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ABSTRACT

Graphs have attracted numerous attention in varied areas and are dynamic in many
scenarios. Among dynamic graphs, growing graphs with frequently expanding
vertex and edge sets are typical and widely existed, e.g. the rapidly growing so-
cial networks. Confronting such growing data, existing methods on either static or
dynamic graphs take the entire graph as a whole and may suffer from high compu-
tation cost and memory usage due to the continual growth of graphs. To tackle this
problem, we introduce incremental graph learning (IGL), a general framework to
formulate the learning on growing graphs in an incremental manner, where tra-
ditional graph learning method could be deployed as a basic model. We first an-
alyze the problems of directly finetuning on the incremental part of graph, and
theoretically discuss the unbiased and edge-preserved conditions of IGL. In our
method, when the graph grows with new-coming data, we select or generate ver-
tices and edges within restricted sizes from the previous graph to update current
model together with the new data. Here, two strategies, i.e. sample-based and
cluster-based, are proposed for learning with restricted time and space complex-
ity. We conduct experiments on the node classification and link prediction tasks
of multiple datasets. Experimental results and comparisons show that our method
achieves satisfying performance with high efficiency on growing graphs.

1 INTRODUCTION

Graph represents complicated relations of data in non-Euclidean domain with topological structure.
Recently, graph neural networks have attracted considerable efforts and been successfully applied
to various fields (Zhang et al., 2020). Most existing research concentrate on static graphs, while in
real-world applications, graphs are generally dynamic in nature. The dynamics of graph include the
addition and removal of vertices and edges, and the change of vertex attributes and edge weights
(Harary & Gupta, 1997). Recent works for dynamic graph learning (Pareja et al., 2020; Manessi
et al., 2020; Xu et al., 2020) consume dynamic structures using recurrent architectures and capture
temporal patterns. However, there are less efforts concentrating on the growing graph, a typical and
widely existed dynamic graphs, with continually added vertices and edges, e.g. social networks and
citation networks. It is a challenging problem to frequently updating models for adapting the growth
of graph with high efficiency, which has not been fully concerned in the literature.

Given a growing graph, we consider the incremental parts as subgraphs of the entire graph, with
edges correspondingly split into intra-edges inside subgraphs and inter-edges among subgraphs, as
shown in Figure 1 (a). For such data, the manner of incremental learning is an efficient strategy,
where we expect to update model based on new subgraphs and consistently perform on the entire
graph observed so far. Compared with incremental learning on data without inter-sample connec-
tions (e.g. images), incremental learning on growing graphs shows the differences that: (i) the
previous vertices and edges must be stored in the database throughout the time, and may be related
with new subgraphs, (ii) using previous data for updating with new data is essential, considering the
utilization of inter-edges among subgraphs. To perform on the entire observed graph at each time,
directly learning on the whole set is a feasible solution but time-consuming due to the continual
growth of the graph. In contrast, simply learning on the new subgraph requires low complexity in
time and space. But such a learning strategy introduces bias to the later-coming subgraphs and drops
the inter-edges among subgraphs, which seriously corrupt the effectiveness of graph learning.

Present work. We present incremental graph learning (IGL) to formulate the incremental learning
on growing graphs and explore efficient learning strategy, as shown in Figure 1 (b). Given a growing

1



Under review as a conference paper at ICLR 2021

copying new 
subgraph

…
Growing Graph

…
GtGt�1 Gt+2Gt+1

old vertices
new vertices time

tra
in

in
g

te
st Entire 

Observed
Graphs

�E��D�

subgraphs

intra-edges
inter-edges

…
…

gr
ow

in
g 

gr
ap

h

Graph Learning Model

Graphs
for Learning {GL

t }

Learning
Model {⇥t}

{Gt}time

selecting from
old graph

Figure 1: (a) A growing graph with sequentially added subgraphs. (b) Framework of IGL. At each
time, we train on the new subgraph together with selected or generated vertices and edges from the
old graph within restricted size, and aim to perform on the entire observed graph.

graph {Gt} in training, we generate a graph GLt for updating current model, where the model is mod-
ulized as a backbone and can be implemented by different graph learning methods. Then the model
is expected to perform on the entire observed graph in test. To alleviate the problems of directly
learning on the new subgraphs, we select or generate vertices and edges within restricted sizes from
the old graph, and combine them with current subgraph as GLt . Intuitively, GLt should be unbiased
to the entire graph and preserve enough inter-edges. We then theoretically analyze the unbiased and
edge-preserved conditions for such process, and propose sample-based and cluster-based strategies
to generate GLt under specified memory constraints. Experiments of node classification and link
prediction on multiple datasets are conducted for evaluations.

Comparison with related works. We review related works and present their main differences with
IGL in motivation, target and method designing. (a) Incremental learning continually extends its
learned knowledge based on new data, where the incremental data could be new samples, categories,
domains, etc. Related works on data with independent samples (e.g. images), mainly focus on
incremental categories (Rebuffi et al., 2017) or incremental domains (Li & Hoiem, 2017) to solve
the problem of catastrophic forgetting (McCloskey & Cohen, 1989). Sample-incremental learning
is mostly concerned in traditional machine learning methods and could be naturally conducted by
neural networks with mini-batch training. Though IGL is a sample-incremental learning, the inter-
edges among vertices from different time, i.e. independent samples, make it a challenging problem
for existing methods. (b) Inductive graph learning could be generalized to graph structures different
from the learned one under the same distribution (Hamilton et al., 2017; Zeng et al., 2019), which
is suitable for dynamic graphs to some extent. However, it has to consume the entire graph at each
time to capture the increasing patterns on growing graphs, and could be adapted as backbones in our
IGL framework. (c) Mini-batch based graph learning learns on a large graph by cutting batches of
subgraphs from it with mini-batch training (Chiang et al., 2019). Though also sequentially learning
on subgraphs, the entire graph here keeps accessible for selecting subgraphs that could be trained
multiple times. While in IGL, the split and permutation of subgraphs are specifically given as input.

Contributions. (i) We present IGL, a general framework to address the problem of efficiently
learning on growing graphs in an incremental manner. (ii) We theoretically analyze problems of
baseline solutions, and propose sample-based and cluster-based strategies to generate graphs for
learning within restricted size. (iii) We conduct experiments on multiple datasets in the IGL scenario,
and experimental results show satisfying performance and high efficiency of proposed methods.

2 PROBLEM DEFINITION

Incremental graph learning (IGL) is defined on a growing graph G1(V1, E1), G2(V2, E2), ...,
Gt(Vt, Et), ..., where Gt(Vt, Et) indicates the graph at time t with the vertex set Vt and edge set
Et. Edge (vi,vj) in Et represents an undirected connection between vi and vj in Vt. The growth of
graph suggests ∀i < j,Vi ⊆ Vj , Ei ⊆ Ej . The set of new vertices and edges at time t are noted as
Vnewt = Vt − Vt−1, Enewt = Et − Et−1. And Enewt could be split into two subsets: (i) intra-edges
E intrat among vertices in Vnewt , (ii) inter-edges E intert between vertices in Vnewt and Vt−1.

Considering any element-level graph learning task T , e.g. node classification, with Θ as parameters
of learning model, we define fT (G,Θ) for measuring Θ’s performance on G. Then the optimization
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Algorithm 1 Framework of incremental graph learning.
Input: G1(V1, E1),G2(V2, E2), ...,Gt(Vt, Et), ... // the growing graph
Input: Vmax, Emax // restrictions to additional size of learned graph

Initialize learning parameters as Θ0

for t = 1, 2, ... do
Vnewt ← Vt − Vt−1, Enewt ← Et − Et−1

E intrat ← {(vi,vj) ∈ Enewt | vi,vj ∈ Vnewt }, E intert ← Enewt − E intrat

Generate additional vertex set ∆VLt and edge set ∆ELt , s.t. |∆VLt | ≤ Vmax, |∆ELt | ≤ Emax
VLt ← Vnewt ∪∆VLt , ELt ← E intrat ∪∆ELt
Update parameters Θt ← GraphLearning(GLt (VLt , ELt ),Θt−1)

end for

target of IGL at time t is Θt = arg maxΘ fT (Gt,Θ). To make our framework capable of being
generalized to different graph learning tasks and adapting existing methods, we suppose to generate
a graph GLt (VLt , ELt ) for optimizing Θ with a static graph learning method. The method could be
regarded as a backbone of the framework. A straightforward solution, named as joint training, is
to directly optimize on the entire graph, i.e. GLt = Gt. Due to the growth of graph, joint training
suffers from increasing computation cost and memory usage. Another lightweight choice, finetun-
ing, is to learn on the new subgraph, i.e. GLt = Gnewt (Vnewt , E intrat ) and drop the inter edges E intert ,
but dropping edges may seriously corrupt the effectiveness of learning (Dai et al., 2018). To utilize
E intert with efficient computation, we allow to assign additional memory to expand the vertex and
edge sets of Gnewt within restricted sizes. Based on the above ideas, the framework of IGL is for-
mulated in Algorithm 1. It is noted that we modulize the backbone learning method as the function
GraphLearning(G,Θ), which learns on G with parameters initialized as Θ for the specified task.

We conclude properties of a qualified IGL method as follows: (i) It takes a sequence of grow-
ing graph as input. (ii) During the training stage at each time, the entire graph observed so far is
freely available only in the preprocessing time. Memory size and computation complexity for learn-
ing should be restricted within specified boundaries, or increase relatively slow compared with the
growth of graph. (iii) It performs effectively on the entire graph observed so far in test.

3 METHOD

3.1 THEORETICAL MOTIVATIONS

Suppose the GraphLearning() process in IGL is performed by the graph neural networks consist-
ing of aggregators and updaters (Zhou et al., 2018). Since finetuning learns on each new subgraph
s.t. GLt = Gnewt , it intuitively introduces the following problems: (i) Subgraph bias. Since the
propagation of graph learning is conducted inside each subgraph, the parameters for learning aggre-
gating results tend to the bias of subgraphs rather than the entire graph. (ii) Inter-edges missing.
The inter connections E intert among different subgraphs are completely dropped during the training,
which blocks the aggregation process through edges and disturbs the effectiveness of graph learning.
To address these problems, following conditions should be considered for GLt (VLt , ELt ).

Unbiased Estimation To alleviate the bias of subgraph, the aggregation results of vertices in VLt
for learning should be unbiased estimations of them in the entire graph:

∀v ∈ Vt, E
(
agg

(
v,Nt (v) ∩ VLt

)
| v ∈ VLt

)
= agg (v,Nt (v)) , (1)

where Nt(v) = {u ∈ Vt | (u,v) ∈ Et}, and agg(v,N ) aggregates embeddings from vertices in
N to v, details of which may vary in different methods. For convenience of further analysis, we
consider the mean aggregator (Hamilton et al., 2017) within one layer, and assume that all related
edges to VLt are kept in ELt . Then we show that uniform sampling in Vt satisfies the condition (1):

Theorem 4.1 Suppose agg(v,N ) = Σu∈N
u
|N | , and ELt = {(u,v) ∈ Et | u,v ∈ VLt }. If ∀u1,u2 ∈

Vt, P (u1 ∈ VLt ) = P (u2 ∈ VLt ), then for any possible size |VLt |, equation (1) holds.

Under specified memory limits, however, keeping equal probability of sampling in Vt will inevitably
reduce the utilization of later-coming subgraphs Gnewt to be O(1/t), and restricts the graph learning
efforts. Thus, we relax the above condition to be soft-unbiased that holds all the Vnewt in VLt and
conducts uniform sampling in Vt−1 for the additional vertex set ∆VLt = Vt − VLt .
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Figure 2: Pipeline of our proposed methods for IGL, where we can choose the sample-based or
cluster-based strategy, generating a graph for learning to update current model at each time.

Theorem 4.2 If ∀u ∈ Vnewt ,u ∈ VLt , and ∀u1,u2 ∈ Vt−1, P (u1 ∈ VLt ) = P (u2 ∈ VLt ), then for
any possible size |VLt |, ∀v ∈ Vt,E

(
agg

(
v,Nt (v) ∩ VLt

)
| v ∈ VLt

)
equals

E
(

|Nt(v)|
|Nt(v) ∩ VLt |

)
agg (v,Nt (v))− E

(
|Nt−1 (v)− VLt |
|Nt (v) ∩ VLt |

)
agg(v,Nt−1(v)). (2)

Let λ1 = E
(
|Nt(v)|

|Nt(v)∩VL
t |

)
, λ2 = −E

(
|Nt−1(v)−VL

t |
|Nt(v)∩VL

t |

)
, we could get λ1+λ2 = 1 and the expectation

of aggregation result as λ1agg (v,Nt (v))+λ2agg (v,Nt−1 (v)), a weighted average of the full ag-
gregation in Gt and Gt−1. Since the initial parameter Θt−1 has been updated for agg (v,Nt−1 (v))
and λ1 ≥ 1, λ2 ≤ 0, the expectation of current aggregation provides an unbiased optimizing direc-
tion towards target agg (v,Nt (v)). And λ1 → 1, λ2 → 0 when Vmax increases. Thus, we present
an soft-unbiased estimation with full utilization of new subgraphs.

Edge Preservation Since the missing of inter-edges may seriously affect the graph learning re-
sults, we aims at preserving more edges of E intert in ∆ELt , which could be formulated as

max
∆ELt
|∆ELt ∩ E intert |, s.t. |∆ELt | ≤ Emax. (3)

The edge-preservation could be required as a definite optimization problem in (3), or sampling with
priority to vertices with higher degrees so that P (u ∈ VLt ) ∝ |{(u,v) ∈ E intert | v ∈ Vnewt }|,
which naturally shows conflict with the unbiased condition in practice.

Our proposed methods basically follow the unbiased and edge-preserved conditions. We first present
the sample-based strategy (3.2) that selectively satisfies part of the conditions, and the following
cluster-based strategy (3.3) presents a cluster-graph that mediately satisfies both of them.

3.2 SAMPLE-BASED STRATEGY

We consider sampling a subset ∆VLt from Vt−1 within size of Vmax, and preserving all the related
edges, i.e. Emax = (|Vnewt |+ Vmax)2 − |E intrat | by default.

∆VLt = SampleV ertices(Gt−1, Vmax), ∆ELt = {(u,v) ∈ E intert | u ∈ ∆VLt ,v ∈ Vnewt }, (4)
where the sampling function SampleV ertices() has been widely studied in the literature for se-
lecting a representative subgraph from the original graph (Hu & Lau, 2013). Considering the above
required conditions, we explore following pragmatic methods for appropriate sampling.

Random Selection uniformly selects Vmax vertices from Vt−1, which absolutely follows the unbi-
ased condition, but ignores to preserve enough edges for learning, especially in sparse graphs.

Random Jump is a traversal-based sampling (Leskovec & Faloutsos, 2006) and we adapt it in the
following steps: Starting with any vertex in Vnewt , we either randomly walk to a neighboring vertex
in Vt−1 with probability p and select it, or randomly jump to a vertex in Vnewt with probability
(1 − p). Repeat to fill the sampled set. Zhao et al. (2019) show that the probability of sampling a
vertex tends to be proportional to its degree, which partly meets the edge-preserved condition.

Degree-based Selection is inspired directly from the edge-preserved condition to sample with pri-
ority to vertices related to more inter-edges. Let Dt(u) = |{(u,v) ∈ Et}| be degree of u, we define
Dnew
t (u) = Dt(u)−Dt−1(u)

Dt(u) ,∀u ∈ Vt−1 as new degree of vertices to reflect their closeness to the
new subgraph through inter-edges. Then we select top-Vmax vertices in Vt−1 by their new degrees.
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The above methods consider only part of required conditions. It can be proved that, ignoring the
ideal case when all the vertices in Vt−1 connect with same number of vertices in Vnewt , such sam-
pling in (4) satisfies the two required conditions iff all the vertices are sampled, i.e. joint training.

Theorem 4.3 Suppose ∃u1,u2 ∈ Vt−1, s.t. Dt(u1)−Dt−1(u1) 6= Dt(u2)−Dt−1(u2). Then the
unbiased and edge-preserved conditions hold iff ∀u ∈ Vt−1, P (u ∈ ∆VLt ) = 1, i.e. VLt = Vt.

3.3 CLUSTER-BASED STRATEGY

Theorem 4.3 suggests that the sample-based strategy could not require both unbiased estimation and
edge preservation. In this section, we relax the basic assumption in sample-based strategy that GLt
should be a subgraph of Gt, and construct a cluster-graph to mediately satisfies both conditions.
Suppose vertices in Vt−1 are arranged into K cluster sets {Ct−1

i }Ki=1 with centers {ct−1
i }Ki=1, where

ct−1
i = 1

|Ct−1
t |Σv∈Ct−1

t
v. Then the cluster-graph is defined as

∆VLt = {ct−1
1 , ..., ct−1

K }
∆ELt ={(ct−1

i ,v) | v ∈ Vnewt ,∃ u ∈ Ct−1
i , (u,v) ∈ E intert } ∪

{(ct−1
i , ct−1

j ) | ∃ u1 ∈ Ct−1
i ,u2 ∈ Ct−1

j , (u1,u2) ∈ Et−1}
, (5)

which suggests that the cluster centers are added as new cluster-vertices, and the edges connecting
to any vertex in Vt−1 are directly transferred to the corresponding cluster-vertex. It is noted that the
additional edge sets in equation (5) represent E intert and Et−1, respectively.

In the cluster-graph, E intert are approximately preserved by connecting cluster-vertices. For the un-
biased condition, here Vt−1 are not directly included in VLt . Let i(u) = k if u ∈ Ct−1

k , we could
replace P (u ∈ VLt ) for calculating the expectation of aggregation by 1

|Ct−1
i(u)
|P (ct−1

i(u) ∈ V
L
t ) = 1

|Ct−1
i(u)
| ,

with an error proportional to the tightness of clustering. Thus, the cluster-vertices tend to uniform
sampling from Vt−1 when the clusters are within the same size, i.e. balanced clustering.

Due to the continual growth of graph, direct clustering on the entire graph is time-consuming. For
an approximate but efficient clustering with balanced size, we first conduct clustering on the new
vertices Vnewt for cluster sets {∆Cti}Ki=1 and corresponding centers {ĉti}Ki=1. Bipartite matching
algorithm is applied to optimize a bijective marching function M(·) : {1, ...,K} → {1, ...,K} for
the objective: minm(·) ΣKk=1‖c

t−1
k − ĉtm(k)‖

2
2, which assigns new clusters to closer old clusters.

Then we merge the clusters as Ctk = Ct−1
k ∪∆Ctm(k) and update the center ctk correspondingly.

We adapt two methods for the implementation of balanced clustering: (i) random grouping that
uniformly assigns vertices into groups as a baseline method, (ii) the constrained k-means cluster-
ing algorithm (Bradley et al., 2000) with the restricted minimum cluster size b|Vnewt |/Kc.

3.4 INFORMATION THEORY ANALYSIS

We present a theoretical analysis to evaluate the effectiveness of methods from the perspective of
information theory. The old graph is regarded as unknown variables and we compare the quantities
of information provided by different methods. Formally, old vertices are simplified as n random
variables X = {xi}ni=1 in {0, 1}. We use the information entropy in Boltzmann formula that S =
kB log Ω, where kB is a constant and Ω is the number of microstates (i.e. possible states of all
variables). Specifically, the entropy in finetuning and joint training are kB log 2n and kB log 1 = 0.
We regard the proposed methods as r constraints e1, ..., er to X , and the entropy as S(e1, ..., er), so
the quantities of information ∆S = S0 − S(e1, ..., er) and we compare ∆S as follows.

Theorem 4.4 Let f(i) denotes the equation xi = v, and g(i, j) denotes the equation Σjk=ixk = m,
where v,m is given by the real distribution of X . Let l1, l2, ..., lr be the size of clusters, where
Σri=1li = n and Lk = Σki=1li. Then the following inequalities holds:

Sc = S(g(1,
n

r
), g(

n

r
+ 1,

2n

r
), ..., g(

(r − 1)n

r
+ 1, n)) ≤ S(f(1), f(2), ..., f(r)),

E(Sc) ≤ E(S(g(1, L1), g(L1 + 1, L2), ..., g(Lr−1 + 1, n))).
(6)

Theorem 4.4 shows that the cluster-based strategy with balanced clustering provides larger ∆S, i.e.
more information quantities. Detailed discussions and proofs are in Appendix E.4.
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Table 1: Average accuracy (%) of node classification in IGL. The value T under each dataset
denotes the temporal length of growing graph. Top-3 results are marked in bold red, blue and black.

Cora Citeseer Pubmed Flickr Reddit
Method (T = 10) (T = 20) (T = 20) (T = 50) (T = 100)

Bounds finetuning (lower bound) 39.69± 2.19 46.94± 1.82 52.61± 4.22 56.26± 0.56 57.42± 3.07
joint training (upper bound) 58.85± 0.76 56.56± 0.98 67.18± 0.61 63.45± 0.38 89.30± 0.27

Compared
IL Methods

EWC (Kirkpatrick et al., 2017) 41.23± 1.51 46.65± 1.67 58.00± 3.27 56.30± 1.85 73.30± 2.23
LwF (Li & Hoiem, 2017) 42.97± 2.35 46.33± 1.36 55.44± 4.57 56.83± 1.38 56.27± 1.44
iCaRL (Rebuffi et al., 2017) 50.11± 2.03 53.93± 1.32 57.73± 0.97 57.58± 1.23 83.52± 0.57
TEM (Chaudhry et al., 2019b) 48.22± 1.46 52.30± 1.40 58.41± 1.85 55.74± 0.78 74.12± 0.60
A-GEM (Chaudhry et al., 2019a) 50.25± 1.54 52.52± 1.58 62.44± 1.68 54.55± 2.24 79.57± 0.67

Ours
(sample-)

sample-random 49.96± 1.43 52.42± 1.79 61.73± 1.53 56.77± 0.59 79.40± 0.18
sample-random jump 50.27± 1.67 52.23± 1.63 61.27± 1.74 56.53± 0.85 80.70± 1.00
sample-new degree 54.90± 1.17 53.81± 1.65 62.75± 1.21 58.17± 0.32 78.25± 1.24

Ours
(cluster-)

cluster-random 56.22± 1.10 53.99± 1.59 65.91± 1.02 60.78± 0.35 86.03± 0.09
cluster-cons.KMeans 56.66± 0.91 54.50± 1.76 65.64± 1.18 60.70± 0.44 86.10± 0.09

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the proposed methods on: (i) the citation networks Cora, Citeseer and
Pubmed (Sen et al., 2008) with documents as vertices and citation relations as edges, (ii) the online
image network Flickr (Zeng et al., 2019) with image vertices connected with common properties,
(iii) the social network Reddit (Hamilton et al., 2017) with posts vertices connected with common
users’ comments. Since IGL is required to perform on any input of growing graphs, we randomly
split and permute the vertices into T groups to simulate the growth of graph.

Tasks. Two common graph learning tasks in element-level are conducted: (i) node classification in
the semi-supervised manner that predicts categories of nodes with only a small set of nodes labeled
for learning (Yang et al., 2016), (ii) link prediction that predicts the existence of connection between
two vertices based on their learned embeddings (Kipf & Welling, 2016).

Compared methods. The results of finetuning and joint training are provided as approximate lower
and upper bounds for reference. Though existing incremental learning (IL) methods mainly focus
on incremental category or domain scenarios, and are not completely suitable for IGL, we adapt rep-
resentative methods in recent years for a comprehensive comparison, including the regularization-
based methods EWC (Kirkpatrick et al., 2017) and LwF (Li & Hoiem, 2017) without using previous
data, and the replay-based methods iCaRL (Rebuffi et al., 2017), TEM (Chaudhry et al., 2019b)
and A-GEM (Chaudhry et al., 2019a) that stores samples from previous data. In comparison, our
proposed sample and cluster based strategies are noted starting with “sample-” and “cluster-”.

Details of the datasets, configurations and compared methods are presented in the appendices.

4.2 RESULTS OF INCREMENTAL GRAPH LEARNING

Node Classification. For the backbone model in GraphLearning() for node classification, we
adapt GCN (Kipf & Welling, 2017) for smaller graphs Cora and Citeseer, and GraphSAGE (Hamil-
ton et al., 2017) for the rest. The total time-steps of growing graph T is specified for each dataset.
For balanced category learning, we set the constraint Vmax = M× number of categories, and con-
duct the sampling and clustering inside each category, and M = 3 in our main experiments. The
influence of the above settings are further studied in Section 4.3, with details in Appendix A.

Table 1 lists the average of classification accuracy on the entire observed graph throughout the time.
Compared with the finetuning, the IL methods in comparison achieve improved but not stable perfor-
mance, since they are not specifically designed for graphs. Our proposed methods achieve satisfying
improvements, where the cluster-based strategy outperforms the sample-based, and steps closer to
the upper bound. Such performance is consistent with theoretical analysis on required conditions,
and verifies that mediately satisfying both the unbiased and edge-preserved condition performs bet-
ter. Additional experiments further explain to such performance that the cluster-based strategy gen-
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Table 2: Average AUC (%) of link prediction in IGL. The ‘-’ denotes that the results are unavail-
able due to out of memory on large graphs using joint training.

Cora Citeseer Pubmed Flickr Reddit
Method (T = 10) (T = 20) (T = 20) (T = 50) (T = 100)

Bounds finetuning (lower bound) 66.37± 0.47 60.41± 0.28 73.12± 1.02 57.58± 0.04 85.97± 2.39
joint training (upper bound) 89.22± 0.08 93.55± 0.12 79.92± 0.05 - -

Compared
IL Methods

EWC (Kirkpatrick et al., 2017) 68.63± 1.63 64.37± 2.83 76.25± 2.80 61.55± 3.95 85.02± 3.73
LwF (Li & Hoiem, 2017) 71.04± 0.82 63.73± 1.31 78.08± 0.81 57.05± 0.62 90.00± 1.99
iCaRL (Rebuffi et al., 2017) 72.03± 0.63 61.68± 0.39 75.86± 1.26 57.19± 0.22 83.15± 3.82
TEM (Chaudhry et al., 2019b) 68.30± 0.63 62.48± 0.39 75.46± 1.20 57.88± 0.22 86.45± 1.16
A-GEM (Chaudhry et al., 2019a) 67.72± 0.86 64.32± 0.44 76.29± 0.97 56.66± 0.40 82.34± 5.98

Ours
(sample-)

sample-random 68.12± 1.20 66.78± 0.46 74.74± 1.12 57.60± 0.24 88.45± 1.82
sample-random jump 66.93± 2.87 66.43± 3.06 75.54± 1.46 58.13± 0.24 87.57± 1.76
sample-new degree 70.33± 0.31 65.62± 1.84 76.08± 0.89 57.93± 0.18 87.96± 2.32

Ours
(cluster-)

cluster-random 71.13± 0.44 71.45± 0.35 79.10± 0.41 60.16± 0.43 88.48± 0.61
cluster-cons.KMeans 73.60± 0.36 68.27± 0.39 81.92± 0.55 63.51± 0.13 90.58± 0.61

erates more distinguishable feature distributions (Section 4.4) and preserves more adequate edges
under specified memory restrictions (Section 4.5) for efficient graph learning.

Link Prediction. The basic settings are the same as node classification. We follow Kipf & Welling
(2016) using the reconstruction loss for training and calculate the Area Under Curve (AUC) as
evaluation metric. The memory constraint is set as Vmax = Mall without considering categories,
where Mall = 20 for the citation networks, and Mall = 100 for Flickr and Reddit. The edge sets
E intrat and E intert are split into training, validation and test sets with the proportion of 8 : 1 : 1.
Details of sampling negative edges for training and other configurations are in Appendix B.

We report the average AUC in Table 2. Similar comparison of results are observed, except that
the cluster-based strategy outperforms joint training on Pubmed, which is attributed to the newly
generated edges incident to the cluster-vertices. It is noted that the clustering here is conducted
among all vertices rather than inside each category, and raises stricter requirement to the tightness
of clustering method. Thus, the difference between random grouping and constrained k-means in
the cluster-based strategy gets larger compared with that in the node classification.

4.3 ABLATION STUDIES

We conduct ablation studies on the basic configurations with node classification to observe the in-
fluence of these factors, and the results are shown in Figure 3: (a) Total time-steps T . With the
increase of T for the same size of graph, finetuning dramatically decreases, while our proposed
methods drop relatively slow like joint training, showing their robustness to the temporal length of
growing graphs. (b) Memory constraint M . The proposed methods show uptrend to joint training
with larger available memory size, and maintain consistent comparison as the main experiments.
(c) Backbone models. We conduct experiments on the same dataset using different backbones,
including GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018), GIN (Xu et al., 2018) and
GraphSAGE (Hamilton et al., 2017). The results suggest that though theoretically analyzed under
mean aggregator and tested with basic backbones, our proposed methods own the ability of adapting
different static graph learning methods to the task of IGL.
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Figure 3: Results of ablation studies in node classification. (a) Results of Reddit with different
length of growing graph sequence (in log scale). (b) Results of Reddit under different memory
constraint to size of the graph for learning. (c) Results of Pubmed using different backbone models.
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finetuning sample-new degree cluster-cons.KMeans

t =
 5

t =
 1

0

sample-random cluster-random

Figure 4: Graph feature visualization using t-SNE in node classification of Cora at time 5 and 10.
Training vertices are drawn in red, where the cluster vertices are stroked in black.

4.4 VISUALIZATION ANALYSIS

We visualize the learned features of vertices to analyze the effectiveness of proposed methods. In
Figure 4, we apply t-SNE (Maaten & Hinton, 2008) to features of observed vertices in node classi-
fication of Cora, and color them with the label information. Features of our proposed methods show
more discernible distribution of categories. To visualize the supervisions, we color the training ver-
tices in red, with the cluster vertices stroked in black. In the cluster-based strategy, the training
vertices turn to be located in those sharp places that are more representative to distinguish different
categories, which could enhance the effectiveness of learning. In comparison, the distribution of
training vertices are more stochastic in finetuning and the sample-based strategy.

4.5 TIME AND SPACE COMPLEXITY

We record the consumed time of learning, including the preprocessing and training time, to estimate
the computation cost, and count the number of vertices and edges of GLt at each time as the space
complexity. In comparison of proposed methods, the average results of node classification on Reddit
are listed in Table 3, together with the classification accuracy for reference. Results show that it takes
extremely high complexity for joint training to achieve its great performance, while our proposed
methods show comparable performance and meanwhile maintain much lower complexity. And it is
noted that the cluster-based strategy succeeds to preserve more inter-edges under memory restriction,
which demonstrates that the edge-preserved condition is better satisfied for efficient learning.

Table 3: Average time and space complexity of node classification on Reddit.

Method finetuning joint sample- sample- sample- cluster- cluster-
training random random jump new degree random cons.KMeans

Time (s) 25.63 346.37 26.24 26.39 31.77 27.85 28.27
#Nodes (K) 2.33 117.61 2.57 2.57 2.57 2.57 2.57
#Edges (K) 11.51 39,282 14.17 21.18 12.89 43.53 43.38

Acc (%) 57.42 89.30 79.40 80.70 78.25 86.03 86.10

5 CONCLUSION

In this paper, we study the problem of efficient learning on growing graphs in an incremental man-
ner, and formulate a general framework named incremental graph learning (IGL). We theoretically
analyze the unbiased and edge-preserved conditions for the IGL problem and correspondingly pro-
pose sample-based and cluster-based strategies, which generate a graph within a restricted size for
updating the model to achieve efficient learning at each time. Experimental results of node classifica-
tion and link prediction tasks on growing graphs show that the proposed methods achieve satisfying
performance with high efficiency. Future works may further step into our modulized graph learning
process and adapt IGL to growing graphs with real-world timestamps.
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A MORE DETAILS OF NODE CLASSIFICATION

A.1 CONFIGURATIONS

We set the walking probability p = 0.85 in the random jump method. For the backbone model
GraphSAGE, we set the minibatch size as 1000 and the neighborhood sample sizes as 25, 10, which
are the same as the original paper. During the training process, we use the Adam optimizer with
learning rate of 0.01 and weight decay of 0.0005. At each time, we run 100 epochs for training
and validation and load the model with best validation accuracy for test. We run 50 times on Cora,
Citerseer and Pubmed to report the average results with standard derivations, and 5 times on Flickr
and Reddit. The experiments are conducted on one GPU of GeForce GTX 1080Ti.
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A.2 PSEUDO-CODE

Given the specified memory constraint Vmax = M × C (number of categories), we apply the
sampling and clustering inside each category with the constraint M . Since the labeling information
is required, the above process is conducted on the training and validation set respectively. The
pseudocode in Algorithm 2 shows details of generating the learned graph in node classification.

Algorithm 2 Process of generating learned graph in node classification.
Input: Vnewt , E intrat ,Gt(Vt, Et), Vmax, Emax
Input: Category information catecory(·) for the label vertices
Output: The learned graph GLt (VLt = VL−traint ∪ VL−valt ∪ VL−testt , ELt )

Vnewt = Vnew−traint ∪ Vnew−valt ∪ Vnew−testt // get split of new vertices
Vt−1 = Vt − Vnewt = Vtraint−1 ∪ Vvalt−1 ∪ Vtestt−1 // get split of old vertices
VL−traint ← Vnew−traint ,VL−valt ← Vnew−valt ,VL−testt ← Vnew−testt
ELt ← E intrat
for c = 1, 2, ..., C do
Vct−1 ← {v ∈ Vt−1 | category(v) = c}
Generate Vc−traint−1 ,Vc−valt−1 from Vct−1 with specified method under constraints of Vmax

C , Emax

C

VL−traint ← VL−traint ∪ Vc−traint−1 ,VL−valt ← VL−valt ∪ Vc−valt−1
end for
VLt ← VL−traint ∪ VL−valt ∪ VL−testt
ELt ← ELt ∪ {(u,v) ∈ Et | u ∈ VLt − Vnewt ,v ∈ Vnewt }
return Glearnt (V learnt , E learnt )

A.3 BACKBONE NETWORK ARCHITECTURES

We list the architectures and parameters of the backbone networks in main experiment.
GCN Conv(fin, fout) denotes the convolution defined in GCN with the input and output channels
as fin and fout, and SAGE Conv(fin, fout) denotes the same in GraphSAGE.

Cora Citeseer Pubmed Flickr Reddit

Layer1
Dropout(p=0.5)

GCN Conv(1433, 16)
ReLU()

Dropout(p=0.5)
GCN Conv(3707, 64)

ReLU()

SAGE Conv(500, 64)
ReLU()

SAGE Conv(500, 256)
ReLU()

SAGE Conv(602, 128)
ReLU()

Layer2
Dropout(p=0.5)

GCN Conv(16, 7)
SoftMax()

Dropout(p=0.5)
GCN Conv(64, 6)

SoftMax()

Dropout(p=0.5)
SAGE Conv(64, 3)

SoftMax()

Dropout(p=0.5)
SAGE Conv(256, 2)

SoftMax()

Dropout(p=0.5)
SAGE Conv(128, 41)

SoftMax()

The architectures of backbones for Pubmed in ablation study are as follows.

GCN GAT GIN

Layer1
Dropout(p=0.5)

GCN Conv(1433, 64)
ReLU()

Dropout(p=0.6)
GAT Conv(1433, 64)

ELU()

Dropout(p=0.5)
GIN Conv(1433, 64)

ReLU()

Layer2
Dropout(p=0.5)

GCN Conv(64, 3)
SoftMax()

Dropout(p=0.6)
GAT Conv(64, 3)

SoftMax()

Dropout(p=0.5)
GIN Conv(64, 3)

SoftMax()

A.4 CLASSIFICATION ACCURACY THROUGHOUT THE TIME

We show the classification accuracy on the entire observed graph at each time. It is observed that in
the starting time of growing graph with larger T and the whole time of growing graph with smaller
T , the classification accuracy shows uptrend of all methods. This is because in such stage, the
training samples are not enough for models to capture patterns of each categories. While in the later
time, results of finetuning show downtrend or unstable performance due to the forgetting of learned
patterns. In contrast, results of joint training could maintain stable performance for it repeats to train
on all the previous data. For our proposed methods, sample-based strategy solves the problem of
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forgetting in the later period of time, while leave larger distances to joint training, compared with
cluster-based strategy.
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Figure 5: Classification accuracy on the entire observed graph at each time.

B MORE DETAILS OF LINK PREDICTION

B.1 CONFIGURATIONS

For training with the reconstruction loss on large graphs, we sample 1,000 positive and negative
edges respectively for computing the loss in each iteration. Settings of backbone models are the
same as node classification. During the training process, we use the Adam optimizer with learning
rate of 0.01 and weight decay of 0.0005. At each time, we run 200 epochs for training and validation
and load the model with best validation accuracy for test. We run 50 times on Cora, Citerseer
and Pubmed datasets to get the average results, and 5 times on Flickr and Reddit datasets. The
experiments are conducted on one GPU of GeForce GTX 1080Ti.

B.2 NEGATIVE EDGE SAMPLING

The reconstruction loss requires sampled negative edges. For training on small graphs, the negative
edges are directly sampled from those unconnected vertex pairs in each iteration. However, such
sampling process is time-consuming on large graphs, thus we generate a set of negative edges in
advance and randomly sample required number of edges from it. The algorithm for generating
negative edge set is in Algorithm 3.

Algorithm 3 Negative edge sampling on large graphs.
Input: the positive edges Epos and corresponding vertices V

initialize Eneg ← φ
for (v1,v2) in Epos do

randomly select v′2 from V
Eneg ← Eneg ∪ {(v1,v

′
2)}

end for
return Eneg

It is noted that we do not check if the sampled edge belongs to the positive set. Because the checking
process is also time-consuming and the possibility of sampling a positive edge generally is quite low
on large graphs. Since the cluster-based strategy provides new edges connecting clusters, we also
apply negative sampling for those edges with above algorithm. For both small and large graphs,
we generate negative cluster edges during the preprocessing and merge them with normal negative
edges in training. Specially, we find that it shows better performance for the Pubmed dataset to
remove the negative cluster edges in training, and we report the results in the main experiments.

B.3 NETWORK ARCHITECTURES

We list the architectures and parameters of the backbone networks in main experiment. The back-
bone generates embeddings of vertices that are used to estimate the existence probability of edges.
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Cora Citeseer Pubmed Flickr Reddit

Layer1 GCN Conv(1433, 64)
ReLU()

GCN Conv(3707, 128)
ReLU()

SAGE Conv(500, 128)
ReLU()

SAGE Conv(500, 512)
ReLU()

SAGE Conv(602, 256)
ReLU()

Layer2 GCN Conv(128, 64) GCN Conv(128, 64) Dropout(p=0.5)
SAGE Conv(128, 64)

Dropout(p=0.5)
SAGE Conv(512, 256)

Dropout(p=0.5)
SAGE Conv(128, 64)

B.4 PREDICTION AUC THROUGHOUT THE TIME

We show the AUC on the entire observed graph at each time, similar to the node classification.
However, different trends are shown in the results. All the methods could reach a relatively high
performance compared to their average results, since the task of link prediction might be easier
in smaller subgraphs than the node classification. On the Pubmed where cluster-based strategy
outperforms joint training, we observe that it reaches higher in the later period of time, when the
generated cluster-graph could include more edges that are not in the original graph.

joint training finetuning
sample-random sample-random jump sample-new degree cluster-random cluster-cons.KMeans
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C DATASETS

C.1 STATISTICS

Table 4 shows statistics of the benchmark datasets used in the experiments. Besides the basic in-
formation including graph size, feature dimensions and labels, we list the split of training, val-
idation and test sets. For the Cora, Citeseer and Pubmed, we follow the standard fixed split in
GCN (Kipf & Welling, 2017). For the Flickr and Reddit, to follow the similar split fashion, we
uniformly sample 200 and 100 vertices in each category for training, and sample fixed number
of vertices as the validation and test sets. Specifically, we generate a two-category version of
Flickr, noted as ”Flickr*”, in experiments of node classification. Since most vertices in Flickr
are in label of category 4 or 6, when split into groups, the evaluation metric turns to be bet-
ter on models overfitting to these two categories, which influences the comparison of methods.
Thus, we remove vertices belong to other categories and related edges, and use the rested graph
as ”two-category version” of Flickr. For the link prediction, we use the original Flickr dataset
without category information. All the dataset are collected by the library of PyTorch Geometric
(https://github.com/rusty1s/pytorch_geometric).

C.2 CHANGES OF DEGREES IN GROWING GRAPH

To know details of graph changes during the growth, we further show the average degree of the
subgraphs and entire graph in Figure 7. For the subgraphs, since it is randomly cut off from the
graph, the average degree fluctuates throughout all tasks within in low range, which brings difficulty
for learning directly on the subgraphs. The average degree of the entire graph continually grows,
which is attributed to the appearance of inter-subgraph edges. And missing of such inter-edges
influence on the graph learning results.
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Table 4: Dataset statistics and basic settings.

Cora Citeseer Pubmed Flickr* Flickr Reddit
# Nodes 2,708 3,327 19,717 60,736 89,250 232965
# Edges 5,429 4,732 44,338 409,564 899,756 11,606,919
# Features 1,433 3,707 500 500 500 602
# Classes 7 6 3 2 7 41
# Training Nodes 140 120 60 400 - 4,100
# Validation Nodes 500 500 500 2,000 - 12,300
# Test Nodes 1,000 1,000 1,000 30,000 - 50,000
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Figure 7: The average degree of subgraph and entire graph throughout tasks in benchmarks.

D DETAILS OF COMPARED METHODS

Since existing incremental learning methods are designed for incremental categories or domains, we
adapt representative methods to our IGL scenario for comparison. In this section, we present brief
introductions to these methods and describe how we adapt them for incremental graph learning.

LwF (Li & Hoiem, 2017) presents a distillation loss that forces the updated model to generate
similar outputs with the previous model using KL-Divergence. Before the trainiang at each time, it
copies the parameters of model learned on previous data, and uses the model as a “teacher-model”
to restrict the update of current model.

EWC (Kirkpatrick et al., 2017) presents an regularization loss term to penalize the update of param-
eters based on their importance to previous tasks. The importance of parameters are estimated by
the Fisher information matrix.

iCaRL (Rebuffi et al., 2017) firstly addresses the problem of incremental class learning on neural
networks. It is a rehearsal-based method that store previous samples, named as exemplars, with
restricted memory constraints. We adapt its way to selecting exemplars into our sample-based strat-
egy, which calculate the mean value of each category and select samples closer to the centers. Such
strategy of sampling exemplars is also accepted in the following methods, e.g. EEIL (Castro et al.,
2018) and BiC (Wu et al., 2019).

TEM (Chaudhry et al., 2019b) explores the different ways of updating the exemplars set within
specified memory, including reservoir, ringbuffer, k-Means and MoF. Since k-Means and MoF are
based on similar ideas to the iCaRL, we adapt the ringbuffer strategy that follows FIFO rule to
preserve the last several samples of each category.
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A-GEM follows and further improves GEM (Lopez-Paz & Ranzato, 2017) to restrict optimization of
parameters based on the direction of gradients, where a reference gradient is computed by a random
sampled subset of previous samples.

Among the compared methods, LwF and EWC require hyper-parameters to control the weight of
regularization loss terms, which are determined by grid search in IGL settings.

E PROOFS

E.1 PROOF TO THEOREM 4.1

Let |Vt| = n, |Nt(v)| = m, |VLt | = k, we denote L as the number of vertices in Nt(v) that are
included in VLt , i.e. L = |Nt(v) ∩ VLt | and 0 ≤ L ≤ min(m, k). Then

E
(
agg

(
v,Nt (v) ∩ VLt

)
| v ∈ VLt

)
= E

(
E
(
agg

(
v,Nt (v) ∩ VLt

)
| v ∈ VLt , L = l

))
= Σ

min(m,k)
l=0 P (L = l) ∗ E

(
agg

(
v,Nt (v) ∩ VLt

)
| v ∈ VLt , L = l

)
,

(7)

Let S(Nt(v), l) includes all the possible combination sets with length of l from Nt(v), i.e.
S(Nt(v), l) = {S ⊆ Nt(v) ∧ |S| = l}. Since ∀u1,u2 ∈ Vt, P (u1 ∈ VLt ) = P (u2 ∈ VLt ),
we get

E
(
agg

(
v,Nt (v) ∩ VLt

)
| v ∈ VLt , L = l

)
= ΣS∈S(Nt(v),l)

1

C(m, l)
∗ Σu∈Su

l

=
1

l ∗ C(m, l)
Σu∈Nt(v)C(m− 1, l − 1)u

=
Σu∈Nt(v)u

m
= agg (v,Nt (v))

(8)

where C(·, ·) denotes the combination. Substitute (8) for (7), we get

E
(
agg

(
v,Nt (v) ∩ VLt

)
| v ∈ VLt

)
= Σ

min(m,k)
l=0 P (L = l) ∗ agg (v,Nt (v))

= agg (v,Nt (v))

(9)

E.2 PROOF TO THEOREM 4.2

We follow the basic notations in the above proof. When v ∈ VLt

agg
(
v,Nt (v) ∩ VLt

)
=

1

L
Σu∈Nt(v)∩VL

t
u

=
1

L
Σu∈Nt−1(v)∩VL

t
u +

1

L
Σu∈(Nt(v)−Nt−1(v))∩VL

t
u

(10)
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Since ∀u1,u2 ∈ Vt−1, P (u1 ∈ VLt ) = P (u2 ∈ VLt ), similar to Theorem 4.1, we let |Nt−1| = m′

and l be the number of sampled vertices from old data, then

E
(

1

L
Σu∈Nt−1(v)∩VL

t
u | v ∈ VLt

)
= E

(
E
(

1

L
Σu∈Nt−1(v)∩VL

t
u | v ∈ VLt , L = l + |Nt(v)−Nt−1(v)|

))
= Σ

min(m′,k)
l=0 P (L = l + |Nt(v)−Nt−1(v))|) ∗

(
ΣS∈S(Nt−1(v),l)

1

C(m′, l)
∗ Σu∈Su

L

)
= Σ

min(m′,k)
l=0 P (L = l + |Nt(v)−Nt−1(v))|) ∗

(
1

L ∗ C(m′, l)
Σu∈Nt−1(v)C(m′ − 1, l − 1)u

)
= Σ

min(m′,k)
l=0 P (L = l + |Nt(v)−Nt−1(v))|) ∗ l

L
∗

Σu∈Nt−1(v)u

m′

= E(
l

l + |Nt(v)−Nt−1(v))|
)agg(v,Nt−1(v))

= E(
|Nt−1(v) ∩ VLt |
|Nt(v) ∩ VLt |

)agg(v,Nt−1(v))

(11)
Since ∀u ∈ Vnewt , P (u ∈ VLt ) = 1, we get (Nt(v)−Nt−1(v)) ∩ VLt = Nt(v)−Nt−1(v), then

E
(

1

L
Σu∈(Nt(v)−Nt−1(v))∩VL

t
u

)
= E

(
1

L
Σu∈Nt(v)−Nt−1(v)u

)
= E

(
1

L
Σu∈Nt(v)u

)
− E

(
1

L
Σu∈Nt−1(v)u

)
= E

(
|Nt(v)|

|Nt(v) ∩ VLt |

)
agg(v,Nt(v))− E

(
|Nt−1(v)|
|Nt(v) ∩ VLt |

)
agg(v,Nt−1(v))

(12)

Substitute (11) and (12) for (10), we get

E
(
agg

(
v,Nt (v) ∩ VLt

))
= E(

|Nt−1(v) ∩ VLt |
|Nt(v) ∩ VLt |

)agg(v,Nt−1(v)) + E
(

|Nt(v)|
|Nt(v) ∩ VLt |

)
agg(v,Nt(v))

− E
(
|Nt−1(v)|
|Nt(v) ∩ VLt |

)
agg(v,Nt−1(v))

= E
(

|Nt(v)|
|Nt(v) ∩ VLt |

)
agg(v,Nt(v))− E(

|Nt−1(v)− VLt |
|Nt(v) ∩ VLt |

)agg(v,Nt−1(v))

(13)

Theorem 4.2 proved.

We then prove that λ1 + λ2 = 1, where λ1 = E
(
|Nt(v)|

|Nt(v)∩VL
t |

)
, λ2 = −E

(
|Nt−1(v)−VL

t |
|Nt(v)∩VL

t |

)
.

λ1 + λ2 = E
(

|Nt(v)|
|Nt(v) ∩ VLt |

)
− E

(
|Nt−1 (v)− VLt |
|Nt (v) ∩ VLt |

)
= E

(
|Nt(v)| − |Nt−1 (v)− VLt |

|Nt (v) ∩ VLt |

)
= E

(
|Nt−1(v)− VLt |+ |Nt(v)−Nt−1(v)− VLt |+ |Nt(v) ∩ VLt | − |Nt−1 (v)− VLt |

|Nt (v) ∩ VLt |

)
= E

(
|Nt(v)−Nt−1(v)− VLt |+ |Nt(v) ∩ VLt |

|Nt (v) ∩ VLt |

)
(14)
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Since Nt(v)−Nt−1(v) ⊆ VLt , we get |Nt(v)−Nt−1(v)− VLt | = 0, then

λ1 + λ2 = E
(
|Nt(v) ∩ VLt |
|Nt (v) ∩ VLt |

)
= 1 (15)

E.3 PROOF TO THEOREM 4.3

(i) When ∀u ∈ Vt−1, P (u ∈ ∆VLt ) = 1, we get ∆VLt = Vt−1 and VLt = Vt. Then obviously

• ∀u,v ∈ Vt−1, P (u ∈ VLt ) = P (v ∈ VLt ) = 1.
• ELt = Et, |∆ELt ∩ E intert | = |E intert | = max∆ELt |∆E

L
t ∩ E intert |.

(ii) When the unbiased condition and edge-preserved condition hold, we assume that the max-
imum target is restricted by the specified size Vmax and Emax. Thus, we consider P (u ∈
VLt ) ∝ |{(u,v) ∈ E intert | v ∈ Vnewt }| = Dt(u) − Dt−1(u). Since ∃u1,u2 ∈ Vt−1, s.t.
Dt(u1)−Dt−1(u1) 6= Dt(u2)−Dt−1(u2), we get P (u1 ∈ VLt ) 6= P (u2 ∈ VLt ), which conflicts
with the unbiased condition. So the assumption does not hold.

E.4 PROOF TO THEOREM 4.4

Theorem 4.4 represents sampling as a single observation equation f(·), and clustering as a group
observation equation g(·, ·). Thus, the theorem suggests that cluster-based strategy provides more
information quantity than sample-based strategy, and a balanced clustering works better in cluster-
based strategy.

To prove the first inequality in Theorem 1, we firstly prove the following lemma that knowing the
average value of the whole set provides more information than knowing value of some element.

Lemma 1. Given n elements x1, x2, ..., xn (n ≥ 1) with possible value 0 or 1. Follow the definition
of f(·) and g(·, ·), ∀i ∈ [1, n],

S(g(1, n)) ≤ S(f(i)). (16)

Proof. We calculate the value of entropy based on the definition that S = kB log Ω, where Ω is the
number of mircostates. We omit the constant kB for simplicity. Then for the left of the inequality
knowing definite value of one element, Ω = 2n−1 and S(f(i)) = log 2n−1. For the right of the
inequality, suppose g(1, n) : Σnj=1xj = v, then Ω = C(n, v) = n!

n!(n−v)! where C(·, ·) denotes
the combination. It is known that C(n, v) ≤ C(n, bn2 c). Using the inequality conducted from the
Stirling’s approximation that

√
2πnn+ 1

2 e−n ≤ n! ≤ e nn+ 1
2 e−n, (17)

we get

C(n, v) ≤ C(n, bn/2c) =
n!

bn/2c!dn/2e!

≤ e nn+ 1
2 e−n

(
√

2πbn/2cbn/2c+ 1
2 e−bn/2c)(

√
2πdn/2edn/2e+ 1

2 e−dn/2e)

≤ e nn+ 1
2

2π(n2 )n+1
=
e 2n+1

2π
√
n

=
2e

π
√
n

2n−1

(18)

For n ≥ 3, 2e
π
√
n
< 1, then C(n, v) < 2n−1. When n = 1, 2, it is easy to know from calculation that

C(n, v) ≤ 2n−1. Thus ∀n ≥ 1,

S(g(1, n)) = logC(n, v) ≤ log 2n−1 = S(f(i)) (19)

Now we prove the first inequality in Theorem 1 that

S(g(1,
n

r
), g(

n

r
+ 1,

2n

r
), ..., g(

(r − 1)n

r
+ 1, n)) ≤ S(f(1), f(2), ..., f(r)) (20)
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Split the n elements with length of n
r and denote the number of microstates of each group as

Ωi(ei), i = 0, 1, ..., (r − 1), where ei is the equation within this group. Then based on Lemma
1, we get

Ωi(g(
in

r
+ 1,

(i+ 1)n

r
)) ≤ 2

n
r−1, i = 0, 1, ..., (r − 1) (21)

Then we sum the above inequalities from 0 to (r − 1) as

S(g(1,
n

r
), g(

n

r
+ 1,

2n

r
), ..., g(

(r − 1)n

r
+ 1, n))

= log

r−1∏
i=0

Ωi ≤ log (2
n
r−1)r

= log 2n−r = S(f(1), f(2), ..., f(r))

(22)

The above proof shows that the cluster-based strategy offering average value provides more infor-
mation that the sample-based strategy offering single element value, which is stated by the first
inequality in Theorem 1.

We restate the second inequality in Theorem 1:

E(S(g(1,
n

r
), g(

n

r
+ 1,

2n

r
), ..., g(

(r − 1)n

r
+ 1, n))) ≤

E(S(g(1, L1), g(L1 + 1, L2), ..., g(Lr−1 + 1, n))),
(23)

where E() is the expectation of entropy. Given n elements x1, ..., xn, the possible value s = Σni=1xi
are from 0 to n, with C(n, s) conditions out of the total 2n conditions. Then the expectation of Ω
knowing the average value is

E(Ω(g(1, n)) = Σns=0

C(n, s)

2n
C(n, s) = 2−nΣns=0C(n, s)2 (24)

We define the discrete function p(n) = 2−nΣns=0C(n, s)2. By computing the expectation of Ωi, i =
1, ..., r from r groups in (23), we get

E(S(g(1,
n

r
), g(

n

r
+ 1,

2n

r
), ..., g(

(r − 1)n

r
+ 1, n)))

= log

r−1∏
i=0

Ωi(g(
in

r
+ 1,

(i+ 1)n

r
))

= log

r−1∏
i=0

p(
n

r
) = r log p(

n

r
),

(25)

and similarly
E(S(g(1, L1), g(L1 + 1, L2), ..., g(Lr−1 + 1, n))) = Σri=1 log p(li) (26)

Then if the function log p(n) is a convex function, using the convexity inequality ∀λi > 0,Σλi =
1, log p(Σri=1λixi) ≤ Σri=1λi log p(xi), and set λi = 1

r , xi = li, we could get

log p(
n

r
) = log p(Σri=1

li
r

) ≤ Σri=1

log p(li)

r
(27)

Then r log p(nr ) ≤ Σri=1 log p(li) and the inequality (23) holds. By calculation, q(n) = log p(n) =

log
2n(n− 1

2 )!√
πn!

and the 2nd order difference ∆q(n) ≥ 0, thus log p(n) is convex and the proved
inequality holds.

F MORE VISUALIZATIONS

Figure 8 shows the visualization results of all methods in 4.4. We further visualize the node classifi-
cation results at each time in Figure 9, showing the correctly and wrongly classified nodes in green
and blue respectively. Red nodes indicate the current training nodes and we do not draw the cluster
nodes in our cluster-based strategy. Nodes have not appeared until now are in gray. Then two facts
could be observed in each row of the visualization:
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• Some newly appeared nodes are correctly classified without connecting to the training
nodes, which suggests the inherited knowledge from previously trained model.
• Some blue nodes in previous task turn to be green in following tasks, which suggests that

new vertices and edges may rectify the error in previous learning process.

When comparing among columns, we show the effectiveness of proposed methods together with
baselines. Our methods achieve comparable performance with the joint training method with less
cost of computation and memory.

finetuning

sample-new degree cluster-cons.KMeans

t=5

t=10

sample-randomjoint training

cluster-random

t=5

t=10

sample-random jump

Figure 8: Feature visualization using t-SNE of all methods training node classification on Cora.
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finetuning

joint
training

t = 2 t = 4 t = 6 t = 8 t = 10

sample-
random

sample-
random jump

sample-
new degree

cluster-
random

cluster-
cons.KMeans

labels classification results

training nodes
correct nodes
wrong nodes
unappeared nodes

Figure 9: Visualization of node classification results on Cora. We show the results at time 2, 4,
6, 8, 10 in one row for each method. For the appeared nodes, we draw the training nodes in red, and
draw nodes classified into correct/wrong category in green/blue. Then unappeared nodes until now
are in gray.
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