) + (1−W)⊙ θi−1

end
Server-side
for each client k do

M i
k ← ∥θik∥c // Consensus

V i
k ←

θik
∥θi

k
∥c

// Divergence

end
M i ←M i−1 + 1

N

∑N
k=1(M

i
k −M i−1) // Equation (6)

for each vector slice v in V i
k do

Spq ← cos(vp, vq)
sk ← 1

N−1

∑
j ̸=k Skj // Average similarity

wk ← exp(sk/τ)∑N
j=1 exp(sj/τ)

// Softmax weights

end
V i ← V i−1 +

∑N
k=1 wk(V

i
k − V i−1) // Equation (12)

θi ←M i ⊙ V i

end
return θT

3.3. Importance-Aware Updating

Motivation. Conventional approaches require uploading
all local LoRA parameters after each training round. How-
ever, during the SFT training process, the significance of
parameter updates varies across different downstream tasks,
with some parameters showing minimal significance. These
unimportant parameters not only increase computational
overhead during global aggregation but also can lead to
catastrophic forgetting, degrading generalization perfor-
mance (Dou et al., 2024; Yang et al., 2024; Han et al., 2024;
Zhu et al., 2024; Liang et al., 2025; Huang et al., 2025). By
selectively updating parameters for global model according
to the importance, we can enhance model generalization
during iterative SFT.

6

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

Table 1: Comparison with the state-of-the-art methods, providing by framework (Ye et al., 2024) [Arxiv24] for federated large language
model fine-tuning, on different evaluation benchmark described in Appendix C. The best and second results are highlighted with bold and
underline, respectively. Each value is accompanied by the improvement points compared to the benchmark model.

Generalization [Arxiv23] Code [Arxiv21] FIN. [Arxiv20] Math [Arxiv21] AverageMethods MT-1 MT-2 MT-Final Score Score Score Rank

Base 2.92 2.05 2.48 0.02 0.30 0.04 8
FedAvg (McMahan et al.) 4.58↑56.8% 3.03↑47.8% 3.80↑53.2% 0.05↑250% 0.35↑16.7% 0.05↑25% 4.6

FedProx (Li et al.) 4.29↑46.9% 3.30↑61.0% 3.79↑52.8% 0.08↑400% 0.28 0.13↑225% 4.6
FedAvgM (Hsu et al.) 4.52↑54.8% 2.95↑43.9% 3.74↑50.8% 0.09↑450% 0.40↑33.3% 0.10↑250% 4.0

Scaffold (Karimireddy et al.) 4.58↑56.8% 3.10↑51.2% 3.84↑54.8% 0.10↑500% 0.30 0.12↑300% 3.4
FedAdam (Reddi et al.) 4.45↑52.4% 2.91↑42.0% 3.67↑48.0% 0.09↑450% 0.38↑26.7% 0.12↑300% 4.2

FedYogi (Reddi et al.) 4.46↑52.7% 2.90↑41.5% 3.67↑48.0% 0.06↑300% 0.38↑26.7% 0.16↑400% 4.6
Ours (FedICU) 4.83↑65.4% 3.43↑67.3% 4.13↑66.5% 0.10↑500% 0.35↑16.7% 0.14↑350% 1.8

Importance-Aware Parameter Selection For client k at
i-th iteration, where local parameters are initialized from
global parameters θi−1 and updated to θik after training. We
introduce a momentum-enhanced dual-metric importance
assessment mechanism that captures both the model gener-
alization and specialization capabilities.

Inspired by parameter pruning methods (Han et al., 2015)
and lottery ticket hypothesis (Frankle & Carbin, 2018), we
propose that the magnitude of weights in the global model
indicates the importance of individual parameters. We quan-
tify the generalization importance I through normalized and
scaled weight magnitudes of the training parameters from
the global model from iteration i− 1, as shown below:

I = Sigmoid(|θ
i−1|−µ(|θi−1|)
σ(|θi−1|)+ϵ), (14)

where σ(·) denotes the standard deviation, and µ(·) com-
putes the mean. We use the term ϵ = 10−6 to ensure formula
numerical stability.

To mitigate parameter oscillations between consecutive up-
date rounds, we employ momentum-based tracking of local
model updates. The momentum term mi

k for client k at
iteration i is computed as:

mi
k = βmi−1

k + (1− β)(θik − θi−1), (15)

where β is the momentum coefficient, and mi
k represents

the momentum term at iteration i.

We then define the specialization importance G to quantify-
ing the degree of local adaptation by measuring the relative
magnitude of these momentum-smoothed updates, normal-
ized using statistics from the previous iteration:

G = Sigmoid(|m
i
k|−µ(|mi−1

k |)
σ(|mi−1

k |)+ϵ
). (16)

During the client update process, parameters are selected for
global model updates when their specialization importance
exceeds their generalization importance. The parameter
selection is determined by Equation (17). Note that in the

Figure 4: Different methods’ training loss in Ye et al. (2024)
benchmark of different epochs.

first iteration, all local model parameters are uploaded to
initialize the aggregation process.

W [v] =

{
1 if G[v] > I[v],

0 otherwise.
(17)

The sparse parameter update is implemented using Equa-
tion (18). This selective update strategy prevents overfitting
to the downstream instruction distribution of any specific
client.

θik
′ = W ⊙ (θi−1 +mt) + (1−W)⊙ θi−1, (18)

where ⊙ represents element-wise multiplication, and θik
′ is

the model to be uploaded.

Convergence Analysis. We provide theoretical guarantees
for the convergence of our proposed algorithm. The details
can be found in the Appendix I.

4. Experiment
4.1. Experimental Setup

Datasets. Following Ye et al. (2024), we train our model
on the four datasets Taori et al. (2023), Xiang Yue (2023),

7

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

Chaudhary (2023) and Yang et al. (2023b). We provide a
details introduction in Appendix A.

Framework Setup. We conduct experiments using Nous-
Research Llama-2-7b-hf model over 200 rounds. The model
performance is evaluated using the benchmark metrics pro-
vided in Ye et al. (2024).

Counterparts. We compare our framework FedICU with
several state-of-the-art methods (Ye et al., 2023) in the
benchmark Ye et al. (2024): (1) Base Model without SFT.
(2) FedAvg (McMahan et al., 2017b). (3) FedProx. (Li
et al., 2018). (4) Scaffold (Karimireddy et al., 2019).(5)
FedAvgM (Hsu et al., 2019). (6) FedAdam (Reddi et al.,
2020). (7) FedYogi (Reddi et al., 2020). We provide a
details introduction of different methods in Appendix A.

Implement Details. We present our experimental setup
from three aspects:

• Dataset Split: Each client is assigned one of the four
domain-specific datasets described in Appendix A, ran-
domly sampling 5000 labeled examples for fine-tuning.

• Training Setting: We follow the benchmark Ye et al.
(2024) default hyperparameters’ configuration to set up
our experiment environment. We provide a details in-
troduction in Appendix D. All experiments are repeated
three times to ensure statistical significance.

• Evaluation Metric: (1) Generalization: the first turn
score from MT-Bench (Zheng et al., 2023) (2) Contex-
tual Understanding: the final score from MT-Bench. (3)
Code: Human Eval (Chen et al., 2021) (4) Financial:
MMLU benchmark (Hendrycks et al., 2020) (5) Math:
The GSM8k benchmark (Cobbe et al., 2021). We provide
a details introduction in Appendix C.

Performance Comparison. Table 1 shows the performance
comparison, while Figure 4 illustrates the training loss. Our
results demonstrate FedICU superior performance in feder-
ated LLM training. Traditional methods such as FedAvg and
FedProx struggle to effectively aggregate client consensus
and align divergences, leading to the degradation of model
performance. In contrast, FedICU successfully maintains
the model generalization capabilities under these conditions
while achieving superior performance across diverse down-
stream test sets. Specifically, our framework demonstrates a
significant improvement in generalization and consistently
maintains an advantage across various specialized domains.
We also conduct more experiment on the different model
architecture in Appendix E.

4.2. Diagnostic Experiments

Ablation of Key Components. We evaluate the contribu-
tion of each component using MT-Bench across four diverse
datasets with optimized hyperparameters. Table 2 presents

Table 2: Ablation study of two key components mentioned in the
passage, Consensus-Divergence Splitting (Splitting column in the
table) and Important-Aware Updating (Updating column in the
table). The best results are highlighted in bold.

GeneralizationUpdating Splitting MT-1 MT-2 Final
✗ ✗ 4.58 3.03 3.80
✓ ✗ 4.55 3.25 3.90
✗ ✓ 4.70 3.41 4.06
✓ ✓ 4.83 3.43 4.13

Figure 5: Hyper-parameter evaluation on MT-Bench, focusing
on (a) the temperature τ in Equation (11) of Consensus-Divergence
Splitting and (b) the momentum coefficient β in Equation (15)
of Importance-Aware Updating. Higher scores indicate better
performance.

the results, demonstrating that both components contribute
to performance improvements, with their combination yield-
ing optimal results.

Hyperparameters Study. We analyze the sensitivity of
the key hyperparameters of our method using MT-Bench,
as shown in Figure 5. Results indicate that model perfor-
mance decreases with increasing temperature above 0.1,
though remaining relatively stable within a certain range.
The momentum factor shows minimal impact at higher val-
ues, demonstrating the robustness of our approach. Based
on these findings, we adopt a temperature of τ = 0.1 and
a momentum factor of β = 0.9 in our experiments, as they
perform best in the hyperparameters study.

Parameter Distribution in FL LLM. To demonstrate the
rationale behind the Important-Aware Updating component,
we conduct a study on the importance of the covered param-
eters shown in Table 3. The results show that Important-
Aware Updating component physical significance. In the
table, the parameter High-I remains stable while decreasing
the parameter High-G proportions indicate better identifica-
tion of core domain parameters. Declining overlap suggests
that the Important-Aware Updating component has clearer
functional partitioning, effectively separating general and
domain-specific knowledge.

The Efficient of the Binary Mask. We conduct an ablation
study to investigate the impact of momentum-based param-

8

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

Table 3: Parameter distribution in FL LLM. Overlap indicates im-
portant parameters globally and locally, High-I represents parame-
ters emphasizing general ability, and High-G represents parameters
emphasizing domain capability.

Class/Round 5 15 25 35 45 55 65
Overlap 0.24 0.16 0.13 0.12 0.11 0.10 0.08
High-I 0.48 0.46 0.46 0.45 0.45 0.44 0.44
High-G 0.50 0.40 0.38 0.38 0.37 0.36 0.35

Table 4: Experiment results of ablation study about Importance-
Aware Update. MT-1 shows the model general capability, while
MT-2 shows the model level of contextual understanding. MT-
Final is the metric combining both of the two indicators.

Momentum Smooth MT-1 MT-2 MT-Final
✗ ✓ 4.59 3.20 3.90
✓ ✗ 4.60 3.33 3.97
✓ ✓ 4.65 3.37 4.01

✓ (Ours) ✗ (Ours) 4.83 3.43 4.13

eter selection and continuous-valued parameter weighting
on model generalization capability, as shown in the table
below Table 4. In the Momentum column, we indicate
whether we include the momentum component to smooth
the mask construction process. In the Smooth column, we
use a smoothing mask approach, when G[v] > I[v] making
W [v] = min (1, G[v]

I[v]+G[v]), to filter uploaded parameters
and their weights. The results validate that Important-Aware
Updating component is a simple and effective method.

4.3. Communication Cost

Regarding FedICU, since LoRA splitting and merging can
be performed locally on either the client or server, it doesn’t
introduce additional communication overhead compared to
standard federated learning (Ye et al., 2025b;a). For the
Importance-Aware Updating component, assuming there
are K clients, each with N parameters, and in the mask
built by the parameter importance selection upload compo-
nent, the proportion that needs to be uploaded is α. So the
communication cost of standard federated learning would
be Cstd = O(K ∗ N) , while the communication cost of
FedICU is Cimp = O

(∑K
k=1 N × αk

)
, where αk < 1,

which demonstrates the communication savings of FedICU.

5. Discussion and Limitation
(1) While our method leverages LoRA, which may not
achieve the same performance levels as full parameter fine-
tuning. Despite these trade-offs, LoRA significantly reduces
computational requirements and enables rapid adaptation
to diverse downstream tasks. Future work could focus on
bridging this performance gap while maintaining LoRA
computational advantages.

(2) Although our method is primarily developed for fed-

erated large language model training, the underlying prin-
ciples of our approach have broader implications. Future
research could investigate the application of these concepts
to other domains within federated learning, potentially lead-
ing to new insights and methodological advances.

6. Conclusion
In this paper, we introduce FedICU, a framework that em-
ploys consensus-divergence splitting for effective LLM fine-
tuning in federated settings. Our method decouples LoRA
updates into divergence and consensus components, en-
abling fine-grained control over model updates. At the
server level, our approach aligns divergence using cosine
similarity and aggregates consensus, significantly improv-
ing the global model generalization ability. At the client
level, we implement an importance-aware updating method
that selectively updates parameters, preventing overfitting
and preserving the global model generalization capabili-
ties. Extensive experiments demonstrate the effectiveness
and robustness of our approach. We believe this work pro-
vides valuable insights for future research in federated large
language model fine-tuning, particularly for heterogeneous
downstream tasks.

Acknowledge
This research was financially supported by the Open Re-
search Fund from Guangdong Laboratory of Artificial Intel-
ligence and Digital Economy (SZ), under Grant No. GML-
KF-24-10, the National Natural Science Foundation of
China under Grant (62361166629, 62176188, 62225113,
623B2080), the National Key Research and Development
Program of China (2024YFC3308400), the Wuhan Uni-
versity Undergraduate Innovation Research Fund Project,
and the Hubei Postdoctoral Talent Introduction Program
(2024HBBHJD070). The supercomputing system at the
Supercomputing Center of Wuhan University supported the
numerical calculations in this paper.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint,
2023.

9

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

Alemohammad, S., Casco-Rodriguez, J., Luzi, L., Hu-
mayun, A. I., Babaei, H., LeJeune, D., Siahkoohi, A.,
and Baraniuk, R. G. Self-consuming generative models
go mad. arXiv preprint, 2023.

Bi, J., Wang, Y., Chen, H., Xiao, X., Hecker, A., Tresp,
V., and Ma, Y. Llava steering: Visual instruction tun-
ing with 500x fewer parameters through modality linear
representation-steering, 2025a. URL https://arxiv.
org/abs/2412.12359.

Bi, J., Wang, Y., Yan, D., Xiao, X., Hecker, A., Tresp, V.,
and Ma, Y. Prism: Self-pruning intrinsic selection method
for training-free multimodal data selection, 2025b. URL
https://arxiv.org/abs/2502.12119.

Bi, J., Yan, D., Wang, Y., Huang, W., Chen, H., Wan, G.,
Ye, M., Xiao, X., Schuetze, H., Tresp, V., and Ma, Y. Cot-
kinetics: A theoretical modeling assessing lrm reasoning
process, 2025c. URL https://arxiv.org/abs/
2505.13408.

Chaudhary, S. Code alpaca: An instruction-following llama
model for code generation. https://github.com/
sahil280114/codealpaca, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint, 2021.

Chen, W., Su, Y., Zuo, J., Yang, C., Yuan, C., Qian, C., Chan,
C.-M., Qin, Y., Lu, Y., Xie, R., et al. Agentverse: Facili-
tating multi-agent collaboration and exploring emergent
behaviors in agents. arXiv preprint, 2023.

Cho, Y. J., Liu, L., Xu, Z., Fahrezi, A., and Joshi, G. Het-
erogeneous lora for federated fine-tuning of on-device
foundation models. In EMNLP, pp. 12903–12913, 2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint, 2021.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. Qlora: efficient finetuning of quantized llms. arXiv
preprint, 52:3982–3992, 2023.

Devine, P. Tagengo: A multilingual chat dataset. arXiv
preprint, 2024.

Didolkar, A., Goyal, A., Ke, N. R., Guo, S., Valko, M., Lill-
icrap, T., Rezende, D., Bengio, Y., Mozer, M., and Arora,
S. Metacognitive capabilities of llms: An exploration in
mathematical problem solving. arXiv preprint, 2024.

Dou, S., Zhou, E., Liu, Y., Gao, S., Shen, W., Xiong, L.,
Zhou, Y., Wang, X., Xi, Z., Fan, X., et al. Loramoe:
Alleviating world knowledge forgetting in large language
models via moe-style plugin. In ACL, pp. 1932–1945,
2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A.,
et al. The llama 3 herd of models. arXiv preprint, 2024.

Edalati, A., Tahaei, M., Kobyzev, I., Nia, V. P., Clark, J. J.,
and Rezagholizadeh, M. Krona: Parameter efficient tun-
ing with kronecker adapter. arXiv preprint, 2022.

Fan, T., Kang, Y., Ma, G., Chen, W., Wei, W., Fan, L., and
Yang, Q. Fate-llm: A industrial grade federated learning
framework for large language models. arXiv preprint,
2023.

Fang, J., Jiang, H., Wang, K., Ma, Y., Jie, S., Wang, X., He,
X., and Chua, T.-S. Alphaedit: Null-space constrained
knowledge editing for language models. ICLR, 2025a.

Fang, X., Fang, W., Liu, D., Qu, X., Dong, J., Zhou, P., Li,
R., Xu, Z., Chen, L., Zheng, P., et al. Not all inputs are
valid: Towards open-set video moment retrieval using
language. In Proceedings of the 32nd ACM International
Conference on Multimedia, pp. 28–37, 2024.

Fang, X., Easwaran, A., Genest, B., and Suganthan, P. N.
Your data is not perfect: Towards cross-domain out-of-
distribution detection in class-imbalanced data. Expert
Systems with Applications, 2025b.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint,
2018.

Gunel, B., Du, J., Conneau, A., and Stoyanov, V. Supervised
contrastive learning for pre-trained language model fine-
tuning. arXiv preprint, 2020.

Guo, Z., Zhang, Y., Zhang, Z., Xu, Z., and King, I.
Fedlfc: Towards efficient federated multilingual mod-
eling with lora-based language family clustering. In Find-
ings@NAACL, pp. 1519–1528, 2024.

Han, J., Du, L., Du, H., Zhou, X., Wu, Y., Zheng, W., and
Han, D. Slim: Let llm learn more and forget less with
soft lora and identity mixture. arXiv preprint, 2024.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
NeurIPS, 28, 2015.

He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., and Neubig,
G. Towards a unified view of parameter-efficient transfer
learning. arXiv preprint, 2021.

10

https://arxiv.org/abs/2412.12359
https://arxiv.org/abs/2412.12359
https://arxiv.org/abs/2502.12119
https://arxiv.org/abs/2505.13408
https://arxiv.org/abs/2505.13408
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. arXiv preprint, 2020.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp. In
ICML, pp. 2790–2799. PMLR, 2019.

Hsu, T.-M. H., Qi, H., and Brown, M. Measuring the effects
of non-identical data distribution for federated visual clas-
sification. arXiv preprint, 2019.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models. arXiv preprint, 2021.

Huang, W., Ye, M., and Du, B. Learn from others and be
yourself in heterogeneous federated learning. In CVPR,
2022.

Huang, W., Wan, G., Ye, M., and Du, B. Federated graph
semantic and structural learning. In Proceedings of the
Thirty-Second International Joint Conference on Artifi-
cial Intelligence, pp. 3830–3838, 2023a.

Huang, W., Ye, M., Shi, Z., and Du, B. Generalizable
heterogeneous federated cross-correlation and instance
similarity learning. TPAMI, 2023b.

Huang, W., Ye, M., Shi, Z., Li, H., and Du, B. Rethinking
federated learning with domain shift: A prototype view.
In CVPR, 2023c.

Huang, W., Liang, J., Shi, Z., Zhu, D., Wan, G., Li, H., Du,
B., Tao, D., and Ye, M. Learn from downstream and be
yourself in multimodal large language model fine-tuning.
In ICML, 2025.

Imani, S., Du, L., and Shrivastava, H. Mathprompter: Math-
ematical reasoning using large language models. arXiv
preprint, 2023.

Jiang, H., Fang, J., Zhang, N., Ma, G., Wan, M., Wang, X.,
He, X., and Chua, T.-s. Anyedit: Edit any knowledge
encoded in language models. ICML, 2025.

Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu,
R., and McHardy, R. Challenges and applications of large
language models. arXiv preprint, 2023.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. arXiv preprint, 2019.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint, 2020.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich,
S. U., and Suresh, A. T. Scaffold: Stochastic con-
trolled averaging for on-device federated learning. arXiv
preprint, 2(6), 2019.

Kim, S., Jeong, M., Kim, S., Cho, S., Ahn, S., and Yun, S.-
Y. Feddr+: Stabilizing dot-regression with global feature
distillation for federated learning. arXiv preprint, 2024.

Kuang, W., Qian, B., Li, Z., Chen, D., Gao, D., Pan, X., Xie,
Y., Li, Y., Ding, B., and Zhou, J. Federatedscope-llm:
A comprehensive package for fine-tuning large language
models in federated learning. In KDD, pp. 5260–5271,
2024.

Lee, G., Jeong, M., Shin, Y., Bae, S., and Yun, S.-Y. Preser-
vation of the global knowledge by not-true distillation in
federated learning. NeurIPS, 35:38461–38474, 2022.

Li, B., Zhang, Y., Guo, D., Zhang, R., Li, F., Zhang, H.,
Zhang, K., Li, Y., Liu, Z., and Li, C. Llava-onevision:
Easy visual task transfer. arXiv preprint, 2024a.

Li, L., Fan, Y., Tse, M., and Lin, K.-Y. A review of appli-
cations in federated learning. Comput. Ind. Eng., 149:
106854, 2020.

Li, S., Ye, F., Fang, M., Zhao, J., Chan, Y.-H., Ngai, E.
C.-H., and Voigt, T. Synergizing foundation models and
federated learning: A survey. arXiv preprint, 2024b.

Li, T., Sahu, A. K., Sanjabi, M., Zaheer, M., Talwalkar,
A., and Smith, V. On the convergence of federated op-
timization in heterogeneous networks. arXiv preprint,
2018.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint, 2021.

Liang, J., Huang, W., Wan, G., Yang, Q., and Ye, M. Lo-
rasculpt: Sculpting lora for harmonizing general and spe-
cialized knowledge in multimodal large language models.
In CVPR, 2025.

Liu, H., Li, C., Li, Y., and Lee, Y. J. Improved baselines
with visual instruction tuning. In CVPR, 2023.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In AISTATS, pp. 1273–
1282, 2017a.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In AISTATS, pp. 1273–
1282. PMLR, 2017b.

11

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

Muennighoff, N., Rush, A., Barak, B., Le Scao, T., Tazi,
N., Piktus, A., Pyysalo, S., Wolf, T., and Raffel, C. A.
Scaling data-constrained language models. In Oh, A.,
Naumann, T., Globerson, A., Saenko, K., Hardt, M., and
Levine, S. (eds.), NeurIPS, volume 36, pp. 50358–50376.
Curran Associates, Inc., Curran Associates, Inc., 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. NeurIPS, 35:27730–27744, 2022.

Petrov, A., Torr, P. H., and Bibi, A. When do prompting
and prefix-tuning work? a theory of capabilities and
limitations. arXiv preprint, 2023.

Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K., and Gurevych,
I. Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint, 2020.

Rajabzadeh, H., Valipour, M., Zhu, T., Tahaei, M., Kwon,
H. J., Ghodsi, A., Chen, B., and Rezagholizadeh, M.
Qdylora: Quantized dynamic low-rank adaptation for
efficient large language model tuning. arXiv preprint,
2024.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečnỳ, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. arXiv preprint, 2020.

Salimans, T. and Kingma, D. P. Weight normalization: A
simple reparameterization to accelerate training of deep
neural networks. NeurIPS, 29, 2016.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Stan-
ford alpaca: An instruction-following llama model, 2023.
Available at: https://github.com/tatsu-lab/
stanford_alpaca.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation
language models. arXiv preprint, 2023.

Valipour, M., Rezagholizadeh, M., Kobyzev, I., and Ghodsi,
A. Dylora: Parameter efficient tuning of pre-trained
models using dynamic search-free low-rank adaptation.
arXiv preprint, 2022.

Villalobos, P., Sevilla, J., Heim, L., Besiroglu, T., Hobbhahn,
M., and Ho, A. Will we run out of data? an analysis of
the limits of scaling datasets in machine learning. arXiv
preprint, 2022.

Wan, G., Huang, W., and Ye, M. Federated graph learn-
ing under domain shift with generalizable prototypes. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 15429–15437, 2024.

Wan, G., Shi, Z., Huang, W., Zhang, G., Tao, D., and Ye,
M. Energy-based backdoor defense against federated
graph learning. In International Conference on Learning
Representations, 2025.

Wang, P., Bai, S., Tan, S., Wang, S., Fan, Z., Bai, J., Chen,
K., Liu, X., Wang, J., Ge, W., et al. Qwen2-vl: Enhancing
vision-language model’s perception of the world at any
resolution. arXiv preprint, 2024.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language models with self-generated instructions. arXiv
preprint, 2022.

Wang, Y., Ivison, H., Dasigi, P., Hessel, J., Khot, T., Chandu,
K., Wadden, D., MacMillan, K., Smith, N. A., Beltagy,
I., et al. How far can camels go? exploring the state
of instruction tuning on open resources. NeurIPS, 36:
74764–74786, 2023.

Wu, S., Irsoy, O., Lu, S., Dabravolski, V., Dredze, M.,
Gehrmann, S., Kambadur, P., Rosenberg, D., and Mann,
G. Bloomberggpt: A large language model for finance.
arXiv preprint, 2023.

Xiang Yue, Xingwei Qu, G. Z. Y. F. W. H. H. S. Y. S. W. C.
Mammoth: Building math generalist models through hy-
brid instruction tuning. arXiv preprint, 2023.

Xu, L., Xie, H., Qin, S.-Z. J., Tao, X., and Wang, F. L.
Parameter-efficient fine-tuning methods for pretrained
language models: A critical review and assessment. arXiv
preprint, 2023a.

Xu, M., Cai, D., Wu, Y., Li, X., and Wang, S. Fwdllm:
Efficient fedllm using forward gradient. arXiv preprint,
2023b.

Yang, B., Chen, J., and Ye, M. Towards grand unified
representation learning for unsupervised visible-infrared
person re-identification. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp.
11069–11079, October 2023a.

Yang, H., Liu, X.-Y., and Wang, C. D. Fingpt: Open-source
financial large language models. In FinLLM@IJCAI,
2023b.

Yang, Y., Li, X., Zhou, Z., Song, S. L., Wu, J., Nie, L.,
and Ghanem, B. Corda: Context-oriented decomposition
adaptation of large language models. arXiv preprint,
2024.

Ye, M., Fang, X., Du, B., Yuen, P. C., and Tao, D. Hetero-
geneous federated learning: State-of-the-art and research
challenges. ACM Computing Surveys, 56(3):1–44, 2023.

12

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

Ye, M., Rong, X., Huang, W., Du, B., Yu, N., and Tao,
D. A survey of safety on large vision-language models:
Attacks, defenses and evaluations. arXiv preprint, 2025a.

Ye, M., Shen, W., Du, B., Snezhko, E., Kovalev, V., and
Yuen, P. C. Vertical federated learning for effectiveness,
security, applicability: A survey. ACM Computing Sur-
veys, 57(9):1–32, 2025b.

Ye, R., Wang, W., Chai, J., Li, D., Li, Z., Xu, Y., Du, Y.,
Wang, Y., and Chen, S. Openfedllm: Training large lan-
guage models on decentralized private data via federated
learning. In KDD, pp. 6137–6147, 2024.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu,
Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.
Judging llm-as-a-judge with mt-bench and chatbot arena.
NeurIPS, 36:46595–46623, 2023.

Zhu, D., Sun, Z., Li, Z., Shen, T., Yan, K., Ding, S., Kuang,
K., and Wu, C. Model tailor: Mitigating catastrophic for-
getting in multi-modal large language models. In ICML,
2024.

Zhu, H., Xu, J., Liu, S., and Jin, Y. Federated learning
on non-iid data: A survey. Neurocomput., 465:371–390,
2021.

Zhuang, W., Chen, C., and Lyu, L. When foundation model
meets federated learning: Motivations, challenges, and
future directions. arXiv preprint, 2023.

A. Datasets
• Taori et al. (2023): The dataset used for fine-tuning the

Alpaca model. Alpaca is a dataset of 52,000 instructions
and demonstrations generated by OpenAI text-davinci-
003 engine.

• Xiang Yue (2023): The dataset concerning the math field.
Math instruct is compiled from 13 math rationale datasets,
six of which are newly curated by this work. It uniquely
focuses on the hybrid use of chain-of-thought (CoT) and
program-of-thought (PoT) rationales, and ensures exten-
sive coverage of diverse mathematical fields.

• CodeAlpaca-20k: The dataset concerning the code field.
The 20K instruction-following data generated by the tech-
niques Self-Instruct (Wang et al., 2022), with some modi-
fications by author of the datasets.

• FinGPT: The specialized financial datasets used in Fin-
GPT (Yang et al., 2023b).

B. Counterparts
(1) Base Model without SFT.

(2) FedAvg (McMahan et al., 2017b). The standard feder-
ated averaging algorithm, where updates from all clients are
averaged at the server.

(3) FedProx (Li et al., 2018). An extension of FedAvg that
introduces a proximal term to tackle heterogeneity across
clients.

(4) Scaffold (Karimireddy et al., 2019). A control variate-
based method designed to reduce the impact of client drift
in federated learning with non-IID data.

(5) FedAvgM (Hsu et al., 2019). A momentum-based vari-
ant of FedAvg, which integrates server-side momentum into
the federated learning process.

(6) FedAdam (Reddi et al., 2020). A federated version of
the Adam optimizer. It adapts the learning rates at the server
side using first and second-order moments of gradients, aim-
ing to provide better performance in challenging federated
settings.

(7) FedYogi (Reddi et al., 2020). An adaptive federated
optimization method that improves robustness and conver-
gence in federated learning, which effectively handles the
challenges of non-IID data and system heterogeneity in
federated settings.

C. Evaluation Metric
(1) Generalization: We use the first turn score from MT-
Bench (Zheng et al., 2023) as the primary evaluation metric
to assess the general performance of different models (Ye

13

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

Table 5: The performance of FedICU and other methods applied
in the Mistral-7B. MT-1 shows the model general capability, while
MT-2 shows the model level of contextual understanding. MT-
Final serves as a comprehensive metric that combines both of the
aforementioned indicators.

Method MT-1 MT-2 MT-Final
Base 4.10 3.29 3.69
FedAvg 5.48 3.80 4.64
Scaffold 5.46 3.92 4.69
FedYogi 5.54 3.85 4.70
FedProx 5.50 3.83 4.67
FedAdam 5.56 3.91 4.73
FedAvgM 5.55 3.73 4.64
Ours 5.58 4.11 4.84

et al., 2024). This score is the most critical in the overall
evaluation.

(2) Contextual Understanding: We use the final score
from MT-Bench to evaluate the model ability to understand
context. MT-Bench comprises two turns of conversation,
making it suitable for contextual testing.

(3) Code: We use Human Eval (Chen et al., 2021) to evalu-
ate the model coding capabilities.

(4) Financial: We utilize the MMLU benchmark
(Hendrycks et al., 2020) to evaluate the model financial
knowledge, specifically selecting the finance-related do-
mains for this assessment.

(5) Math: The GSM8k benchmark (Cobbe et al., 2021) is
used to test the model mathematical abilities.

D. Training Settings
For all experiments, we use the following hyperparameters
settings:

• Learning rate: 5e− 5

• Training rounds: 200

• FedProx proximal term µ: 0.01

• FedYogi and FedAdam:

– Server learning rate: 1e− 3

– τ : 1e− 3

• FedAdam momentum coefficient β: 0.9

E. More Experiments on Different Model
Architecture

We conduct supplementary experiments with Mistral-7B to
verify that our method is effective across a broader range of

Table 6: The µ and θ of consensus parameters’ delta update. µ rep-
resents the mean of the consensus vector updates, and θ represents
the fluctuations during the consensus update process.

Client µ θ

1 1.452974 1.53*10−4

2 1.452972 1.54*10−4

3 1.452974 1.56*10−4

4 1.452973 1.54*10−4

model architectures. The results of these supplementary ex-
periments are in the Table 5. The results show that FedICU
also demonstrates excellent performance across models with
different architectures.

F. The experiment on consensus noise
updating action.

In Figure 3, we use cosine similarity to support the assump-
tion that ”consensus noise” is the same. To further support it,
we conduct an experiment to explore the mean and variation
of the consensus vector updates for each client under the
condition of independent updates across clients, as shown
in the table Table 6. From the table, the similarity of µ and
θ across different clients indicates that the consensus noise
is consistent.

G. Splitting Convergence Analysis
Let F (θ) denote the global objective function that measures
the model performance across all clients, where θ ∈ Rd

represents the global model parameters. We prove that our
Consensus-Divergence Splitting method converges under
standard assumptions.

Assumption G.1 (Smoothness). F (θ) is L-smooth: for all
θ, θ′ ∈ Rd:

∥∇F (θ)−∇F (θ′)∥ ≤ L∥θ − θ′∥. (19)

Assumption G.2 (Bounded Gradient). There exists G > 0
for all θ:

∥∇F (θ)∥ ≤ G. (20)

Assumption G.3 (Unbiased & Bounded-Variance Gradient
Estimates). During round i, each client k produces update
∆i

k = θik − θi. The local gradient estimator is:

g̃ik = − 1

ηi
∆i

k. (21)

where ηi is the server step size. We assume:

Unbiasedness:

E
[N∑
k=1

wi
kg̃

i
k | θi

]
= ∇F (θi). (22)

14

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

where wi
k ≥ 0,

∑
k w

i
k = 1 are similarity-based weights.

Bounded variance: For σ2 ≥ 0:

E[∥g̃ik −∇F (θi)∥2] ≤ σ2. (23)

Assumption G.4 (Strong Convexity (Optional)). F (θ) is
µ-strongly convex (µ > 0): for all θ, θ′ ∈ Rd:

F (θ′) ≥ F (θ) + ⟨∇F (θ), θ′ − θ⟩+ µ

2
∥θ′ − θ∥2. (24)

Note that Assumption G.4 is optional. If F is not strongly
convex (e.g., just convex or nonconvex), we prove conver-
gence to a stationary point. If F is strongly convex, we
show convergence to the unique global optimum.

At iteration i, FedICU aggregates local models via:

θi+1 = θi +
N∑

k=1

wi
k(θ

i
k − θi) = θi − ηi

N∑
k=1

wi
kg̃

i
k. (25)

We employ cosine decay learning schedule:

ηi = ηmax ·
1 + cos(πi

Tmax
)

2
. (26)

Theorem G.5 (Unified Convergence of FedICU). Under
Assumptions G.1–G.3, let {θi} be produced by (25). Then:

For smooth possibly nonconvex F :

min
0≤i<T

E[∥∇F (θi)∥2] ≤ O(
1√
T
). (27)

For µ-strongly convex F , FedICU converges to the unique
global optimum θ∗ with rate depending on µ, L, σ2.

Proof. By L-smoothness:

F (θi+1) ≤ F (θi)+⟨∇F (θi), θi+1−θi⟩+ L

2
∥θi+1−θi∥2.

(28)

Using update rule and bounded-variance assumption:

min
0≤i<T

E[∥∇F (θi)∥2] ≤ O(
1∑T−1

i=0 ηi
) +O(

T−1∑
i=0

(ηi)2).

(29)

When
∑T−1

i=0 ηi = Ω(
√
T) and

∑T−1
i=0 (ηi)2 = O(1), we

get O(1/
√
T) rate. Under strong convexity, additional terms

yield ∥θi − θ∗∥ → 0.

For finite-T training with cosine decay schedule, our anal-
ysis shows that the model converges as the learning rate
naturally decays to near-zero at the end of training.

H. Optimality of Averaging Strategy
Here we prove that direct averaging of consensus vectors
yields the optimal linear unbiased estimator. We formalize
the problem as follows: Given the consensus vector M i

k of
client k at iteration i:

M i
k = M∗ + ξk, (30)

where M∗ represents the true global consensus and ξk ∼
N (0, σ2I) denotes the noise term. For any linear unbi-
ased estimator M̂ =

∑N
k=1 αkM

i
k with the constraint∑N

k=1 αk = 1, its variance is:

Var(M̂) =

N∑
k=1

α2
kσ

2. (31)

To find the optimal weights αk that minimize the variance,
we use the Lagrange multiplier method. The Lagrangian is:

L(α1, . . . , αN , λ) =

N∑
k=1

α2
kσ

2 + λ(

N∑
k=1

αk − 1). (32)

Taking partial derivatives:

∂L

∂αk
= 2αkσ

2 + λ = 0
∂L

∂λ
=

N∑
k=1

αk − 1 = 0. (33)

From the first equation:

αk = − λ

2σ2
. (34)

This shows all αk are equal. Combined with the constraint:

N∑
k=1

αk = Nαk = 1. (35)

Therefore:

αk =
1

N
, k = 1, 2, . . . , N. (36)

The second derivative:

∂2L

∂α2
k

= 2σ2 > 0. (37)

confirms this is indeed a minimum. This proof demonstrates
that equal weights αk = 1

N minimize the variance of the
linear unbiased estimator, justifying our averaging strategy:

M i = M i−1 +

∑N
k=0(M

i
k −M i−1)

N
. (38)

15

Splitting with Importance-aware Updating for Heterogeneous Federated Learning with Large Language Models

I. Updating Convergence Analysis
We analyze the convergence of our Importance-Aware Up-
dating mechanism. Following the same assumptions and
notations in Appendix G, let θ ∈ Rd denote the global model
parameters and F (θ) be the global objective function:

F (θ) =
1

N

N∑
k=1

Fk(θ), (39)

where Fk is the local loss at client k.

For parameter selection and updates, we define importance
metrics for each parameter v:

I[v] = Sigmoid
(|θi−1[v]| − µ(|θi−1|)

σ(|θi−1|) + ϵ

)
. (40)

G[v] = Sigmoid
(|mi

k[v]| − µ(|mi−1
k |)

σ(|mi−1
k |) + ϵ

)
. (41)

The binary mask W ∈ {0, 1}d determines which parameters
to update, as the formula Equation (42):

W [v] =

{
1, if G[v] > I[v],

0, otherwise.
(42)

Each client uploads a masked model:

θ′ik = W ⊙ (θi−1 +mi
k) + (1−W)⊙ θi−1. (43)

We can rewrite this update as:

θ′ik = θi−1 +W ⊙mi
k = θi−1 +mi

k −∆i
k, (44)

where ∆i
k = (1−W)⊙mi

k represents masked-out updates.

At iteration i, the server aggregates:

θi =
1

N

N∑
k=1

θ′ik = θi−1 +
1

N

N∑
k=1

(mi
k −∆i

k). (45)

We employ cosine decay learning schedule as in the previous
section:

ηi = ηmax ·
1 + cos(πi

Tmax
)

2
. (46)

Theorem I.1 (Convergence). Under Assumptions G.1–G.3,
let {θi} be generated by the masked update rule. If the
masking error is bounded:

E[∥ 1
N

N∑
k=1

∆i
k∥2] ≤ δ2. (47)

Then for smooth F :

min
0≤i<T

E[∥∇F (θi)∥2] ≤ O(
1√
T
). (48)

For µ-strongly convex F , convergence to the unique global
optimum θ∗ is achieved with rate depending on µ, L, σ2,
and δ.

Proof. By L-smoothness:

F (θi) ≤ F (θi−1)+⟨∇F (θi−1), θi−θi−1⟩+L

2
∥θi−θi−1∥2.

(49)

Substituting the masked update:

θi − θi−1 =
1

N

N∑
k=1

(mi
k −∆i

k). (50)

The first term averages to the true gradient (by unbiased-
ness), while the masking error ∆i

k is bounded by δ2. Follow-
ing the analysis in Appendix G, this additional error term
contributes only a constant factor to the convergence rate:

min
0≤i<T

E[∥∇F (θi)∥2] ≤ O(
1∑T−1

i=0 ηi
)+O(

T−1∑
i=0

(ηi)2)+O(δ2).

(51)

With cosine decay schedule, when
∑T−1

i=0 ηi = Ω(
√
T) and∑T−1

i=0 (ηi)2 = O(1), we achieve the O(1/
√
T) rate. For

the strongly convex case, the additional error term similarly
affects only the constants in the convergence rate to θ∗.

These results show that our importance-aware parameter
updating maintains convergence guarantees while allowing
adaptive sparsification of updates.

16

