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Abstract

Language models (LMs) exhibit impressive per-001
formance and generalization capabilities. How-002
ever, LMs struggle with the persistent chal-003
lenge of catastrophic forgetting, which under-004
mines their long-term sustainability in contin-005
ual learning (CL). Existing approaches usually006
address the issue by incorporating old task data007
or task-wise inductive bias into LMs. How-008
ever, old data and accurate task information are009
often unavailable or costly to collect, hinder-010
ing the availability of current CL approaches011
for LMs. To address this limitation, we in-012
troduce “MIGU” (MagnItude-based Gradient013
Updating for continual learning), a rehearsal-014
free and task-label-free method that only up-015
dates the model parameters with large magni-016
tudes of output in LMs’ linear layers. MIGU is017
based on our observation that the normalized018
magnitude distribution of the output in LMs’019
linear layers is different when the LM mod-020
els deal with different task data. By imposing021
this simple constraint on the gradient update022
process, we can leverage the inherent behav-023
iors of LMs, thereby unlocking their innate CL024
abilities. Our experiments demonstrate that025
MIGU is universally applicable to all three LM026
architectures (T5, RoBERTa, and Llama2), de-027
livering state-of-the-art or on-par performance028
across continual finetuning and continual pre-029
training settings on four CL benchmarks. For030
example, MIGU brings a 15.2% average accu-031
racy improvement over conventional parameter-032
efficient finetuning baselines in a 15-task CL033
benchmark. MIGU can also seamlessly inte-034
grate with all three existing CL types to further035
enhance performance. We include the code in036
the submission attachment.037

1 Introduction038

Neural networks suffer from catastrophic forget-039

ting (McCloskey and Cohen, 1989), i.e. learn-040

ing new knowledge and tasks at the cost of for-041

getting previously acquired ones. Recently, lan-042
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Figure 1: The different output values and the vary-
ing magnitude distributions are observed across the
BoolQA, COPA, and Yelp datasets. The output val-
ues and normalized magnitude distributions are from
the real sample of the first linear layer in FFN of the last
Transformer block of T5. The detailed magnitude distri-
butions are illustrated in Figure 17 of Appendix D.4.

guage models (LMs) have demonstrated impres- 043

sive performance and generalization capabilities 044

across the spectrum of NLP research (Liu et al., 045

2019; Brown et al., 2020; Touvron et al., 2023) 046

and beyond (Zhang et al., 2023a). Nevertheless, 047

they still suffer from catastrophic forgetting (Shi 048

et al., 2024; Wu et al., 2024), undermining the ca- 049

pacity for continual learning (CL) (Wang et al., 050

2024a). In light of the large scale and high cost of 051

training LMs (Achiam et al., 2023), models with 052

strong continual learning capabilities would enable 053

more economical reuse of these resource-intensive 054

models, a vital trajectory for driving both scientific 055

development and societal benefits. 056

To make LMs better continual learners, the 057

research community pursues three main direc- 058

tions (Shi et al., 2024): (1) rehearsal-based ap- 059

proaches that mix new task data with a small buffer 060

of past task examples (Scialom et al., 2022; Wang 061

et al., 2024d), (2) architecture-based methods that 062

introduce new components like adapters to incorpo- 063

rate new tasks (Gururangan et al., 2021; Qin et al., 064
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2022; Zhao et al., 2024; Wang et al., 2024b), and065

(3) parameter-based approaches that either apply066

regularization to penalize changes in important pa-067

rameters for old tasks (Zheng et al., 2023; Zhu et al.,068

2024) or update parameter gradients for each task069

into orthogonal subspaces (Wang et al., 2023b).070

However, rehearsal-based methods require data071

from previously learned tasks, which is not always072

available (Touvron et al., 2023). The architecture073

and parameter-based approaches typically rely on074

task labels to design techniques to mitigate gradient075

conflicts between tasks by updating the parameters076

task-wise. However, obtaining accurate task labels077

can be challenging or infeasible in LMs’ scenar-078

ios. This paper explores an alternative approach,079

examining whether the model’s inherent features080

or behaviors can be utilized instead of task labels081

to mitigate gradient conflicts between tasks. Con-082

cretely, we examine the distribution of the normal-083

ized output magnitude of the linear layers in LMs.084

The output is computed as the dot product between085

the input x ∈ Rdin and the weight W ∈ Rdin×dout086

of the layer, and then the output is normalized us-087

ing the L1-norm, resulting in a vector n ∈ Rdout .088

Our analysis reveals an intriguing finding: the nor-089

malized output n exhibits distinct magnitude dis-090

tributions for different tasks1. The process and091

observation described above are illustrated in Fig-092

ure 1, which presents real output data for the first093

linear layer of the Feedforward Network (FFN) in094

the last Transformer block of T5. We can observe095

that the magnitude distributions differ significantly096

for three example tasks - BoolQA, COPA, and Yelp.097

Motivated by this observation, we argue that the098

differences in magnitude distributions within LMs099

could serve as a natural, label-free alternative to re-100

place the need for external task labels in mitigating101

gradient conflicts to update the model’s parameters102

task-wise. However, this potential is locked during103

conventional continual learning settings.104

To this end, we introduce “MIGU” (MagnItude-105

based Gradient Updating for continual learning),106

leveraging the inherent differences in magnitude107

distributions of the normalized output in LMs’ lin-108

ear layers to enable continual learning without rely-109

ing on task labels. Specifically, during the forward110

propagation phase, we cache and normalize the out-111

put of the linear layers using the L1-norm. Then,112

in the backward propagation phase, we only update113

1The term ‘normalized output magnitude distribution’ will
be referred to interchangeably as ‘magnitude distribution’ for
brevity throughout the paper.

the parameters with the T largest values in normal- 114

ized magnitude, where T is a predefined threshold 115

ratio. Since different tasks exhibit distinct magni- 116

tude distribution patterns, MIGU can effectively 117

harness the LMs’ inherent features to update the 118

parameters with large magnitudes per task, allevi- 119

ating gradient conflicts and unlocking their innate 120

continual learning potential. 121

We evaluate MIGU across three main LM archi- 122

tectures: the encoder-only RoBERTa (Liu et al., 123

2019), the encoder-decoder T5 model (Raffel et al., 124

2023), and the decoder-only Llama2 (Touvron 125

et al., 2023). Furthermore, we consider two con- 126

tinual pre-training settings for LMs: continual pre- 127

training and continual finetuning, using four CL 128

datasets. Notably, our approach can seamlessly in- 129

tegrate three mainstream CL approaches - rehearsal- 130

based, architecture-based, and parameter-based - 131

to further enhance the CL abilities of LMs. When 132

evaluated on the four datasets, our experimental re- 133

sults achieve comparable or superior performance 134

to the current state-of-the-art methods. For exam- 135

ple, in a 15-task long sequence CL dataset, the 136

MIGU leads to a 15.2% accuracy improvement 137

over the conventional parameter-efficient finetun- 138

ing baseline. Furthermore, combining MIGU with 139

three types of CL methodologies substantially im- 140

proves these individual CL approaches. We also 141

provide detailed ablation studies and visualizations 142

on MIGU, revealing that CL with MIGU pushes 143

the magnitude distribution similarity between tasks 144

farther apart and better avoids conflicts. We believe 145

the work presents a novel perspective on exploring 146

CL in LMs. 147

2 Related Work 148

Continual Learning for Language Models. 149

Continual learning is a long-standing challenge 150

through the history of machine learning and deep 151

learning (McCloskey and Cohen, 1989; Wu et al., 152

2024). Recent studies for CL in LMs can be 153

roughly categorized into three categories. 1. 154

Rehearsal-based approach that mixes new task data 155

with a small buffer of past task examples (Scialom 156

et al., 2022; Wang et al., 2024d). 2. Architecture- 157

based approach that expands new modules like 158

adapters to incorporate new tasks (Gururangan 159

et al., 2021; Qin et al., 2022; Zhao et al., 2024; 160

Wang et al., 2024b). 3. Parameter-based method 161

that updates parameters in a task-aware manner. 162

Some literature (Wang et al., 2023a) splits the 163
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parameter-based into either regularization-based164

approaches that add a regularization term to pe-165

nalize changes in important weights of the earlier166

learned tasks (Zheng et al., 2023; Zhu et al., 2024),167

or optimization-based approaches that updates pa-168

rameters gradients for each task into orthogonal169

subspaces to avoid conflicts (Wang et al., 2023b).170

These methods rely on either old task data or ac-171

curate task labels, which are hard or expensive to172

collect for LMs’ continual training. In contrast,173

MIGU only leverages LMs’ innate features for CL.174

Partially Updating Parameters in Continual175

Learning. Among existing CL methods for LMs,176

our approach and regularization-based (Zheng177

et al., 2023; Zhu et al., 2024) approach both par-178

tially update parameters, but ours fundamentally179

diverges from the regularization-based methods in180

motivation and design. While they rely on back-181

ward gradients to identify and protect important182

weights for old tasks, we leverage the differences in183

magnitude distribution across tasks during the feed-184

forward phase. Additionally, our method’s ability185

to freely mask at the sample level sets us apart from186

their fixed gradient mask approach. Furthermore,187

our method does not require task labels, enabling188

it to work in broader scenarios where task labels189

are unavailable. Lastly, the layer output distribu-190

tions are naturally obtained during the feed-forward191

phase training, whereas they normally require an192

additional subset to derive the gradient mask before193

training on a task.194

Finding Important Weights. One may classify195

our method as a broader research cluster centered196

on finding important weights, a topic that has been197

extensively explored in continual learning (Zhu198

et al., 2023), model pruning and compression (Fran-199

kle and Carbin, 2019), efficient training and infer-200

ence (Ansell et al., 2024), as well as investigations201

into activation sparsity (Zhang et al., 2023b; Song202

et al., 2024), and other related areas. However,203

these works mostly use weight or gradient magni-204

tude to define a fixed size of the important weights.205

A few works on activation sparsity use the sparsity206

patterns after the activation function for either effi-207

cient inference (Zhang et al., 2022) or performance208

improvements (Qiu et al., 2024). None of the above209

explore the general dot product of weights and layer210

input. The closest work to ours is an unstructured211

pruning work (Sun et al., 2024) using the dot prod-212

uct of weight and input, demonstrating a superior213

method to pure weight-based pruning. However,214

RF TIFT CIT CPT

LFPT5 (Qin and Joty, 2021) ✓
EPI (Wang et al., 2023d) ✓ ✓
O-LoRA(Wang et al., 2023b) ✓ ✓
MoCL (Wang et al., 2024c) ✓ ✓
SAPT (Zhao et al., 2024) ✓ ✓
DAS (Ke et al., 2023) ✓ ✓

MIGU ✓ ✓ ✓ ✓

Table 1: The comparison between MIGU and other CL
methods. Specifically, RF indicates whether the method
is rehearsal-free. TIFT indicates whether the method is
task-id-free during training. CIT indicates whether the
method supports instruction finetuning.CPT indicates
whether the method supports continual pre-training.

this prior work fails to consider the varying pat- 215

terns of important weights across different tasks. 216

In contrast, our method utilizes the normalized dot 217

product of weight and input as an inherent indicator 218

of importance in CL settings. 219

3 Method 220

In Table 1, we compare MIGU with common CL 221

methods. Our approach is only one rehearsal-free, 222

task-id-free method that supports both continual 223

pre-training and continual finetuning. 224

3.1 Preliminary - Continual Learning Setup 225

Continual learning (Ke and Liu, 2022; Wang et al., 226

2023c; Zhao et al., 2024) aims to tackle the chal- 227

lenges that arise within the ongoing sequence. For- 228

mally, tasks {T1, . . . , TT } arrive in sequentially. 229

Each task Tt =
{(

xit, y
i
t

)}nt

i=1
contains a separate 230

target dataset with the size of nt. For any time step 231

t, the model is expected to not only adapt itself to 232

the t-th task, but also retain its capabilities across 233

all the previous tasks it has been trained on. This 234

study explores two distinct CL settings. In the first 235

setting, where only the MIGU method is employed, 236

the task label is unavailable during the training and 237

testing phases. Secondly, when combined with the 238

three existing types of CL techniques, the model 239

can be exposed to old task data or task information 240

during the training phase. 241

3.2 MIGU - MagnItude-based Gradient 242

Updating for Continual Learning. 243

Our approach employs a two-step process to lever- 244

age the inherent differences in magnitude distribu- 245

tions across various tasks for continual learning.: 246

1) Caching output magnitudes and 2) Updating gra- 247

dient via a magnitude-based mask. We show the 248
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Figure 2: Proposed method: MIGU. During 1) the for-
ward phase, our method 2) caches the output magnitude
of the linear layers, and 3) after backpropagation, 4)
MIGU masks the gradients by cached magnitudes to
update parameters accordingly.

process in Figure 2. To illustrate our method, we249

first consider the fundamental component in LMs,250

a single linear layer with weight W 2 and only feed251

a token input into LMs.252

Feedforward: Caching Output Magnitudes.253

Given the weight matrix W ∈ Rdin×dout , we in-254

terpret the columns of W as a set of dout vectors,255

each with dimension din:256

W = [w1, . . . ,wi, . . .wdout ],where wi ∈ Rdin

(1)257

Given the input vector of the layer x ∈ Rdin , the258

operation of the layer can be viewed as the dot259

product between x and each weight vector wi:260

hi = x ·wi (2)261

We then compute the normalized product magni-262

tude ni using the L1-norm by : ni = ∥hi∥1, where263

∥ · ∥1 denotes the L1-norm. Thus, we have the264

normalized magnitude product distribution vector265

n for W.266

Backward Propagation: Updating gradient via267

a magnitude-based mask. After calculating the268

gradient in the backward phase, we obtain the gradi-269

ent matrix ∇W for the weight W, which presents270

the optimization direction given the input x. We271

then define a mask matrix M to partially mask272

∇W using the normalized product magnitudes273

2For simplicity, we omit the bias term b here.

cached during the forward phase. Formally, we sort 274

the product magnitudes in the descending order and 275

mask the corresponding gradient as follows: 276

t = ⌊T × dout⌋ (3) 277

M = BinaryTopT(n, t) (4) 278
279

BinaryTopT(ni, t)

=

{
1 if ni is in the top 1− t elements of n.
0 otherwise,

(5) 280

where T is the threshold ratio to mask gradient, 281

t is the actual number t to mask, ⌊.⌋ is the floor 282

rounding. The model update rule is then given by: 283

Wnew ←W − η ·M⊙∇W (6) 284

where η is the learning rate. This formulation en- 285

sures that only those weights with normalized mag- 286

nitudes exceeding the threshold T are updated. 287

3.3 MIGU In Transformers 288

In practice, to apply MIGU, we average the product 289

magnitudes of all tokens on a batch to generate the 290

mask for simple implementation. 291

MIGU in Transformer Block. For a Trans- 292

former block, we apply our method from Sec- 293

tion 3.2 to the Query, Key, Value, and Output linear 294

layer of the multi-head attention (MHA) compo- 295

nent, and two (for T5 and RoBERTa) or three (for 296

Llama) linear layers in the FFN component. 297

MIGU in LoRA Implementation. We also im- 298

plement MIGU for parameter-efficient finetuning 299

(PEFT) of LMs, particularly we employ Low-Rank 300

Adaptation (LoRA) (Hu et al., 2022). The standard 301

LoRA is mathematically represented as follows: 302

xA = x ·A (7) 303

xB = xA ·B (8) 304

xO = x ·W +
α

r
· xB, (9) 305

where x denotes the input representation of the 306

layer, A ∈ Rdin×r and B ∈ Rr×dout are the low- 307

rank matrices, α is a scaling constant, W is the 308

original weight matrix of the standard linear, and 309

xO is the output after applying the LoRA transfor- 310

mation. 311

To implement MIGU, we apply the same method 312

in Section 3.2 for the matrix A. But for the matrix 313

B, we use the output of xO in Equation 8 rather 314

than the output of xB in Equation 9 to compute the 315

magnitude distribution vector. 316
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CL Benchmark Standard Long

LFPT5 72.7 69.2
EPI 65.3 -
MoCL 75.9 -
SAPT-LoRA - 82.0
IncLoRA 68.8 64,7

+ MIGU 76.4(7.6↑) 68.7(4.0↑)

OIncLoRA 75.8 69.6
+ MIGU 76.6(0.8↑) 70.0(0.4↑)

LoRAReplay 74.5 75.2
+ MIGU 76.2(1.7↑) 76.5(1.3↑)

MoELora 54.1 27.6
FT 75.7 68.3

+ MIGU 78.8(3.1↑) 73.8(5.5↑)

LoRA 67.9 46.0
+ MIGU 73.3(5.4↑) 61.2(15.2↑)

Table 2: Average accuracy on two standard CL bench-
marks with T5-large model. The top block contains CL
methods with extra old task data or task labels, while
the bottom does not.

4 Experiments317

We use three language models adopted by the318

previous lines of works in CL for NLP: encoder-319

only RoBERTa (Liu et al., 2019), encoder-decoder320

T5 model (Raffel et al., 2023) and decoder-only321

Llama2 (Touvron et al., 2023). We start with con-322

tinual finetuning T5-large (Raffel et al., 2020) on323

two CL datasets following the settings from (Qin324

and Joty, 2021; Wang et al., 2023b).We imple-325

ment MIGU upon vanilla finetuning and PEFT with326

LoRA (Hu et al., 2022). We also combine our327

method with three main types of CL approaches328

to examine the seamless integration of our method329

with the existing CL methodologies. Next, we use330

encoder-only RoBERTa to continual pre-traning do-331

main adaptive data, following the setting (Ke et al.,332

2023). We further scale our experiment to decoder-333

only Llama2-7B (Touvron et al., 2023) and test the334

trade-off between base model ability and new task335

ability. All experimental results are reported as the336

average of 3 runs. Please refer to the Appendix A.1337

for more detailed settings.338

4.1 Continual Finetuning on T5-large339

Two Benchmarks. We evaluate our approach to340

continual finetuning on T5-large using the standard341

CL benchmark and long sequence benchmark. We342

follow the setup from (Qin and Joty, 2021; Wang 343

et al., 2023b) to shuffle the four text classification 344

tasks from the LM dataset (Zhang et al., 2015) into 345

three different orders to form Order 1, 2, 3 for stan- 346

dard CL benchmark. Similarly, we shuffle a mix of 347

15 tasks (five classification tasks, nine GLUE and 348

SuperGLUE tasks, and the IMDB dataset) to form 349

Orders 4, 5, and 6 for the long sequence benchmark. 350

For the details on benchmark and sequence, please 351

refer to the appendix C.1. 352

Baselines. We separate the baselines into two 353

categories: without old data or task information 354

and with old data or task information during train- 355

ing. For the first category, we include vanilla 356

FT, which trains all model parameters on a se- 357

quence of tasks, and vanilla LoRA, in which 358

fixed-size LoRA parameters are trained on a se- 359

quence of tasks. For the second category, we 360

have rehearsal-based approaches: LoRAReplay 361

that trains new tasks on LoRA with mixing a 2% 362

past task, LFPT5 (Qin and Joty, 2021) contin- 363

uously trains a soft prompt that simultaneously 364

learns to solve the tasks and generate training sam- 365

ples for experience replay; architecture-based ap- 366

proaches: IncLoRA that incremental learning of 367

new LoRA parameters on a sequential series of 368

tasks, MoELora (Luo et al., 2024), a vanilla MoE 369

with LoRA number equals to the task number, 370

SAPT-LoRA (Zhao et al., 2024) extends IncLoRA 371

by aligning learning process and selection process 372

of LoRA, and MoCL (Wang et al., 2024c) continu- 373

ally adds new modules and composes them with ex- 374

isting modules; parameter-based approaches OIn- 375

cLoRA (Wang et al., 2023b)3 extends IncLoRA to 376

learn different LoRAs into orthogonal subspaces. 377

Metrics. Average Accuracy (Chaudhry et al., 378

2018). The average performance of all tasks after 379

training on the last task, i.e., AT = 1
T
∑T

t=1 aT ,t. 380

Results on T5. Table 2 shows that our proposed 381

approach improves the performance of all five 382

CL approaches. Notably, when our method is 383

applied, the vanilla FT and LoRA baselines see 384

substantial improvements. Some results obtained 385

using our approach are comparable to the SOTA 386

CL methods that leverage task labels or old task 387

data. Notably, the LoRA+MIGU approach sur- 388

passes the vanilla LoRA method by a substantial 389

3O-LoRA is original name, we rename it to OIncLoRA
to emphasize it is build upon IncLoRA and align with our
notation.
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15.2% on the long sequence benchmark, signifi-390

cantly mitigating the drawbacks of LoRA in the391

CL setting with long sequences. We chose to com-392

bine our method with three LoRA-based techniques393

to integrate with three CL approaches that lever-394

age old data or additional labels. The parameter-395

based IncLoRA+MIGU exhibits the most signifi-396

cant improvement over the original IncLoRA, im-397

plying that our magnitude-based approach can398

effectively mitigate the conflicts among the se-399

quentially learned LoRA parameters in IncLoRA.400

The relatively marginal improvement of parameter-401

based OIncLoRA+MIGU indicates a similar func-402

tion between our approach and projecting LoRAs403

into orthogonal subspaces, but our method does not404

require task labels during the continual training pro-405

cess. SAPT-LoRA achieves the SoTA performance406

in long sequence benchmark, but it requires both407

task labels and past data, which are often infeasi-408

ble or costly in LMs settings. We also report an409

efficiency study in Appendix D.2 Table 9 to show410

our approach only leads to a minor overhead over411

the vanilla methods, which is assumed to be more412

efficient than other CL methods. We provide a full413

experiment in Appendix D.1 Table 8. We also draw414

the Violin Plot to show the statistical significance415

of our approach in Appendix D.1.416

4.2 Continual Pre-training on RoBERTa417

Benchmark. In contrast to the previous contin-418

ual finetuning setting, (Ke et al., 2023) introduces419

DAS, a new benchmark for continual pre-training420

of LMs. DAS is composed of 6 unlabeled domain421

corpora, which contain 3 reviews and 3 academic422

papers. It is then evaluated using 6 corresponding423

classification datasets. Please refer to the Appendix424

B.1 for the details.425

Metrics. For continual pre-training, We utilize426

MF1 (Macro-F1) and ACC (Accuracy) following427

(Ke et al., 2023) to evaluate the performance after428

pre-training on the last domain.429

Baselines. We choose top baselines range from430

vanilla methods that pre-train RoBERTa on do-431

mains sequentially with full parameters FT432

and with PEFT Adapter to rehearsal-based433

(DER++ (Buzzega et al., 2020)), architecture-434

based (DEMIX (Gururangan et al., 2021)), and435

parameter-based HAT-Adapter (Serrà et al., 2018)436

and DAS (Ke et al., 2023).437

Metrics MF1 ACC

DEMIX 74.70 79.66
DER++ 75.78 80.46
HAT-Adapter 74.63 79.78
DAS 77.90 81.90
DAS∗ 76.59 81.07

Adapter 74.05 79.48
FT 76.36 80.77

+ MIGU 76.73(0.37↑) 81.19(0.42↑)

Table 3: Average MF1, ACC on the DAS benchmark af-
ter continual pre-training on all domains and finetuning
on their corresponding end-task datasets. DAS∗ is the
result we reproduced.

Avg of 1-2 Avg of 5-6

FT 79.69 82.07
DAS 80.30(0.61↑) 81.16(0.91↓)

MIGU 80.14(0.45↑) 82.41(0.34↑)

Table 4: The average ACC of the first and last two
learned domains in the DAS benchmark.

Results on RoBERTa. We further evaluate 438

MIGU in another setting in which, instead of fine- 439

tuning, we continually pre-train a RoBERTa model 440

to six domains sequentially (domain-adaptive pre- 441

training). Our experimental results in Table 3 also 442

show promising results of our approach over or on 443

par with the sophisticated CL methods with task la- 444

bels or old data. For instance, FT+MIGU achieves 445

0.37% improvement in MF1 and 0.42% in ACC. 446

We also explore the performance of the domains in 447

different orders. We report the average ACC of the 448

first and last two learned domains in Table 4. The 449

results indicate that while the DAS model exhibits 450

less forgetting in the earlier learned domains, but 451

it also learns less in the last domains, possibly due 452

to the strong regularization used to constrain its pa- 453

rameter updates during the CL process over a long 454

sequence. In contrast, MIGU demonstrates a more 455

sustainable method, exhibiting robust performance 456

on the earlier and recently learned domains. 457

4.3 Forget Less and Learn the Same: Scaling 458

to Llama2 459

Results on Llama2. We further assess our ap- 460

proach on a more demanding LLM continual 461

instruction tuning setting. We finetune a base 462
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(a) Learn the same. Instruction tuning results on Human eval.
MIGU with LoRA learns the same as the valinna LoRA.
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(b) Forget less. Average accuracy on HellaSwag, Winogrande,
ARC-Challenge for Llama-2-7B. The results indicate that
MIGU with LoRA forgets less than valinna LoRA.

Figure 3: Performance comparison of LoRA with
MIGU and the baseline vanilla LoRA on Llama2-7B in-
struction tuning, evaluated using the Humaneval (Chen
et al., 2021), as well as on LM benchmarks: Hel-
laSwag (Zellers et al., 2019), Winogrande (Sakaguchi
et al., 2019), and ARC-Challenge (Clark et al., 2018).

Llama2-7B on Magicoder-Evol-Instruct-110K for463

32 epochs. This dataset (Wei et al., 2024) contains464

72.97M tokens of programming questions and an-465

swers. However, due to computation constraints,466

we sample 20% of data and conduct experiments on467

LoRA. We follow (Biderman et al., 2024) to assess468

LoRA+MIGU’s capabilities on both the base ability469

(forgetting domain) and the code ability (learning470

domain). To evaluate code learning performance,471

we utilize the Humaneval benchmark (Chen et al.,472

2021)), which contains 164 problems that generate473

a Python program with a docstring and a function474

signature. A generation is considered correct if475

it passes all supplied unit tests. To quantify how476

much they have forgotten previous knowledge, we477

follow (Biderman et al., 2024) that utilizes average478

scores of three benchmarks, HellaSwag (Zellers479

et al., 2019), WinoGrade (Sakaguchi et al., 2019)480

and ARC-challenge (Clark et al., 2018). The ex-481

periments are shown in Figure 16. Compared482

to baseline FT, our method learns a similar level483

of new code knowledge but exhibits significantly484

less forgetting of previous knowledge. This sug-485

gests our approach achieves a better trade-off point 486

on the Pareto frontier between learning plasticity 487

and memory stability (Huang, 2003; Wang et al., 488

2024a). For example, after 32 training epochs, the 489

average accuracy across the three benchmarks for 490

our method is 59.4, while the baseline model only 491

achieves 58.4. 492

5 Discussions 493

We then provide ablations on gradient mask thresh- 494

old and components as well as a visualization. 495

5.1 Ablation on Gradient Mask Threshold 496

We plot all five curves of our approach for gradient 497

mask threshold from 0.0 to 0.9 for our methods in 498

T5-large experiments. The optimal threshold value 499

for FT, LoRA, and IncLoRA settings is 0.7 while 500

LoRAReplay is 0.4 as shown in Figure 44. OIn- 501

cLoRA is only 0.1, which is plausible due to the 502

parameter updating regularized by the OIncLoRA 503

method itself. The optimal value for IncLoRA is 504

0.6, close to FT, LoRA, and IncLoRA settings. 505

Surprisingly, with only 5% (T = 0.95) or 1%

0.0 0.2 0.4 0.6 0.8 1.0
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64

66

68
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72
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OIncLoRA+MIGU
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Figure 4: Ablation study on the gradient mask threshold.
The curves illustrate that the optimal value is concen-
trated around 0.7 for FT, LoRA, and IncLoRA, 0.4 and
0.1 for the LoRAReplay and OIncLoRA settings respec-
tively.

506
(T = 0.99) parameters updating, LoRA+MIGU 507

still beats LoRA by a wide margin. This interesting 508

finding may indicate that only a small proportion 509

4The ablation on threshold search only reports one run, so
it does not align with the experiments in Section 4.1.
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Order1 Order2 Order3 Avg

FT + MIGU 79.6 80.3 79.2 79.7

FT 75.3 76.1 78.0 76.5
+ FFN 1st-L 76.9 75.9 75.8 76.2
+ FFN all 77.2 77.2 76.7 77.0
+ Attention Q 77.2 76.4 78.3 77.3
+ Attention K 76.9 73.4 75.6 75.3
+ Attention V 75.4 76.3 78.0 76.6
+ Attention O 76.2 75.9 76.0 76.0
+ Attention all 80.2 78.8 79.0 79.3

Table 5: The ablation results from applying MIGU to
different LM components.“+ FFN all” means only ap-
plying MIGU to all the linear operators in FFN layers.
The results demonstrate implementing MIGU across all
linear layers leads to the most benefits.

of proportional weights with large magnitudes is510

crucial for successful CL settings, which may be511

worth future investigation.512

5.2 Ablation on Gradient Mask Components513

We further investigate which components within a514

transformer block should utilize MIGU. Typically,515

a transformer block consists of six linear layers:516

the query, key, and value (QKV) linear layers and517

the output linear layer (O) in the MHA module, as518

well as the two linear layers in the FFN. Our anal-519

ysis shows that employing MIGU across all these520

linear layers achieves the best overall performance,521

suggesting that the magnitude-based approach is522

effective for linear layers in different parts of the523

transformer architecture.524

5.3 Visualization525

We plot task similarity by counting the overlapping526

ratio of updated parameters (large magnitudes) po-527

sitions by using 100 samples per task. In Figure 5,528

we visualize the task similarity for the first layer529

of FFN in the last Transformer block of T5-large,530

comparing FT and FT+MIGU in the Order1 setting.531

The results clearly show that MIGU increases the532

degree of parameter isolation across tasks, achiev-533

ing a similar effect by using task information but534

without relying on such explicit task labels. We fur-535

ther highlight the similarity between the BoolQA,536

COPA, and Yelp tasks and the notable decrease in537

similarity among these three tasks. Analyzing the538

performance results shown in Table 6, we find that539

the significant reduction in overlapping ratio across540

tasks considerably alleviates the task conflicts, re-541

sulting in much more significant performance gains.542

BoolQA COPA Yelp

FT 67.3 45.0 39.1

FT + MIGU 78.3(11.0↑) 55.0(10.0↑) 47.6(8.5↑)

Table 6: The improvement on BoolQA, COPA and Yelp
in Order 1.

For example, the accuracy improvement for the 543

COPA dataset is exactly 10%. We put the full visu- 544

alization of all linear layers in Appendix D.4. 545
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Figure 5: The visualization of magnitude distribution
similarity across different tasks. FT+ MIGU is lower,
indicating that MIGU reduces the possibility of weight
conflicts between tasks. The two sub-figures at the
bottom are three highlighted task samples: BoolQA,
COPA and Yelp.

6 Conclusion 546

We propose MIGU, a rehearsal-free and task-label- 547

free method that only updates the model parameters 548

with large output magnitudes in LM’s linear layers. 549

By imposing this simple constraint on the gradient 550

update process, we can leverage the inherent be- 551

haviors of LMs, thereby unlocking their innate CL 552

abilities. Our experiments, applied to all three LM 553

architectures (T5, RoBERTa and Llama2), on two 554

CL scenarios (continual finetuning and continual 555

pre-training) and four CL benchmarks, consistently 556

deliver better performance. Our method can also 557

be seamlessly integrated with existing CL solutions 558

to further improve their performance. 559
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7 Limitations560

We acknowledge two limitations for this work. Due561

to computation limitations, although we finetune562

Llama2-7B with LoRA, we are unable to scale our563

experiments to LM continual pre-training or full564

tuning. However, our experimental performance on565

continual pre-training RoBERTa indicates the great566

potential for the scalability of this general approach.567

Another limitation is we only explore an approach568

for unlocking the inherent CL potential of LMs569

through updating the gradient by the magnitude570

of output. There exists more discussions on ex-571

ploiting innate features such as activation sparsity572

as discussed in the Related Work section. These573

limitations can be further addressed in future work.574

References575

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama576
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,577
Diogo Almeida, Janko Altenschmidt, Sam Altman,578
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.579
arXiv preprint arXiv:2303.08774.580
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A Experimental Details888

All experiments are run on an A100 × 8 DGX-889

machine.890

A.1 Continual finetuning on T5891

We adapted the code-base from O-LORA.892

Finetuning (FT) and FT with MIGU.893

• The batch size is set to 64.894

• The optimization is performed using the895

AdamW algorithm with hyperparameters896

β1 = 0.9, β2 = 0.999, and a weight decay897

coefficient of 0.01.898

• The initial learning rate is set to 1 × 10−4,899

alongside a static learning rate scheduler.900

• The threshold for mask selection is set at 0.7901

across orders 1 to 6 in the FT+MIGU configu-902

ration.903

Low-Rank Adaptation (LoRA) and LoRA with904

MIGU.905

• LoRA configuration: r = 8, α = 32, dropout906

= 0.05.907

• The learning rate is set to 1× 10−3, with all908

other hyperparameters being consistent with909

the FT+MIGU configuration.910

Incremental LoRA (IncLoRA) and IncLoRA911

with MIGU.912

• For each LoRA module: r = 8, α = 32,913

dropout = 0.05.914

• Hyperparameters are identical to those speci-915

fied in the LoRA and LoRA with MIGU set-916

tings.917

Order-Incremental LoRA (OIncLoRA) and918

OIncLoRA with MIGU.919

• The threshold for mask selection is set at 0.05920

across orders 1 to 6 in the FT+MIGU configu-921

ration.922

• All remaining hyperparameters are consistent923

with the LoRA and LoRA with MIGU set-924

tings.925

LoRA Replay and LoRA Replay with MIGU. 926

• The threshold for mask selection is set at 0.4 927

across orders 1 to 6 in the FT+MIGU configu- 928

ration. 929

• All remaining hyperparameters are consistent 930

with the LoRA and LoRA with MIGU set- 931

tings. 932

A.2 Continual pre-training finetune on 933

RoBERTa 934

We adapted the code-base from DAS. 935

pre-training. 936

• The batch size is set to 248. 937

• The optimization is performed using the 938

AdamW algorithm with hyperparameters 939

β1 = 0.9, β2 = 0.999, and a weight decay 940

coefficient of 0. 941

• The initial learning rate is set to 1 × 10−4, 942

alongside a linear learning rate scheduler. 943

• The threshold for mask selection is set at 0.7 944

on the sequence of tasks. 945

Tuning. 946

• The batch size is set to 16. 947

• The optimization is performed using the 948

AdamW algorithm with hyperparameters 949

β1 = 0.9, β2 = 0.999, and a weight decay 950

coefficient of 0.01. 951

• The initial learning rate is set to 3 × 10−5, 952

alongside a linear learning rate scheduler. 953

A.3 Instruct finetuning on Llama2. 954

• The optimization is performed using the 955

AdamW algorithm with hyperparameters 956

β1 = 0.9, β2 = 0.95, and a weight decay 957

coefficient of 0. 958

• The initial learning rate is set to 5 × 10−4, 959

alongside a cosine learning rate scheduler 960

with warmup = 0.1 of the total duration. 961

• LoRA configuration: α = 32, dropout = 962

0.05. 963
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Benchmark Order Task Sequence

Standard CL
1 dbpedia → amazon → yahoo → ag
2 dbpedia → amazon → ag → yahoo
3 yahoo → amazon → ag → dbpedia

Long sequence
4

mnli → cb → wic → copa → qqp → boolqa → rte → imdb →
Yelp → amazon → sst-2 → dbpedia → ag → multirc → yahoo

5
multirc → boolqa → wic → mnli → cb → copa → qqp → rte
→ imdb → sst-2 → dbpedia → ag → Yelp → amazon → yahoo

6
Yelp → amazon → mnli → cb → copa → qqp → rte → imdb →
sst-2 → dbpedia → ag → yahoo → multirc → boolqa → wic

DAS 7 Restaurant→ ACL→ AI→ Phone→ PubMed→ Camera

Table 7: Task Sequence Orders for Continual Learning Experiments. Orders 1-3 represent the conventional task
sequences employed in standard continual learning benchmarks (Zhang et al., 2015). Orders 4-6 extend to longer
sequences, encompassing 15 tasks each (Razdaibiedina et al., 2023). Order 7 comprises a sequence of 6 tasks
derived from unsupervised pre-training domains, in accordance with (Ke et al., 2023).

B Benchmark Instruction964

B.1 Dataset Information965

Our experimental section encompasses datasets in-966

cluding the Standard CL benchmark and Long967

sequence benchmark, both of which are utilized968

for instruction finetuning on the T5-large model;969

the DAS benchmark, which is used for continual970

pre-training on RoBERTa; the Magicoder-Evol-971

Instruct-110K, which pertains to instruction tun-972

ing on Llama-2-7B; and the datasets Hellaswag,973

WinoGrande, and ARC-Challenge for evaluating974

the finetuned Llama-2-7B.975

Standard CL benchmark. For continual finetun-976

ing, we use MTL5 dataset introduced by (Zhang977

et al., 2015), and follow the setup from LFPT5 and978

O-LoRA (Qin and Joty, 2021; Wang et al., 2023b)979

to pick four text classification datasets (AG News,980

Amazon reviews, DBpedia and Yahoo Answers)981

and shuffle the tasks into three different orders. 982

Long sequence benchmark. (Razdaibiedina 983

et al., 2023) extends the Standard CL benchmark 984

by introducing a long sequence benchmark for 985

continual learning benchmark with 15 datasets. 986

This includes five tasks from CL benchmark, 987

four from GLUE benchmark (MNLI, QQP, RTE, 988

SST2) (Wang et al., 2018), five from Super- 989

GLUE benchmark (WiC, CB, COPA, MultiRC, 990

BoolQ) (Wang et al., 2018), and the IMDB movie 991

reviews dataset (Maas et al., 2011). Follow- 992

ing (Razdaibiedina et al., 2023), we select 1000 993

random samples for training each task and hold out 994

500 samples per class for validation. 995

DAS Benchmark. (Ke et al., 2023) introduce a 996

new benchmark for continual pre-training of LMs, 997

which is more challenging as the data required 998

to pre-train is much larger and LMs are easier to 999
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forget previous knowledge. DAS is composed of1000

6 unlabeled domain corpora, which contain 3 re-1001

views: Yelp Restaurant (Xu et al., 2019), Amazon1002

Phone (Ni et al., 2019), Amazon Camera (Ni et al.,1003

2019); 3 of them are academic papers: ACL Pa-1004

pers (Lo et al., 2020), AI Papers (Lo et al., 2020),1005

and PubMed Papers 5. and evaluated by 6 corre-1006

sponding classification datasets are: Restaurant 6,1007

Phone(Ding et al., 2008; Hu and Liu, 2004), Cam-1008

era (Ding et al., 2008; Hu and Liu, 2004), ACL1009

(ACL-ARC in (Jurgens et al., 2018)), AI (SCIERC1010

in (Luan et al., 2018)), and PubMed (CHEMPORT1011

in (Kringelum et al., 2016)).1012

Magicoder-Evol-Instruct-110K. This1013

dataset (Wei et al., 2024) contains 72.97M1014

tokens of programming questions and answers.1015

It reproduces the “Evol-Instruct” dataset of1016

WizardCoder (Luo et al., 2023): an LLM (GPT-4)1017

is iteratively prompted to increase the difficulty1018

of a set of question-answer pairs (from Code1019

Alpaca (Chaudhary, 2023)). Due to computation1020

constraints, we pick contain 20% the samples to1021

instruct tuning the Llama-2-7B model.1022

HellaSwag, WinoGrade and ARC-challenge.1023

For how much they forget the old knowledge, we1024

follow the (Biderman et al., 2024) that averages1025

three benchmarks, HellaSwag (Zellers et al., 2019),1026

WinoGrade (Sakaguchi et al., 2019) and ARC-1027

challenge (Clark et al., 2018). HellaSwag bench-1028

mark includes 70K problems, each describing an1029

event with multiple possible continuations. The1030

task is to pick the most plausible continuation, re-1031

quiring inferences about nuanced everyday situa-1032

tions. WinoGrande benchmark also assesses com-1033

monsense reasoning. It includes 44K problems1034

with sentences that require ambiguous pronoun res-1035

olution. ARC-Challenge benchmark consists of1036

7,787 grade-school level, multiple-choice science1037

questions, testing capabilities in complex reasoning1038

and understanding scientific concepts.1039

B.2 Training orders1040

The training orders in 3 benchmarks on T5-large1041

and RoBERTa models are shown in table 7.1042

5https://pubmed.ncbi.nlm.nih.gov/
6https://alt.qcri.org/semeval2014/task4/

C Baselines for all settings 1043

C.1 Baselines on Standard CL benchmark 1044

and Long sequence benchmark7 1045

• FT (de Masson D’Autume et al., 2019): train all 1046

model parameters on a sequence of tasks (without 1047

adding any regularization or replaying samples 1048

from the previous tasks). 1049

• LoRA: fixed-size LoRA parameters are trained 1050

on a sequence of tasks (without adding any regu- 1051

larization or replaying samples from the previous 1052

tasks). 1053

• IncLoRA: incremental learning of new LoRA pa- 1054

rameters on a sequential series of tasks (without 1055

adding any regularization or replaying samples 1056

from the previous tasks). 1057

• Replay: finetune the whole model with a mem- 1058

ory buffer, and replay samples from old tasks 1059

when learning new tasks to avoid forgetting. 1060

• LFPT5 (Qin and Joty, 2021): continuously train 1061

a soft prompt that simultaneously learns to solve 1062

the tasks and generate training samples, which 1063

are subsequently used in experience replay. 1064

• OIncLoRA (Wang et al., 2023b): learns tasks in 1065

different LoRA subspaces that are kept orthogo- 1066

nal to each other and sums all LoRA weights up 1067

at testing time. 1068

• MoCL (Wang et al., 2024c): MoCL continually 1069

adds new modules to language models and com- 1070

poses them with existing modules. 1071

• SAPT (Zhao et al., 2024): In the SAPT method, 1072

a Shared Attentive Learning and Selection Mod- 1073

ule (SALS) is employed to guide training sam- 1074

ples through optimal PET blocks for task-specific 1075

learning, using a unique instance-level attention 1076

mechanism. This process ensures efficient con- 1077

tinual learning for large language models. 1078

• MoELORA (Luo et al., 2024): MoELoRA con- 1079

siders LoRA as a Mixture of Experts, leverag- 1080

ing the modeling capabilities of multiple experts 1081

for complex data domains, as well as utilizing 1082

LoRA’s parameter-efficient characteristics. 1083

7We reuse some baseline descriptions from OLoRA
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Standard CL Benchmark (4 tasks) Longer CL Benchmark (15 tasks)
Order-1 Order-2 Order-3 avg Order-4 Order-5 Order-6 avg

SeqFT 18.9 24.9 41.7 28.5 7.4 7.4 7.5 7.4
SeqLoRA 44.6 32.7 53.7 43.7 2.3 0.6 1.9 1.6
IncLoRA 66 64.9 68.3 66.4 63.3 58.5 61.7 61.2
Replay 55.2 56.9 61.3 57.8 55 54.6 53.1 54.2
EWC 48.7 47.7 54.5 50.3 45.3 44.5 45.6 45.1
LwF 54.4 53.1 49.6 52.3 50.1 43.1 47.4 46.9
L2P 60.3 61.7 61.1 60.7 57.5 53.8 56.9 56.1
LFPT5 67.6 72.6 77.9 72.7 70.4 68.2 69.1 69.2
MoELoRA 52.8 49.6 59.8 54.1 36.3 31.4 15.1 27.6
O-LoRA 77.1 76.2 76.6 76.6 68.4 68.8 71.4 69.5
MoCL 75.6 75.4 76.7 75.9 - - - -

FT 74.4 75.0 77.5 75.7 70.6 69.7 65.6 68.3
MIGU + FT 78.3 79.8 78.3 78.8 77.1 73.6 70.7 73.8
LORA 60.7 70.0 73.1 67.9 53.7 44.4 39.8 46.0
MIGU + LORA 74.8 71.6 73.5 73.3 66.9 64.8 51.8 61.2
OIncLoRA 77.1 76.2 76.6 76.6 68.4 68.8 71.4 69.5
MIGU + OIncLoRA 77.1 77.0 75.6 76.6 67.3 68.5 74.2 70.0
LORAReplay 77.1 73.4 73.2 74.5 74.5 75.4 75.7 75.2
MIGU + LORAReplay 77.8 75.1 75.9 76.2 75.4 76.8 77.2 76.5

ProgPrompt 75.2 75 75.1 75.1 78.0 77.7 77.9 77.9
PerTaskFT 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1
MTL 80.0 80.0 80.0 80.0 76.5 76.5 76.5 76.5

Table 8: Summary of the results on two standard CL benchmarks with T5-large model. Averaged accuracy after
training on the last task is reported. All results are averaged over 3 runs. (We reuse the table template and some
results from OLoRA). It is noticeable some baselines in some previous literature show significant lower
performance than ours, we assume this may due to our strict parameter grid search for baseline methods.

C.2 Baselines on DAS benchmark1084

• NCL (Naive CL) continually DAP-trains the1085

RoBERTa;1086

• NCL-Adapter continually DAP-trains a set of1087

adapters (Houlsby et al., 2019)1088

• DER++ (Buzzega et al., 2020) is a replay method1089

based on knowledge distillation. 16.4K tokens1090

are saved for each domain in the replay memory.1091

• DEMIX (Gururangan et al., 2021) adds a new1092

adapter for each new domain and initializes it1093

with a previous adapter nearest to the new do-1094

main;1095

• HAT-Adapter (Serrà et al., 2018): HAT is an1096

effective parameter-isolation method. HAT is1097

applied to Transformer layers (i.e., self-attention,1098

intermediate and output layers).1099

• HAT-Adapter (Ke et al., 2021): HAT-Adapter 1100

uses HAT within adapters. 1101

• DAS (Ke et al., 2023) DAS proposes a soft- 1102

masking method to overcome CF and to encour- 1103

age KT, and a constrative learning-based method 1104

for knowledge integration. 1105

D Experimental Results 1106

D.1 Experiment on T5 1107

We report more detailed results on the Standard 1108

CL benchmark and Long sequence benchmark in 1109

table 8, including each order results and their cor- 1110

responding average results. To more intuitively 1111

display our results compared to the baseline, we 1112

plotted violin graphs showing the performance with 1113

and without our method under the condition of full 1114

finetuning as Figure 7 8 9 10. 1115
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out the implementation of our method..

Order123 Avg.
70

72

74

76

78

80

Ac
cu

ra
cy

FT FT+MIGU

Figure 8: Average performance comparison on the stan-
dard cl benchmark under full finetuning setting, with
and without the implementation of our method..

D.2 Experiment on RoBERTa1116

Detailed experiment results The violin graphs1117

results is shown as Figure 11.1118

Efficiency We also conduct a efficiency test1119

by comparing FT, FT+MIGU and DAS because1120

continual-pre-training is a relatively computation-1121

intensive setting so efficiency is important. DAS1122

is a typical parameter-based regularization meth-1123

ods. We record the time required for the first three1124

dataset given the same computing facilities.1125

As shown in the figure, FT+MIGU only occur a1126

1% overhead, due to the extra masking step in the1127

backward propagarion phase while DAS achieves1128

a series overhead due to . wall time DAS vs. ours.1129

vs. FT1130

D.3 Experiment on Llama21131

The detailed violin graphs results about ARC-1132

Challenge (Clark et al., 2018), HellaSwag (Zellers1133

et al., 2019) and Winogrande (Sakaguchi et al.,1134
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Figure 9: Performance comparison on the standard cl
benchmark under full finetuning setting, with and with-
out the implementation of our method..
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Figure 10: Average performance comparison on the
standard cl benchmark under full finetuning setting, with
and without the implementation of our method..

2019) are seperately shown in Figure 12, 13, 14. 1135

D.4 Visualization 1136

To investigate how our method enhances model 1137

performance, we visualized the variation in prod- 1138

uct magnitudes between an FT model and an FT 1139

model augmented with our MIGU technique. We 1140

employed heatmaps to depict the similarity in prod- 1141

uct magnitude distributions across different tasks. 1142

Our findings reveal that task similarity in the FT 1143

model with MIGU implementation is markedly 1144

Restaurant ACL AI

FT 25.3(+0.0%) 26.7(+0.0%) 15.5(+0.0%)

FT + MIGU 27.3(+7.9%) 29.2(+9.4%) 17.0(+12.9%)

DAS 78.0(+208%) 66.5(+154%) 45.0(+190%)

Table 9: The wall time(min) on three domain pre-
training dataset.

16



Avg.

79.5

80.0

80.5

81.0

81.5

82.0

82.5

Ac
cu

ra
cy

Valinna
DAS

MIGU

Figure 11: Performance comparison on the DAS bench-
mark under continual domain pre-training setting, with
and without the implementation of our method.

reduced. This suggests that the models trained1145

with our method exhibit more distinctive weight1146

activations for different tasks, thereby mitigating1147

their conflict. This distinction in activation pat-1148

terns indicates our method’s ability to foster more1149

task-specific representations within the model, con-1150

tributing to its improved performance across varied1151

learning scenarios.1152

Magnitude Distribution.1153

E Ablation1154

Informed by the works on Mixture of Experts1155

(MoE) (Jiang et al., 2024), Emergent MoE1156

(EMoE) (Qiu et al., 2023), and MoEfication (Zhang1157

et al., 2022), we investigate explicit clustering of1158

weight vectors in language models (LMs) to con-1159

struct expert groups. Technically, we treat the linear1160

layer’s weight matrix W as a set of dout vectors,1161

each of dimension din. These vectors are then par-1162

titioned into N clusters, analogous to MoE experts.1163

E.1 Implementation1164

As detailed in § 3.2, our method encompasses four1165

core processes in cluster-based implementation.1166

During the data forward phase, the product mag-1167

nitudes of the weight vectors are computed and1168

tracked. Subsequently, in the second phase, MIGU1169

caches these magnitudes and employs an L1-norm1170

normalization to derive a gradient mask. This mask1171

is pivotal for modulating the gradients in the subse-1172

quent phases. The third phase involves the standard1173

backpropagation to calculate the gradients of the1174

parameters. Finally, in the fourth phase, the earlier1175

computed gradient mask is applied to the obtained1176
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Figure 12: Accuracy on ARC-Challenge (Clark et al.,
2018), evaluating on Llama-2-7B by MIGU with LoRA
and valinna LoRA instruct tuning on Magicoder-Evol-
Instruct-110k (Wei et al., 2024).

gradients, ensuring a modulated update of the pa- 1177

rameters. This modulation is consistent within each 1178

cluster, thereby maintaining the integrity of the ex- 1179

pert groupings and enhancing the model’s learning 1180

efficacy. 1181

We explored two distinct clustering strategies: 1182

• Weight Cluster Combination: The weight vec- 1183

tors are clustered into N groups based on their 1184

proximity in the weight space. 1185

• Co-magnitude Guided Combination: Using a 1186

subset of the dataset, we group weight vectors 1187

into clusters based on the similarity of their 1188

product magnitudes. 1189

E.2 Result & Analysis 1190

The outcomes of two distinct clustering approaches, 1191

alongside our implementation within LoRA, are il- 1192

lustrated in Figure 18. It is evident that, except for 1193

the second order, the “Weight Cluster” method sur- 1194

passes the ’No Cluster’ approach, which does not 1195

employ explicit clustering. However, the ’No Clus- 1196

ter’ method demonstrates superior performance 1197

across the remaining orders, highlighting its ro- 1198

bustness and effectiveness. Nonetheless, the other 1199

two explicit clustering techniques still significantly 1200

outperform the baseline vanilla continual learning 1201

LoRA, indicating their potential for further explo- 1202

ration. 1203
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Figure 13: Accuracy on HellaSwag (Zellers et al.,
2019), evaluating on Llama-2-7B by MIGU with LoRA
and valinna LoRA instruct tuning on Magicoder-Evol-
Instruct-110k (Wei et al., 2024).
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Figure 14: Accuracy on Winogrande (Sakaguchi et al.,
2019), evaluating on Llama-2-7B by MIGU with
LoRA and valinna LoRA instruct tuning pre-trained
on Magicoder-Evol-Instruct-110k (Wei et al., 2024).
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Figure 15: The product magnitude distribution similar-
ity of different tasks.
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Figure 16: The product magnitude distribution similar-
ity of different tasks.
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Figure 18: Ablation on LoRA modularity design
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