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Abstract

Deep Unfolding Networks have emerged as a prominent strategy in compressed sensing im-
age reconstruction, effectively merging optimization techniques with deep learning through
end-to-end training of truncated inferences. Despite their advantages, these algorithms gen-
erally require extensive iterations and parameters, potentially limited by storage capacity.
Additionally, the image-level transmission at each iterative step does not optimally harness
the inter-scale feature information available. To address these issues, we introduce a novel
approach in this paper: the Multi-Scale Dual-Attention Unfolding Network (MSDAUN)
for compressed sensing image reconstruction. We propose a cross-stage multi-scale deep re-
construction module D as an iterative process, which is composed of multiple attention sub-
modules. These include Cross Attention Transformer(CAT) Modules that enhance the re-
construction with multi-channel inertia, thereby facilitating feature-level transmission and
robust information exchange. Concurrently, Texture Attention Transformer(TAT) Mod-
ules are designed to meticulously extract salient reconstruction information, subsequently
channeling it into the texture path to effectuate the precise prediction of textural regions,
thereby contributing to the meticulous restoration of textural details. Our comprehensive
experimental evaluation across diverse datasets confirms that MSDAUN surpasses existing
state-of-the-art methods. This work presents significant potential for further advancements
and applications in inverse imaging problems and optimization models.

Keywords: Compressed Sensing; Image Reconstruction; Deep Unfolding Network; Deep
Learning

1. Introduction

Compressed Sensing (CS) theory posits that signals which demonstrate sparseness in some
specific space can be reconstructed with high probability from a substantially reduced set of
measurements, as compared to the quantity prescribed by the Shannon-Nyquist sampling
theorem (Candès et al., 2006). This strategy in signal acquisition is particularly advanta-
geous for hardware constraints, enabling the capture of visual data at sub-Nyquist rates.
By exploiting the intrinsic redundancy inherent in signals, CS performs sampling and com-
pression concurrently, thereby markedly reducing the demand for substantial transmission
bandwidth and storage infrastructure. CS has been widely used in a range of practical
applications, including medical imaging (Jiang et al., 2024; Hong et al., 2024), single-pixel
imaging systems (Huang et al., 2024) and snapshot compression techniques (Zhang et al.,
2022).
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Mathematically, compressed sensing reconstruction aims to deduce the original signal,
denoted as x ∈ RN , from a set of random linear measurements represented by the vector
y = Φx ∈ RM . This process involves a matrix Φ ∈ RM×N , which encapsulates the linear
random projection. The notation M ≪ N signifies that the problem’s inverse is generally
ill-conditioned due to the disparity in the dimensions of M and N . The concept of a
compression ratio is pivotal in compressed sensing and is expressed as the ratio M

N .
Traditional Compressed Sensing method (Kim et al., 2010) is designed to reliably re-

construct the original image x, by solving an optimization problem that leverages the given
linear measurements y:

arg min
x

1

2
∥Φx− y∥22 + λR(x), (1)

where 1
2 ∥Φx− y∥22 is instrumental in modeling the potential for signal degradation, cap-

turing the closeness of the reconstructed signal to the observed measurements. λR(x) refers
to the prior term, which includes a regularization parameter λ to enforce certain structural
assumptions on the solution. In conventional model-based CS methods, the prior term
is often linked to sparsifying operators that are related to predefined transform domains,
such as the Discrete Cosine Transform (DCT) (Zhao et al., 2014) or wavelet (Zhao et al.,
2016), which promote sparsity. A variety of iterative optimization techniques, such as the
Iterative Shrinkage-Thresholding Algorithm (ISTA) (Zhang and Ghanem, 2018; You et al.,
2021a) and Alternating Direction Method of Multipliers (ADMM) (Afonso et al., 2010),
have been introduced to address the reconstruction problem. Although these methods are
known for their robust convergence properties and theoretical backing, they are frequently
limited by their high computational requirements and lack of flexibility. The advent of deep
learning has led to the adoption of Convolutional Neural Networks (CNNs) in CS, with neu-
ral network architectures largely falling into two categories: deep non-unfolding networks
(DNUNs) and deep unfolding networks (DUNs). DNUNs are designed to directly learn the
inverse mapping from the CS measurement domain to the original signal domain (Iliadis
et al., 2018), often employing a supervised learning paradigm. DUNs integrate networks
with optimization algorithms to train an unrolled inference through end-to-end optimiza-
tion of a loss function (Zhang and Ghanem, 2018; Zhang et al., 2020a; You et al., 2021b;
Song et al., 2021). This latter approach has emerged as the predominant method for CS,
offering a more flexible and iterative framework for signal reconstruction.

The emergence of DUNs represents a pivotal advancement in CS, enhancing inter-
pretability by seamlessly integrating optimization with end-to-end truncated inference train-
ing (Zhang et al., 2020a,b). These networks have rapidly ascended to become the predom-
inant methodology within the field. Nonetheless, DUNs encounter challenges stemming
from their substantial computational requirements, typified by numerous iterations and a
vast array of parameters (Song et al., 2021, 2023). These factors can lead to limitations
imposed by storage limitations, consequently impacting their performance. Moreover, the
transmission of image-level details during iterative processes fails to fully capture and apply
the rich inter-scale feature information present in the data.

To address the challenges outlined, we introduce a novel Multi-Scale Dual-Attention
Unfolding Network (MSDAUN) specifically designed for image CS, as shown in Fig. 1.
Our approach centers on a cross-stage multi-scale deep reconstruction module, denoted as
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D, which employs strided convolutions (SConv(·)) and transposed convolutions (TConv(·))
to construct a three-scale W-shaped architecture for effective scale transformation. This
module ensures seamless integration of deep features from previous stages with those of
the current stage, thereby preserving essential information across iterations of DUNs. The
integration process is driven by Cross Attention Transformer (CAT) modules and Texture
Attention Transformer (TAT) modules. The CAT module is designed to optimize the
flow of information within the feature space. The TAT module enhances the precision
of texture region estimation by the Texture Attention(TA) module, focusing on salient
texture areas and effectively restoring intricate details. Furthermore, we have innovated the
Gradient Descent Block (GDB) module by incorporating generalized physical operators,
significantly enhancing reconstruction capabilities of the network. The main contributions
are summarized as follows:

• We introduce a novel deep unfolding network (MSDAUN) for CS image reconstruction.
At the heart of MSDAUN lies a series of multiple attention modules. The proposed
TAT module enhances the transfer of textural details from reconstruction data to the
dedicated texture path, thereby allowing the system to concentrate on the accurate
recovery of these fine details.

• We introduce a cross-stage multi-scale deep reconstruction module, denoted as D,
which is characterized by its generalized multi-scale perception and fully activated
physical injection. This design effectively reduces the need for extensive iterations
and a large number of parameters.

• Integrating the cross-stage multi-scale descent module with texture attention, our
proposed MSDAUN has yielded remarkable outcomes, especially at extremely low CS
ratios, as demonstrated by extensive experimentation.

2. Related Work

2.1. Deep Unfolding Network

Deep Unfolding Networks (DUNs) represent a class of neural network architectures that
have been advanced for a diverse array of image processing tasks, including but not limited
to image demosaicing (Kokkinos and Lefkimmiatis, 2018), image fusion (Zhao et al., 2021),
and image denoising (Lefkimmiatis, 2017). The foundational principle of DUNs is the
transformation of conventional iterative optimization techniques into a sequence of trainable
recurrent units, designed to tackle a spectrum of inverse imaging problems. This paradigm is
often articulated as a bi-level optimization framework, underpinned by a dataset comprising
paired observations {(yj ,xj)}Na

j=1 and characterized by the totality of training instances
denoted by Na, as follows:

min
Θ

Na∑
j=1

L(x̂j ,xj),

s.t. x̂j = arg min
x

1

2
∥Φx− yj∥22 + λR(x),

(2)
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where Θ represents the learnable parameters and Φ denotes the measurement matrix. R ( ·)
represents a general nonlinear transformation function.

In the domain of CS, DUN methodologies frequently amalgamate sophisticated CNN de-
noising components with a spectrum of optimization strategies. This integration spans tech-
niques such as Proximal Gradient Descent (PGD) (Chen and Zhang, 2022; You et al., 2021b;
Zhang and Ghanem, 2018), Approximate Message Passing (AMP) (Zhang et al., 2020b),
and the Inertial Proximal Non-Convex Optimization (iPiano) (Su and Lian, 2020), each con-
tributing to a unique set of optimization heuristics within DUN frameworks. Nonetheless,
these emerging solutions exhibit a paucity of flexibility in managing channel information
and are encumbered by the complexity of the models they propose. In addition, the above
methods have made substantial progress in compressed sensing image reconstruction, but
there are still challenges in accurately preserving texture nuances, especially at low mea-
surement rates.

2.2. Vision Transformer

Vision Transformers (Vaswani et al., 2017) have become a powerful tool in the realm of
computer vision and image processing, originally gaining prominence in natural language
processing and later proving its efficacy in complex visual tasks. The self-attention mecha-
nism (Dosovitskiy et al., 2021), a cornerstone of the Vision Transformer, excels at capturing
long-range pixel dependencies by aggregating features based on their similarities, a crucial
concept in the recent progress of the field. Cai et al. (2022) proposed the DAUF, which
utilizes the DUN structure for spectral compressed imaging and employs self-attention to
construct robust Transformer blocks. Similarly, Shen et al. (2022) developed a Transformer
architecture tailored for CS, based on the ISTA method. A common challenge in DUNs is
that the input and output at each iteration are inherently images, which can limit informa-
tion transfer and representational capacity. To overcome these limitations, our approach
integrates Transformers with DUNs to create an efficient framework for CS image recon-
struction.

3. Proposed Method

3.1. Overall Architecture

Sun et al. (2020) introduced a dual-path attention network designed to effectively disen-
tangle structural and textural features within images. This network reconstructs the image
by summing the outputs from two distinct paths: one capturing structural information and
the other, textural details. This approach allows for a more flexible representation of image
content. Nonetheless, the complexity of the model, exemplified by a large number of pa-
rameters, engendered formidable challenges. The reliance on meticulous tuning for optimal
learning performance complicates both the training process and theoretical analysis.

Our approach integrates the proximal gradient descent (PGD) algorithm (Combettes
and Wajs, 2005), where we meticulously balance the gradient descent component with
inertial forces to optimize the performance of the model. To address the issue of information
loss during image transmission, we have introduced a Cross Attention Transformer(CAT)
module. This module is specifically designed to enhance the interaction of information
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Figure 1: Architecture of our MSDAUN, which consists of K iterations. X denotes the full-
sampled image for training, Y is the under-sampled data and X(0) denotes the
initialization, T(0) denotes the initialization of the texture path from the Texture
Feature Integration Module (TFIM). D is the cross-stage multi-scale unfolding
network that is the kth iterative process. The features X(k−1) and S(k−2) are the
inputs of our Cross Attention Transformer (CAT) module, the features X(k−1)

and T(k−1) are the inputs of our Texture Attention Transformer (TAT) module
and x̂ is the recovered result gotten from the sum of the output X(K) and T(K)in
the Kth iteration.

across different images. Furthermore, to improve the capture of textural details, we have
developed a Texture Attention Transformer (TAT) module, which links the reconstruction
information with the textural path information.

To counteract the performance decline and saturation that can result from merely in-
creasing the unfolding iterations, network depth, or feature channels in the DUN, we have
designed a novel multi-scale module, referred to as module D. A comprehensive description
of module D is provided in Sec. 3.2.

In the k-th iteration of our MSDAUN, CAT and TAT modules are applied in a manner
that can be mathematically expressed as (k ∈ {1, 2, · · · ,K}):

X(k) = D(HCAT(X(k−1),S(k−2))), (3)

T(k) = D(HTAT(T(k−1),S
(k−1)
T )), (4)

where X(k), T(k) ∈ R
H
r
×W

r
×r(2)C are the outputs in the feature domain, and S(k−2) ∈

R
H
r
×W

r
×r(2)(C−1) is obtained by clipping latter C−1 channels from X(k−2). For the first

iteration, the input X(0) is generated by a 3×3 convolution (Conv0 (·)) on the initialization
x(0). And for the first iteration of the texture path, the initial input T(0) is provided by the
output initialization of the Texture Feature Integration Module(TFIM). The TFIM begins
by employing a 3×3 convolution to extract preliminary features. Subsequently, it utilizes
texture residual blocks, which encompass five sub-layers. Each sub-layer consists of a block
that includes two convolutions. Then, residual dense block(RDB) blocks (Zhang et al., 2018)
are applied, which contain multiple stacked residual units designed to capture local features
within the image. Each RDB block possesses its own capability for local feature extraction,
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Figure 2: Architecture of our cross-stage multi-scale unfolding network D, which consists
of a three-scale W-shaped backbone, in which the last two scales are equipped
with skip connections. D is built by multiple CATs and TATs. The strided
convolution(SConv (·)) and the transposed convolution(TConv (·)) are adopted
as the downscaling and upscaling operators.

which aids in capturing the texture information of the image. Afterwards, SubpixelConv (·)
(Shi et al., 2016) is utilized for upsampling, increasing the dimensions of the feature map,
which facilitates the extraction of higher-level texture features. Ultimately, the recovered
result x̂ is obtained by splitting the first channel from the sum of X(K) and T(K), as shown
in Fig. 1.

3.2. Cross-Stage Multi-Scale Unfolding Network

DUNs adopt cross-stage feature fusion as their foundational principle, which decomposes
the image reconstruction process into multiple manageable stages to progressively refine the
image. We apply gradient descent projection in the image domain and complement it with
deep denoising techniques in the feature domain during each stage. However, enhancing the
recovery capability is not as simple as just increasing the number of stages, or expanding
the feature capacity. We have explored the strategy of augmenting these parameters in pre-
vious iterations of DUNs (Sun et al., 2016; Zhang and Ghanem, 2018; Zhang et al., 2020a;
Song et al., 2021), but this often leads to a performance plateau and a significant extension
of inference time. To avoid such undesirable outcomes that negate the benefits of the tech-
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Figure 3: The architecture of the Texture Attention Transformer (TAT) module. (a) The
TAT module consists of an IGTA block, a GDB block, a GDTA block and a Feed-
Forward Network (FFN) sub-module. (b) The Texture Attention (TA) block,
which is the basic component of two attention blocks. (c) The physical forward
operator A by PixelShuffle with a B×B SConv (·). (d) The physical transposed
forward operator A⊤ by a B×B TConv (·) with PixelUnshuffle and A. (e) FFN
sub-module is composed of two sets of LN and Feed-Forward Block (FFB).

nology, we have developed a more efficient network architecture. Our approach simplifies
network design by utilizing a set of elementary modules and generalized operations, thereby
enhancing its overall efficiency and effectiveness.

The structure D, as illustrated in Fig. 2, employs a three-layer W-shaped architecture
that integrates multiple CAT and TAT modules, which are detailed in Sec. 3.3. This design
notably includes skip connections in the last two tiers to facilitate information flow. The
feature channel counts are strategically set to D, 4D, and 16D for the first, second, and
third tiers, respectively, while spatial scales are designated as ×1, ×2, and ×4 to maintain
consistent capacity across tiers. Each layer is composed of two groups and employs 2×2
strided convolution(SConv (·)) and 2×2 transposed convolution(TConv (·)) as the primary
scale transformation operators to manage size adjustments. After passing through the initial

SConv (·) layer, the input X(k−1) ∈ RH×W×C is transformed into X(k−1) ∈ R
H
2
×W

2
×4C , and

after the second SConv (·) layer, it becomes X(k−1) ∈ R
H
4
×W

4
×16C .
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3.3. Convolutional Dual-Attention

Our dual-attention is composed of two integral components: Texture Attention Transformer
(TAT) and Cross Attention Transformer (CAT). TAT is specifically tailored with the Inertia-
Guided Texture Attention (IGTA) module and the Gradient Descent Texture Attention
(GDTA) at its core, which will be explicated in detail within this section, as shown in
Fig. 3. The architecture of the CAT, is similar to our TAT. The Feed-Forward Network
(FFN) submodule, described extensively in Fig. 3 (e), is intricately designed with two
Layer Normalizations (LN) and Feed-Forward Blocks (FFB), integrated with global skip
connections. The architecture of the FFB is similar to Song et al. (2023).

Our TAT is shown in Fig. 3 (a). To effectively capture both local and global information

when processing input images, we split T(k−1) ∈ R
H
r
×W

r
×r2C into two parts, which include

r
(k−1)
T ∈ R

H
r
×W

r
×r2 and S

(k−1)
T ∈ R

H
r
×W

r
×r2(C−1). Here, r

(k−1)
T is obtained by separating

the first channel from T(k−1) , and S
(k−1)
T is the remaining (C− 1) channels cropped from

T(k−1) . They are then used as inputs for the Gradient Descent Block (GDB) and the
IGTA module respectively. Additionally, our IGTA module also takes S(k−1) as input, fully
leveraging the inertial information of multiple channels. Therefore, our designed TAT and
CAT sub-module can be formulated as follows:

C(k) = HGDTA(HGDB(r
(k−1)
T ,Y),HIGTA(S(k−1),S

(k−1)
T )). (5)

Among IGTA and GDTA modules, Texture Attention (TA) plays a crucial role as a fun-
damental building block. In the following part of Sec. 3.3, we first introduce the Texture
Attention block (TA), and then proceed to describe the IGTA and GDTA blocks respec-
tively.

Texture Attention. TA block is meticulously designed to enhance the operational per-
formance of the network, thereby refining its computational efficiency and performance
metrics,as shown in Fig. 3 (b). The input Q comes from a different component than V and
K. They are first embedded by a 1×1 convolution (ConvV,K,Q (·)) to obtain feature with
the size being H

r ×
W
r ×r2(C−1). Furthermore, We employ a RDB block to capture textural

information in the image. Then a 3×3 depth-wise convolution (DconvV,K,Q (·)) is used to
encode channel-wise spatial context. Finally, a reshape operation (R(·)) reformulates V,

K, and Q into tokens {V̂, K̂, Q̂} ∈ R
HW
r2

×r2(C−1). Therefore, this process can be defined as
the following function: 

V̂ = R(DconvV(ConvV(V))),

K̂ = R(DconvK(ConvK(K))),

Q̂ = R(DconvQ(RDB(ConvQ(Q)))).

(6)

Next, the Softmax function is utilized to reweight the matrix multiplication K̂⊤Q̂, thereby
generating a transposed attention map A ∈ Rr2(C−1)×r2(C−1), yielding

A = Softmax(K̂⊤Q̂), (7)

where K̂⊤ denotes the transposed matrix of K̂. The aggregation result is calculated as

V̂A, which is reshaped into the features of size R
H
r
×W

r
×r2(C−1). Afterward, a layer of
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RDB module is engaged for the acquisition of textural features. Finally, we apply a 1×1
convolution ConvA(·) to enhance the feature extraction. Overall, the Texture Attention
block is defined as:

GTA(V,K,Q) = ConvA(RDB(R(V̂A))). (8)

Texture Attention block helps to extract useful information via channel-wise similarity
with low computational cost.

Inertia-Guided Texture Attention. To enhance the information exchange within in-
ertial terms, we have integrated a multi-channel inertial component and have put forward
an Inertia-Guided Texture Attention (IGTA) block. This block merges reconstruction in-
formation with texture path information, which aids in the efficient calculation of texture
attention and enables the capture of a greater array of textural nuances. Comprising an
LN function and a TA block, the IGTA module is illustrated in Fig. 3(a). Specifically, we

set the (k−1)th iteration output S(k−1) as value (V
(k)
IGTA) and key (K

(k)
IGTA), and we set the

(k−1)th iteration output of texture path S
(k−1)
T as query (Q

(k)
IGTA), pass through TA block

after normalization by LN function, so Ŝ
(k−1)
T = HIGTA(S(k−1),S

(k−1)
T ) as:

V
(k)
IGTA, K

(k)
IGTA, Q

(k)
IGTA = LN(S(k−1)), LN(S(k−1)), LN(S

(k−1)
T ),

Ŝ(k−1) = GTA(V
(k)
IGTA,K

(k)
IGTA,Q

(k)
IGTA) + S

(k−1)
T .

(9)

Gradient Descent Texture Attention. Similar to the IGTA block, the Gradient De-
scent Texture Attention (GDTA) block captures rich texture feature information based on
channel-wise similarity. Specifically, given T(k−1), the input of the gradient descent term is

gotten by its first channel (i.e., r
(k−1)
T ). So, the calculation of the term has the following

expression:

r̂
(k−1)
T = r

(k−1)
T − ρ(k−1)A⊤(Ar

(k−1)
T −Y). (10)

where ρ(k−1) represents the learnable stride. We implement the physical forward operator
and its transpose, we use PixelShuffle with a B×B SConv (·), and a B×B TConv (·) with
PixelUnshuffle and share all Conv (·) weights with the sampling matrix A, as shown in
Fig. 3(c) and (d).

Next, r̂
(k−1)
T and the IGTA output Ŝ

(k−1)
T pass through the LayerNorm function and TA

block, Finally, r̂
(k−1)
T is concatenated, reshaped to match the original channel dimensions

and mixed with a 1×1 convolution (ConvO(·)):

V
(k)
GDTA, K

(k)
GDTA, Q

(k)
GDTA = LN(Ŝ

(k−1)
T ),LN(Ŝ

(k−1)
T ),LN(r̂

(k−1)
T ),

C(k) = ConvO(Concat(GTA(V
(k)
GDTA,K

(k)
GDTA,Q

(k)
GDTA) + Ŝ

(k−1)
T , r̂

(k−1)
T )).

(11)

3.4. Loss Function

To obtain the train data pairs {(yj ,xj)}Na
j=1 for the MSDAUN network, compressed mea-

surements are acquired using fully sampled images {xj}Na

j=1 and sampling pattern A, where
A is used in place of Φ in yj = Φxj . Specifically, our MSDAUN model takes yj as the input
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Table 1: Average PSNR(dB)/SSIM performance comparisons of recent deep network-based
CS methods on Set11 (Kulkarni et al., 2016b) and CBSD68 (Martin et al., 2001)
dataset with different CS ratios. The best and second-best results are highlighted
in red and blue colors, respectively.

Dataset Set11 CBSD68 Times(ms) #Param.
CS Ratio 1% 4% 10% 25% 50% Average 1% 4% 10% 25% 50% Average /GFLOPs (M)

ReconNet (CVPR 2016)
17.43 20.93 24.38 28.44 32.25 24.69 18.27 21.66 24.15 26.04 29.86 24.00 2.69

0.23
/0.4017 /0.5897 /0.7301 /0.8531 /0.9177 /0.6985 /0.4007 /0.5210 /0.6715 /0.7833 /0.8951 /0.6543 /1.31

ISTA-Net+ (CVPR 2018)
17.34 21.31 26.58 32.48 38.06 27.15 19.14 22.17 25.32 29.36 34.04 26.01 5.65

0.47
/0.4131 /0.6240 /0.8066 /0.9242 /0.9706 /0.7477 /0.4158 /0.5486 /0.7022 /0.8525 /0.9424 /0.6923 /35.17

DPA-Net (TIP 2020)
18.05 23.50 27.66 32.38 36.80 27.68 20.25 23.50 25.47 29.01 32.55 26.16 36.49

9.31
/0.5011 /0.7205 /0.8530 /0.9311 /0.9685 /0.7948 /0.4267 /0.6096 /0.7372 /0.8595 /0.9386 /0.7143 /563.27

AMP-Net (TIP 2020)
20.55 25.14 29.40 34.63 40.34 30.01 22.18 25.47 27.79 31.37 36.59 28.68 27.36

0.86
/0.5638 /0.7701 /0.8779 /0.9481 /0.9804 /0.8281 /0.5207 /0.6534 /0.7853 /0.8749 /0.9620 /0.7593 /47.93

OPINE-Net+ (TIP 2020)
20.15 25.69 29.81 34.86 40.17 30.14 22.11 25.20 27.82 31.51 36.35 28.60 17.32

0.62
/0.5340 0.7920 /0.8884 /0.9509 /0.9797 /0.8290 /0.5140 /0.6825 /0.8045 /0.9061 /0.9660 /0.7746 /36.29

MADUN (ACMMM 2021)
20.28 25.71 30.20 35.76 41.00 30.59 22.28 25.36 28.18 32.27 37.23 29.02 92.15

3.12
/0.5572 /0.8042 /0.9016 /0.9616 /0.9837 /0.8417 /0.5247 /0.6985 /0.8219 /0.9219 /0.9733 /0.7881 /390.03

CASNet (TIP 2022)
21.97 26.41 30.36 35.67 40.93 31.07 22.49 25.73 28.41 32.31 37.48 29.28 97.37

16.97
/0.6140 /0.8153 /0.9014 /0.9591 /0.9826 /0.8545 /0.5520 /0.7079 /0.8231 /0.9196 /0.9728 /0.7951 /1294.75

TransCS (TIP 2022)
20.22 25.41 29.54 35.06 40.49 30.14 22.28 25.28 27.86 31.74 36.81 28.79 22.72

2.13
/0.5431 /0.7883 /0.8877 /0.9548 /0.9815 /0.8311 /0.5318 /0.6881 /0.8086 /0.9121 /0.9699 /0.7821 /489.21

DGUNET+ (CVPR 2022)
22.15 26.82 30.92 36.18 41.24 31.46 22.13 25.45 28.13 31.97 37.04 28.94 247.31

37.81
/0.6113 /0.8230 /0.9088 /0.9616 /0.9837 /0.8578 /0.5215 /0.6986 /0.8165 /0.9158 /0.9718 /0.7848 /98.41

OCTUF+ (CVPR 2023)
22.07 26.84 30.70 36.10 41.31 31.40 22.78 25.65 28.28 32.24 37.41 29.27 94.74

0.82
/0.6235 /0.8221 /0.9030 /0.9604 /0.9838 /0.8586 /0.5413 /0.6999 /0.8177 /0.9185 /0.9729 /0.7901 /287.39

MSDAUN (Ours)
22.37 27.67 31.12 36.54 41.27 31.79 23.04 26.07 29.25 33.61 38.59 30.11 38.48

7.92
/0.6735 /0.8240 /0.9077 /0.9627 /0.9831 /0.8702 /0.5458 /0.7043 /0.8251 /0.9240 /0.9738 /0.7946 /101.77

MSDAUN+ (Ours)
22.48 27.72 31.15 36.54 41.54 31.89 23.24 26.19 29.29 33.69 38.67 30.22 69.56

10.71
/0.6741 /0.8247 /0.9105 /0.9629 /0.9842 /0.8713 /0.5467 /0.7047 /0.8254 /0.9245 /0.9743 /0.7951 /342.18

and generates the reconstructed result x̂j as the output. To minimize the difference between
xj and x̂j , we employ the mean squared error (MSE) as the loss function, as follows:

L(Θ) =
1

NNa

Na∑
j=1

∥xj − x̂j∥22, (12)

where Na and N represent the number of training images and the size of each image re-
spectively. Θ denotes the learnable parameter set of our proposed MSDAUN and can be

formulated as Θ = {A,Conv0(·),TFIM(·)}
⋃
{D(k)(·),H(k)

CAT(·),H(k)
TAT(·), H(k)

FFN(·)}Kk=1.

4. Experiments

4.1. Implementation Details

For training, we use 400 images from the training and test dataset of the BSD500 dataset
(Arbelaez et al., 2010). Two benchmarks: Set11 (Kulkarni et al., 2016b)(nine 256×256
and two 512×512 grayscale images, each 512×512 image is considered into four 256 × 256
images) and CBSD68 (Martin et al., 2001)(68 color images with 321 × 481 pixels) are used
for evaluation. For the network parameters, the block size B = 33, the default feature map C
= 16, the default batch size K = 5 and the learnable parameter ρ(k) is initialized to 0.5. All
experiments were conducted on an NVIDIA GeForce RTX4090, using PyTorch as the deep
learning framework. Two commonly used image assessment criteria, Peak Signal to Noise
Ratio (PSNR) and Structural Similarity (SSIM), are adopted to evaluate the reconstruction
results.
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Figure 4: Comparisons on recovering an image from the Set11 dataset (Kulkarni et al.,
2016b) in the case of CS ratio = 25%.

Figure 5: Comparisons on recovering an image from the CBSD68 dataset (Martin et al.,
2001) in the case of CS ratio = 50%.

4.2. Qualitative Evaluation

We compare our proposed MSDAUN with nine SOTA CS reconstruction methods, includ-
ing ReconNet (Kulkarni et al., 2016b), ISTA-Net+ (Zhang and Ghanem, 2018), DPANet
(Sun et al., 2020), AMP-Net (Zhang et al., 2020b), OPINE-Net+ (Zhang et al., 2020a),
MADUN (Song et al., 2021), CASNet (Chen and Zhang, 2022), TransCS (Shen et al.,
2022), DGUNET+ (Mou et al., 2022) and OCTUF+ (Song et al., 2023). We summarize the
average PSNR/SSIM reconstruction performance for five different CS ratios on the Set11
(Kulkarni et al., 2016a) and CBSD68 (Martin et al., 2001) dataset, as detailed in Table. 1. In
our MSDAUN, we set the number of iterations to 5 and the initial learning rate to 5×10−4.
To enhance model performance, we also proposed an enhanced version, MSDAUN+, with 7
iterations and an initial learning rate of 2×10−4. The results indicate that both MSDAUN



Wang Wang

Table 2: PSNR(dB) results on the Set11 dataset (Kulkarni et al., 2016b) in the case of CS
ratio = 50% and the inference time of our network with three different types of
architectures. The best and second-best results are highlighted in red and blue
colors, respectively.

Stage Number K 10 20 30 40 feature Domain Dimensionality d

Plain-MSDAUN
40.71/32.569 40.87/61.514 40.96/84.691 41.09/124.547 16
40.88/74.822 40.98/128.086 41.24/181.694 41.29/232.529 32

Group Stage Number K 1 3 5 7 feature Domain Dimensionality d

MSDAUN*
40.51/49.652 40.89/137.956 41.16/194.546 41.33/267.487 8
40.60/95.546 41.01/269.533 41.29/408.561 41.47/578.244 16

MSDAUN
40.58/12.245 41.05/29.587 41.27/49.584 41.34/57.848 8
40.91/16.545 41.23/36.249 41.39/58.462 41.54/81.524 16

Table 3: Ablation of TAT sub-module on Set11 dataset (Kulkarni et al., 2016b) when the
CS ratio is 25%. The best PSNR(dB) is labeled in bold.

Cases FFN GDB IF FD IGTA GDTA PSNR

(a)
√

- - - - - 33.72
(b)

√ √
- - - - 35.06

(c)
√ √

-
√

- - 36.15
(d)

√ √ √ √
- - 36.16

(e)
√ √

-
√

-
√

36.46
(f)

√
- -

√ √
- 36.41

MSDAUN
√ √

-
√ √ √

36.54

and MSDAUN+ achieve a better reconstruction quality at all sampling rates, particularly
at low CS ratios.

Fig. 4 and Fig. 5 show the visual comparisons of challenging images when a CS ratio of
25% and 50%, respectively. The images generated by our MSDAUN and MSDAUN+ are
visually superior and more consistent with the original images. Our MSDAUN provides
higher fidelity and better detail compared to these methods. The experimental results
demonstrate that, compared to similar methods, our MSDAUN has the best performance
under low measurement rates, accurately reconstructing fine textures and better meeting
application requirements.

4.3. Ablation Study

Effect of Multi-scale Architecture. We first conducted an ablation experiment on the
multi-scale architecture with a CS ratio of 50%. Our architecture addresses the performance
saturation and the difficulty (Zhang et al., 2020a; You et al., 2021a) of simple expansion by
employing a deep multi-scale unfolding approach. We have constructed both regular and
single-scale W-shaped variants, where the former adopts a conventional architecture, and
the latter is denoted as MSDAUN∗, replacing the SConv (·) and TConv (·) in Fig. 3(c) with
regular conv layers to expand the feature capacity H

r × W
r × r2C, as multi-scale awareness

is lost.

Table. 2 investigates the comparable networks with different stage numbers Ks and fea-
ture dimensions C = D = d. It is observed that the single-scale MSDAUN∗ outperforms
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the Plain-MSDAUN variant of the ordinary FD, but with a significant increase in time
complexity. Our MSDAUN, which is highly flexible and comparable to MSDAUN∗, signif-
icantly reduces inference time and enhances accuracy by focusing on feature refinement at
smaller scales. When K ≥ 40 and d ≥ 32, the performance of the ordinary variant tends
to saturate, but MSDAUN still has room for expansion. It should be noted that even the
lightest MSDAUN variant with K = 1 and 2.9M parameters can achieve higher accuracy
and is 11 times faster than the MADUN (Song et al., 2021) with 3.1M parameters, thereby
validating the necessity of multi-scale expansion generalization.

Ablation of TAT. We conducted a carefully designed ablation study on the components
of the TAT sub-module in the case of CS ratio = 25% with the results presented in Table. 3.
where ”IF” denotes the inertial force implemented through a simple method akin to Ochs
et al. (2014), and ”FD” indicates that the entire iterative process is conducted in the feature
domain. Compared to Case (a), Case (b) achieved a 1.34 dB improvement, demonstrating
the superiority of DUN over scenarios where only a single neural network is incorporated
within the structure. Subsequently, the performance could be significantly enhanced by
another 1.09 dB upon employing ”FD” (as shown in Case (c)). We also conducted a detailed
comparative experiment of the inertial force across Cases (c), (d), and (e), proving that our
IGTA block can more fully leverage the effect of the inertial force. As illustrated in Cases
(e) and (f), the application of IGTA and GDTA blocks yields superior performance. Our
proposed TAT submodule effectively combines the gradient descent algorithm and texture
features, and fully exploits structural characteristics.

5. Conclusion

This paper introduces a novel Multi-Scale Dual-Attention Unfolding Network (MSDAUN)
for Compressed Sensing (CS), which employs a cross-stage multi-scale deep reconstruc-
tion module D in each iteration, comprising multiple attention modules. Specifically, we
propose a Texture Attention Transformer (TAT) module, which consists of dual texture
attentions: Inertia-Guided Texture Attention (IGTA) and Gradient Descent Texture At-
tention (GDTA). The IGTA module connects reconstruction information with texture path
information, aiding in the effective computation of texture attention. The GDTA module
utilizes gradient descent steps and inertial terms to guide the fine integration of channel
features, allowing the texture path to focus on the recovery of textural details. Finally,
the texture details are fused into the final iterative reconstruction structure, enabling more
precise image reconstruction. Extensive experiments demonstrate that our MSDAUN ex-
hibits lower complexity and superior performance compared to existing SOTA techniques.
In the future, we aim to extend our MSDAUN to other image inverse problems and video
applications.
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