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Abstract

Finding high-quality representations of heterogeneous tabular datasets is crucial
for their effective use in downstream machine learning tasks. Contrastive rep-
resentation learning (CRL) methods have been previously shown to provide a
straightforward way to learn such representations across various data domains.
Current tabular CRL methods learn joint embeddings of data instances (tabular
rows) by minimizing a contrastive loss between the original instance and its pertur-
bations. Unlike existing tabular CRL methods, we propose leveraging frameworks
established in multimodal representation learning, treating each tabular column
as a distinct modality. A naive approach that applies a pairwise contrastive loss
to tabular columns is not only prohibitively expensive as the number of columns
increases, but as we demonstrate, it also fails to capture interactions between vari-
ables. Instead, we propose a novel method called ICE-T that learns each columnar
embedding by contrasting it with aggregate embeddings of the complementary part
of the table, thus capturing interactions and scaling linearly with the number of
columns. Unlike existing tabular CRL methods, ICE-T allows for column-specific
embeddings to be obtained independently of the rest of the table, enabling the in-
ference of missing values and translation between columnar variables. We provide
a comprehensive evaluation of ICE-T across diverse datasets, demonstrating that it
generally surpasses the performance of the state-of-the-art alternatives.

1 Introduction

Heterogeneous tabular datasets constitute an extremely important, yet often overlooked, data class,
which remains to be challenging for application of deep neural networks [23]. As with other data types
the key is to find good quality data representations that facilitate the downstream tasks [3]. Contrastive
representation learning (CRL) offers a very straightforward way for learning such representations,
without the need of associated data labels [18, 12].

Multimodal CRL Recently, there has been increasing attention on a type of CRL methods known
as multimodal CRL. Multimodal CRL has traditionally been applied to data comprising multiple
distinct modalities, such as image-text or audio-video pairs, from which it derives its name [9, 26].
Multimodal CRL offers a unique way of learning modality-specific embeddings that are coordinated
with embeddings from other modalities while allowing inputs of one modality to be embedded
independently of the others [14]. Therefore, embeddings can be obtained even in the absence of
some modalities and can be used to infer the values of the missing ones—a task often referred to as
modality translation [17]. For example, using a CRL, embeddings of images can be learned to align
with embeddings of the associated captions by training independent encoders that can then be applied
to standalone images, or text [21]. The idea of adopting these methods for learning representations of
heterogeneous tabular data is thus very appealing.
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Figure 1: A schematic representation of ICE-T. Tabular entries are passed through variable-specific
encoders f (m) to produce intermediate latent representations h(m). For each variable m we compute
the associated anchor µ(\m) as the average of the representations of the remaining variables. These
resulting vectors are then projected via a shared neural subnetwork g to produce the final embeddings.
The cosine similarities of these embeddings are used to compute the contrastive loss for each variable.

Figure 2: The XOR blobs can form a
heterogeneous tabular dataset with three
variables: x, y and c, where each vari-
able depends on the interaction between
the other two. As we demonstrate, this
interaction poses a challenging problem
for multimodal CRL methods.

Motivation Intuitively, heterogeneous tabular data can
be treated as a multimodal data, where each variable (tab-
ular column) is considered a single modality; sampled
from a variable-specific input space (hence heterogeneity).
The central idea is to learn variable-specific mappings that
project inputs into a common latent space so that the em-
beddings of inputs are similar if they belong to the same
instance (tabular row) while dissimilar otherwise. A naive
approach would involve computing similarities between
all pairs of variable-specific embeddings. However, such a
pairwise contrasting scales quadratically with the number
of variables and becomes prohibitively costly as the num-
ber of variables increases. Moreover, pairwise contrastive
learning fails to capture interactions between variables,
which can corrupt the resulting embeddings (e.g, dataset
depicted in Figure 2). This situation is common in tabular
data, which typically contain interacting variables, and can
render pairwise embedding approaches inapplicable [4].

Proposed method To address this problem, we pro-
pose a novel CRL approach called Interactions-aware
Cross-column Contrastive Embedding for heterogeneous
Tabular datasets (ICE-T) (Figure 1). ICE-T contrasts
column-specific embeddings with the embedded aggre-
gates of the remaining columns in linear time and allows
to account for interactions among variables, while preserv-
ing the advantages of multimodal CRL. ICE-T is a simple, versatile, and data-agnostic approach
specifically designed for heterogeneous tabular data but can be easily applied to other domains.
Overall, ICE-T offers superior or generally competitive performance compared to other methods.

Contributions (1) We offer a simple, easily reproducible example that illustrates the failure of
multimodal CRL methods to capture interactions among variables (2) We introduce a novel method
called ICE-T that addresses this limitation (3) We provide a comprehensive experimental comparison
between ICE-T, five CRL methods and shallow learning benchmarks across a range of datasets,
including frequently overlooked image/text–tabular data; measuring performance in four tasks
(i) cross-modal translation, (ii) clustering, (iii) supervised learning and (iv) transfer learning.
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2 Related Work

Previous efforts to apply CRL to heterogeneous tabular data utilized joint CRL, where tabular rows
undergo random transformations to produce their perturbed analogs, and the latent representations
are learned by contrasting the original data against their perturbed analogs. This approach is best
exemplified by Scarf [2] and SubTab [24]. In Scarf, rows are perturbed by replacing inputs from a
random subset of variables by values drawn from the respective variable marginals. In SubTab rows
are perturbed by randomly dividing variables to create overlapping subsets. In addition to contrastive
embedding loss, the authors of SubTab propose using additional distance loss and reconstruction loss.

Unlike these methods, we propose to borrow frameworks established in the domain of multimodal
representation learning and to approach tabular data as multimodal datasets, where each tabular
column is treated as a single modality. From this perspective we identified three methods that are
closely related to our line of research:

CLIP [21] produces text and image embeddings that are similar if the input text and image are related,
and dissimilar otherwise. It consists of modality-specific encoders, followed by linear projections
into a common latent space, which are trained under the InfoNCE loss [19], using cosine similarity,
across a very large collection of image-text pairs. While the term “CLIP” usually refers to a specific
model, it may denote a CRL method that trains modality-specific mappings only through pairwise
cosine similarity across modalities (Table 4). Under this generalization, CLIP provides a versatile
approach that can be applied to any type of modalities, as exemplified by [1, 25, 15].

GMC [20] was originally proposed for multimodal time-series data where modality-specific mappings
are trained in coordination with joint representation learning. It consists of modality-specific encoders
followed by deep neural projection heads to map inputs into a common latent space. Additionally,
GMC projects inputs into the same latent space jointly through a designated neural subnetwork. The
objective of GMC is to maximize the cosine similarity between the modality-specific embeddings
and the joint embedding belonging to the same instance, while minimizing the similarity among em-
beddings belonging to different instances. The minimized term includes pairwise similarities between
modality-specific embeddings, the similarity between joint and modality-specific embeddings, and
the similarity between pairs of joint embeddings.

MCN [6] combines multimodal CRL with latent space clustering. It encodes inputs via modality-
specific encoders and associated linear projections. Subsequently, MCN calculates joint represen-
tations by aggregating modality-specific embeddings together via an arithmetic mean. These joint
embeddings, referred to by the authors as fused multimodal features, are subjected to online k-means
clustering [8]. Euclidean distance between the features and a set of k centroids is computed and each
feature is assigned the nearest centroid. In addition to maximizing pairwise similarity among the
modality-specific embeddings, MCN aims to maximize the similarity between these embeddings
and the centroids that are nearest to the respective multimodal features; the authors also add the
reconstruction loss to the overall loss of the model.

3 Interactions-aware Cross-column Contrastive Embedding

3.1 Preliminaries

Let xi denote the i-th data instance, comprising M inputs from different variables: xi = (x
(m)
i )Mm=1.

Assume that each input x(m) comes from a distinct variable-specific input space X (m): x(m) ∈ X (m).
Furthermore, consider x ∼ p(x) and x(m) ∼ p(x(m)), where p(x) denotes the joint data distribution,
and p(x(m)) denotes the marginal distribution of given variable m; and let p(x(m)|x(\m)) denote the
conditional probability of x(m) given the inputs x(\m) = (x(n))Mn ̸=m.

3.2 Rationale

The central idea of ICE-T is to take intermediate hidden representations h(m) obtained by variable-
specific encoders f (m) and fuse the intermediate representations of the remaining variables into a
single vector µ(\m), which we refer to as the anchor. The anchors are computed via the arithmetic
mean: µ(\m) = 1/(M − 1)

∑
n ̸=m h(n), where M is the total number of variables. Integrating by

averaging, instead of learning a joint representation via a fixed architecture (i) encourages additive
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Algorithm 1 ICE-T – batch loss computation.

Inputs: {x(1), . . . , x(M)}, {f(1), . . . , f (M)}, g, l {Data, mappings, projection and loss function}
Σ← 0 {Initialize sum}
for m = 1 to M do
h(m) ← f (m)(x(m)) {Intermediate representations}
Σ← Σ+ h(m) {Update sum}

end for
L← 0 {Initialize loss}
for m = 1 to M do
µ(\m) ← (Σ− h(m))/(M − 1) {Calculate anchor}
z1 ← g(h(m)) {Apply g}
z2 ← g(µ(\m))
s← s(z1, z2) {Get similarities}
L← L+ l(s) {Update loss}

end for

embedding representations and (ii) makes the method robust against missing inputs and hence more
versatile.

The two hidden vectors h(m) and µ(\m) are passed through the identical neural subnetwork g to
obtain final latent representations z(m) = g(h(m)) and z(\m) = g(µ(\m)), which are then compared
by cosine similarity s. We will use s(m)(i, j) to denote similarity between the pair of latent vectors
belonging to i-th and j-th instance: s(m)(i, j) := s(g(h

(m)
i ), g(µ

(\m)
j )). The aim is to maximize the

similarity between the embedding vectors and the matching anchors s(m)(i, i), while minimizing the
non-matching ones s(m)(i, j).

For this purpose, we adopt the InfoNCE loss [19], so the loss incurred from the i-th instance on
variable m is given by:

l
(m)
i = − log

exp(s(m)(i, i)/τ)∑
j exp(s

(m)(i, j)/τ)
(1)

Here τ is the “temperature”, a trainable parameter controlling the sensitivity of the loss across the
range of similarity values. The total batch loss is then the sum of losses incurred across all instances
and modalities: L =

∑
(i,m) l

(m)
i (cf. Algorithm 1).

3.3 Probabilistic Interpretation

We seek variable-specific neural mappings f (m) : X (m) → Rq and an additional neural mapping
g : Rq → Rd, such that for any x

(m)
i ∈ X (m), for ∀m ∈ {1, . . .M}, produce embeddings:

z
(m)
i = g(f (m)(x

(m)
i )); such that

p(x(m)|x(\m)) ∝ s(z(m), z(\m)) (2)

where s : RM×d → R is a similarity function that quantifies the similarity between the variable-
specific embedding z(m) and the embedding of the remaining variables z(\m) = g

(
1/(M −

1)
∑

n ̸=m f (n)(z(n))
)
. Equation 2 thus implies that we want to maximize the similarity between the

embeddings of inputs that are likely to be associated and minimize it otherwise.

3.4 Benefits

Embedding versatility Once trained, ICE-T can provide variable-specific embeddings z(m), joint
complete instance embeddings z(1:M), and joint partial instance embeddings z(A) of a values from
any subset A ∈ P(M), where P(M) is the power set of the variables it was trained on. This
versatility is thanks to the use of arithmetic aggregation of the intermediate representation, instead
of a fixed neural architecture (a used by, for example, in [20]). This gives ICE-T an advantage over
many other methods, which require post hoc aggregation of the variable-specific embeddings (cf.
Table 1).
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Embedding form

Method z(m) z(1:M) z(A)

Scarf ✓
SubTab ✓
CLIP ✓ ! !
GMC ✓ ✓ !
MCN ✓ ✓ !
ICE-T ✓ ✓ ✓

Table 1: ICE-T provides variable-
specific z(m), joint instance z(1:M) and
also partial instance embeddings z(A)

for any subsetA of input variables gener-
ically, whereas some methods allow post
hoc embeddings aggregation ("!").

Modality translation The important advantage of most
multimodal CRL methods, including ICE-T, is support for
modality translation. In the context of heterogeneous tabu-
lar datasets this can be viewed as a form of missing values
imputation, where the value of one variable is estimated
based on the values of the other modalities of the given
instance. This can be formulated as the assignment:

x̂(m) = argmax
x(m)∈X (m)

p(x(m)|x(A)) (3)

where A is a subset of evidence variables so that A ∈
P(M) and m /∈ A. Assuming p(x(m)|x(A)) ∝
s(z(m), z(A)), the above assignment converts to:

x(m) = argmax
x(m)∈X (m)

s
(
z(m), z(A)

)
(4)

which can be solved provided the input space X (m) is well
defined and can be sampled efficiently.

Linear scaling Methods that rely on pairwise contrasting do not scale well with the large number
of variables due to the quadratic increase in the number of pairwise contrastive losses. Unlike these,
ICE-T scales linearly with the number of variables, as can be seen in Algorithm 1, where we can
compute the sum of all embeddings in one linear pass over modalities and then calculate the loss
in the second linear pass by contrasting the modality-specific embeddings against their respective
anchors computed in a leave-one-out manner. This provides an important computational benefit to
our method.

Data-agnostic ICE-T can be readily adapted to accommodate various data types, including image
or text variables, by selecting appropriate neural architectures to implement mappings f (m). This
flexibility allows it to be applied to idiomatic tabular datasets containing images, text, or other
modalities.

4 Experimental Design

4.1 Data

We used a collection of 44 real-world tabular datasets from the benchmark introduced in [13]1.
Moreover, to demonstrate applicability of ours and other methods on tables containing images and
text, we used 2 additional image-tabular datasets and 2 text-tabular datasets; thus, in total, we used 48
datasets (cf. Table 5). Each dataset includes one categorical (classification), or numerical (regression)
target variable (response).

To minimize the effects of data preparation, we restricted ourselves only to minimal data processing
involving ordinal encoding of the categorical and rescaling/log-transforming some numerical variables
(cf. Supplementary Materials). We randomly split the data into training, validation and testing
portions, allocating 10% of the data for validation and another 10% for testing. For each dataset we
performed multiple experimental replicates (5 for tabular and 3 for img/text-tabular data), each time
using new random split and then averaged the obtained results.

4.2 Models and Training

We compared ICE-T against the five state-of-the-art CRL methods described in the previous section:
(i) Scarf (ii) SubTab with contrastive and distance loss (iii) CLIP (iv) GMC and (v) MCN with
contrastive and clustering loss. Note, since CLIP and MCN scale quadratically with the number of
variables, we decided to exclude them from experiments on datasets with more than 25 variables,
which would otherwise result in excessive computation runtimes.

1We excluded the largest dataset (delays_zurich_airport) due to computational restrictions.
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For each method we trained multiple models using different configurations of hyperparameters
controlling the model size and its training. Models were trained on the training sets of the data for up
to 100 epochs using early stopping with patience set to 5 epochs and validation loss as the criterion.

4.3 Evaluation

Once trained, the models were applied to the training, validation and testing portion of the data to
produce respective embeddings. We then evaluated the quality of the embedding vectors with respect
to three common downstream tasks (i) imputation which we approach as cross-modal translation, (ii)
clustering, and (iii) supervised learning – performed across test sets. Finally, we evaluated models in
the role of pre-trained encoders, i.e. with respect to their support for (iv) transfer-learning. Note, for
each method we report the best model performance as achieved in the given task.

Imputation (modality translation) The task aims to estimate values of one variable (query) in the
dataset given the value of the remaining variables (evidence). We iterated over test set data columns,
permuting and subsequently estimating the values of a single “query” column, by selecting the value
whose embedding maximized the similarities to the embeddings of the remaining variables. In the
case of ICE-T, the estimate was done as described by Equation 4, whereas for the remaining models,
the estimate was made by maximizing sum of the pairwise similarities. The estimates were then
compared to the original values to evaluate the quality of recovery (i.e., imputation). We used mean
squared error (MSE) to evaluate the quality of imputation of the numerical variables and balanced
accuracy score [5] for the categorical ones. To obtain a unified score across all variables, the results
were first scaled to the [0, 1] interval, so that higher values indicate better performance, and then
averaged into an imputation score. Note that Scarf and SubTab do not support modality translation
and were excluded from this evaluation.

Clustering We evaluated how well the obtained embedding vectors support downstream data
clustering. For each dataset, a regular k-means clustering model was trained on the training set
embeddings. The quality of clusters was evaluated by the silhouette score [22]. The hyperparameter
k controlling the number of clusters was selected to maximize the silhouette score on the validation
set. The test set silhouette score was used as the evaluation criterion. We also performed k-means
clustering using the raw data, instead of embedding vectors, to serve as a shallow benchmark (not
applied to txt/img-tabular data).

Supervised learning Similarly to clustering, we evaluated how well the obtained embeddings
support downstream supervised learning. For each dataset, we trained a KNN classifier, or regressor,
using the training set embeddings and the associated targets. Predictive performance was evaluated by
the balanced accuracy score for classification tasks or MSE for regression tasks. Hyperparameter k
was selected to maximize predictive performance on validation set. The resulting test set performance
was then used as the evaluation criterion. We performed KNN using the raw data as a shallow
benchmark (not applied to txt/img-tabular data).

Transfer learning Pre-trained models were used as an encoders, on top of which we added neural
prediction head, implemented as a single hidden layer, ReLU-activated MLP, forming a neural
predictor. The predictor was trained on the training set for up to 100 epochs using early stopping with
patience set to 5 epochs and validation loss as the criterion. Once trained, we evaluated the predictive
performance of the resulting model on the test set. The predictions were evaluated by the balanced
accuracy score for classification tasks and MSE for regression tasks. As an additional control, we
also employed a vanilla MLP predictor with a single hidden layer, i.e., without any pre-trained
components. For benchmarking, we used the prediction performance achieved by XGBoost [7] with
default parametrization (not applied to txt/img-tabular data).

Average relative score The task-specific performance of ICE-T and other methods, as achieved on
a given dataset, were scaled to the [0, 1] interval so that the higher value of this relative score indicates
better performance. To quantify the overall task-specific performance, the resulting values were
subsequently averaged across datasets into an average relative score (cf. Supplementary Materials).
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5 Results

5.1 Synthetic data experiment

Table 2: The performance of ICE-T compared
to other multimodal CRL methods in the syn-
thetic data experiment (cf. Figure 2). The
embedding vectors produced by ICE-T allow
to predict each of the three variables using the
remaining two better than those from other
methods, demonstrating its ability to capture
cross-columnar interactions in tabular data.

ACC ↑ MSE ↓ Imputation
Method c x y score

CLIP 0.75 0.27 0.11 0.56
GMC 0.68 0.21 0.12 0.57
MCN 0.73 0.18 0.15 0.59
ICE-T 0.90 0.01 0.01 0.98

Consider the dataset illustrated in Figure 2, referred
to as Gaussian XOR “blobs”, or noisy XOR [11].
It is evident that the conditional class probability
cannot be factorized into a product of conditionals:
p(c|x, y) ̸= p(c|x)p(c|y). Similar non-factorizability
holds for the two coordinates: p(x|c, y) and p(y|c, x).
Hence, we hypothesize that learning mappings f by
pairwise similarity comparison across the three vari-
ables will result in poor embeddings, which will be
manifested by a failure to predict any of the three
variables from the embeddings of the remaining two.

To validate this hypothesis, we generated training
and testing sets consisting of 1,000 and 100 noisy
XOR points, respectively; and tested whether the em-
beddings obtained by ICE-T support the imputation
task (modality translation) better than the embed-
dings from other multimodal contrastive methods.
The obtained results show that ICE-T indeed greatly
outperforms the other methods, confirming our hypothesis (cf. Table 2).

5.2 Real-world data experiments

For compactness, the results obtained across the 48 real-world datasets were conveyed as win-loss
matrices (cf. Figure 3) and as a boxplots depicting the relative scores (cf. Figure 4) (the raw
numbers are provided in Supplementary Tables 2–5). The overall performance across the datasets
was quantified by average relative score (cf. Table 3). Based on the obtained results we summarize
our findings as follows:

Compared to other methods, embedding vectors produced by ICE-T give better support for imputation
and supervised learning, but not clustering, for which Scarf provides a better alternative. This is
likely because Scarf, unlike other methods, learns to exert embedding jointly by contrasting entire
data instances, which may result in better global alignment of the embedding vectors.

ICE-T serves in transfer learning better than other methods and transferring pre-trained ICE-T to
neural predictor improves performance beyond that of XGBoost (benchmark). Interestingly, in similar
experiments performed on independent tabular benchmark, Scarf surpassed XGBoost on approx.
60%, and the MLP used as a negative control on 45% of datasets [2], strongly corroborating our
results (cf. Figure 3, right).

Figure 3: Heatmaps of win-loss matrices, where each value indicates the fraction of datasets where
the method in the given row surpassed the method in the given column. Note that ICE-T (bottom
row) surpassed other methods on the majority of the datasets (values > 0.5) in support of imputation,
supervised and transfer learning; and performed reasonably well in clustering.
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Figure 4: For each task, we scaled the results obtained on the given dataset to [0, 1] interval, so that 1 is
assigned to the best performing method, and 0 to the least performing method. The resulting quantities
are depicted as segments in a stacked bar plot. A larger segment indicates better performance relative
to other methods. As can be seen, ICE-T either outperforms other methods (the largest segment in
the given bar), or generally provides good performance, across the majority of the datasets.

Table 3: The average relative score (higher is better, cf. Evaluation) in the four tasks as achieved
across the 48 real-world datasets. ICE-T gives the best performance in imputation, supervised and
transfer learning; and is second in clustering. Note, Scarf and SubTab do not support modality transfer
and could not be evaluated for imputation.

Imputation Clustering Supervised Transfer
learning learning

Scarf 0.674 0.434 0.474
SubTab 0.344 0.522 0.332
CLIP 0.561 0.345 0.571 0.544
GMC 0.536 0.553 0.495 0.544
MCN 0.378 0.306 0.636 0.533
ICE-T 0.604 0.617 0.687 0.824

6 Discussion

In this work, we proposed to approach heterogeneous tabular data as a type of multimodal data, where
each variable, i.e., each tabular column, is treated as single modality. Multimodal CRL on tabular
data has the potential to provide important advantages over existing methods.

However, unlike multimodal data, most tabular data are characterized by a large number of vari-
ables. This significantly penalizes methods using pairwise variable contrasting, which may become
prohibitively expensive with growing number of variables. Moreover, unlike multimodal data, in
tabular data, interactions among variables are likely to occur. We provided a simple synthetic dataset
that exemplifies extreme case of cross-columnar interactions and demonstrated the failure of the
multimodal contrastive methods to capture these interactions.

This motivated the development of ICE-T, whose key insight is that its loss contrasts each modality
with the embedding of a mean of intermediate representation of other modalities, allowing it to
perform in linear time and, as we demonstrated, to capture variable interactions. Based on the com-
parison of ICE-T against three multimodal CRL methods, two tabular CRL methods and additional
shallow learning benchmarks, we conclude that ICE-T provides better support in most downstream
tasks.
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A Supplementary Materials and Code

Supplementary materials and the project code are publicly available at https://github.com/
tomastokar/ICET

B Data preprocessing

The datasets that were used in our experiments were obtained from:

https://huggingface.co/datasets/inria-soda/tabular-benchmark

https://huggingface.co/datasets/marmal88/skin_cancer

https://huggingface.co/datasets/stochastic/random_streetview_images_pano_v0.
0.2

https://huggingface.co/datasets/Censius-AI/ECommerce-Women-Clothing-Reviews

https://huggingface.co/datasets/james-burton/kick_starter_funding

using the Python library datasets. Categorical variables were numerically encoded us-
ing OrdinalEncoder (sklearn) and the selected numerical variables were processed by log-
transformation, or min-max scaling using MinMaxScaler (sklearn) (cf. Supplementary Table 6).
No additional data processing was performed.

C Implementation details

C.1 Encoders

To ensure a fair comparison across the methods, in all our experiments, we employed identical
encoders. The architecture of each encoder was tailored to a specific variable type. Unless stated
otherwise, the encoders were implemented as follows:

- Categorical encoder was implemented as a single embedding layer with the embedding
dimension controlled by hyperparameter encoder_dim.

- Numerical encoder was implemented as a ReLU-activated MLP, with the following number
of neurons {1, hidden_dim, encoder_dim}.

- Image encoder was implemented as a pre-trained ResNet50 [16], followed by linear
projection to reduce output dimension to encoder_dim;

- Text encoder was implemented as a pre-trained BERT transformer [10], followed by linear
projection to reduce output dimension to encoder_dim. The BERT tokenizer was used to
tokenize the inputs before passing them to the encoder.

C.2 Models

The intermediate representation vectors, once produced by the respective encoders, were then
processed through method-specific downstream computations, which were implemented based on the
information from the respective papers, and, if applicable, using the provided code.

Scarf Representation vectors were concatenated and subsequently passed to a neural subnetwork
g (in the original paper referred to as the pretraining head). This subnetwork was implemented
as a ReLU-activated MLP, with the number of neurons set to {encoder_dim ×M, encoder_dim,
latent_dim}; where is M is number of variables and latent_dim is hyper parameter denoting
number of latent space dimensions. The contrastive loss was computed from the similarities between
the resulting embeddings and the embeddings of the corrupted analogs. Note that when creating the
corrupted views, unlike in the original implementation, we sampled from the batch marginals instead
of dataset marginals. This is a minor change that allows substantially faster runtime when applied to
image/text-tabular datasets.
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SubTab Representation vectors were grouped into k = 3 overlapping blocks, with the 75% overlap.
These blocks were subsequently concatenated and passed to a neural subnetwork E, implemented
as a ReLU-activated MLP with the number of neurons set to {encoder_dim ×M, encoder_dim,
latent_dim} to produce block embeddings. The contrastive loss was computed from the similarities
between the resulting embeddings; along the distance loss between the embeddings.

CLIP No further steps were applied. The intermediate representation vectors produced by encoders
were used as the final embeddings, from which the pairwise contrastive loss was computed.

GMC Joint representation vectors were produced by passing inputs jointly through designated
subnetwork f (1:M), which consisted of variable specific encoders analogous to those described above
(without sharing weights), followed by linear projection to reduce dimensions to encoder_dim.
Variable-specific and joint representation vectors were passed through projection head g, implemented
as SiLU-activated (swished) MLP, with the number of neurons set to {encoder_dim, encoder_dim,
latent_dim}, to produce their respective embeddings.

MCN The intermediate representation vectors produced by the encoders were averaged to, so-called,
fused multimodal features, which were then subjected to online k-means clustering [8]. Parameter k
of the online k-means clustering was set to batch_size/20, but not less than 2.

ICE-T The neural subnetwork g was implemented as a ReLU-activated MLP with the number of
neurons set to {phi_dim, phi_dim, latent_dim}.

C.3 Hyperparameters

The hypermarameters used in our experiments include: hidden_dim, encoder_dim, phi_dim,
latent_dim, learning_rate and batch_size. The range of values tried per hyperparameter
across the datasets in our experiments are available in the code supplement (/src/config.yml).
The performance resulting from each hyperparameters configuration across the datasets can be found
in code supplement (/results/dataset_name.csv).

C.4 Hardware & Software

All our experiments were performed using multiple NVIDIA RTX A6000 GPU cards, CUDA v12.2,
on Ubuntu v20.04.6 LTS. All the code was written in Python programming language and was
run using Python v3.8.10, torch v2.1.0, numpy v1.24.4, sklearn v1.3.2 and pandas
v2.0.3. For more details see the requirements.txt file in the code supplement.
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D Supplementary tables

Table 4: Unified comparison of contrastive loss functions used by state-of-the-art methods vs.
ICE-T (ours); s indicates cosine similarity, τ is learnable parameter z(1:M) indicates joint instance
embedding; z(A) and z(B) indicate partial instance embeddings; δ is a hyperparameter; C ′

i indicates
the centroid that is nearest to the i-th fused multimodal feature and Ck is the k-th centroid; g is a
neural function.
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Table 5: The 48 datasets used in this work and their respective number of samples and the number of
variables by type.

Classification Regression

Name Samples Variables Name Samples Variables

Num Cat Txt Img Num Cat Txt Img

albert 58252 0 32 0 0 abalone 4177 8 1 0 0
bank_marketing 10578 7 1 0 0 ailerons 13750 34 0 0 0
bioresponse 3434 419 1 0 0 airlines 1000000 4 2 0 0
california 20634 8 1 0 0 allstate 188318 15 110 0 0
clothing 23486 2 5 2 0 bike_sharing 17379 5 2 0 0
compas 4966 3 9 0 0 brazilian_houses 10692 8 4 0 0
covertype 566602 10 1 0 0 cpu 8192 22 0 0 0
credit 16714 10 1 0 0 diamonds 53940 8 2 0 0
defaults 13272 20 2 0 0 elevators 16599 17 0 0 0
diabetes 71090 7 1 0 0 house 22784 17 0 0 0
electricity 38474 7 2 0 0 house_sales 21613 14 3 0 0
eye_movements 7608 20 4 0 0 houses 20640 9 0 0 0
heloc 10000 22 1 0 0 medical_charges 163065 4 0 0 0
higgs 940160 24 1 0 0 mercedes 4209 1 359 0 0
jannis 57580 54 1 0 0 miami_housing 13932 14 0 0 0
kickstarter 108128 3 4 3 0 nyc_taxi 581835 4 13 0 0
miniboone 72998 50 1 0 0 pol 15000 27 0 0 0
road_safety 111762 14 17 0 0 seattle_crime 52031 1 4 0 0
skin_cancer 13354 1 4 0 1 sgemm 241600 4 6 0 0
streetview 11054 2 1 0 1 soil 8641 4 1 0 0
telescope 13376 10 1 0 0 sulfur 10081 7 0 0 0

superconduct 21263 80 0 0 0
supreme 4052 3 5 0 0
topo 8885 253 3 0 0
ukair 394299 3 4 0 0
wine_quality 6497 12 0 0 0
yprop 8885 43 0 0 0
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Table 6: The numerical variables subjected to min-max scaling, or log-transformation.

Dataset Processing step Variable

airlines min-max scaling ’CRSDepTime’
’CRSArrTime’
’Distance’
’DepDelay’

allstate min-max scaling ’cont1’ – ’cont14’
’loss’

brazilian_houses log-transform ’hoa_(BRL)’
’rent_amount_(BRL)’
’property_tax_(BRL)’
’fire_insurance_(BRL)’
’total_(BRL)’

covertype min-max scaling ’x1’ – ’x10’
defaults log-transform ’x1’

’x18’ – ’x23’
min-max scaling ’x12’ – ’x17’

house log-transform ’P1’
houses log-transform ’total rooms’

’total bedrooms’
’population’
’households’

higgs min-max scaling ’lepton_pT’
’lepton_eta’
’lepton_phi’
’missing_energy_magnitude’
’missing_energy_phi’
’jet_1_pt’ – ’jet_4_pt’
’jet_1_eta’ – ’jet_4_eta’
’jet_1_phi’ – ’jet_4_phi’
’m_jj’
’m_jjj’
’m_lv’
’m_jlv’
’m_bb’
’m_wbb’
’m_wwbb’

medical_charges log-transform ’Average Covered Charges’
’Average Medicare Payments’

miniboone min-max scaling ’ParticleID 19’
nyc_taxi min-max scaling ’passenger_count’

’tolls_amount’
’total_amount’
’tip_amount’

road_safety min-max scaling ’Location_Easting_OSGR’
’Location_Northing_OSGR’

log-transform ’Engine_Capacity_(CC)’
soil min-max scaling ’northing’

’easting’
’resistivity’
’track’
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Table 7: Imputation

Method

Dataset CLIP GMC MCN ICE-T

abalone 0.983 0.983 0.982 0.999
ailerons 0.797 0.887 0.732 0.844
airlines 0.814 0.782 0.838 0.869
albert 0.396 0.648
allstate 0.217 0.735
bank_marketing 0.722 0.974 0.900 0.755
bike_sharing 0.857 0.889 0.835 0.846
bioresponse 0.989 0.984
brazilian_houses 0.889 0.769 0.845 0.789
california 0.923 0.852 0.722 0.848
clothing 0.729 0.416 0.801 0.772
compas 0.966 0.596 0.960 0.937
covertype 0.937 0.955 0.887 0.868
cpu 0.954 0.920 0.923 0.891
credit 0.831 0.968 0.982 0.942
defaults 0.920 0.881 0.857 0.887
diabetes 0.751 0.978 0.866 0.998
diamonds 0.802 0.812 0.797 0.862
electricity 0.942 0.879 0.836 0.949
elevators 0.868 0.946 0.674 0.895
eye_movements 0.801 0.830 0.808 0.795
heloc 0.926 0.946 0.957 0.934
higgs 0.918 0.940
house 0.971 0.963 0.959 0.981
house_sales 0.886 0.876 0.674 0.810
houses 0.884 0.879 0.862 0.850
jannis 0.927 0.780
kickstarter 0.890 0.551 0.981 0.939
medical_charges 0.918 0.999 0.979 0.999
mercedes 0.046 0.730
miami_housing 0.655 0.933 0.753 0.887
miniboone 0.956 0.930
nyc_taxi 0.862 0.485 0.856 0.734
pol 0.872 0.963 0.973 0.977
road_safety 0.430 0.743
seattle_crime 0.984 0.936 0.982 1.000
sgemm 0.803 0.891 0.677 0.846
skin_cancer 0.992 0.773 0.504 0.986
soil 0.857 0.759 0.800 0.786
streetview 0.852 1.000 0.914 0.931
sulfur 0.950 0.877 0.937 0.998
superconduct 0.855 0.818
supreme 0.818 0.607 0.578 0.576
telescope 0.922 0.970 0.902 0.990
topo 0.977 0.895
ukair 0.766 0.643 0.628 0.684
wine_quality 0.916 0.938 0.867 0.967
yprop 0.970 0.961
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Table 8: Clustering

Method

Dataset Benchmark Scarf SubTab CLIP GMC MCN ICE-T

Silhouette score - higher is better
abalone 0.640 0.934 0.872 0.862 0.688 0.828 0.618
ailerons 0.518 0.749 0.569 0.676 0.603 0.570 0.730
airlines 0.242 0.851 0.441 0.358 0.888 0.280 0.742
albert 0.024 0.387 0.284 0.252 0.413
allstate 0.074 0.599 0.639 0.619 0.575
bank_marketing 0.831 0.916 0.827 0.830 0.806 0.824 0.916
bike_sharing 0.418 0.848 0.591 0.476 0.367 0.415 0.753
bioresponse 0.104 0.552 0.500 0.603 0.671
brazilian_houses 0.352 0.482 0.391 0.404 0.680 0.352 0.557
california 0.703 0.889 0.711 0.730 0.987 0.716 0.982
clothing 0.773 0.554 0.750 0.891 0.476 0.909
compas 0.555 0.761 0.566 0.521 0.546 0.686 0.812
covertype 0.329 0.863 0.490 0.319 0.725 0.339 0.687
cpu 0.379 0.473 0.571 0.437 0.642 0.429 0.343
credit 0.734 0.997 0.906 0.905 0.998 0.904 0.931
defaults 0.318 0.574 0.446 0.519 0.704 0.401 0.760
diabetes 0.429 0.644 0.554 0.576 0.253 0.459 0.463
diamonds 0.231 0.631 0.401 0.355 0.690 0.596 0.744
electricity 0.576 0.564 0.833 0.854 0.628 0.677 0.998
elevators 0.556 0.584 0.596 0.569 0.477 0.567 0.577
eye_movements 0.553 0.914 0.792 0.910 0.920 0.756 0.885
heloc 0.289 0.342 0.437 0.422 0.504 0.971 0.288
higgs 0.115 0.842 0.686 0.858 0.476
house 0.490 0.760 0.819 0.546 0.591 0.499 0.649
house_sales 0.947 0.957 0.945 0.947 0.947 0.946 0.927
houses 0.525 0.772 0.613 0.580 0.803 0.558 0.846
jannis 0.227 0.391 0.361 0.788 0.505
kickstarter 0.987 0.994 0.935 0.788 0.985 0.879
medical_charges 0.800 0.959 0.800 0.805 0.926 0.818 0.801
mercedes 0.135 0.474 0.187 0.771 0.554
miami_housing 0.347 0.761 0.430 0.410 0.815 0.786 0.876
miniboone 0.646 0.994 1.000 0.996 1.000
nyc_taxi 0.090 0.524 0.470 0.266 0.795 0.201 0.772
pol 0.173 0.333 0.417 0.305 0.581 0.359 0.629
road_safety 0.297 0.358 0.596 0.937 0.392
seattle_crime 0.185 0.326 0.208 0.267 0.212 0.211 0.442
sgemm 0.828 0.859 0.835 0.839 0.912 0.835 0.888
skin_cancer 0.969 0.971 0.988 0.849 0.993 0.849
soil 0.635 0.994 0.682 0.906 0.703 0.925 0.681
streetview 0.819 0.959 0.987 0.738 0.745 0.851
sulfur 0.489 0.620 0.533 0.545 0.738 0.607 0.754
superconduct 0.535 0.739 0.620 0.678 0.621
supreme 0.575 0.920 0.523 0.621 0.628 0.577 0.841
telescope 0.435 0.732 0.640 0.474 0.763 0.640 0.729
topo 0.304 0.864 0.496 0.558 0.813
ukair 0.701 0.640 0.831 0.873 0.107 0.793 0.968
wine_quality 0.510 0.691 0.576 0.526 0.576 0.526 0.556
yprop 0.288 0.478 0.343 0.638 0.531
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Table 9: Supervised learning

Method

Dataset Benchmark Scarf SubTab CLIP GMC MCN ICE-T

Balanced accuracy score (Classification) – higher is better
albert 59.307 61.819 60.814 60.342 61.622
bank_marketing 75.664 76.729 75.497 75.409 77.277 75.792 76.276
bioresponse 72.862 69.453 73.011 66.829 72.173
california 62.433 67.873 66.104 82.291 80.639 77.441 78.223
clothing 40.803 40.202 42.743 39.700 40.375 46.294
compas 65.251 66.378 65.712 66.600 66.141 66.087 66.573
covertype 81.749 64.767 61.607 81.292 71.793 72.935 68.549
credit 56.977 73.162 67.234 61.209 76.824 62.900 73.311
defaults 66.983 70.741 71.138 68.380 69.777 70.743 70.205
diabetes 54.675 57.978 56.188 57.550 57.756 57.027 57.608
electricity 77.509 78.768 82.393 82.958 80.631 82.424 83.330
eye_movements 55.701 56.748 59.604 60.150 58.434 58.805 56.119
heloc 68.189 67.679 68.853 68.602 68.433 68.738 68.888
higgs 53.092 53.085 53.350 58.309 64.890
jannis 64.003 72.804 69.209 70.338 73.152
kickstarter 53.337 53.763 57.094 56.819 56.716 56.457
miniboone 87.114 89.863 89.041 89.521 91.398
road_safety 58.925 72.709 70.714 70.670 64.671
skin_cancer 61.266 65.955 64.830 65.062 63.886 60.173
streetview 87.954 90.913 90.062 87.260 90.789 89.480
telescope 77.112 77.287 78.645 78.934 77.969 80.584 81.035

MSE (Regression) – lower is better
abalone 4.69957 5.31256 4.32163 4.37282 5.95043 4.72089 5.38935
ailerons 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
airlines 0.13671 0.01859 0.01871 0.01859 0.01860 0.01852 0.01865
allstate 0.05829 0.00331 0.00321 0.00344 0.00317
bike_sharing 21032.67723 10434.51400 12173.03800 12643.51400 10324.40200 10863.28400 11613.92900
brazilian_houses 0.00038 0.00051 0.00103 0.00013 0.00031 0.00033 0.00007
cpu 9.52330 8.45528 7.63315 7.82178 10.76382 7.83379 8.98616
diamonds 0.04037 0.02019 0.02396 0.03312 0.01756 0.02049 0.03846
elevators 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003
house 0.42876 0.53404 0.43986 0.47898 0.50120 0.44088 0.42927
house_sales 0.12313 0.11423 0.11395 0.11756 0.11229 0.11384 0.10987
houses 0.09530 0.15153 0.07202 0.08437 0.14501 0.08823 0.12270
medical_charges 0.02028 0.02144 0.01616 0.02122 0.01109 0.01232 0.01241
mercedes 75.09708 59.27377 43.83995 70.46438 48.39973
miami_housing 0.05099 0.03833 0.04331 0.04673 0.08245 0.03124 0.04209
nyc_taxi 0.06974 0.00572 0.00520 0.00568 0.00400 0.00554 0.00403
pol 60.49084 57.50370 50.97037 64.06667 35.07755 47.69167 65.23950
seattle_crime 160450.58896 156052.69000 156762.48000 157684.94000 157440.58000 155453.16000 157572.48000
sgemm 0.00024 0.00027 0.00027 0.00027 0.00027 0.00031 0.00026
soil 0.00598 0.00000 0.00016 0.00003 0.00003 0.00004 0.00008
sulfur 0.00037 0.00022 0.00022 0.00018 0.00020 0.00035 0.00022
superconduct 134.12197 130.40073 108.44905 104.98537 102.89780
supreme 0.00735 0.00633 0.00714 0.00495 0.00536 0.00657 0.00452
topo 0.00080 0.00082 0.00081 0.00082 0.00082
ukair 0.15621 0.16689 0.15702 0.16710 0.19882 0.18213 0.15919
wine_quality 0.64618 0.56382 0.57846 0.54574 0.62226 0.53675 0.51462
yprop 0.00078 0.00078 0.00074 0.00080 0.00077
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Table 10: Transfer learning

Method

Dataset Benchmark Control Scarf SubTab CLIP GMC MCN ICE-T

Classification (ACC) – higher is better
albert 65.047 65.181 65.560 65.379 65.550 65.584
bank_marketing 78.321 78.456 78.579 77.982 77.158 80.357 78.698 78.814
bioresponse 77.677 75.920 77.949 77.354 77.002 79.221
california 90.584 80.932 80.977 81.108 80.734 80.745 80.636 81.120
clothing 37.933 38.452 37.999 41.178 36.518 38.673 41.463
compas 66.789 68.589 68.838 68.992 68.296 68.382 68.463 68.742
covertype 85.289 87.615 92.624 77.242 88.715 92.715 88.649 92.806
credit 76.320 77.423 76.900 77.113 76.914 77.566 77.184 77.852
defaults 69.842 72.477 72.548 72.643 72.610 72.953 72.494 73.031
diabetes 60.404 61.024 60.931 60.991 60.998 60.943 60.848 61.146
electricity 90.827 81.659 81.807 82.873 83.039 84.259 82.416 83.893
eye_movements 66.645 56.760 55.920 56.078 56.279 57.923 56.544 56.799
heloc 70.902 69.512 70.944 69.955 70.279 70.234 69.930 71.108
higgs 73.538 73.706 74.985 72.168 74.447 74.796
jannis 78.862 78.066 79.597 77.164 79.143 79.855
kickstarter 63.774 62.200 60.216 62.569 63.055 66.431 64.686
miniboone 93.855 93.905 93.918 94.070 94.535 94.672
road_safety 78.225 77.763 79.140 77.843 78.534 79.690
skin_cancer 96.487 95.404 96.468 95.977 95.135 96.186 94.748
streetview 59.338 80.257 67.441 69.276 70.629 71.825 78.739
telescope 85.972 84.020 83.357 83.351 85.072 85.737 83.809 86.768

Regression (MSE) – lower is better
abalone 5.05978 3.91145 4.05962 3.91939 3.86525 4.01733 3.85508 3.96275
ailerons 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
airlines 0.12965 0.01696 0.01693 0.01709 0.01693 0.01694 0.01693 0.01691
allstate 0.04847 0.00247 0.00242 0.00264 0.00242 0.00243
bike_sharing 10929.90035 9875.94700 9741.88400 9787.36900 9651.51000 9737.07600 9845.23000 9862.71600
brazilian_houses 0.00003 0.00008 0.00007 0.00007 0.00003 0.00004 0.00002 0.00004
cpu 6.33514 8.69058 8.53732 8.18825 6.96726 7.25649 6.67351 6.30104
diamonds 0.00830 0.01619 0.01366 0.01460 0.01511 0.01269 0.01467 0.01093
elevators 0.00001 0.00004 0.00005 0.00004 0.00004 0.00004 0.00004 0.00003
house 0.37756 0.47359 0.47892 0.45266 0.44590 0.48754 0.43751 0.43130
house_sales 0.03019 0.15205 0.08681 0.19229 0.15862 0.13981 0.12547 0.16002
houses 0.05121 0.11072 0.10974 0.10562 0.10344 0.10236 0.11376 0.10352
medical_charges 0.00779 0.00684 0.00699 0.00701 0.00693 0.00684 0.00683 0.00687
mercedes 69.05531 42.33849 43.48200 43.08921 43.74935 44.94259
miami_housing 0.02473 0.09113 1.01151 0.12189 0.22357 0.11804 0.09870 0.11192
nyc_taxi 0.05003 0.00272 0.00275 0.00363 0.00276 0.00336 0.00269 0.00253
pol 26.52296 38.61242 32.18196 37.99794 34.84072 45.15300 38.72781 26.15045
seattle_crime 147748.56894 146966.23000 147000.86000 146991.89000 146976.47000 147479.90000 147045.56000 147406.19000
sgemm 0.00029 0.00063 0.00053 0.00066 0.00037 0.00028 0.00073 0.00029
soil 0.00151 0.00001 0.00001 0.00081 0.00001 0.00001 0.00001 0.00001
sulfur 0.00091 0.00129 0.00101 0.00119 0.00104 0.00108 0.00082 0.00090
superconduct 98.50537 256.64734 246.62310 251.30844 229.29940 230.40335
supreme 0.00756 0.29500 0.29459 0.29417 0.29533 0.29988 0.29496 0.29220
topo 0.00083 0.00075 0.00075 0.00075 0.00077 0.00075
ukair 0.13846 0.14539 0.14442 0.14684 0.14124 0.13942 0.14231 0.12723
wine_quality 0.51409 0.51571 0.51537 0.51922 0.50477 0.52282 0.51265 0.51159
yprop 0.00086 0.00076 0.00077 0.00076 0.00076 0.00075
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