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Abstract

Correlation analysis is a fundamental step in
uncovering meaningful insights from complex
datasets. In this paper, we study the problem of de-
tecting correlations between two random graphs
following the Gaussian Wigner model with unla-
beled vertices. Specifically, the task is formulated
as a hypothesis testing problem: under the null
hypothesis, the two graphs are independent, while
under the alternative hypothesis, they are edge-
correlated through a latent vertex permutation,
yet maintain the same marginal distributions as
under the null. We focus on the scenario where
two induced subgraphs, each with a fixed num-
ber of vertices, are sampled. We determine the
optimal rate for the sample size required for cor-
relation detection, derived through an analysis of
the conditional second moment. Additionally, we
propose a polynomial-time algorithm that signifi-
cantly reduces running time.

1. Introduction
Understanding the correlation between datasets is one of
the most significant tasks in statistics. In many applications,
the observations may not be the familiar vectors but rather
graphs. Recently, there have been many studies on the
problem of detecting graph correlation and recovering the
alignments of two correlated graphs. This problem arises
across various domains:

• In computer vision, 3-D shapes can be represented
as graphs, where nodes are subregions and weighted
edges represent adjacency relationships between dif-
ferent regions. A fundamental task for pattern recog-
nition and image processing is determining whether
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two graphs represent the same object under different
rotations (Berg et al., 2005; Mateus et al., 2008).

• In natural language processing, each sentence can be
represented as a graph, where nodes correspond to
words or phrases, and the weighted edges represent
syntactic and semantic relationships (Hughes & Ram-
age, 2007). The ontology alignment problem refers to
uncovering the correlation between knowledge graphs
that are in different languages (Haghighi et al., 2005).

• In computational biology, protein–protein interactions
(PPI) and their networks are crucial for all biological
processes. Proteins can be regarded as vertices, and
the interactions between them can be formulated as
weighted edges (Singh et al., 2008; Vogelstein et al.,
2015).

Following the hypothesis testing framework proposed in
Barak et al. (2019), we formulate the graph correlation
detection problem in Problem 1.1. For a weighted graph
G with vertex set V (G) and edge set E(G), the weight
associated with each edge uv is typically denoted as βuv(G)
for any u, v ∈ V (G).
Problem 1.1. Let G1 and G2 be two weighted random
graphs with vertex sets V (G1), V (G2) and edge sets
E(G1), E(G2). Under the null hypothesis H0, G1 and G2

are independent; under the alternative hypothesis H1, there
exists a correlation between E(G1) and E(G2). Given G1

and G2, the goal is to test H0 against H1.

A variety of studies have extensively investigated detection
problems. However, the previous studies typically required
full observation of all edges in G1 and G2 for detection,
which is impractical when the entire graph is unknown in
certain scenarios. In such cases, graph sampling—the pro-
cess of sampling a subset of vertices and edges from the
graph—becomes a powerful approach for exploring graph
structure. This technique has been widely used in various
settings, as it allows for inference about the graph without
needing full observation (Leskovec & Faloutsos, 2006; Hu
& Lau, 2013). In fact, there are several motivations leading
us to consider the graph sampling method:

• Lack of data. In social network analysis, the entire
network is often unavailable due to API limitations.
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As a result, researchers typically select a subset of
users from the network, which essentially constitutes a
sampling of vertices (Papagelis et al., 2011).

• Testing costs. The Protein Interaction Network is a
common focus in biochemical research. However, ac-
curately testing these interactions can be prohibitively
expensive. As a result, testing methods based on sam-
pled graphs are often employed (Stumpf et al., 2005).

• Visualization. The original graph is sometimes too
large to be displayed on a screen, and sampling a sub-
graph provides a digestible representation, making it
easier for visualization (Wu et al., 2016).

In this paper, we consider sampling induced subgraphs for
testing H0 against H1 when given two random graphs G1

and G2 with |V (G1)| = |V (G2)| = n. We randomly sam-
ple two induced subgraphs G1, G2 with s vertices from G1

and G2, respectively. An induced subgraph of a graph is
formed from a subset of the vertices of the graph, along with
all the edges between them from the original graph. Specifi-
cally, the sampling process for G1 and G2 is as follows: we
first independently select vertex sets V (G1) ⊆ V (G1) and
V (G2) ⊆ V (G2) with |V (G1)| = |V (G2)| = s, and then
retain the weighted edge between V (G1) and V (G2) from
the original graphs. We assume s ≤ n throughout the paper.

1.1. Main Results

In this subsection, we present the main results of the pa-
per. Numerous graph models exist, with the Gaussian
Wigner model being a prominent example (Ding et al.,
2021; Fan et al., 2023), under which the weighted edges
βuv(G) follow independent standard normals for any ver-
tices u, v ∈ V (G). This paper focuses on the Gaussian
Wigner model with vertex set size n. Under the null hypoth-
esis H0, G1 and G2 follow independent Gaussian Wigner
model with n vertices. Under the alternative hypothesis
H1, G1 and G2 follow the following correlated Gaussian
Wigner model.

Definition 1.2 (Correlated Gaussian Wigner model). Let π∗

denote a latent bijective mapping from V (G1) to V (G2).
We say that a pair of graphs (G1,G2) are correlated Gaus-
sian Wigner graphs if each pair of weighted edges βuv(G1)
and βπ∗(u)π∗(v)(G2) for any u, v ∈ V (G1) are correlated
standard normals with correlation coefficient ρ ∈ (0, 1).

Let Q and P denote the probability measures for the sam-
pled subgraphs (G1, G2) under H0 and H1, respectively.
We then focus on the following two detection criteria.

Definition 1.3 (Strong and weak detection). We say a test-
ing statistic T = T (G1, G2) with a threshold τ achieves

• strong detection, if the sum of Type I and Type II errors

converges to 0 as n → ∞:

lim
n→∞

[P (T < τ) +Q (T ≥ τ)] = 0;

• weak detection, if the sum of Type I and Type II errors
is bounded away from 1 as n → ∞:

lim
n→∞

[P (T < τ) +Q (T ≥ τ)] < 1.

It is well-known that the minimal value of the sum of
Type I and Type II errors between P and Q is 1 −
TV(P,Q) (see, e.g., Polyanskiy & Wu (2025, Theo-
rem 7.7)), achieved by the likelihood ratio test, where
TV (P,Q) = 1

2

∫
| dP − dQ| is the total variation dis-

tance between P and Q. Thus strong and weak de-
tection are equivalent to limn→∞ TV (P,Q) = 1 and
limn→∞ TV (P,Q) > 0, respectively. We then establish
the main results of correlation detection in the Gaussian
Wigner model.

Theorem 1.4. There exist universal constants C,C such
that, for any 0 < ρ < 1, if s2 ≥ C

(
n logn

log(1/(1−ρ2)) ∨ n
)

,

TV(P,Q) ≥ 0.9.

Moreover, if s2 = ω(n), TV (P,Q) = 1− o(1).

Conversely, if s2 ≤ C
(

n logn
log(1/(1−ρ2)) ∨ n

)
,

TV(P,Q) ≤ 0.1.

Moreover, if s2 ≤ Cn logn
log(1/(1−ρ2)) or s2 = o(n), TV (P,Q) =

o(1).

The proof of Theorem 1.4 is deferred to Appendix A. Theo-
rem 1.4 implies that, for the hypothesis testing problem
between H0 and H1 when sampling two induced sub-
graphs, the optimal rate for the sample size s is of the order(

n logn
log(1/(1−ρ2)) ∨ n

)1/2
. Above this order, detection is pos-

sible, while below it, detection is impossible. Specifically,
when Cn logn

log(1/(1−ρ2)) > n2, the possibility condition requires
s > n in the above Theorem. However, we assume that
the sample size s ≤ n, which indicates that there is no the-
oretical guarantee on detection, even when we sample the
entire graph. Indeed, it is shown in Wu et al. (2023) that the
detection threshold on ρ in the fully correlation Gaussian
Wigner model is ρ2 ≍ logn

n . Our results match the thresh-
olds established in the previous work up to a constant for
the special case s = n.

The possibility results can serve as a criterion for successful
correlation detection in practice. For example, in computa-
tional biology, one may sample subgraphs to reduce testing
costs, and the possibility results indicate when accurate

2



Correlation Detection

detection remains feasible. Conversely, the impossibility
results offer a theoretical tool for privacy protection. For in-
stance, in social network de-anonymization, they imply that
no test can succeed under certain conditions, thus providing
a theoretical guarantee of privacy for anonymized networks.

1.2. Related Work

Graph matching The problem of graph matching refers
to finding a correspondence between the nodes of differ-
ent graphs (Caetano et al., 2007; Livi & Rizzi, 2013). Re-
cently, there have been many studies on the analysis of
matching two correlated random graphs. In addition to
the Gaussian Wigner model, another important model is
the Erdős-Rényi model (Erdős & Rényi, 1959), where the
edge follows Bernoulli distribution instead of normal dis-
tribution. As shown in Cullina & Kiyavash (2016; 2017);
Hall & Massoulié (2023), some sufficient and necessary
conditions for the matching problem in the Erdős-Rényi
model were provided. The optimal rate for graph match-
ing in the Erdős-Rényi model has been established in Wu
et al. (2022), and the constant was sharpened by analyzing
the densest subgraph in Ding & Du (2023). There are also
many extensions on Gaussian Wigner model and correlated
Erdős-Rényi graph model, including the inhomogeneous
Erdős-Rényi model (Rácz & Sridhar, 2023; Ding et al.,
2023b), the partially correlated graphs model (Huang et al.,
2024), the correlated stochastic block model (Chen et al.,
2024; 2025), the multiple correlated graphs model (Ameen
& Hajek, 2024; 2025), and the correlated random geometric
graphs model (Wang et al., 2022).

Efficient algorithms and computational hardness There
are many algorithms on the correlation detection and graph
matching problem, including percolation graph matching
algorithm (Yartseva & Grossglauser, 2013), subgraph match-
ing algorithm (Barak et al., 2019), message-passing algo-
rithm (Piccioli et al., 2022), and spectral algorithm (Fan
et al., 2023), while some algorithms may be computationally
inefficient. There are also many efficient algorithms, based
on the different correlation coefficient, including Babai et al.
(1980); Bollobás (1982); Dai et al. (2019); Ganassali &
Massoulié (2020); Ding et al. (2021); Mao et al. (2023a);
Ding & Li (2023); Mao et al. (2023b); Araya et al. (2024);
Ding & Li (2024); Mao et al. (2024); Ganassali et al. (2024);
Muratori & Semerjian (2024).

The low-degree likelihood ratio (Hopkins & Steurer, 2017;
Hopkins, 2018) has emerged as a framework for studying
computational hardness in high-dimensional statistical in-
ference. It conjectures that polynomial-time algorithms
succeed only in regimes where low-degree statistics suc-
ceed. Based on the low-degree conjecture, the recent work
by Ding et al. (2023a); Mao et al. (2024) established suffi-
cient conditions for computational hardness results on the

recovery and detection problems.

1.3. Contributions and Outlines

In this paper, we derive the optimal rate on sample size for
correlation detection in the Gaussian Wigner model. Specifi-
cally, we prove that the optimal sample complexity is of rate

s ≍
(

n logn
log(1/(1−ρ2)) ∨ n

)1/2
. We also propose a polynomial

algorithm that significantly reduces computational cost.

In Sections 2 and 3, we prove the possibility results and
impossibility results on sample size, respectively. Section 4
introduces our polynomial algorithm for correlation detec-
tion. Then, we run some numerical experiments in Section 5
to verify the effectiveness for our algorithm proposed in Sec-
tion 4. Finally, Section 6 offers further discussion and future
research directions, and the appendices contain detailed
proofs and additional experimental results.

2. Possibility Results
In this section, we prove the possibility results in Theo-
rem 1.4 by analyzing the error probability P (T < τ) +
Q (T ≥ τ) under different regimes of ρ, which provides an
upper bound for the optimal sample complexity. Given a do-
main subset S ⊆ V (G1) and an injective mapping π : S 7→
V (G2), along with a bivariate function f : R×R 7→ R, we
define the f−similarity graph Hf

π as follows. The vertex
set of Hf

π is V (Hf
π) = V (G1), and for each edge e, the

weighted edge is defined as

βe(Hf
π) =

{
f
(
βe(G1), βπ(e)(G2)

)
if e ∈

(
S
2

)
0 otherwise

, (1)

where π(e) denotes the edge π(u)π(v) for any edge e = uv.
Let m ≜ (1−ϵ)s2

n for some constant 0 < ϵ < 1, and denote
Ss,m as the set of injective mappings π : S ⊆ V (G1) 7→
V (G2) with |S| = m. Let e

(
Hf

π

)
≜
∑

e∈E(G1)
βe

(
Hf

π

)
define the sum of weighted edges in Hf

π . In fact, the quantity
e(Hf

π) can be regarded as a similarity score between two
graphs. Our test statistic takes the form

T (f) = max
π∈Ss,m

e
(
Hf

π

)
= max

π∈Ss,m

∑
e∈E(G1)

βe

(
Hf

π

)
. (2)

For simplicity, we write T for T (f) when the choice of f
is clear from the context. By the detection criteria in Defini-
tion 1.3, it suffices to bound the Type I error Q (T (f) ≥ τ)
and the Type II error P (T (f) < τ) for some appropriate
threshold τ . In the following, we outline a general recipe to
derive an upper bound for error probabilities.

Type I error. Under the null hypothesis H0, the sampled
subgraphs G1 and G2 are independent. Given a bivariate
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function f and a threshold τ , it should be noted that the
distribution of the f−similarity graph Hf

π follows the same
distribution for any π ∈ Ss,m. Consequently, applying the
union bound yields that

Q (T ≥ τ) ≤ |Ss,m|Q
(
e
(
Hf

π

)
≥ τ

)
.

We then bound the tail probability by a standard Chernoff
bound Q

(
e
(
Hf

π

)
≥ τ

)
≤ exp (−λτ)E

[
exp

(
λe
(
Hf

π

))]
.

See (14) in Appendix B.1 for more details.

Type II error. Under the alternative hypothesis H1, recall
that π∗ denotes the latent bijective mapping from V (G1) to
V (G2). For the induced subgraphs G1, G2 sampled from
G1,G2, we denote the set of common vertices as

Sπ∗ ≜ V (G1) ∩ (π∗)
−1

(V (G2)), (3)

Tπ∗ ≜ π∗(V (G1)) ∩ V (G2). (4)

We note that the restriction of π∗ to Sπ∗ is a bijective map-
ping between Sπ∗ and Tπ∗ , and thus |Sπ∗ | = |Tπ∗ |. In our
random sampling models, the vertices of G1 and G2 are
independent and identically sampled without replacement
from the two graphs G1 and G2, which yields the following
Lemma regarding the sizes of Sπ∗ and Tπ∗ .

Lemma 2.1. When randomly sampling vertex sets
V (G1), V (G2) from V (G1), V (G2) with |V (G1)| =
|V (G2)| = s, the size of common vertex set in (3) follows a
Hypergeometric distribution HG(n, s, s). Specifically,

P [|Sπ∗ | = t] =

(
s

t

)(
n− s

s− t

)/(
n

s

)
, for any t ∈ [s].

We then establish the main ingredients for controlling the
Type II error. Under the distribution P , given f and τ ,

{T < τ} = {T < τ, |Sπ∗ | < m} ∪ {T < τ, |Sπ∗ | ≥ m}
⊆{|Sπ∗ | < m} ∪ {T < τ, |Sπ∗ | ≥ m} . (5)

Since E [|Sπ∗ |] = s2

n > m, the first event {|Sπ∗ | < m}
can be bounded by the concentration inequality for Hy-
pergeometric distribution in Lemma D.3. For the second
event, it can be bounded by P

(
T < τ

∣∣ |Sπ∗ | ≥ m
)
. Under

the event {|Sπ∗ | ≥ m}, there exists π∗
m ∈ Ss,m such that

π∗
m = π∗ on its domain set dom (π∗

m). The error proba-
bility of the event {T < τ, |Sπ∗ | ≥ m} can be bounded by
P
(
e
(
Hf

π∗
m

)
< τ

∣∣ |Sπ∗ | ≥ m
)

. We then use the concen-
tration inequality to bound the tail probability. See (17) for
more details.

The quantity e(Hf
π) measures the similarity score of a map-

ping π. Under the null hypothesis, e(Hf
π) has a zero mean

for all π, whereas under the alternative hypothesis, its mean
with π = π∗

m is strictly positive owing to the underlying

correlation. We derive concentration inequalities to ensure
that e

(
Hf

π∗
m

)
exceeds the maximum spurious score aris-

ing from stochastic fluctuations under the null, as shown in
Propositions 2.2 and 2.3.

2.1. Detection by Maximal Overlap Estimator

In this subsection, we use the test statistic (2) with f(x, y) =
xy for possibility results. Indeed, this estimator is equivalent
to maximizing the overlap on induced subgraphs between
G1 and G2. Specifically, we have the following Proposition.

Proposition 2.2. There exists a universal constant C1 > 0
such that, for any 0 < ρ < 1 and τ =

(
m
2

)
ρ
2 , if s2 ≥

C1n logn
ρ2 ,

P (T < τ) +Q (T ≥ τ) = o(1).

Proposition 2.2 provides a sufficient condition on strong
detection for any 0 < ρ < 1. We refer readers to Ap-
pendix B.1 for the detailed proof. Since 1− TV(P,Q) ≤
P (T < τ) + Q (T ≥ τ), it achieves the optimal rate in
Theorem 1.4 when ρ = 1 − Ω(1). However, the rate is
sub-optimal when ρ = 1− o(1). In fact, s = 2 succeeds for
detection when ρ = 1 by comparing the difference between
all edges. We will use a new estimator in Subsection 2.2 to
derive the optimal rate.

2.2. Detection by Minimal Mean-Squared Error
Estimator

In this subsection, we use the test statistic (2) with f(x, y) =
− 1

2 (x− y)2 and focus on the scenario where ρ > 1− e−6.
Indeed, this estimator is equivalent to minimizing the mean
squared error between the induced subgraphs of size m in
G1 and G2, respectively. Indeed, the expected mean-square
error for a correlated pair E

[(
βe(G1)− βπ∗(e)(G2)

)2]
is

2(1− ρ), while it stays bounded away from 1 for an uncor-
related pair. As a result, the choice of f effectively distin-
guishes between H0 and H1 under strong signal condition.
We now state the following Proposition.

Proposition 2.3. There exists a universal constant C2 > 0
such that, for any 1− e−6 < ρ < 1 and τ = 2

(
m
2

)
(ρ− 1),

if s2 ≥ C2

(
n logn

log(1/(1−ρ)) ∨ n
)

,

P (T < τ) +Q (T ≥ τ) ≤ 0.1.

Moreover, if s2

n = ω(1), P (T < τ) +Q (T ≥ τ) = o(1).

We refer readers to Appendix B.2 for the detailed proof.
Proposition 2.3 provides sufficient conditions on strong and
weak detection when ρ is close to 1. This result fills the
gap for the optimal rate of s in Proposition 2.2 when ρ =
1 − o(1). In view of Propositions 2.2 and 2.3, we note
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that ρ2 ≍ log
(
1/(1− ρ2)

)
when 0 < ρ ≤ 1 − e−6 and

log (1/(1− ρ)) ≍ log
(
1/(1− ρ2)

)
when 1− e−6 < ρ <

1. Then, there exists a universal constant C ≥ C1∨C2 such
that

C

log (1/(1− ρ2))
≥

{
C1

ρ2 if 0 < ρ ≤ 1− e−6

C2

log(1/(1−ρ)) if 1− e−6 < ρ < 1
.

We note that Cn logn
ρ2 = C

(
n logn

ρ2 ∨ n
)

in Proposition 2.2,
and thus proving the possibility results in Theorem 1.4.
Remark 2.4. The possibility results can be extended to sub-
Gaussian assumption on the weighted edges. The bound
for the moment generating function holds under the sub-
Gaussian assumption, and consequently, the Chernoff bound
remains valid. See Remark B.1 for more details.
Remark 2.5. In the previous work (Wu et al., 2023) on the
correlated Gaussian Wigner model, the correlation exists
over the entire graph. The maximal overlap estimator and
the minimal mean-square error estimator over two graphs
are equivalent since the sum of squares of the weighted
edges is fixed. However, in our sampling model, the sum
of squares of the weighted edges in the two subgraphs
are random variables, and thus the two estimators dif-
fer. Indeed, the Maximum Likelihood Estimator (MLE)
is maxπ∈Ss,|Sπ∗ | e

(
Hf

π

)
with f(x, y) = −ρ2(x2 + y2) +

2ρxy, where f(x, y) ≍ ρxy when ρ = 1 − Ω(1) and
f(x, y) ≍ −(x − y)2 when ρ = 1 − o(1). The choice
of different estimators reflects the use of MLE under differ-
ent regimes. See (31) in Appendix C.2 for details.

3. Impossibility Results
In this section, we establish the impossibility results for the
detection problem, which provides a lower bound on the
optimal sample complexity. We first present an overview
of the proof. Recall that Sπ∗ and Tπ∗ are the sets of com-
mon vertices defined in (3) and (4), respectively. Under our
sampling model, there exists a latent mapping between Sπ∗

and Tπ∗ under the hypothesis H1. When equipped with
the additional knowledge of the common vertex sets, our
problem can be reduced to detection with full observations
on smaller correlated Gaussian Wigner model, the detection
threshold for which is established in Wu et al. (2023). As
shown in Lemma 2.1, the size of Sπ∗ and Tπ∗ follows a hy-
pergeometric distribution. Using the concentration inequal-
ity (36), the size of Sπ∗ satisfies |Sπ∗ | ≤ (1 + ϵ)E [|Sπ∗ |]
with high probability. Therefore, the impossibility results
from the previous work on full observations remain valid
when the number of correlated nodes is substituted with
(1 + ϵ)E [|Sπ∗ |]. However, such a reduction only proves
tight when the correlation is weak. We will establish the re-
maining regimes by the conditional second moment method.

For notational simplicity, we use TV(P,Q) to denote

TV(P(G1, G2),Q(G1, G2)) in this paper. By Tsybakov
(2009, Equation 2.27), the total variation distance between
P and Q can be upper bounded by the second moment:

TV (P,Q) ≤

√
EQ

(
P
Q

)2

− 1. (6)

The likelihood ratio is defined as

P(G1, G2)

Q(G1, G2)
=

1

n!

∑
π∈Sn

P(G1, G2|π)
Q(G1, G2)

, (7)

where Sn denotes the set of mappings π : V (G1) 7→
V (G2) between two original graphs. Note that sometimes
certain rare events under P can cause the unconditional sec-
ond moment to explode, while TV (P,Q) remains bounded
away from one. To circumvent such catastrophic events, we
can compute the second moment conditional on such events.

We consider the following event:

E ≜

{
(G1, G2, π) : |π(V (G1)) ∩ V (G2)| ≤

(1 + ϵ)s2

n

}
.

(8)

By Lemma 2.1, the size of common vertex set |π(V (G1))∩
V (G2)| follows hypergeometric distribution HG(n, s, s) un-
der P . In this paper, we define the conditional distribu-
tion as P ′(G1, G2, π) = P (G1, G2, π|E). By Lemma D.3,
we have P (E) = o(1) when s = ω

(
n1/2

)
. Using

TV(P,Q) ≤ TV(P ′,Q)+o(1) and applying (6) on P ′ and
Q yields that a sufficient condition for TV(P,Q) = o(1) is

EQ

(
P′

Q

)2
= 1 + o(1). See (25) for more details.

3.1. Weak correlation

In this subsection, we present the impossibility results for
weak correlation regime where 0 < ρ2 < n−1/2.

Proposition 3.1. For any 0 < ρ2 < n−1/2, if s2 ≤
n logn

2 log(1/(1−ρ2)) , then TV(P,Q) = o(1).

We note that the total variation distance monotonically in-
creases by the sample size s. In view of Proposition 3.1, we
only need to tackle with the situation s2 = n logn

2 log(1/(1−ρ2)) ,

where s = ω
(
n1/2

)
since ρ2 < n−1/2. Therefore, a suffi-

cient condition for TV(P,Q) = o(1) is TV (P ′,Q) = o(1)
by the triangle inequality. The proof of TV(P ′,Q) = o(1)
can be reduced to the lower bound in Wu et al. (2023) using
a data processing inequality when given the common vertex
sets Sπ∗ and Tπ∗ . Under weak correlation, the bottleneck
is detecting the existence of latent mapping π∗. The de-
tection is impossible even with the additional knowledge
on the location of common vertices. The detailed proof of
Proposition 3.1 is deferred to Appendix B.3.
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3.2. Strong correlation

In this subsection, we present the impossibility results for
strong correlation graphs where n−1/2 ≤ ρ2 < 1. Let
π̃ be an independent copy of π. A key ingredient in the
analysis of conditional second moment is the analysis of
P(G1,G2|π)
Q(G1,G2)

P(G1,G2|π̃)
Q(G1,G2)

. We refer readers to Appendix B.4
for the details.

We then analyze the terms P(G1,G2|π)
Q(G1,G2)

and P(G1,G2|π̃)
Q(G1,G2)

. Re-
call the common vertex sets Sπ and Tπ defined in (3)
and (4), respectively. For any e /∈

(
Sπ

2

)
and e′ /∈

(
Tπ

2

)
,

βe(G1) and βe′(G2) are independent under P , while
under the null hypothesis distribution Q they are also
independent. Therefore, the term P(G1,G2|π)

Q(G1,G2)
can be

decomposed into
∏

e∈
(
Sπ

2

) ℓ(βe(G1), βπ(e)(G2)), where

ℓ(a, b) ≜
P(βe(G1)=a,βπ(e)(G2)=b)
Q(βe(G1)=a,βπ(e)(G2)=b)

for any a, b ∈ R is the

ratio of density functions. We note that there are corre-
lations between

(
Sπ

2

)
,
(
Sπ̃

2

)
,
(
Tπ

2

)
and

(
Tπ̃

2

)
, yielding that

P(G1,G2|π)
Q(G1,G2)

and P(G1,G2|π̃)
Q(G1,G2)

are correlated. To deal with the
correlation, our main idea is to decompose the edge sets
into independent parts. To formally describe all correlation
relationships, we use the correlated functional digraph of
two mappings π and π̃ between a pair of graphs introduced
in Huang et al. (2024).
Definition 3.2 (Correlated functional digraph). Let π and π̃
be two bijective mappings between V (G1) and V (G2) and
Sπ, Tπ, Sπ̃, Tπ̃ be the sets of common vertex defined in (3)
and (4). The correlated functional digraph of the functions
π and π̃ is constructed as follows. Let the vertex sets be(
Sπ

2

)
∪
(
Sπ̃

2

)
∪
(
Tπ

2

)
∪
(
Tπ̃

2

)
. We first add every edge e 7→ π(e)

for e ∈
(
Sπ

2

)
, and then merge each pair of nodes (e, π̃(e))

for e ∈
(
Sπ̃

2

)
into one node.

After merging all pairs of nodes, the degree of each vertex
in the correlated functional digraph is at most two. There-
fore, the connected components of the correlated functional
digraph consist of paths and cycles. For example, for a
path (e1, π(e1), · · · , ej , π(ej)), where e1, · · · , ej are edges
in G1, we have π̃(e2) = π(e1), · · · , π̃(ej) = π(ej−1);
for a cycle (e1, π(e1), · · · , ej , π(ej)), we have π̃(e2) =
π(e1), · · · , π̃(ej) = π(ej−1), π̃(e1) = π(ej). By decom-
posing the connected components, the analysis of edge sets
is separated into independent parts. Let P and C denote the
collections of vertex sets belonging to different connected
paths and cycles, respectively. For any P ∈ P and C ∈ C,
we define ℓπe (G1, G2) = ℓ

(
βe(G1), βπ(e)(G2)

)
and

LP ≜
∏

e∈(Sπ
2 )∩P

ℓπe (G1, G2)
∏

e∈(Sπ̃
2 )∩P

ℓπ̃e (G1, G2),

LC ≜
∏

e∈(Sπ
2 )∩C

ℓπe (G1, G2)
∏

e∈(Sπ̃
2 )∩C

ℓπ̃e (G1, G2).

Note that the sets from P and C are disjoint. Consequently,
for any P, P ′ ∈ P and C,C ′ ∈ C, LP , LP ′ , LC and LC′

are mutually independent. Furthermore, the expectations of
LP and LC can be derived from the following Lemma.

Lemma 3.3. For any P ∈ P, C ∈ C, we have EQ (LP ) = 1
and EQ (LC) =

1
1−ρ2|C| .

By Lemma 3.3 and the joint independence between different
paths and cycles, we have

EQ

[
P(G1, G2|π)
Q(G1, G2)

P(G1, G2|π̃)
Q(G1, G2)

]
=EQ

[∏
P∈P

LP

∏
C∈C

LC

]
=
∏
C∈C

(
1

1− ρ2|C|

)
. (9)

The cycles set C plays a key role in the analysis of condi-
tional second moment. In order to analyze the properties of
C in depth, for any π and π̃, we define the core set as

I∗ ≜ I∗(π, π̃) ≜ ∪C∈C ∪e∈C ∪v∈V (e)∩V (G1)v, (10)

where V (e) denotes the two vertices of edge e. Indeed, I∗

is the intersection set between V (G1) and all the vertices of
edges in cycle set C. In fact, the quantity

∏
C∈C

(
1

1−ρ2|C|

)
relies significantly on I∗. We then show the following
lemma on the properties of I∗.

Lemma 3.4 (Properties of the core set). For I∗ in (10) and
any t ≤ s, we have

I∗ = argmax
I⊆V (G1),π(I)=π̃(I)

|I|, P [|I∗| = t] ≤
( s
n

)2t
.

We then propose the following Proposition.

Proposition 3.5. For any n−1/2 ≤ ρ2 < 1, if s2 ≤
n logn

8 log(1/(1−ρ2)) , then TV (P,Q) = o(1).

The detailed proof of Proposition 3.5 is deferred to Ap-
pendix B.4. In the proof, we apply the conditional second
moment method with the conditional distribution P ′ =
P(·|E), where E is defined in (8). The analysis of the condi-
tional second moment relies significantly on the decomposi-
tion of cycles and paths of a correlated functional digraph.
By Lemma 3.3, the conditional second moment can be re-
duced to the calculation on cycles, while the vertex set
induced by all cycles is exactly I∗. Combining this with the
properties of I∗ in Lemma 3.4, we finish the proof of Propo-
sition 3.5. In fact, under the strong correlation condition,
detecting π∗ is no longer the bottleneck. We instead use
a more delicate analysis based on the conditional second
moment method.

By (36) in Lemma D.3, there exists C ≤ 1
8 such that, when

s2 ≤ Cn, we have P [|Sπ∗ | = 0] ≥ 0.9, which implies

6
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that TV(P,Q) ≤ 0.1. Specifically, when s2 = o(n),
P [|Sπ∗ | = 0] = 1 − o(1), and thus TV (P,Q) = o(1).
Combining this with Propositions 3.1 and 3.5, we prove the
impossibility results in Theorem 1.4.
Remark 3.6. The second moment under our induced sub-
graph sampling model is equivalent to that on the vertex
set induced by I∗. When fixing I∗, it is equal to the sec-
ond moment of correlated Gaussian Wigner model with
π : I∗ → π(I∗). However, I∗ = I∗(π, π̃) is a random
variable of π, π̃, and hence a more thorough analysis on I∗

is needed, as shown in Lemma 3.4.

4. Algorithm
In this section, we present an efficient algorithm for de-
tection. In Theorem 1.4, we show that the estimator (2)
achieves the optimal sample complexity for correlation de-
tection. However, the estimator requires searching over
Ss,m, with time complexity

(
s
m

)2 · m!, resulting in poor
performance for large graphs. Next, we propose an efficient
algorithm to approximate the estimator in (2).

When the full observations of the graphs are given, there
are many different efficient algorithms for detecting cor-
relation and recovering graph matching. For instance, it
is shown in Mao et al. (2023b; 2024) that counting trees
is an efficient way to detect correlation and recover graph
matching when the correlation coefficient ρ >

√
α, where

α ≈ 0.338 is Otter’s constant introduced in Otter (1948).
The message-passing algorithm (Piccioli et al., 2022; Ganas-
sali et al., 2024) is also an efficient algorithm in the Erdős-
Rényi model, which makes substantial use of the local tree
structure. Another approach for graph matching is relaxing
the original problem to a convex optimization problem (Fan
et al., 2023). Additionally, there are approaches based on
initial seeds (Mossel & Xu, 2020) and iterative methods
(Ding & Li, 2024) addressing this problem.

However, for the partial alignment problem and partial cor-
relation detection problem, where only part of the original
graphs are given, it becomes more challenging to find an
efficient algorithm. One approach is to use deep learning
techniques (Jiang et al., 2022; Wang et al., 2023; Ratnayaka
et al., 2024), while another way is to use low-degree struc-
tures, such as cliques or trees (Sharma et al., 2018). In this
paper, we propose an algorithm that finds the initial seeds by
matching the cliques, and then iteratively constructs the re-
maining mapping. Three main components of our algorithm
are outlined as follows.

• Match the small cliques. Given two graphs G1, G2 and
integers K1, N1, N2 and a bivariate function f , we first
randomly pick N1 vertex set V1, · · · , VN1

⊆ V (G1)
with |V1| = · · · = |VN1 | = K1 and Vi ̸= Vj , for any
1 ≤ i < j ≤ N1. For any 1 ≤ i ≤ N1, define the

injection πi : Vi 7→ V (G2) as

πi ≜ argmax
π:Vi 7→V (G2)

π injection

∑
e∈(Vi

2 )

βe

(
Hf

π

)
, (11)

where Hf
πi

is the f−similarity graph defined in (1).
We then sort the values

∑
e∈(Vi

2 )
βe

(
Hf

πi

)
in decreas-

ing order and select the top N2 corresponding pairs
of (Vi, πi). Without loss of generality, we assume that
(V1, π1), · · · , (VN2 , πN2) are the top N2 pairs.

• Find seeds. Given an integer K2, for any U ⊆ [N2]
with |U | = K2, let VU ≜ ∪j∈UVj . We say U is
compatible if for any v ∈ VU , πj(v)’s are identical
for all j ∈ U such that v ∈ Vij . Let I(U) denote
the indicator function of compatible set U . If I(U) =
1, we define πU as the union of πj for any j ∈ U .
Specifically,

πU (v) = πj(v) such that v ∈ Vij , for any v ∈ VU .

The seed is then defined as

π0 = argmax
πU :I(U)=1,U⊆[N2],|U |=K2

∑
e∈(VU

2 )

βe

(
Hf

πU

)(|VU |
2

) ,

(12)

which maximize the average similarity score over U .

• Iteratively construct mappings. Define the domain
set and image set of π0 as S0 and T0, respectively.
Then, we have π0 : S0 ⊆ V (G1) 7→ T0 ⊆ V (G2).
Next, we iteratively extend the seed mapping by finding
one vertex each from V (G1) and V (G2) until |S0| =
|T0| = m. Specifically, given π0 : S0 7→ T0, let

v1, v2 = argmax
v1∈V (G1)\S0

v2∈V (G2)\T0

∑
v∈S0

f
(
βv1v(G1), βv2π0(v)(G2)

)
.

Then, we add the new mapping v1 7→ v2 to π0.
This process is repeated iteratively, updating π0 un-
til |S0| = m. Finally, we compute the test statistic∑

e∈(S0
2 )

βe

(
Hf

π0

)
. H0 is rejected if the test statistic

exceeds the given threshold τ , otherwise H0 is ac-
cepted.

The detailed algorithm is shown in Algorithm 1. Our algo-
rithm comprises three main steps. In the first step, we select
N1 vertex sets V1, · · · , VN1

of size K1 and search for injec-
tions πi from Vi to V (G2), which requires O(N1 ·sK1) time.
In the second step, we search over all subsets U ⊆ [N2]
with |U | = K2, which takes O(NK2

2 ) time. In the third
step, we iteratively expand the mapping based on our seeds,
which takes O(m2s2) time. We typically choose N1 ≍ sK1

7
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and K1 ≥ 3, and thus the overall time complexity of the
algorithm is O(N1 · sK1 +NK2

2 ).

Since only partial correspondence exists between the two
graphs under H1, finding the true mapping is challenging.
We first use small cliques of size K1 to trade accuracy for
computational efficiency, although this often results in many
incorrect mappings. To improve accuracy, we then test the
compatibility of these small mappings and merge K2 of
them to construct a larger, more accurate mapping. This
larger mapping is then used as a seed, and we iteratively
enlarge it by adding one pair at a time until the size reaches
m. This approach significantly reduces the running time
compared to directly matching the larger cliques.

As for the performance, a larger sample size s leads to
larger common vertex sets, and thus increases the number
of correct mappings in Step 1. A larger K1 corresponds
to matching larger cliques in the first step. This increases
the proportion of correct mappings within the N2 candidate
pairs when K1 is below the size of common vertex sets.
However, choosing K1 beyond this size introduces wrong
mappings. Besides, in the second step, we search over all
U ⊆ [N2] with |U | = K2 to identify the seeds. While a
larger K2 imposes a stricter matching criterion, choosing
K2 beyond the number of available correct mappings from
Step 1 will degrade performance.

The accuracy and running time depend on N1, N2,K1, and
K2, and there is a trade-off between them: larger values of
these parameters generally improve accuracy but increase
the computational cost.

5. Numerical Experiments
In this section, we provide numerical results for Algorithm 1
on synthetic data. To this end, we independently generate
100 pairs of graphs that follow the independent Gaussian
Wigner model, and another 100 pairs that follow the corre-
lated Gaussian Wigner model with correlation ρ.

Fix n = 50, s = 25, ρ = 0.99,K1 = 4,K2 = 3, N1 =

10000, N2 = 500, and ϵ = 0.01. Then, m =
⌊
(1−ϵ)s2

n

⌋
=

12. In Figure 1, we plot the histogram of our approximated
estimator

∑
e∈(S0

2 )
βe

(
Hf

π0

)
defined in Algorithm 1. We

see that the histograms under the independent model and the
correlated model are well-separated. By picking an appro-
priate threshold τ , the proposed algorithm succeeds in cor-
relation detection. We note that when K1 = 2 and K2 = 1,
Algorithm 1 is equivalent to comparing the pairwise differ-
ences of all edges, while our approach with K1 = 4 and
K2 = 3 is more effective than this trivial method.

In order to compare our test statistic under different set-
tings, we plot the Receiver Operating Characteristic (ROC)
curves by varying the detection threshold and plotting the

Algorithm 1 Clique-Based Detection Algorithm
1: Input: Two graphs G1, G2 with s vertices, mapping

size m, clique size K1, combining size K2, number of
cliques N1, number N2, threshold τ .

2: Output: Detection result H0 or H1.
3: Randomly select N1 vertices sets Vi ⊆ V (G1) with

|Vi| = K1, for any i = 1, 2, · · · , N1.
4: For each Vi, compute πi according to (11). Then,

sort the values
∑

e∈(Vi
2 )

βe

(
Hf

πi

)
in descending or-

der and select the top N2 corresponding pairs of
(Vi, πi). Without loss of generality, denote pairs as
(V1, π1), · · · , (VN2

, πN2
).

5: Find the seed mapping π0 : S0 ⊆ V (G1) 7→ T0 ⊆
V (G2) according to (12).

6: while |S0| < m do
7: for v1 ∈ V (G1)\S0 and v2 ∈ V (G2)\T0 do
8: Compute

∑
v∈S0

f
(
βv1v(G1), βv2π0(v)(G2)

)
.

9: end for
10: Find the pair (v1, v2) for the maximal value of∑

v∈S0
f
(
βv1v(G1), βv2π0(v)(G2)

)
and add v1 7→

v2 into π0.
11: end while
12: Compute

∑
e∈(S0

2 )
βe

(
Hf

π0

)
, output H1 if it exceeds τ ,

otherwise output H0.

Type II error against the Type I error. We also compute the
area under the curve (AUC), which can be interpreted as
the probability that the test statistic is larger for a pair of
correlated graphs than a pair of independent graphs.

In Figure 2, for each plot, we fix n = 50, ρ = 0.98,K1 =
4,K2 = 3, N1 = 10000, N2 = 500, ϵ = 0.01, and vary
s ∈ {10, 20, 30, 40, 50}, with m =

⌊
(1−ϵ)s2

n

⌋
. We observe

that as s increases, the ROC curve is moving toward the
upper left corner, and the AUC increases from 0.52 to 1,
indicating an improvement in the performance of our test
statistic. Indeed, by Lemma 2.1, the cardinality of common
set increases as s increase, strengthening the signal and
facilitating correlation detection.

In Figure 3, for each plot, we fix n = 50, s = 40,K1 =
4,K2 = 3, N1 = 10000, N2 = 500, ϵ = 0.01, and vary
ρ ∈ {0.95, 0.96, 0.97, 0.98, 0.99}, with m =

⌊
(1−ϵ)s2

n

⌋
=

31. We observe that as ρ increases, the ROC curve is moving
toward the upper left corner, and the AUC increases from
0.55 to 1, indicating an improvement in the performance of
our test statistic as the correlation strengthens. It turns out
that correlation detection improves as s and ρ increase.

We also compare our method with the classical Graph Edit
Distance (GED) (Sanfeliu & Fu, 1983), a widely used graph
similarity measure. When n = 50, s = 30, and ϵ = 0.01,
the AUC values for the GED-based test at ρ = 0.98, 1 −
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Figure 1. The histogram of the approximate test statistic∑
e∈(S0

2 )
βe

(
Hf

π0

)
in Algorithm 1 over 100 pairs of graphs,

where the blue one represents the correlated Gaussian Wigner
model, and the green one represents the independent graphs.
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Figure 2. Comparison for the ROC curve of the approximate test
statistic for different sample size s.

10−6, 1 − 10−7 are 0.53, 0.73, and 0.88, respectively. In
contrast, our algorithm yields significantly higher AUCs
of ρ are 0.92, 1, 1 under the same settings. These results
demonstrate the superior performance of our method in
detecting correlation in the Gaussian Wigner model. We
provide some additional experiments in Appendix E.

6. Future Directions and Discussions
This paper focuses on detecting correlation in the Gaussian
Wigner model by sampling two induced subgraphs from the
original graphs. We determine the optimal rate on the sam-
ple size for correlation detection. In comparison to detection
problem on the fully correlated Gaussian Wigner model, the
additional challenge arises from partial correlation when
sampling subgraphs. We provide a detailed analysis of the
core set when using the conditional second moment method
to derive the impossibility results. We find that the condi-
tional second moment can be reduced to the second moment
on the core set. Additionally, we propose an efficient ap-
proximate algorithm for correlation detection based on the
clique mapping technique and an iterative approach. There
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rho=0.98, AUC=0.97
rho=0.99, AUC=1.00

Figure 3. Comparison for the ROC curve of the approximate test
statistic for different correlation coefficients ρ.

are many problems to be further investigated:

• Extension to Erdős-Rényi model. Most results in this
paper can be extended to the Erdős-Rényi model. The
key difference lies in the additional parameter p control-
ling the edge connection probability. For the possibility
results, the estimator is similar to (2), with the bivariate
function f selected via MLE under the Erdős-Rényi
model. For the impossibility results, the reduction pro-
cedure provides tight bounds when p = n−Ω(1), and
a more delicate event is required for the conditional
second moment analysis when p = n−o(1), which is
similar to Proposition 3.5.

• Theoretical analysis of the efficient algorithm. We
have shown that the Algorithm 1 performs well on syn-
thetic data, while the theoretical guarantee remains an
open problem. This guarantee can serve as an upper
bound for the existence of a polynomial-time algorithm.
Moreover, since the tree-counting-based method shows
strong performance in the Erdős-Rényi model, it would
be interesting to investigate whether it remains effec-
tive in Gaussian networks.

• Computational hardness. The low-degree conjec-
ture has recently provided evidence of the computa-
tional hardness on related problems (see, e.g., Hopkins
(2018); Kunisky et al. (2019)). It is of interest to in-
vestigate the computational hardness conditions with
respect to the sample size for the correlation detection
problem using the low-degree conjecture.

• Other graph models. The sample complexity for cor-
relation detection remains unknown for many models
(e.g., the stochastic block model, the graphon model).
A natural next step is to explore whether our results
can be extended to more general settings.
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Ganassali, L. and Massoulié, L. From tree matching to
sparse graph alignment. In Conference on Learning The-
ory, pp. 1633–1665. PMLR, 2020.

Ganassali, L., Massoulié, L., and Semerjian, G. Statistical
limits of correlation detection in trees. The Annals of
Applied Probability, 34(4):3701–3734, 2024.

Ghosh, M. Exponential tail bounds for chisquared random
variables. Journal of Statistical Theory and Practice, 15
(2):35, 2021.

Haghighi, A., Ng, A. Y., and Manning, C. D. Robust textual
inference via graph matching. In Proceedings of Human
Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, pp.
387–394, 2005.
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A. Proof of Theorem 1.4
For the possibility results, by Propositions 2.2 and 2.3, if

s2 ≥

{
C1n logn

ρ2 0 < ρ ≤ 1− e−6

C2

(
n logn

log(1/(1−ρ)) ∨ n
)

1− e−6 < ρ < 1
,

then TV (P,Q) ≤ 0.1. Furthermore, if s2 = ω(n), then TV(P,Q) = o(1). Since
log(1/(1−ρ2))

ρ2 ≤ ρ2/(1−ρ2)
ρ2 = 1

1−ρ2 ≤
1

1−(1−e−6)2
for any 0 < ρ ≤ 1 − e−6, we obtain that TV (P,Q) ≤ 0.1 when s2 ≥ C1

1−(1−e−6)2
· n logn
log(1/(1−ρ2)) . Since

log(1/(1−ρ2))
log(1/(1−ρ)) = 1 + log(1/(1+ρ))

log(1/(1−ρ)) ≤ 2 for any 1 − e−6 < ρ < 1, it follows that when s2 ≥ 2C2

(
n logn

log(1/(1−ρ)) ∨ n
)

,

TV (P,Q) ≤ 0.1. Let C = C1

1−(1−e−6)2 ∨ 2C2. Then, for s2 ≥ C
(

n logn
log(1/(1−ρ2)) ∨ n

)
, we have TV (P,Q) ≤ 0.1.

For the impossibility results, by Propositions 3.1 and 3.5, if s2 ≤ n logn
8 log(1/(1−ρ2)) , then TV (P,Q) = o(1). According to the

concentration inequality (36) for the Hypergeometric distribution in Lemma D.3, there exists a constant C ≤ 1
8 such that,

when s2 ≤ Cn, we have P [|Sπ∗ | ≥ 1] ≤ 0.1, implying P [|Sπ∗ | = 0] ≥ 0.9 and thus TV (P,Q) ≤ 0.1. Additionally, when
s2 = o(n), we have P [|Sπ∗ | = 0] = 1− o(1), which implies TV (P,Q) = o(1). Therefore, if s2 ≤ C

(
n logn

log(1/(1−ρ2)) ∨ n
)

,

then TV (P,Q) ≤ 0.1. Moreover, if s2 ≤ C
(

n logn
log(1/(1−ρ2)) ∨ n

)
or s2 = o(n), we have TV (P,Q) = o(1). This concludes

the proof of Theorem 1.4.

B. Proof of Propositions
B.1. Proof of Proposition 2.2

We first upper bound Q (T ≥ τ) under the null hypothesis H0 by the Chernoff bound and union bound. For any X,Y
i.i.d.∼

N (0, 1) and λ ∈ (0, 1), we have

E [exp (λXY )] =

∫ ∫
1

2π
exp (λxy) exp

(
−x2 + y2

2

)
dxdy

=

∫ ∫
1

2π
exp

(
−1

2
(x− λy)

2

)
exp

(
−1

2
(1− λ2)y2

)
dxdy

=

∫ ∫
1

2π
exp

(
−z2

2

)
exp

(
−1

2
(1− λ2)y2

)
dzdy =

1√
1− λ2

. (13)

Let λ = ρ
2 . Recall that Ss,m denotes the set of injective mappings π : S ⊆ V (G1) 7→ V (G2) with |S| = m. For any

π ∈ Ss,m, e
(
Hf

π

)
∼
∑(m2 )

i=1 AiBi, where (Ai, Bi) are independent and identically distributed pairs of standard normals
with correlation coefficient ρ. Then, by the Chernoff bound,

Q
[
e
(
Hf

π

)
≥ τ

]
≤ exp (−λτ)E

[
exp

(
λe
(
Hf

π

))]
(14)

= exp (−λτ)E

[
m∏
i=1

exp (λAiBi)

]
(a)

≤ exp

(
−λ

(
m

2

)
ρ

2
− 1

2

(
m

2

)
log
(
1− λ2

))
= exp

(
−
(
m

2

)(
ρ2

4
+

1

2
log

(
1− ρ2

4

)))
(b)

≤ exp

(
− 1

12

(
m

2

)
ρ2
)
, (15)

where (a) is because E [λAiBi] =
1√

1−λ2
for any 1 ≤ i ≤

(
m
2

)
; (b) follows from log(1− x) ≥ − 1

3x for x = ρ2

4 ∈
[
0, 1

4

]
.

Applying the union bound, we obtain that

Q (T ≥ τ) ≤|Ss,m|Q
[
e
(
Hf

π

)
≥ τ

] (a)

≤
(
s

m

)2

m! exp

(
− 1

12

(
m

2

)
ρ2
)

(b)

≤ exp

(
m log

(
en

1− ϵ

)
− 1

12

(
m

2

)
ρ2
)
,
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where (a) is because |Ss,m| =
(
s
m

)2
m! and (15); (b) is because

(
s
m

)
m! ≤ sm,

(
s
m

)
≤
(
e·s
m

)m
and m = (1−ϵ)s2

n .

Consequently, when m− 1 ≥ 24(1+ϵ) log( en
1−ϵ )

ρ2 , we have Q (T ≥ τ) ≤ exp
(
−ϵm log

(
en
1+ϵ

))
= o(1).

We then upper bound P (T < τ) under the alternative hypothesis H1. We note that

P (T < τ)
(a)

≤ P (|Sπ∗ | < m) + P (T < τ, |Sπ∗ | ≥ m)

(b)

≤ P (|Sπ∗ | < m) + P
(
T < τ

∣∣ |Sπ∗ | ≥ m
)

(c)

≤ P (|Sπ∗ | < m) + P
(
e
(
Hf

π∗
m

)
< τ

∣∣ |Sπ∗ | ≥ m
)

(16)

(d)

≤ exp

(
−ϵ2s2

2n

)
+ exp

(
−
(
m

2

)
ρ2

4c20

)
+ exp

(
−
(
m

2

)
ρ

2c0

)
, (17)

where (a) is because of (5); (b) follows from P (T < τ, |Sπ∗ | ≥ m) ≤ P(T <τ,|Sπ∗ |≥m)
P(|Sπ∗ |≥m) = P

(
T < τ

∣∣ |Sπ∗ | ≥ m
)
; (c) is

because under the event |Sπ∗ | ≥ m, there exists π∗
m ∈ Ss,m such that π∗

m = π∗ on its domain set dom(π∗
m); (d) uses

the concentration (37) for Hypergeometric distribution and the Hanson-Wright inequality in Lemma D.1 with M0 = I(m2 )

and δ = exp
(
−
(
m
2

) (
ρ2

4c20
∧ ρ

2c0

))
, where c0 is the universal constant in Lemma D.1. Consequently, we obtain that

P (T < τ) = o(1) when m− 1 ≥ 24(1+ϵ) log( en
1−ϵ )

ρ2 . Let C1 = 25. Then, we have P (T < τ) +Q (T ≥ τ) = o(1) when
s2

n − 1 ≥ 25 logn
ρ2 as n becomes sufficiently large.

B.2. Proof of Proposition 2.3

We first upper bound Q (T ≥ τ) under the null hypothesis H0. We note that for any X,Y
i.i.d.∼ N (0, 1) and λ > 0, we have

E
[
exp

(
−λ

2
(X − Y )2

)]
=

∫ ∫
1

2π
exp

(
−λ

2
(x− y)2

)
exp

(
−1

2

(
x2 + y2

))
dxdy

=

∫ ∫
1

2π
exp

(
−λ+ 1

2

(
x− λ

λ+ 1
y

)2
)
exp

(
− 2λ+ 1

2(λ+ 1)
y2
)

dxdy

=

∫ ∫
1

2π
exp

(
−λ+ 1

2
z2
)
exp

(
− 2λ+ 1

2(λ+ 1)
y2
)

dydz =
1√

1 + 2λ
. (18)

Let λ = 1
4(1−ρ) −

1
2 . Then, we have 1+2λ = 1

2(1−ρ) . Since 1−e−6 < ρ < 1, we also have λ > 0. Recall that Ss,m denotes

the set of injective mappings π : S ⊆ V (G1) 7→ V (G2) with |S| = m. For any π ∈ Ss,m, e
(
Hf

π

)
∼
∑(m2 )

i=1 − 1
2 (Ai −Bi)

2,
where (Ai, Bi) are independent and identically distributed pairs of standard normals with correlation coefficient ρ. Then, by
the Chernoff bound,

Q
(
e
(
Hf

π

)
≥ τ

)
≤ exp (−λτ)E

[
exp

(
λe
(
Hf

π

))]
(a)
= exp

((
m

2

)(
2(1− ρ)λ− 1

2
log (1 + 2λ)

))
= exp

((
m

2

)(
1

2
− (1− ρ)− 1

2
log

(
1

2(1− ρ)

)))
(b)

≤ exp

(
− log(1/(1− ρ))

3

(
m

2

))
, (19)

where (a) follows from (18); (b) is because ρ > 1− e−6 implies that 1
2 − (1− ρ)− 1

2 log
(

1
2(1−ρ)

)
≤ 1− 1

6 log
(

1
1−ρ

)
−

1
3 log

(
1

1−ρ

)
≤ − 1

3 log
(

1
1−ρ

)
. Then, applying the union bound yields that

Q (T ≥ τ) ≤|Ss,m|Q
[
e
(
Hf

π

)
≥ τ

]
≤ exp

(
m log

(
en

1− ϵ

)
− 1

3
log

(
1

1− ρ

)(
m

2

))
,
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where the last inequality is because |Ss,m| =
(
s
m

)2
m! ≤

(
es
m

)m
sm =

(
en
1−ϵ

)m
. Therefore, when m− 1 ≥ 6(1+ϵ) log( en

1+ϵ )
log(1/(1−ρ)) ,

we have Q (T ≥ τ) ≤ exp
(
−ϵm log

(
en
1−ϵ

))
.

We then upper bound P (T < τ) under the alternative hypothesis H1. By (16), we have that

P (T < τ) ≤ P (|Sπ∗ | < m) + P
(
e
(
Hf

π∗
m

)
< τ

∣∣ |Sπ∗ | > m
)

≤ exp

(
−ϵ2s2

2n

)
+ exp

(
−1

2

(
m

2

)
(1− log 2)

)
,

where the last inequality follows from (37) in Lemma D.3 and
−e

(
Hf

π∗
m

)
1−ρ ∼ χ2

((
m
2

))
, and the concentration inequality for

chi-square distribution (34) in Lemma D.2. Since m = (1−ϵ)s2

n , there exists a universal constant c2 > 0 such that, when
s2

n ≥ c2, we have P (T < τ) ≤ 0.05. Specifically, P (T < τ) = o(1) when s2/n = ω(1). Since Q(T ≥ τ) = o(1) when

m− 1 ≥ 6(1+ϵ) log( en
1+ϵ )

log(1/(1−ρ)) , there exists a universal constant C2 such that, when s2 ≥ C2

(
n logn

log(1/(1−ρ)) ∨ n
)

, P (T < τ) +

Q (T ≥ τ) ≤ 0.1. Specifically, when s2/n = ω(1), we have P (T < τ) = o(1), and thus P (T < τ)+Q (T ≥ τ) = o(1).
Remark B.1. The Gaussian assumption on the weighted edges for βe(G1) and βe(G2) in Propositions 2.2 and 2.3 can be
extended to the sub-Gaussian assumption. The main ingredients of our proof in these two Propositions are the analysis of the
tail bound for the Gaussian distribution. We compute the Moment Generating Function (MGF) and use a standard Chernoff
bound to bound Q (T ≥ τ). Indeed, if we relax the distribution assumption to a sub-Gaussian distribution, since the linear
sum of sub-Gaussian random variables remains a sub-Gaussian random variable, the MGF in (18) can be approximated
by E [exp (λXY )] ≤ 1√

1−c1λ2 for some constant c1 ∈ R. Since the product of sub-Gaussian random variables is a

sub-exponential random variable, the MGF in (18) can be approximated by E
[
exp

(
−λ

2 (X − Y )
2
)]

≤ 1√
1+c2λ

for some
constant c2 ∈ R. For P(T < τ), the tail bound holds for sub-Gaussian as well.

B.3. Proof of Proposition 3.1

For any S ⊆ V (G1) and T ⊆ V (G2) with |S| = |T |, define

P (G1, G2, S, T ) = P̃ (G1[S], G2[T ])
∏

e/∈(S2)

Q0 (βe(G1))
∏

e/∈(T2)

Q0 (βe(G2)) , (20)

Q (G1, G2, S, T ) = Q (G1[S], G2[T ])
∏

e/∈(S2)

Q0 (βe(G1))
∏

e/∈(T2)

Q0 (βe(G2)) , (21)

where G[S] for any S ⊆ V (G) denotes the induced subgraph with vertex set S of G; P̃ denotes the distribution of two
random graphs follow fully correlated Gaussian Wigner model; Q0 denotes the standard normal distribution. Recall that
Sπ∗ = V (G1) ∩ (π∗)

−1
(V (G2)) and Tπ∗ = π∗ (V (G1)) ∩ V (G2). Indeed, P (G1, G2, S, T ) denotes the distribution

under P when given Sπ∗ = S and Tπ∗ = T . Besides, Q (G1, G2|S, T ) and Q (G1, G2) are the same distribution for any
S ⊆ V (G1), T ⊆ V (G2) with |S| = |T |.

Since P (·|E) = P(·,E)
P(E) =

∑(1+ϵ)s2/n
i=0 P(|Sπ∗ |=i)P(·| |Sπ∗ |=i)

P(E) and TV (
∑

i λiPi,Q) ≤
∑

i λiTV (Pi,Q) when
∑

i λi = 1,
we obtain

TV (P ′(G1, G2),Q (G1, G2)) ≤

(1+ϵ)s2

n∑
i=0

P (|Sπ∗ | = i)

P (E)
· TV

(
P
(
G1, G2

∣∣ |Sπ∗ | = i
)
,Q (G1, G2)

)
. (22)

For any 0 ≤ i ≤ (1+ϵ)s2

n and S ⊆ V (G1), T ⊆ V (G2) with |S| = |T | = i, by the data processing inequality (see, e.g.,
Polyanskiy & Wu (2025, Section 3.5)), we have

TV
(
P
(
G1, G2

∣∣ |Sπ∗ | = i
)
,Q (G1, G2)

)
≤ TV (P (G1, G2, S, T ) ,Q (G1, G2, S, T ))

= TV
(
P̃ (G1[S], G2[T ]) ,Q (G1[S], G2[T ])

)
, (23)

15



Correlation Detection

where the last equality follows from (20), (21) and the fact that TV (X ⊗ Z, Y ⊗ Z) = TV (X,Y ) for any distributions
X,Y, Z such that Z is independent with X and Y .

For the random graphs G1[S] and G2[T ] with S ⊆ V (G1), T ⊆ V (G2), and |S| = |T |, they follow the correlated Gaussian
Wigner model with node set size |S| under P̃ , while they are independent under Q. It follows from Wu et al. (2023, Theorem
1) that, when |S|

log |S| ≤
2
ρ2 , the total variation distance TV

(
P̃ (G1[S], G2[T ]) ,Q (G1[S], G2[T ])

)
= o(1). We then verify

the condition |S|
log |S| ≤

2
ρ2 for any 0 ≤ |S| ≤ (1+ϵ)s2

n . In fact, since s2 ≤ n logn
2 log(1/(1−ρ2)) , we have

|S| ≤ (1 + ϵ)s2

n
≤ (1 + ϵ) log n

2 log (1/(1− ρ2))
≤

2 log
(
1/ρ2

)
ρ2

,

where the last inequality follows from log
(
1/(1− ρ2)

)
≥ ρ2, logn

2 < log
(
1/ρ2

)
and ϵ < 1. Therefore, we obtain

|S|
log |S| ≤

2
ρ2

log(1/ρ2)
log(1/ρ2)+log(2 log(1/ρ2)) ≤

2
ρ2 , and thus

TV
(
P̃ (G1[S], G2[T ]) ,Q (G1[S], G2[T ])

)
= o(1)

for any S ⊆ V (G1), T ⊆ V (G2) with |S| = |T | ≤ (1+ϵ)s2

n . Combining this with (22) and (23), we conclude that

TV (P ′ (G1, G2) ,Q (G1, G2)) ≤

(1+ϵ)s2

n∑
i=0

P (|Sπ∗ | = i)

P (E)
· TV

(
P
(
G1, G2

∣∣ |Sπ∗ | = i
)
,Q (G1, G2)

)

≤

(1+ϵ)s2

n∑
i=0

P (|Sπ∗ | = i)

P (E)
· o(1) = o(1).

Therefore,

TV (P(G1, G2),Q(G1, G2))
(a)

≤ TV (P(G1, G2),P ′(G1, G2)) + TV (P ′(G1, G2),Q(G1, G2))

(b)

≤ TV (P(G1, G2, π),P ′(G1, G2, π)) + TV (P ′(G1, G2),Q(G1, G2))

= P ((G1, G2, π) /∈ E) + TV (P ′(G1, G2),Q(G1, G2)) = o(1), (24)

where (a) follows from the triangle inequality and (b) is derived by the data processing inequality (see, e.g., Polyanskiy &
Wu (2025, Section 3.5)).

B.4. Proof of Proposition 3.5

Recall that the conditional distribution is defined as

P ′(G1, G2, π) =
P(G1, G2, π)1(G1,G2,π)∈E

P(E)
= (1 + o(1))P (G1, G2, π)1(G1,G2,π)∈E ,

where the last inequality holds because P (E) = 1− o(1). By (6) and (24), we have the following sufficient condition for
the impossibility results:

EQ

[(
P ′(G1, G2)

Q(G1, G2)

)2
]
= 1 + o(1) ⇒ TV (P ′,Q) = o(1) ⇒ TV(P,Q) = o(1). (25)

Recall the likelihood ratio in (7). To compute the conditional second moment, we introduce an independent copy π̃ of the
latent permutation π and express the square likelihood ratio as(

P ′(G1, G2)

Q(G1, G2)

)2

= (1 + o(1))Eπ

[
P(G1, G2|π)
Q(G1, G2)

1(G1,G2,π)∈E

]
Eπ̃

[
P(G1, G2|π̃)
Q(G1, G2)

1(G1,G2,π̃)∈E

]
= (1 + o(1))Eπ⊥π̃

[
P(G1, G2|π)
Q(G1, G2)

P(G1, G2|π̃)
Q(G1, G2)

1(G1,G2,π)∈E1(G1,G2,π̃)∈E

]
.
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Taking expectation for both sides under Q, the conditional second moment is given by

EQ

[(
P ′(G1, G2)

Q(G1, G2)

)2
]
= (1 + o(1))EQ

[
Eπ⊥π̃

[
P(G1, G2|π)
Q(G1, G2)

P(G1, G2|π̃)
Q(G1, G2)

1(G1,G2,π)∈E1(G1,G2,π̃)∈E

]]
= (1 + o(1))Eπ⊥π̃

[
EQ

[
P(G1, G2|π)
Q(G1, G2)

P(G1, G2|π̃)
Q(G1, G2)

1(G1,G2,π)∈E1(G1,G2,π̃)∈E

]]
= (1 + o(1))Eπ⊥π̃

[
1(G1,G2,π)∈E1(G1,G2,π̃)∈EEQ

[
P(G1, G2|π)
Q(G1, G2)

P(G1, G2|π̃)
Q(G1, G2)

]]
, (26)

where the last equality holds since E is independent with the edges in G1 and G2. Recall that I∗ = I∗(π, π̃) defined in (10).
Since I∗ = ∪C∈C ∪e∈C ∪v∈V (e)∩V (G1)v by the definition of I∗, we obtain that

(
I∗

2

)
=
∑

C∈C |C| by counting the edges
induced by the vertices in I∗. Combining this with (9) and (26), we have that

EQ

[(
P ′(G1, G2)

Q(G1, G2)

)2
]
= (1 + o(1))Eπ⊥π̃

[
1(G1,G2,π)∈E1(G1,G2,π̃)∈EEQ

[
P(G1, G2|π)
Q(G1, G2)

P(G1, G2|π̃)
Q(G1, G2)

]]

= (1 + o(1))Eπ⊥π̃

[
1(G1,G2,π)∈E1(G1,G2,π̃)∈E

∏
C∈C

(
1

1− ρ2|C|

)]

≤ (1 + o(1))Eπ⊥π̃

[
1(G1,G2,π)∈E1(G1,G2,π̃)∈E

∏
C∈C

(
1

1− ρ2

)|C|
]

= (1 + o(1))Eπ⊥π̃

[
1(G1,G2,π)∈E1(G1,G2,π̃)∈E

(
1

1− ρ2

)|I∗|(|I∗|−1)/2
]
,

where the inequality follows from 1
1−ρ2x −

(
1

1−ρ2

)x
=

(1−ρ2)
x
+(ρ2)

x−1

(1−ρ2x)(1−ρ2)x ≤ 1−ρ2+ρ2−1
(1−ρ2x)(1−ρ2)x = 0 for any 0 < ρ < 1 and x ≥

1. Since P [|I∗| = t] ≤
(
s
n

)2t
by Lemma 3.4 and |I∗| ≤ |V (G1)∩π−1(V (G2))| ≤ (1+ϵ)s2

n if (G1, G2, π), (G1, G2, π̃) ∈ E ,
we obtain

EQ

(
P ′(G1, G2)

Q(G1, G2)

)2

≤ (1 + o(1))Eπ⊥π̃

[
1(G1,G2,π)∈E1(G1,G2,π̃)∈E

(
1

1− ρ2

)|I∗|(|I∗|−1)/2
]

= (1 + o(1))

(1+ϵ)s2

n∑
t=0

P [|I∗| = t]

(
1

1− ρ2

)t(t−1)/2

≤ (1 + o(1))

(1+ϵ)s2

n∑
t=0

( s
n

)2t( 1

1− ρ2

)t(t−1)/2

.

(27)

Let at ≜
(
s
n

)2t ( 1
1−ρ2

)t(t−1)/2

. For any t < (1+ϵ)s2

n , we have

at+1

at
=

s2

n2

(
1

1− ρ2

)t

≤ s2

n2

(
1

1− ρ2

) (1+ϵ)s2

n

= exp

(
log

(
s2

n2

)
+

(1 + ϵ)s2

n
log

(
1

1− ρ2

))
. (28)

Since s2 ≤ n logn
8 log(1/(1−ρ2)) , we obtain

(1 + ϵ)s2

n
log

(
1

1− ρ2

)
≤ (1 + ϵ) log n

8

and

log

(
s2

n2

)
≤ log

(
log n

8n log (1/(1− ρ2))

)
(a)

≤ −1

2
log n+ log

(
log n

8

)
,
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where (a) is because log
(

1
1−ρ2

)
≥ log

(
1

1−n−1/2

)
≥ n−1/2. Combining this with (28), we obtain that at+1

at
≤

exp
(
− (3−ϵ) logn

8 + log
(

logn
8

))
≤ n−1/4. Therefore, by (27),

EQ

(
P ′(G1, G2)

Q(G1, G2)

)2

≤ (1 + o(1))

(1+ϵ)s2

n∑
t=0

at

= (1 + o(1))

(1+ϵ)s2

n∑
t=0

( s
n

)2t( 1

1− ρ2

)t(t−1)/2

≤ 1 + o(1)

1− n−1/4
= 1 + o(1),

which implies that TV(P,Q) = o(1) by (25).

C. Proof of Lemmas
C.1. Proof of Lemma 2.1

Recall that |V (G1)| = |V (G2)| = s and V (G1) ⊆ V (G1), V (G2) ⊆ V (G2). For any π ∼ Sn, we note that the event
|π(V (G1)) ∩ V (G2)| = t with t ∈ [s] can be divided as:

• Picking t vertices in V (G1), V (G2) respectively and constructing the mapping between picked vertices. We have(
s
t

)2
t! options for this step.

• Mapping the remaining s− t vertices in V (G1) to V (G2)\V (G2). We have
(
n−s
s−t

)
(s− t)! options for this step.

• Mapping V (G1)\V (G1) to the remaining vertices in V (G2). We have (n− s)! options for this step.

Then, for any t ≤ s, we have that

P [|π(V (G1)) ∩ V (G2)| = t] =

(
s
t

)2
t! ·
(
n−s
s−t

)
(s− t)! · (n− s)!

n!
=

(
s
t

)(
n−s
s−t

)(
n
s

) , (29)

which indicates that the size of intersection set |π(V (G1))∩V (G2)| follows hypergeometric distribution HG(n, s, s) where
π

Unif.∼ Sn.

C.2. Proof of Lemma 3.3

For any P = (e1, π(e1), e2, · · · , ej , π(ej)) ∈ P with π̃(e2) = π(e1), · · · , π̃(ej) = π(ej−1), we have that

LP =

j∏
i=1

ℓ(ei, π(ei))

j∏
i=2

ℓ(ei, π̃(ei)) =

j∏
i=1

ℓ(ei, π(ei))

j∏
i=2

ℓ(ei, π(ei−1))

= ℓ(e1, π(e1))ℓ(π(e1), e2) · · · ℓ(π(ej−1), ej)ℓ(ej , π(ej)). (30)

Under the distribution Q, it follows from (30) that LP = ℓ(B0, B1)ℓ(B1, B2) · · · ℓ(Bk−1, Bk) for some k ∈ N and
B0, B1, · · · , Bk

i.i.d.∼ N (0, 1). Recall that

ℓ(a, b) =
P
(
βe(G1) = a, βπ(e)(G2) = b

)
Q
(
βe(G1) = a, βπ(e)(G2) = b

) =
1√

1− ρ2
exp

(
−ρ2(a2 + b2) + 2ρab

2(1− ρ2)

)
, for any a, b ∈ R. (31)

Then,

EQ [LP ] = EQ [ℓ(B0, B1)ℓ(B1, B2) · · · ℓ(Bk−1, Bk)]

=
1

(2π)
(k+1)/2

((1− ρ2))
k/2

∫
· · ·
∫

exp

(
k−1∑
t=0

−ρ2(b2t + b2t+1) + 2ρbtbt+1

2(1− ρ2)

)
exp

(
k∑

t=0

−b2t
2

)
db0 · · · dbk

=
1

(2π)
(k+1)/2

((1− ρ2))
k/2

∫
· · ·
∫

exp

(
−
∑k−1

t=0 (bt − ρbt+1)
2

2(1− ρ2)
− b2k

2

)
db0 · · · dbk = 1,
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where the last equality holds since the transformation B′
t ≜ Bt−ρBt+1√

1−ρ2
for any 0 ≤ t ≤ k − 1 yields that EQ [LP ] =

1
(2π)(k+1)/2

∫
· · ·
∫
exp

(
−

∑k−1
t=0 b′2k
2 − b2k

2

)
db′0 · · · db′k−1dbk = 1.

For any C = (e1, π(e1), e2, · · · , ej , π(ej)) ∈ C with π̃(e2) = π(e1), · · · , π̃(ej) = π(ej−1) and π̃(e1) = π(ej), we denote
e0 = ej for notational simplicity. Then, we have that

LC =

j∏
i=1

ℓ(ei, π(ei))

j∏
i=1

ℓ(ei, π̃(ei)) =

j∏
i=1

ℓ(ei, π(ei))

j∏
i=1

ℓ(ei, π(ei−1))

= ℓ(e1, π(e1))ℓ(π(e1), e2) · · · ℓ(π(ej−1), ej)ℓ(ej , π(ej))ℓ(π(ej), e1).

Then LC = ℓ(B1, B2) · · · ℓ(Bk−1, Bk)ℓ(Bk, B1) for k = 2j and B1, · · · , Bk
i.i.d.∼ N (0, 1). Denote Bk+1 = B1, we have

that

EQ[LC ] = EQ [ℓ(B1, B2) · · · ℓ(Bk−1, Bk)ℓ(Bk, B1)]

=
1

(2π(1− ρ2))
k/2

∫
· · ·
∫

exp

(∑k−1
t=0 −ρ2

(
b2t + b2t+1

)
+ 2ρbtbt+1

2(1− ρ2)

)
exp

(
k∑

t=1

−b2t
2

)
db1 · · · dbk

=
1

(2π(1− ρ2))
k/2

∫
· · ·
∫

exp

(∑k−1
t=0 − (bt − ρbt+1)

2

2(1− ρ2)

)
db1 · · · dbk.

Let Ct ≜ Bt − ρBt+1 for any 1 ≤ t ≤ k. Then

[C1, C2, · · · , Ck−1, Ck]
⊤
= Jk [B1, B2, · · · , Bk−1, Bk]

⊤
,

where

Jk ≜


1 −ρ 0 · · · 0
0 1 −ρ · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−ρ 0 · · · 0 1


and thus det (Jk) = 1− ρk (see, e.g., Davis (1979, Section 3.2)). Then, we obtain that

EQ[LC ] =
1

(2π(1− ρ2))
k/2

det (Jk)

∫
· · ·
∫

exp

(∑k
t=1 −c2t

2(1− ρ2)

)
dc1 · · · dck =

1

1− ρk
=

1

1− ρ2|C| .

C.3. Proof of Lemma 3.4

Let I ′ ≜ argmaxI⊆V (G1),π(I)=π̃(I)|I|, we first show that I ′ = I∗. On the one hand, since π(I ′) = π̃(I ′), we have

π
((

I′

2

))
= π̃

((
I′

2

))
. Recall that the connected components of the correlated functional digraph in Definition 3.2 consist

of paths and cycles. For any path P ∈ P, we note that π (P ∩ V (G1)) ̸= π̃ (P ∩ V (G1)), and thus π
((

P∩V (G1)
2

))
̸=

π̃
((

P∩V (G1)
2

))
. For any cycle C ∈ C, we note that π (C ∩ V (G1)) = π̃ (C ∩ V (G1)), and thus π

((
C∩V (G1)

2

))
=

π̃
((

C∩V (G1)
2

))
. Therefore,

(
I′

2

)
⊆ ∪C∈C ∪e∈C∩E(G1) e. By the definition of I∗, we obtain I ′ ⊆ I∗. On the other hand, for

any C ∈ C, since π
(
∪e∈C∩E(G1)e

)
= π̃

(
∪e∈C∩E(G1)e

)
by the definition of a cycle and C ∩ C ′ = ∅ for any C ̸= C ′ ∈ C,

we have that

π
(
∪C∈C ∪e∈C∩E(G1) e

)
= π̃

(
∪C∈C ∪e∈C∩E(G1) e

)
.

Therefore, we have π
(
∪C∈C ∪e∈C ∪v∈v(e)∩V (G1)v

)
= π̃

(
∪C∈C ∪e∈C ∪v∈v(e)∩V (G1)v

)
, which implies π(I∗) = π̃(I∗).

Since I∗ ⊆ V (G1), by the definition of I ′, we conclude that I∗ ⊆ I ′. Therefore, we have I∗ = I ′ =
argmaxI⊆V (G1),π(I)=π̃(I)|I|.
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For any t ≤ s, by the union bound, we obtain

P [|I∗| = t] ≤ P [∃A ⊆ V (G1), |A| = t, π(A) = π̃(A) ⊆ V (G2)]

≤
(
s
t

)
P [A ⊆ V (G1), |A| = t, π(A) = π̃(A) ⊆ V (G2)] . (32)

For any fixed set A ⊆ V (G1) with |A| = t and π(A) = π̃(A) ⊆ V (G2), we first choose a set B ⊆ V (G2) with |B| = t,
and set π(A) = π̃(A) = B. There are

(
s
t

)
ways to choose B, and t!2 ways to map π(A) = π̃(A) = B. For the remaining

vertices in V (G1), there are (n− t)!2 ways to map them under π and π̃. Therefore,(
s
t

)
P [A ⊆ V (G1), |A| = t, π(A) = π̃(A) ⊆ V (G2)] =

(
s
t

)
· 1

(n!)2
(
s
t

)
t!2(n− t)!2 ≤

( s
n

)2t
, (33)

where the last inequality is due to the fact that
(
s
t

)
· 1
(n!)2

(
s
t

)
t!2(n− t)!2 =

[
s(s−1)···(s−t+1)
n(n−1)···(n−t+1)

]2
and for any i = 1, · · · , t− 1,

s−i
n−i ≤

s
n . Combining this with (32), we obtain P [|I∗| = t] ≤

(
s
n

)2t
.

D. Auxiliary Results
D.1. Concentration Inequalities for Gaussian

Lemma D.1 (Hanson-Wright inequality). Let X,Y ∈ Rn be standard Gaussian vectors such that the pairs (Xi, Yi) ∼

N
((

0
0

)
,

(
1 ρ
ρ 1

))
are independent for i = 1, · · · , n. Let M0 ∈ Rn×n be any deterministic matrix. There exists some

universal constant c0 > 0 such that

P
[∣∣X⊤M0Y − ρTr(M0)

∣∣ ≥ c0

(
∥M0∥F

√
log(1/δ) ∨ ∥M0∥2 log(1/δ)

)]
≤ δ.

Proof. Note that X⊤M0Y = 1
4 (X + Y )⊤M0(X + Y )− 1

4 (X − Y )⊤M0(X − Y ) and

E
[
(X + Y )⊤M0(X + Y )

]
= (2 + 2ρ)Tr(M0),E

[
(X − Y )⊤M0(X − Y )

]
= (2− 2ρ)Tr(M0).

By Hanson-Wright inequality (Hanson & Wright, 1971), there exists some universal constant c0 such that

P
[∣∣∣∣14(X + Y )⊤M0(X + Y )− 2 + 2ρ

4
Tr(M0)

∣∣∣∣ ≥ c0
2

(
∥M0∥F

√
log(1/δ) ∨ ∥M0∥2 log(1/δ)

)]
≤ δ

2
,

P
[∣∣∣∣14(X − Y )⊤M0(X − Y )− 2− 2ρ

4
Tr(M0)

∣∣∣∣ ≥ c0
2

(
∥M0∥F

√
log(1/δ) ∨ ∥M0∥2 log(1/δ)

)]
≤ δ

2

for any δ > 0. Consequently,

P
[∣∣X⊤M0Y − ρTr(M0)

∣∣ ≥ c0

(
∥M0∥F

√
log(1/δ) ∨ ∥M0∥2 log(1/δ)

)]
≤ P

[∣∣∣∣14(X + Y )⊤M0(X + Y )− 2 + 2ρ

4
Tr(M0)

∣∣∣∣ ≥ c0
2

(
∥M0∥F

√
log(1/δ) ∨ ∥M0∥2 log(1/δ)

)]
+ P

[∣∣∣∣14(X − Y )⊤M0(X − Y )− 2− 2ρ

4
Tr(M0)

∣∣∣∣ ≥ c0
2

(
∥M0∥F

√
log(1/δ) ∨ ∥M0∥2 log(1/δ)

)]
≤ δ.

D.2. Concentration Inequalities for Chi-Squared Distribution

Lemma D.2 (Chernoff’s inequality for Chi-squared distribution). Suppose ξ ∼ χ2(n). Then, for any δ > 0, we have

P [ξ > (1 + δ)n] ≤ exp
(
−n

2
(δ − log (1 + δ))

)
, (34)

P [ξ < (1− δ)n] ≤ exp
(
−n

2
(−δ − log(1− δ))

)
. (35)

Proof. The results follow from Theorems 1 and 2 in Ghosh (2021).
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D.3. Concentration Inequalities for Hypergeometric Distribution

Lemma D.3 (Concentration inequalities for Hypergeometric distribution). For η ∼ HG(n, s, s) and any ϵ > 0, we have

P
[
η ≥ (1 + ϵ)s2

n

]
≤ exp

(
− ϵ2s2

(2 + ϵ)n

)
∧ exp

(
−ϵ2s3

n2

)
, (36)

P
[
η ≤ (1− ϵ)s2

n

]
≤ exp

(
−ϵ2s2

2n

)
∧ exp

(
−ϵ2s3

n2

)
. (37)

Proof. Denote ξ ∼ Bin
(
s, s

n

)
, by Theorem 4 in Hoeffding (1994), for any continuous and convex function f , we have

E [f(η)] ≤ E [f(ξ)] .

We note the function f(x) = exp (λx) is continuous and convex for any λ ∈ R. Therefore, we have E [exp (λη)] ≤
E [exp (λξ)] for any λ ∈ R, and thus the Chernoff bound for ξ remains valid for η. Combining this with Theorems 4.4 and
4.5 in Mitzenmacher & Upfal (2005), we have

P
[
η ≥ (1 + ϵ)s2

n

]
≤ exp

(
− ϵ2s2

(2 + ϵ)n

)
, P

[
η ≤ (1− ϵ)s2

n

]
≤ exp

(
−ϵ2s2

2n

)
.

By Hoeffding’s inequallity (Hoeffding, 1994), we also have

P
[
η ≥ (1 + ϵ)s2

n

]
≤ exp

(
−ϵ2s3

n2

)
, P

[
η ≤ (1− ϵ)s2

n

]
≤ exp

(
−ϵ2s3

n2

)
.

Therefore, we finish the proof of Lemma D.3.

E. Additional Experiments
We provide a simple illustration on how our algorithm can be applied on real dataset. We conduct an experiment on
Freeman’s EIES networks (Freeman & Freeman, 1979), a small dataset of 46 researchers, where edge weights represent
communication strength at two time points. We apply our method to test for correlation between these two temporal
networks. We examine how sample size affects privacy protection by analyzing the normalized similarity score, defined as
the similarity score e(Hf

π) divided by
(
s
2

)
. Indeed, a lower score suggests weaker correlation and greater support for the null

hypothesis of independence.

We apply our algorithm to the EIES dataset at different sample sizes, s = 10, 20, 40 and compute the corresponding
normalized similarity scores: -1.066, -0.905, and -0.651. The scores increase with sample size, indicating stronger detected
correlation. The lower scores at small sample sizes reflect failed correlation detection, quantifying the reduction in
re-identification risk.
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