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Abstract

The goal of offline model-based optimization
(MBO) is to propose new designs that maximize
a reward function given only an offline dataset.
However, an important desiderata is to also pro-
pose a diverse set of final candidates that capture
many optimal and near-optimal design config-
urations. We propose Diversity in Adversarial
Model-based Optimization (DynAMO) as a
novel method to introduce design diversity as an
explicit objective into any MBO problem. Our
key insight is to formulate diversity as a distribu-
tion matching problem where the distribution of
generated designs captures the inherent diversity
contained within the offline dataset. Extensive
experiments spanning multiple scientific domains
show that DynAMO can be used with common
optimization methods to significantly improve the
diversity of proposed designs while still discover-
ing high-quality candidates.

1. Introduction
Discovering designs that optimize certain desirable proper-
ties is a ubiquitous task that spans a wide range of scientific
and engineering domains. For example, we might seek
to design a drug with the most potent therapeutic efficacy
(Brown et al., 2019; Kong et al., 2023; Du et al., 2024); build
a robot that is most capable of navigating complex environ-
ments (Ahn et al., 2020; Trabucco et al., 2021; Wang et al.,
2023); or engineer a material with a certain desirable prop-
erty (Stanev et al., 2018; Pogue et al., 2023; Gashmard et al.,
2024; Ma et al., 2024). However, experimentally validating
every proposed design can be expensive, time-intensive, or
even impossible in many applications. These limitations
can preclude the use of conventional ‘online’ optimization
methods for such generative design tasks.
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Figure 1. Overview of Diversity in Adversarial Model-based
Optimization (DynAMO). Traditional model-based optimiza-
tion (MBO) (Trabucco et al., 2021) techniques can generate high-
scoring designs, although often at the expense of the diversity
of proposed designs. Ideally, the final set of candidates should
be of high quality while capturing multiple ‘modes of goodness’
within the design space. For example, although there are 3 unique
global maxima (stars) in the 2D Branin (Branin, 1972) optimization
problem, traditional Bayesian optimization (BO-qUCB) proposes
designs clustered around only a singla optima (diamonds). In con-
trast, we show how DynAMO can be used to modify the MBO
objective to discover diverse and high-quality designs (circles).

An alternative approach is to instead discover design candi-
dates in the offline setting, where we assume that no newly
proposed designs can be experimentally evaluated during
the course of the optimization process. Instead, we only
have access to a static dataset of previously observed de-
signs and their corresponding reward values. The objective
then is to propose a (small) set of candidate designs to ul-
timately evaluate experimentally, with the hope that using
the information available in the offline dataset will yield
desirable designs in the real-world.

Multiple prior works have proposed a variety of offline opti-
mization algorithms (Yu et al., 2021; Trabucco et al., 2021;
Fu & Levine, 2021; Chen et al., 2022; Mashkaria et al., 2023;

1



Diversity By Design: Leveraging Distribution Matching for Offline Model-Based Optimization

Krishnamoorthy et al., 2023; Nguyen et al., 2023; Kim et al.,
2023). Using a static, offline dataset of previously evaluated
designs and their corresponding oracle scores, an offline
algorithm proposes a small set of final candidate designs
that are empirically evaluated using the expensive ‘oracle’
function. Broadly, these algorithms can be divided into
two categories: model-based and model-free, where ‘model’
refers to a predictive surrogate function trained on the of-
fline dataset to approximate the hidden oracle function. We
specifically consider model-based optimization (MBO)
algorithms (Trabucco et al., 2021) here that explicitly opti-
mize against the offline forward surrogate model to discover
designs that maximize the final oracle reward.

A secondary, often overlooked metric in offline MBO is can-
didate diversity (Jain et al., 2022; Kim et al., 2023; Maus
et al., 2023): it is often ideal to include a diverse array of
designs in the final samples proposed by an optimization
procedure (Fig. 1). Different designs may achieve promis-
ing oracle rewards in different ways, and many real-world
optimization tasks seek to capture as many of these ‘modes
of goodness’ as possible (Mullis et al., 2019; Jain et al.,
2022). Furthermore, there may be secondary optimization
objective(s) (e.g., manufacturing cost or drug toxicity) that
are better explored and evaluated in a diverse sample set. In
these settings, it may be more desirable to sample slightly
suboptimal designs in addition to the most optimal design
to achieve a greater diversity of proposed candidates.

To this end, we introduce Diversity in Adversarial Model-
based Optimization (DynAMO) as a novel approach to ex-
plicitly control the trade-off between the reward-optimality
and diversity of a proposed batch of designs in offline MBO.
To motivate our contributions, we show how naı̈ve opti-
mization algorithms provably suffer from poor candidate
diversity. To overcome this limitation, we propose a mod-
ified optimization objective in the offline setting that en-
courages discovery of designs that encapsulate the diversity
of samples in the offline dataset—an approach inspired by
recent advancements in imitation learning and offline rein-
forcement learning (Ho & Ermon, 2016; Kostrikov et al.,
2020; Ke et al., 2021; Ma et al., 2022; Rafailov et al., 2023;
Deka et al., 2023; Huang et al., 2024b). We then derive
DynAMO as a provably optimal solution to our modified
optimization objective. Finally, we empirically demonstrate
how DynAMO can be used with a wide variety of different
offline optimization methods to propose promising design
candidates comparable to the state-of-the-art, while also
achieving significantly better candidate diversity.

2. Background and Preliminaries
Offline Model-Based Optimization. In generative design
problems, we seek to learn a generative policy π∗ over
a space of policies Π such that the distribution qπ

∗
(x) :

X → [0, 1] of designs generated by the policy maximizes
an oracle reward function r(x) : X → R

π∗ = argmax
π∈Π

Ex∼qπ(x)[r(x)] (1)

over a design space X . For example, x might be a candidate
drug, and the reward r(x) the therapeutic efficacy of the
drug. However, in many such problems the oracle reward
function may be prohibitively expensive to evaluate; in the
aforementioned example, we cannot administer arbitrary
doses of potentially dangerous candidate molecules into pa-
tients to test their therapeutic efficacy. Similarly, experimen-
tally evaluating designs in materials science discovery often
necessitates many months of intensive laboratory work, and
building candidate robots from scratch can be intractable.
Instead, it is more common to have access to a static dataset
of previously evaluated designs D = {(xi, yi)}ni=1 where
yi = r(xi). Such settings where D is readily available but
r(x) is hidden are referred to as offline optimization.

To overcome the limitation that r(x) cannot be queried
during the optimization process, one approach is to learn a
forward surrogate approximation rθ(x) of the true reward
function r(x). Here, rθ is parameterized by θ∗ given by

θ∗ = argmin
θ∈Θ

E(xi,yi)∼D ||yi − rθ(xi)||22 (2)

In practice, such a surrogate model might be a neural net-
work, a physics simulator, or other domain-specific model.
In our work, we do not require any particular surrogate
model architecture or training paradigm, and consider neural
network implementations of rθ for generalizability across
different domains. Rather than solving (1), we can now
instead consider the related optimization problem

π∗ = argmax
π∈Π

Ex∼qπ(x)[rθ(x)] (3)

with the hope that optimizing against rθ(x) will learn a gen-
erative policy that also proposes optimal designs according
to r(x), too. Such an approach is often referred to as offline
model-based optimization (MBO) (Trabucco et al., 2021).
Traditionally, an important limitation of offline MBO is the
distribution shift between the forward surrogate rθ and the
oracle reward r: that is, rθ may incorrectly overestimate
the reward associated with proposed designs that are out-of-
distribution compared toD, which can often be exploited by
traditional optimization algorithms (Trabucco et al., 2021;
Yu et al., 2021; Fu & Levine, 2021; Yao et al., 2024).

Optimization Algorithms. To solve (3) and similar prob-
lem formulations, a number of optimization algorithms have
been reported in prior work. One of the most popular ap-
proaches is first-order methods such as gradient ascent, adap-
tive moment estimation (Adam) (Kingma & Ba, 2015), and
derivative work (Duci et al., 2011; Loshchilov & Hutter,
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2019; Zhu et al., 1997; Defazio et al., 2024). Broadly, these
optimizers leverage the gradient ∇⃗xrθ of the forward sur-
rogate to iteratively update a candidate design. However,
such techniques have been shown to struggle in optimizing
against highly non-convex functions typical of real-world
offline optimization problems (Trabucco et al., 2021; 2022).

Evolutionary algorithms, such as covariance matrix adap-
tation evolution strategy (CMA-ES) (Hansen, 2016; 2006)
and cooperative synapse neuroevolution (CoSyNE) (Gomez
et al., 2008), are an alternative approach to optimization. In-
spired by biological evolution, such methods iteratively im-
prove a population of candidate solutions using mechanisms
like selection and mutation, and do not require gradient
information from the forward model.

Separately, Bayesian optimization (BO) (Kushner, 1964) is
another model-based optimization technique historically
used to optimize reward functions that are non-convex,
noisy, and/or lack a closed-form expression. Briefly, BO
iteratively alternatives between (1) fitting a probabilistic sur-
rogate model (e.g., a Gaussian process) to the acquired data
and their scores according to rθ; and (2) acquiring new can-
didate designs according to an acquisition function, such as
the expected improvement (EI) or upper confidence bound
(UCB) (Ament et al., 2023; Wilson et al., 2018; Zhou et al.,
2024a). While BO has traditionally been leveraged for opti-
mization problems using expensive-to-evaluate black-box
functions, recent work has shown that BO is also a powerful
method for offline optimization tasks, too (Maus et al., 2022;
Yao et al., 2024; Eriksson et al., 2019; Hvarfner et al., 2024;
Eriksson & Jankowiak, 2021; Astudillo & Frazier, 2019).
Prior work from Maus et al. (2023); Hernández-Garcı́a et al.
(2024); and others have investigated how to incorporate di-
versity in existing BO frameworks; however, such methods
either (1) gate whether to sample candidate designs based
on a diversity-based thresholding schema; or (2) have specif-
ically been proposed for the BO optimization framework. In
contrast, our method explicitly includes diversity via distri-
bution matching as an optimization objective, and is readily
compatible with standard optimization algorithms.

Distribution Matching. Distribution matching is a tech-
nique leveraged in recent work on imitation learning and
offline reinforcement learning (RL) (Kostrikov et al., 2020;
Ke et al., 2021). The approach considers an experimental
setup where RL agents cannot interact with the environment
and instead must learn from static, offline expert demonstra-
tions sampled from an unknown state-action-reward distri-
bution. The Kullback-Leibler (KL)- divergence (Matthews
et al., 2016) is commonly used to train an agent to minimize
the discrepancy between state-action visitations made by
the RL agent and the offline expert. Given a sufficiently
large and diverse dataset of expert demonstrations, we can
also think of the KL divergence as encouraging the agent to

match the diversity of the non-zero support of p(x). Distri-
bution matching has been used in prior work to learn robotic
control policies (Ho & Ermon, 2016; Wang et al., 2020;
Kostrikov et al., 2020; Ke et al., 2021; Ma et al., 2022) and
align language models (Rafailov et al., 2023; Huang et al.,
2024b; Chakraborty et al., 2024); here, we demonstrate
how distribution matching can also be leveraged in offline
generative design (a non-RL application) by matching the
distribution of designs learned by a generative policy with
the distribution of designs from the offline dataset.

Generative Adversarial Networks. Generative adversarial
networks (GANs) are a method popularized by Goodfellow
et al. (2014); Arjovsky et al. (2017); and others to train
a generative model. Such approaches train a generative
policy using adversarial supervision provided by a source
critic c(x) : X → R. The source critic and generator are
trained in a zero-sum ‘game’ as the discriminator learns
to distinguish between generated and real designs, and the
generator simultaneously learns to generate designs that are
similar to real examples according to the source critic. One
particular GAN architecture introduced by Arjovsky et al.
(2017) is the Wasserstein GAN, which learns a source critic

c∗(x) = argmax
||c||L≤1

[
Ex′∼p(x)c(x

′)− Ex∼q(x)c(x)
]

(4)

where ||c||L is the Lipschitz constant of the source critic,
p(x) is a distribution over real designs (i.e., from an offline
datasetD), and q(x) is a distribution over generated designs.
Intuitively, we can think of c∗(x) as assigning a real-number
score of ‘in-distribution-ness’ to an input design x: large
(resp., small) values of c∗(x) mean that the source critic
predicts the input design is in (resp., out of) distribution
compared to the reference distribution p(x) over real de-
signs. Yao et al. (2024) previously showed how source
critics as in (4) can be leveraged in offline generative design
tasks to prevent out-of-distribution evaluation of the forward
surrogate model rθ(x); we leverage a similar approach in
our work.

3. Distribution Matching for Generative
Offline Optimization

3.1. Motivating Limitation of Naı̈ve MBO

Prior work from Mullis et al. (2019); Jain et al. (2022);
Kim et al. (2023) have shown that an important challenge
in offline optimization as in (3) is that of reward hacking:
learned generative policies can exploit a small region of
the design space, resulting in a low diversity of proposed
designs. For example, consider the following lemma:
Lemma 3.1. (Diversity Collapse in Reward Optimization)
Suppose that there exists a finite set of globally optimal
designs x∗

j such that x∗
j := argmaxx∈X r(x) and r∗ :=

r(x∗
j ) is the optimal reward given a finite, non-uniform
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reward function r(x). Given any distribution qπ, we can
decompose it into the form qπ(x) =

∑
j wjδ(x − x∗

j ) +∑
j w

′
j1(x = x∗

j ) + q̃(x), where wj ≥ 0 for all j, and
q̃(x) ≥ 0 and q̃(x∗

j ) = 0 for all j. Then, q̃(x) satisfies∫
dx q̃(x) = 0.

The proof for Lemma 3.1 is included in Appendix A. Note
that this result holds for both the oracle function r(x) and
the forward surrogate rθ(x). Intuitively, this lemma states
that an optimal policy that maximizes (1) (resp., (3) in the
offline setting) can only have measurable nonzero support at
the global optimizers in the design space X . However, many
real-world reward functions do not have a large number of
globally optimal designs (Trabucco et al., 2021), leading to
a low diversity of generated designs seen in practice (Kim
et al., 2023). Furthermore, there is no guarantee that the set
of optimal x∗

j cover a large region of the design space; in
practice, we might be interested in trading optimality of a
subset of designs to achieve a greater diversity.

3.2. An Alternative MBO Problem Formulation

To reward generative policies in proposing diverse designs,
we modify the original MBO objective in (3) according to

J(π) := Ex∼qπ(x)[rθ(x)]−
β

τ
DKL(q

π||pτD) (5)

where DKL(·||·) is the Kullback–Leibler divergence (KL-
divergence) and τ, β ∈ R+ are hyperparameters. In sub-
sequent steps, we abbreviate the expectation value over
probability distributions Ex∼qπ(x)[·] as Eqπ [·] for brevity.

The temperature hyperparameter τ . Equation (5) im-
plicitly introduces a hyperparameter τ ∈ R+ to control the
trade-off between diversity and optimality. Note that the KL-
divergence in (5) is computed with respect to a distribution
pτD(x) defined as the τ -weighted probability distribution:
Definition 3.2 (τ -Weighted Probability Distribution). Sup-
pose that we are given a reward function r(x) : X → R
over a space of possible designs X , and access to an static,
offline dataset D of real designs. We define the τ -weighted
probability distribution over X (for τ ≥ 0) as

pτ (x) :=
exp(τr(x))

Zτ
(6)

where the partition function Zτ :=
∫
X dx exp(τr(x)) is

a normalizing constant. We use the dataset of prior obser-
vations D = {(xi, r(xi))}ni=1 to empirically approximate
pτ (x), and refer to this approximation as pτD(x) ≈ pτ (x).
For τ ≫ 1, near-optimal designs that are associated with
high reward scores are weighted more heavily in pτD; con-
versely, τ = 0 weights all designs equally to achieve the
greatest diversity in designs. The penalized objective in (5)
thereby encourages the learned policy to capture the diver-
sity of designs in the τ -weighted distribution pτD(x). We
show empirical τ -weighted distributions in Appendix D.7.

The KL-divergence strength hyperparameter β. Sepa-
rately, the hyperparameter β ≥ 0 controls the relative im-
portance of the distribution matching objective. As β →∞,
it becomes increasingly important for the generator to learn
a distribution of designs that match pτD(x); setting β = 0
reduces J(π) to the original MBO objective in (3).

3.3. Adversarial Source Critic as a Constraint

Separately, to address the problem of forward surrogate
model overestimation of candidate design fitness according
to rθ(x), we constrain the optimization problem to ensure
that expected source critic scores over qπ(x) and pτD(x)
differ by no more than a constant W0 ∈ R+, similar to the
approach to offline MBO used by Yao et al. (2024). That is,

max
π∈Π

J(π) = Eqπ [rθ(x)]−
β

τ
DKL(q

π||pτD)

s.t. Epτ
D
[c∗(x)]− Eqπ [c

∗(x)] ≤W0

(7)

where the source critic c∗ : X → R is a neural network as in
(4) that maximizes Epτ

D
[c∗(x)]− Eqπ [c

∗(x)] subject to the
constraint ||c∗(x)||L ≤ 1, where ||·||L is the Lipschitz norm.
Intuitively, this constraint prevents the evaluation of the
forward surrogate model rθ(x) on wildly out-of-distribution
inputs encountered in the offline setting.

We are now interested in finding a generative policy π∗ that
solves this optimization problem in (7); in our work below,
we demonstrate how this approach can yield a policy that
generates high-scoring candidate designs that also better
capture the diversity of possible designs in X .

3.4. Constrained Optimization via Lagrangian Duality

Our problem in (7) is ostensibly challenging to solve: both
the objective J(π) and the constraint imposed by the source
critic can be arbitrarily non-convex, making traditional con-
strained optimization techniques intractable in solving the
optimization problem out-of-the-box. In this section, we de-
rive an explicit solution to (7) to make the problem tractably
solvable using any standard optimization algorithm.

Recall from Lagrangian duality that solving (7) is equivalent
to the min-max problem

min
π∈Π

max
λ∈R+

L(π;λ) (8)

where the Lagrangian L(π;λ) : Π× R+ → R is given by

L(π;λ) =− J(π)

+ βλ
[
Epτ

D
[c∗(x)]− Eqπ [c

∗(x)]−W0

] (9)

introducing λ ∈ R+ such that βλ ∈ R+ is the Lagrange
multiplier associated with the constraint in (7). From weak
duality, the Lagrange dual problem provides us with a tight
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lower bound on the primal problem in (7):

max
λ∈R+

min
π∈Π
L(π;λ) := max

λ∈R+

g(λ) ≤ min
π∈Π

max
λ∈R+

L(π;λ)

(10)
where g(λ) := minπ∈Π L(π;λ) is the Lagrange dual func-
tion. In general, computing g(λ) is challenging for an arbi-
trary offline optimization problem; in prior work, Trabucco
et al. (2021) bypassed this dual problem entirely by treating
λ as a hyperparameter tuned by hand (albeit for a different
constraint); and Yao et al. (2024) approximated the dual
function under certain assumptions about the input space
by performing a grid search over possible λ values. In our
approach, we look to rewrite the problem into an equivalent
representation that admits a closed-form, computationally
tractable expression for g(λ).

Lemma 3.3 (Entropy-Divergence Formulation). Define
J(π) as in (5). An equivalent representation of J(π) is

J(π) ≃ −H(qπ(x))− (1 + β)DKL(q
π(x)||pτD(x)) (11)

where H(·) is the Shannon entropy. Maximizing (11) is
equivalent to maximizing (5) in the sense that both objectives
admit the same optimal policy.

The proof of this result is in Appendix A. To build intuition
about how (11) is equivalent to (5), we can consider the
behavior of the objective in the limit of τ → +∞: the refer-
ence distribution pτD approaches the sum-of-δ-distributions
formulation in Lemma 3.1. In this setting, the entropy and
KL-divergence terms are equivalent, and the optimal policy
π∗ admits a distribution qπ with nonzero support only at the
globally optimal designs in pτD. Alternatively in the limit
that τ → 0 and β → +∞, pτD approaches a uniform distri-
bution and both (5) and (11) simplify to a state-matching
objective according to the KL-divergence loss term, without
any explicit optimization against the surrogate model rθ(x).

The utility of Lemma 3.3 is to enable us to write an exact
formulation for the Lagrangian dual function g(λ):

Lemma 3.4 (Explicit Dual Function of (7)). Consider the
primal problem

max
π∈Π

J(π) ≃ −H(qπ)− (1 + β)DKL(q
π||pτD)

s.t. Epτ
D
[c∗(x)]− Eqπ [c

∗(x)] ≤W0

(12)

The Lagrangian dual function g(λ) is bounded from below
by the function gℓ(λ) given by

gℓ(λ) := β
[
λ(Epτ

D
[c∗(x)]−W0)− Epτ

D
eλc

∗(x)−1
]

(13)

The proof of this result is included in Appendix A. Lemma
3.4 admits an explicit concave function gℓ(λ) such that
g(λ) ≥ gℓ(λ) for all λ ∈ R+; because we are interested
in maximizing the dual function in leveraging Lagrangian

duality as in (10), it follows that maximizing gℓ(λ) bounds
the maxima over g(λ) from below. In subsequent steps, we
therefore optimize over this explicit function gℓ(λ).

The utility of Lemma 3.4 is in solving for the optimal
λ that maximizes the dual function lower bound in (13).
Prior work has explored approximating λ via a grid search
(Yao et al., 2024) or using iterative implicit solvers; these
methods cannot provide any formal guarantee in arriving
at a reasonable solution for λ. In contrast, maximizing
against gℓ(λ) is easy because the function is guaranteed to
be concave for any β, τ,W0 and source critic c∗(x). We can
therefore derive an exact solution for λ using any convex
optimization problem solver. We now have a method to
write an explicit expression for the Lagrangian L(π;λ) by
exactly specifying the optimal λ, and then leverage any
out-of-the-box policy optimization method to solve (7) via
solving the easier, ostensibly unconstrained problem in (8).

3.5. Overall Algorithm

To summarize, our work aims to solve two separate but
related problems in offline MBO in (3): traditional model-
based optimization approaches can yield candidate designs
that are [1] of low diversity; and [2] not optimal due to
exploiting out-of-distribution errors of the forward surro-
gate rθ(x). We introduce a KL-divergence-based distribu-
tion matching objective—with input hyperparameters τ and
β—to solve the diversity problem; and build off prior work
(Yao et al., 2024) to constrain the search space using source
critic feedback to solve the out-of-distribution evaluation
problem. We then show that there exists a provable, explicit
solution to our modified offline MBO problem (i.e., Lemma
3.4 and (8)). In contrast with prior work imposing specific
constraints on the forward model (Trabucco et al., 2021; Yu
et al., 2021) or design space (Yao et al., 2024), or requiring
the use of model-free optimization methods (Krishnamoor-
thy et al., 2023; Mashkaria et al., 2023), our approach only
modifies the MBO objective and is therefore both optimizer-
and task- agnostic. We refer to our method as Diversity in
Adversarial Model-based Optimization (DynAMO).

4. Experimental Evaluation
Datasets and Offline Optimization Tasks. We evaluate Dy-
nAMO on a set of six real-world offline MBO tasks spanning
multiple scientific domains and both discrete and continuous
search spaces. Five of the tasks are from Design-Bench, a
publicly available set of offline optimization benchmarking
tasks from Trabucco et al. (2022): (1) TFBind8 aims to max-
imize the transcription factor binding efficiency of a short
DNA sequence (Barrera et al., 2016); (2) UTR the gene
expression from a 5’ UTR DNA sequence (Sample et al.,
2019; Angermüeller et al., 2020); (3) ChEMBL the mean
corpuscular hemoglobin concentration (MCHC) biological
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Algorithm 1 (DynAMO). Diversity in Adversarial Model-
based Optimization

Inputs:
rθ : X → R — pre-trained forward surrogate model
c∗ : X → R — initialized source critic model
D = {(x′

j , r(x
′
j))}nj=1 — reference dataset

β ≥ 0 — KL regularization strength
τ ≥ 0 — temperature
b ≥ 1 — batch size
ab : X × R→ X b — optimizer algorithm
ηcritic > 0 — source critic learning rate
ηλ > 0 — λ dual step size
k ≥ 1 — oracle evaluation budget

Initialize sampled candidates Dgen = ∅ ⊂ X × R
while ab has not converged do

// Solve for the globally optimal λ using (13)
λ← λ0 (λ0 = 1.0 in our experiments)
while λ has not converged do
λ← λ+ ηλ

∂gℓ(λ)
∂λ

end while

// Given previously sampled candidates Dgen as input,
// sample new candidates using the optimizer
{xnew

i }bi=1 ← ab(Dgen)

// Re-train the source critic parameters θc
while δW has not converged do
δW ← ∇⃗θc

[
Ex′∼D[c

∗(x′)]− Ex∼{xnew
i }b

i=1
[c∗(x)]

]
θc ← min(max(θc + ηcritic · δW,−0.01), 0.01)

end while

// Evaluate and cache the candidates according to (9)
Dgen ← Dgen ∪ {(xnew

i ,−L(xnew
i ;λ))}bi=1

end while
return top-k candidates from Dgen according to their

penalized MBO objective values

response of a molecule using an offline dataset collected
from the ChEMBL assay CHEMBL3885882 (Gaulton et al.,
2011); (4) Superconductor the critical temperature of a
superconductor material specified by its chemical formula
design (Hamidieh, 2018); and (5) D’Kitty the morphologi-
cal structure of a quadrupedal robot (Ahn et al., 2020). Tasks
(1) - (3) (i.e., TFBind8, UTR, and ChEMBL) are discrete
optimization tasks, where tasks (4) and (5) (i.e., Supercon-
ductor and D’Kitty) are continuous optimization tasks. We
also evaluate our method on the discrete (6) Molecule task
described in Brown et al. (2019); Chen et al. (2021); Flam-
Shepherd et al. (2022); Yao et al. (2024), where the goal is
to design a maximally hydrophobic molecule. Additional
implementation details are detailed in Appendix B.

Experiment Implementation. All our optimization tasks
include an offline, static dataset D = {(xi, r(xi))}ni=1 of

previously observed designs and their corresponding objec-
tive values. We first use D to train a task-specific forward
surrogate model rθ with parameters θ∗ according to (2). We
parameterize each forward surrogate model rθ(x) as a fully
connected neural network with two hidden layers of size
2048 and LeakyReLU activations, trained using an Adam
optimizer with a learning rate of η = 0.0003 for 100 epochs.

Importantly, optimization problems over discrete search
spaces are generally NP-hard and often involve heuristic-
based solutions (Papalexopoulos et al., 2022; Xiong, 2022).
Instead, we use the standard approach of learning a vari-
ational autoencoder (VAE) (Kingma & Welling, 2014) to
encode and decode discrete designs to and from a contin-
uous latent space, and optimize over the continuous VAE
latent space instead—see Appendix B for additional details.

DynAMO also involves training and implementing a source
critic model c∗(x) as in (4); we implement c∗ as a fully con-
nected neural network with two hidden layers each with size
512. We implement the constraint on the model’s Lipschitz
norm by clamping the weights of the model such that the
ℓ∞-norm of the parameters is no greater than 0.01 after each
optimization step, consistent with Arjovsky et al. (2017).
We train the critic using gradient descent with a learning
rate of η = 0.01 according to (4). Separately to solve for
the globally optimal λ using Lemma 3.4, we perform gra-
dient ascent on λ until the algorithm converges. Finally,
we fix the KL-divergence weighting β = 1.0, temperature
hyperparameter τ = 1.0, and constraint bound W0 = 0
for all experiments to avoid overfitting DynAMO to any
particular task or optimizer. All experiments were run for
10 random seeds on a single internal cluster with 8 NVIDIA
RTX A6000 GPUs. Of note, all DynAMO experiments
were run using only a single GPU.

Baseline Methods. Our proposed work, DynAMO, specifi-
cally looks to modify an offline MBO optimization problem
as in (3) where we assume access to a forward surrogate
model rθ(x) to rank proposed design candidates and offer
potential information about the design space. We com-
pare DynAMO against other objective modifying MBO
approaches: (1) Conservative Objective Models (COMs;
Trabucco et al. (2021)) penalizes the objective at a ‘look-
ahead’ gradient-ascent iterate to prevent falsely promising
gradient ascent steps; (2) Robust Model Adaptation (RoMA;
Yu et al. (2021)) modifies the objective rθ(x) to enforce
a local smoothness prior; (3) Retrieval-enhanced Offline
Model-Based Optimization (ROMO; Chen et al. (2023c))
retrieves relevant samples from the offline dataset for more
trustworthy gradient updates; and (4) Generative Adversar-
ial Model-Based Optimization (GAMBO; Yao et al. (2024))
introduces a framework for initially leveraging source critic
feedback to regularize an MBO objective. We evaluate each
of these MBO objective transformation methods alongside
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Table 1. Quality and Diversity of Designs Under MBO Objective Transforms. We evaluate DynAMO against other MBO objective-
modifying methods using six different backbone optimizers. Each cell consists of ‘Best@128 (Best)/Pairwise Diversity (PD)’ Rank and
Optimality Gap scores separated by a forward slash. Bolded (resp., Underlined) entries indicate the best (resp., second best) performing
algorithm for a given optimizer (i.e., within each column). See Supplementary Table A1 for detailed results broken down by MBO task.

Best/PD Rank ↓ Optimality Gap ↑
Grad. Adam CMA-ES CoSyNE BO-qEI BO-qUCB Grad. Adam CMA-ES CoSyNE BO-qEI BO-qUCB

Baseline 5.0/5.5 4.5/6.0 3.7/3.8 5.3/4.5 5.8/5.2 3.7/3.0 6.8/-53.2 0.5/-52.4 14.4/9.5 -0.6/-52.1 18.7/47.1 19.4/43.5
COMs– 7.3/6.5 6.0/5.3 5.7/5.2 5.7/5.7 4.3/4.0 4.5/4.5 -3.0/-53.5 -3.0/-52.4 7.6/-9.7 1.1/-51.6 19.2/51.4 19.0/45.5
COMs+ 2.5/2.8 3.2/3.0 7.3/7.8 5.7/3.3 6.0/5.7 5.2/5.7 12.3/-6.9 8.1/-12.3 7.1/-38.2 3.5/-40.4 17.9/40.3 18.6/51.3
RoMA– 6.7/5.7 4.5/6.3 3.7/3.5 5.3/4.5 2.7/3.3 3.8/3.0 -1.2/-53.3 0.5/-52.4 14.4/9.5 -0.6/-52.2 21.0/48.4 19.2/43.6
RoMA+ 3.8/5.8 2.8/5.2 5.0/4.8 2.8/5.0 5.2/6.3 4.7/6.5 9.2/-46.8 14.5/-45.8 14.1/8.0 6.2/-52.0 18.3/32.9 18.5/39.9
ROMO 4.2/2.8 4.8/2.8 4.2/4.3 4.2/5.2 5.0/6.0 4.7/6.2 10.9/-12.7 6.4/-20.5 15.7/-3.1 3.1/-50.8 19.2/34.9 19.9/33.2

GAMBO 3.2/5.3 5.3/5.8 2.2/4.3 3.7/6.3 2.2/4.0 4.7/5.0 10.5/-52.1 8.6/-51.9 16.7/16.8 5.0/-53.6 20.8/30.0 20.2/30.3

DynAMO 2.8/1.2 2.8/1.2 3.3/1.8 2.3/1.2 3.0/1.3 3.5/1.8 14.2/27.8 14.5/35.7 17.5/55.2 12.3/-20.7 20.7/74.2 20.5/59.4

DynAMO and naı̈ve, unmodified Baseline MBO using rep-
resentative first-order methods (1) Grad. (Gradient Ascent)
and (2) Adam (Adaptive Moment Estimation (Kingma &
Ba, 2015)); evaluationary algorithms (3) CMA-ES (Co-
variance Matrix Adaptation Evolution Strategy (Hansen,
2016)) and (4) CoSyNE (Cooperative Synapse Neuroevo-
lution (Gomez et al., 2008)); and Bayesian optimization
with (5) Expected Improvement (BO-qEI) and (6) Upper
Confidence Bound (BO-qUCB) acquisition functions.

Notably, the baseline methods COMs and RoMA impose
specific constraints on the training process for the forward
surrogate model rθ(x), and/or also assume that the forward
model can be updated during the sampling process (Yu et al.,
2021; Trabucco et al., 2021). These constraints are not gen-
erally satisfied for any arbitrary offline MBO problem; for
example, rθ may be a non-differentiable black-box simu-
lator with fixed parameters. In contrast, both our method
(DynAMO) and baseline methods GAMBO and ROMO are
compatible with this more general experimental setting; to
ensure a fair experimental comparison, we evaluate both
RoMA and COMs using a baseline forward surrogate (i.e.,
RoMA–, COMs–) and using a specialized forward surro-
gate model trained and updated according to the methods
described by the respective authors (i.e., RoMA+, COMs+).

Evaluating the Diversity of Candidate Designs. To em-
pirically evaluate the diversity of a final set of k = 128
candidate designs {xF

i }ki=1 proposed by an offline MBO
experiment, we report the Pairwise Diversity (PD) of a
batch of k candidate designs, defined by Jain et al. (2022);
Kim et al. (2023); and Maus et al. (2023) as

PD({xF
i }ki=1) := ExF

i

[
ExF

j ̸=xF
i

[
d(xF

i , x
F
j )
]]

(14)

where d(·, ·) is the normalized Levenshtein edit distance
(Haldar & Mukhopadhyay, 2011) (resp., Euclidean distance)
for discrete (resp., continuous) tasks. We detail alternative
definitions of diversity in Appendix D.2.

Evaluating the Quality of Candidate Designs. To en-

sure that diversity does not come at the expense of finding
optimal design candidates, we report the Best@k oracle
score obtained by evaluating k = 128 candidate designs
{xF

i }ki=1 proposed in an experiment. Consistent with prior
work (Trabucco et al., 2021; Yao et al., 2024), we define

Best@k({xF
i }ki=1) := max

1≤i≤k
r(xF

i ) (15)

Crucially, the Best@k metric is computed with respect to the
oracle function r(x) that was hidden during optimization;
we only use r(x) in (15) to report the true reward associated
with each candidate design.

Finally, we rank each method for a given optimizer and task
and report the method’s Rank averaged over the six tasks
according to the Best@128 (15) and PD (14) metrics. We
also report the Optimality Gap (Opt. Gap) (averaged over
the six tasks), defined as as difference between the score
achieved by an MBO optimization method and the score in
the offline dataset, for both the Best@128 and PD metrics.

5. Results
Main Results. DynAMO consistently proposes the most
diverse set of designs and achieves an Optimality Gap as
high as 74.2 (DynAMO-BO-qUCB) and an average Rank as
low as 1.2 compared to baseline methods (Table 1). We find
that DynAMO offers the largest improvements in diversity
for first-order methods, although also improves upon the
evolutionary algorithms and Bayesian optimization methods
evaluated. This makes sense, as both Grad. and Adam
are only local optimizers that often end up exploring a
much smaller region of the design space (without using
DynAMO) compared to gradient-free methods. For exam-
ple, DynAMO-Grad. (resp., DynAMO-CMA-ES; resp.,
DynAMO-BO-qEI) achieves a Pairwise Diversity Optimal-
ity Gap of 35.7 (resp., 55.2; resp., 74.2); in contrast, no other
baseline method achieves a diversity score greater than -6.9
(resp., 16.8; resp., 51.4) within the same optimizer class.
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These results do not come at the cost of the quality of de-
signs; for example, for all 3 optimizers where DynAMO
scores an average Rank of 1.2 (i.e., Grad., Adam, and
CoSyNE backbone optimizers), DynAMO is also within the
top 2 methods in proposing high-quality designs according
to both Rank and Optimality Gap. In fact, DynAMO pro-
poses the best designs for 5 out of the 6 backbone optimizers
according to the Best@128 Optimality Gap. These results
suggest that DynAMO can be used to improve both the
quality and diversity of designs in a variety of experimental
settings for both discrete and continuous search spaces.

Ablation Studies. DynAMO consists of two important
but separate algorithmic components: (1) a KL-divergence-
based distribution matching objective; and (2) a constraint
dependent on an adversarial source critic. We show both
components are important for DynAMO to generate both di-
verse and high-quality designs (Appendix E.2). DynAMO
also takes as input two important hyperparameters—β and
τ—as introduced in (5). We empirically ablate the values of
these hyperparameters in Appendix E.3. Additional results
and discussion are included in Appendix E.

6. Related Work
Model-free offline optimization. In our work, we specifi-
cally look at model-based optimization methods that explic-
itly optimize against a forward surrogate model rθ(x) that
acts as a proxy for the hidden oracle function r(x). How-
ever, related work have also proposed offline optimization
methods that do not require access to a model rθ(x) and
instead impose constraints on the backbone optimization
method—we refer to such work as model-free offline op-
timization. For example, Mashkaria et al. (2023) frame
generative design tasks as a ‘next-sample’ prediction prob-
lem and learn a transformer to roll out sample predictions;
and Krishnamoorthy et al. (2023); Yun et al. (2024) learn
a diffusion model to sample candidate designs conditioned
on reward values. Because DynAMO operates on MBO for-
ward surrogate models rθ(x), we cannot leverage DynAMO
with these model-free methods. However, we compare them
against DynAMO in Appendix D.5.

Active learning in optimization. In our work, we specifi-
cally consider the experimental setup of one-shot, batched
oracle evaluation: that is, the final candidate designs that
are scored by the oracle function at the end of optimization
are not used to subsequently update the prior over the design
space to better inform subsequent optimization steps. In con-
trast, a separate body of recent work has investigated gener-
ative design in the setting of active learning where there can
be multiple rounds of offline optimization to inform subse-
quent online acquisitions (Hernández-Garcı́a et al., 2024; Li
et al., 2022b;a; Wu et al., 2023; Palizhati et al., 2022). For
example, Li et al. (2024) show how active learning can be

formulated as a multi-fidelity optimization problem.

Reinforcement learning. Prior work has explored how
to formulate offline generative design tasks as reinforce-
ment learning (RL) problems. Trabucco et al. (2022) used
REINFORCE-style methods similar to Williams (1992) to
learn a myopic sampling policy, although do not use RL
for offline generative design. Angermueller et al. (2020);
Korshunova et al. (2022); and Jang et al. (2022) leverage
RL for offline optimization in the active learning setting
described above, which is outside the scope of our work.

7. Discussion and Conclusion
We introduce DynAMO, a novel task- and optimizer- agnos-
tic approach to MBO that improves the diversity of proposed
designs in offline optimization tasks. By framing diversity
as a distribution-matching problem, we show how DynAMO
can enable generative policies to sample both high-quality
and diverse sets of designs. Our experiments reveal that
DynAMO significantly improves the diversity of proposed
designs while also discovering high-quality candidates.

Limitations and Future Work. There are also important
limitations of our method. Firstly, we note that while Dy-
nAMO can significantly improve the diversity of proposed
designs in offline MBO while preserving Best@128 per-
formance, our method is not as competitive with existing
baselines according to the median score obtained by the 128
designs (Supp. Fig. A2, Appendix B). The suboptimal
performance of DynAMO according to this Median@128
metric is unsurprising given that our primary motivation of
DynAMO is to obtain a diverse sample of designs while
simultaneously ensuring that a nonzero subset of them are
(near-) optimal. Furthermore, we empirically observe that
no method is state-of-the-art on both Best@128 and Me-
dian@128 metrics. While it would be ideal for DynAMO
(or any method) to be state-of-the-art for all quality and
diversity metrics, we argue that obtaining a good Best@128
score is more important than a good Median@128 score, as
the the principle real-world goal of offline MBO is to find a
design that maximizes the oracle function.

Secondly, we also limit our study of DynAMO to offline
MBO tasks that are well-described and studied in prior
work. In principle, real-world optimization problems may
be complicated by noisy and/or sparse objective functions,
ultra-high dimensional search spaces, small offline datasets,
and other practical limitations. We leave a more rigorous
interrogation of how such offline MBO methods perform in
such settings for future work.

Finally, our work focuses on evaluating DynAMO and base-
line methods in a one-shot, batched oracle evaluation set-
ting—future work might explore how to extend our method
to the active learning setting. Separately, recent domain-
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specific foundation models (Lin et al., 2023; Ohana et al.,
2024; Nguyen et al., 2024; Zeni et al., 2025) may also give
rise to more sophisticated and accurate forward surrogate
models rθ(x) that can be leveraged with DynAMO and
other MBO methods in future work.
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A. Proofs
Lemma 3.1. (Diversity Collapse in Reward Optimization) Suppose that there exists a finite set of globally optimal designs
x∗
j such that x∗

j := argmaxx∈X r(x) and r∗ := r(x∗
j ) is the optimal reward given a finite, non-uniform reward function

r(x). Given any distribution qπ , we can decompose it into the form qπ(x) =
∑

j wjδ(x− x∗
j ) +

∑
j w

′
j1(x = x∗

j ) + q̃(x),
where wj ≥ 0 for all j, and q̃(x) ≥ 0 and q̃(x∗

j ) = 0 for all j. Then, q̃(x) satisfies
∫
dx q̃(x) = 0.

Proof. First, note that if
∫
dx q̃(x) = 0, we have

Ex∼qπ(x)[r(x)] =

∫
dx
∑
j

wjδ(x− x∗
j )r(x) =

∑
j

wj

∫
dx δ(x− x∗

j )r(x) =
∑
j

wjr
∗ = r∗

∑
j

wj = r∗, (16)

which is optimal. Next, we prove that if
∫
dx q̃(x) > 0, then Ex∼qπ [r(x)] < r∗. To this end, we define

X1 := {x ∈ X | 1 < r∗ − r(x)}, Xn :=

{
x ∈ X

∣∣∣∣∣ 1n < r∗ − r(x) ≤ 1

n− 1

}
⊆ X ∀n ≥ 2 (17)

for each n ∈ N. Note that all Xn are disjoint by construction; also by construction, we have X \ {x∗
j} =

⋃∞
n=1 Xn.

Furthermore, note that since q̃(x) = 0 for x = x∗
j for some j, we have 0 <

∫
dx q̃(x) =

∑∞
n=1

∫
Xn

dx q̃(x), so it must be
that

∫
Xm

dx q̃(x) > 0 for some m. As a consequence, we have∫
Xm

dx q̃(x)(r∗ − r(x)) ≥ 1

m

∫
Xm

dx q̃(x) > 0.
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Thus, the expected reward would be

Ex∼qπ [r(x)] =

∫
dx qπ(x)r(x)

=

∫
dx

∑
j

wjδ(x− x∗
j ) +

∑
j

w′
j1(x = x∗

j )

 r(x) +

∞∑
n=1

∫
Xn

dx q̃(x)r(x)

<

∫
dx

∑
j

wjδ(x− x∗
j ) +

∑
j

w′
j1(x = x∗

j )

 r∗ +

∞∑
n=1

∫
Xn

dx q̃(x)r∗

=

∫
dx qπ(x)r∗

= r∗

(18)

so qπ is suboptimal. The claim follows.

Lemma 3.3. (Entropy-Divergence Formulation) Define J(π) as in (5). An equivalent representation of J(π) is

J(π) = −H(qπ(x))− (1 + β)DKL(q
π(x)||pτD(x)) (19)

whereH(·) is the Shannon entropy and DKL(·||·) is the KL divergence.

Proof. Firstly, note that

J(π) = Eqπ [rθ(x)]−
β

τ
DKL(q

π||pτD)

≃ τ · Eqπ

[
log erθ(x)

]
− βDKL(q

π||pτD)

= Eqπ

[
log eτrθ(x)

]
− βDKL(q

π||pτD)

(20)

where ≃ denotes an equivalent representation of the objective (i.e., scaling J(π) by τ > 0 does not change the optimal
policy π∗). Further rewriting,

J(π) = Eqπ

[
log

eτrθ(x)

Zτ

]
+ Eqπ logZτ − βDKL(q

π||pτD) ≃ Eqπ

[
log

eτrθ(x)

Zτ

]
− βDKL(q

π||pτD) (21)

where we omit the constant Eqπ logZτ
θ because the expectation value argument is independent of the policy π. The

remaining expectation value can be re-expressed via importance weighting:

J(π) = Epτ
D

[
qπ

pτD
log

eτrθ(x)

Zτ

]
− βDKL(q

π||pτD) (22)

Assuming that the surrogate rθ(x) is well-trained on the offline dataset D (i.e., r(x) ≈ rθ(x) ∀x ∈ D), we have

J(π) ≈ Epτ
D

[
qπ

pτD
log

eτr(x)

Zτ

]
− βDKL(q

π||pτD) = Epτ
D

[
qπ

pτD
log pτD

]
− βDKL(q

π||pτD) (23)

from Definition 3.2. Further rewriting, we have

J(π) = Epτ
D

[
qπ

pτD
log

(
pτD ·

qπ

qπ

)]
− βDKL(q

π||pτD)

= Epτ
D

[
qπ

pτD
log

pτD
qπ

]
+ Epτ

D

[
qπ

pτD
log qπ

]
− βDKL(q

π||pτD)

= −Epτ
D

[
qπ

pτD
log

qπ

pτD

]
− Eqπ [− log qπ]− βDKL(q

π||pτD)

(24)
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From the definition of KL-divergence,

J(π) = −(1 + β)Epτ
D

[
qπ

pτD
log

qπ

pτD

]
− Eqπ [− log qπ]

= −(1 + β)Epτ
D

[
fKL

(
qπ

pτD

)]
− Eqπ [fℓ (q

π)]

= −(1 + β)DKL(q
π||pτD)−H(qπ)

(25)

up to a constant, where fKL(x) := x log x and fℓ(x) := − log x are convex functions, H(·) is the Shannon entropy, and
DKL(·||·) is the KL divergence.

Remark A.1 (Equivalence of Lemma 3.3 and Canonical State-Matching). Continuing from (25), one might notice that J(π)
can be equivalently rewritten as

J(π) = −(1 + β)Epτ
D

[
qπ

pτD
log

qπ

pτD

]
− Eqπ [− log qπ]

= −(1 + β)Epτ
D

[
qπ

pτD
log

qπ

pτD

]
− Epτ

D

[
− qπ

pτD
log qπ

]
= −(1 + β)Epτ

D

[
qπ

pτD
log

qπ

pτD

]
− (1 + β)Epτ

D

[
qπ

pτD
log(qπ)−1/(1+β)

]
= −(1 + β)Epτ

D

[
qπ

pτD
log

(
qπ

pτD
· 1

(qπ)1/(1+β)

)]
= −(1 + β)Eqπ

[
log

(qπ)β/(1+β)

pτD

]
(26)

Assume that there exists a probability distribution p̂τD(x) such that p̂τD(x) ∝ (pτD(x))
(1+β)/β . Then

J(π) ≃ −(1 + β)Eqπ

[
log

(
qπ

p̂τD(x)

)β/(1+β)
]
= −βEp̂τ

D

[
qπ

p̂τD
log

qπ

p̂τD(x)

]
= −βDKL(q

π||p̂τD) (27)

In other words, the optimization objective considered in (5) and in Lemma 3.3 is equivalent to a pure state-matching
objective −βDKL(q

π||p̂τD) predicated on the existence of a ‘rescaled’ probability distribution p̂τD(x) as defined above.

Lemma 3.4. (Explicit Dual Function of (7)) Consider the primal problem

max
π∈Π

J(π) ≃ −H(qπ)− (1 + β)DKL(q
π||pτD)

s.t. Epτ
D
[c∗(x)]− Eqπ [c

∗(x)] ≤W0

(28)

The Lagrangian dual function g(λ) is bounded from below by the function gℓ(λ) given by

gℓ(λ) := β
[
λ(Epτ

D
c∗(x)−W0)− Epτ

D
eλc

∗(x)−1
]

(29)

Proof. Define fKL(u) := u log u. From (10), the dual function g(λ) : R+ → R is given by

g(λ) := min
π∈Π

[
(1 + β)Epτ

D
fKL

(
qπ

pτD

)
− Eqπ log (qπ) + βλ

(
Epτ

D
c∗(x)− Eqπc

∗(x)−W0

) ]
= min

π∈Π

[
(1 + β)Epτ

D
fKL

(
qπ

pτD

)
−
(
Epτ

D
fKL

(
qπ

pτD

)
+ Eqπ log pτD

)
+ βλ

(
Epτ

D
c∗(x)− Eqπc

∗(x)−W0

) ]
= min

π∈Π

[
βEpτ

D
fKL

(
qπ

pτD

)
− Eqπ log pτD + βλ

(
Epτ

D
c∗(x)− Eqπc

∗(x)−W0

) ]
(30)

where we define βλ ∈ R+ as the Lagrangian multiplier associated with the constraint in (7). Rearranging terms,

g(λ) = min
π∈Π

[
βEpτ

D

[
−
(
λc∗ · q

π

pτD

)
+ fKL

(
qπ

pD

)]
− Eqπ log pτD + βλEpτ

D
c∗(x)− βλW0

]
(31)
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Because the sum of function minima is a lower bound on the minima of the sum of the functions themselves, we have

g(λ) ≥ βEpτ
D
min
π∈Π

[
−
(
λc∗ · q

π

pτD

)
+ fKL

(
qπ

pD

)]
−max

π∈Π
[Eqπ log pτD] + min

π∈Π
[βλEpτ

D
c∗(x)− βλW0]

∼ βEpτ
D
min
π∈Π

[
−
(
λc∗ · q

π

pτD

)
+ fKL

(
qπ

pD

)]
+ βλEpτ

D
c∗(x)− βλW0

(32)

ignoring the term maxπ∈Π [Eqπ log pτD] that is constant with respect to λ. In general, simplifying (32) is challenging if
not intractable. Instead, we note that minimizing over the set of admissible policies Π achieves an optimum that is lower
bounded by minimizing over the superset

g(λ) ≥ βEpτ
D

min
z∈R+

[− (λc∗(x) · z) + fKL (z)] + βλEpτ
D
c∗(x)− βλW0

= β
[
−Epτ

D
f⋆

KL(λc
∗(x)) + λ(Epτ

D
c∗(x)−W0)

] (33)

where f⋆(·) is the Fenchel conjugate of a convex function f(·). The Fenchel conjugate of fKL(u) = u log u is f⋆
KL(v) = ev−1

following Borwein & Lewis (2006), and so

g(λ) ≥ β
[
−Epτ

D
eλc

∗(x)−1 + λ(Epτ
D
c∗(x)−W0)

]
(34)

Define the right hand side of this inequality as the function gℓ(λ) and the result is immediate.

B. Additional Implementation Details
Oracle Functions for Optimization Tasks. The task-specific oracle reward functions r(x) are developed by domain
experts and assumed to exactly return the noiseless reward of all possible input designs in the search space X . The oracle
functions associated wit tasks from the Design-Bench MBO evaluation suite are detailed by the original Design-Bench
authors in Trabucco et al. (2022); briefly, the TFBind8 (i.e., TFBind8-Exact-v0 in Design-Bench) task uses the oracle
function from Barrera et al. (2016); the UTR (UTR-ResNet-v0) task uses the oracle function from Angermüeller et al.
(2020); the ChEMBL (ChEMBL MCHC CHEMBL3885882 MorganFingerprint-RandomForest-v0) task uses
the oracle function from Trabucco et al. (2022); the Superconductor (Superconductor-RandomForest-v0) task
uses the oracle function from Hamidieh (2018); and the D’Kitty (DKittyMorphology-Exact-v0) task uses a MuJoCo
(Todorov et al., 2012) simulation environment and learned control policy from Trabucco et al. (2022) to evaluate input
designs. The Molecule task uses the oracle function from Wildman & Crippen (1999).

Data Preprocessing. For all experiments, we follow Mashkaria et al. (2023) and normalize the objective values both in the
offline dataset D and in those reported in Section 5 according to:

y =
ŷ − ymin

ymax − ymin
(35)

where ŷ = r(x) is the original unnormalized oracle value for an input design x, and ymax (resp., ymin) is the maximum
(resp., minimum) value in the full offline dataset. A reported value of y > 1 means that an offline optimization experiment
proposed a candidate design better than the best design in the offline dataset. Note that in many of the MBO tasks, the
publicly available offline dataset D is only a subset of the designs in the full offline dataset; it is therefore possible (and
frequently the case) that maxy∈D y < 1 in our MBO tasks.

As introduced in the main text, we learn a VAE (Kingma & Welling, 2014) model to encode and decode designs for discrete
optimization tasks to and from a continuous latent space, and perform our optimization experiments over the continuous VAE
latent space. Following prior work (Maus et al., 2022; Tripp et al., 2020; Yao et al., 2024), we co-train a Transformer-based
VAE autoencoder (consisting of an encoder eφ : X̂ → X parameterized by φ∗ and decoder dϕ : X : X → X̂ parameterized
by γ∗) with the surrogate model rθ : X → R (parameterized by θ∗) according to

θ∗, φ∗, ϕ∗ = argmin
(θ,φ,ϕ)∈Θ×Γ×Φ

E(x,r(x))∼D
[
− log dϕ(x|eφ(x)) + βDKL(N (0, I)||eφ(x)) + α||rθ(eφ(x))− r(x)||22

]
(36)

where N (0, I) is the standard multivariate normal prior and α = 1, β = 10−4 are constant hyperparameters. We can then
perform optimization against rθ trained on the 256-dimensional continuous latent space of the VAE, and then decode the
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candidate designs using dϕ(·) to derive the corresponding discrete design following prior work from Maus et al. (2022);
Gómez-Bombarelli et al. (2018). We again use an Adam optimizer with a learning rate of η = 3× 10−4 for both the VAE
and the forward surrogate. In this way, the search space for our discrete tasks becomes the X ⊆ Rd for d = 256, the
surrogate model is simply rθ : X → R, and the reward function r : X → R is now

r(x) := Ex̂∼dϕ(x̂|x)[r̂(x̂)] (37)

where r̂ : X̂ → R is the original expert oracle reward function over the discretized input space X̂ , and r(x) is the
corresponding oracle reward function that accepts our continuous inputs from X as input. Note that for the MBO tasks over
continuous search spaces (i.e., the Superconductor and D’Kitty tasks), we treat X = X̂ and fix both the encoder eφ and
decoder dϕ to be the identity functions, as no transformation to a separate continuous search space is necessary.

Optimization Experiments. All baseline methods run evaluated using their official open-source implementations made
publicly available by the respective authors. In DynAMO, we initialize all optimizers using the first b elements from a
d-dimensional scrambled Sobol sequence (Sobol, 1967) using the official PyTorch quasi-random generator SobolEngine
implementation, where b is the sampling batch size and d is the dimensionality of the search space. Note that the Sobol
sequence only returns points with dimensions between 0 and 1; for each task, we therefore un-normalize the sampled Sobol
points x̃0 according to x0 = xmin + (x̃0 · (xmax − xmin)), where xmax, xmin are the maximum and minimum bounds on the
search space for our experiments, respectively. We fix xmin = −4.0 and xmax = +4.0 for all d dimensions across all tasks.

In all experiments reported in Table 1, each optimizer continues to sample from the search space in batched acquisitions of
b samples—we set b = 64 for all our experiments unless otherwise stated. After each acquisition, we score the sampled
designs using the (penalized) forward surrogate model (i.e., the Lagrangian in (9) for DynAMO). If the maximum prediction
from the recently sampled batch is not at least as optimal as the maximum prediction of the previously sampled designs, then
we define the acquisition step as a failure; a sequence of 10 consecutive failures triggers a restart in the optimization process
where the optimizer starts from the scratch beginning with sampling with the Sobol sequence to initialize the optimizer as
described above. After 3 restarts are triggered, we consider the optimization process terminated, and all designs across all
restarts are aggregated to choose the top k = 128 final candidate designs to be evaluated using the oracle reward function.

Excluded Baselines. We exclude Boosting offline Optimizers with Surrogate Sensitivity (BOSS) from Dao et al. (2024) and
Normalized maximum likelihood Estimation for Model-based Optimization (NEMO) from Fu & Levine (2021) from our
experiments because they do not have open-source implementations.

Excluded Optimization Tasks. In our experiments, we primarily evaluate DynAMO and baseline methods on optimization
tasks from Design Bench, a suite of offline MBO tasks introduced by Trabucco et al. (2022). The following tasks from
the original authors were excluded from our experiments: (1) Ant Morphology, excluded due to reproducibility issues
as per GitHub Issues Link and OpenReview Discussion; (2) Hopper Controller, excluded due to errors in the original
open-source implementation per GitHub Issues Link and prior work (Tan et al., 2024; Mashkaria et al., 2023); (3) NAS
(Neural Architecture Search) on CIFAR10, excluded due to its prohibitively expensive computational cost for evaluating
the oracle function as noted in prior work (Tan et al., 2024; Yu et al., 2021; Fu & Levine, 2021; Nguyen et al., 2023); and
(4) TFBind10, excluded due to its domain and experimental similarity with the TFBind8 task already included in our
evaluation suite. We augment our evaluation suite with the UTR task from Trabucco et al. (2022) and the Molecule task
from Yao et al. (2024); Brown et al. (2019) to provide a comprehensive experimental evaluation of DynAMO and baseline
methods across a wide variety of scientific domains.

C. Additional Background and Preliminaries
C.1. f -Divergence and Fenchel Conjugates

Definition C.1 (f -Divergence). Suppose we are given two probability distributions P (x), Q(x) defined over a common
support X . For any continuous, convex function f : R+ → R that is finite over R++, we define the f -divergence between
P (x), Q(x) as

Df (Q(x)||P (x)) := Ex∼P (x)

[
f

(
Q(x)

P (x)

)]
(38)

We refer to f as the generator of Df (·||·). Two commonly used f -divergences are the Kullback-Leibler (KL)-Divergence
(defined by the generator fKL(u) = u log u) and the χ2-Divergence (defined by the generator fχ2(u) = (u− 1)2/2).

20

https://pytorch.org/docs/stable/generated/torch.quasirandom.SobolEngine.html
https://github.com/brandontrabucco/design-bench/issues/23#issue-2298496885
https://openreview.net/forum?id=3RxcarQFRn&noteId=KEuZavmjVz
https://github.com/brandontrabucco/design-bench/issues/8#issuecomment-1086758113


Diversity By Design: Leveraging Distribution Matching for Offline Model-Based Optimization

Definition C.2 (Fenchel Conjugate). The Fenchel conjugate (i.e., Legendre-Fenchel transform) of a function f : U → R is
defined as

f⋆(v) := − inf {−⟨u, v⟩+ f(u) | u ∈ U} (39)

where ⟨u, v⟩ is the inner product, and f⋆ : V → R is the Fenchel conjugate defined over the dual space V of U . Importantly,
the Fenchel conjugate function is guaranteed to always be convex Borwein & Lewis (2006) regardless of the (non-)convexity
of the original function f . This allows us to make important convergence guarantees in Appendix D.4 in solving the
Lagrangian dual problem in Algorithm 1. Fenchel conjugates are commonly used in optimization problems to rewrite
difficult primal problems into more tractable dual formulations Ma et al. (2022); Borwein & Lewis (2006); Agrawal & Horel
(2021)—we leverage a similar technique in our work in Algorithm 1.

Lemma C.3 (Fenchel Conjugate of the KL-Divergence Generator Function). Recall that the generator function of the
KL-divergence is fKL(u) := u log u for u ∈ R++. The Fenchel conjugate of this generator is f⋆

KL(v) = ev−1.

Proof. The proof follows immediately from the definition of the Fenchel conjugate in (39).

f⋆
KL(v) := sup {uv − u log u | u ∈ R++} (40)

We differentiate the argument on the right hand side with respect to u to find the supremum given a particular v ∈ V:

∂

∂u
[uv − u log u]

∣∣∣∣
u=u∗

= v − log u∗ − 1 = 0→ u∗ = ev−1 (41)

It is easy to verify that u∗ is a maxima. Plugging this result into (40),

f⋆
KL(v) = u∗v − u∗ log u∗ = vev−1 − (v − 1)ev−1 = ev−1 (42)

Lemma C.4 (Fenchel Conjugate of the χ2-Divergence Generator Function). Recall that the generator function of the
χ2-divergence is fχ2(u) := 1

2 (u− 1)2 for u ∈ R++. The Fenchel conjugate of this generator is f⋆
χ2(v) =

v2

2 + v.

Proof. The proof follows immediately from the definition of the Fenchel conjugate in (39).

f⋆
χ2(v) := sup

{
uv − 1

2
(u− 1)2 | u ∈ R++

}
(43)

We differentiate the argument on the right hand side with respect to u to find the supremum given a particular v ∈ V:

∂

∂u

[
uv − 1

2
(u− 1)2

]∣∣∣∣
u=u∗

= v − u∗ + 1 = 0→ u∗ = v + 1 (44)

It is easy to verify that u∗ is a maxima. Plugging this result into (43),

f⋆
χ2(v) = u∗v − 1

2
(u∗ − 1)2 = (v + 1)v − 1

2
((v + 1)− 1)2 = v2 + v − 1

2
v2 =

v2

2
+ v (45)

Additional details and related technical discussion are offered by Borwein & Lewis (2006); Nachum & Dai (2020); Ma et al.
(2022); Amos (2023); and Terjék & González-Sánchez (2022).

C.2. Constrained Optimization via Lagrangian Duality

In our problem formulation in (7) for DynAMO, we reformulate any naı̈ve MBO problem as a separate constrained
optimization problem, which is generally of the form

minimizex∈X f(x)

subject to fi(x) ≤ 0 ∀i ∈ {1, . . . ,m}
(46)
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given a set of m constraints. In general, satisfying any arbitrary set of (potentially nonlinear) constraints is challenging if not
intractable, and it is often desirable instead to solve a related unconstrained optimization problem. One common mechanism
to perform such a problem transformation is to define the Lagrangian of (46) as

L(x; λ⃗) = f(x) + ⟨λ⃗,
[
f1(x) f2(x) · · · fm(x)

]
⟩ (47)

where λ⃗ ∈ Rm
+ and L : X × Rm

+ → R is a real-valued function. It can be shown (Boyd & Vandenberghe, 2004) that the
constrained optimization problem in (46) is equivalent to the unconstrained problem

minimizex∈X maximizeλ⃗∈Rm
+
L(x; λ⃗) (48)

in terms of the Lagrangian, where ⪰ represents an element-wise inequality. The dual problem of (48) is constructed by
reversing the order of the minimization and maximization problems:

maximizeλ⃗∈Rm
+

minimizex∈X L(x; λ⃗) = maximizeλ⃗∈Rm
+
g(λ⃗) (49)

where we implicitly define the dual function g(λ⃗) := minx∈X L(x; λ⃗). In general, it is guaranteed that the optimal solution
to the dual problem in (49) is a lower bound for the optimal solution for the original problem in (46) from weak duality; if
f(x) and fi(x) are convex and bounded from below such that Slater’s condition applies, then strong duality guarantees that
the optimal solutions to the dual and original problems are equal.

As an additional remark, we note that in our problem formulation in (7), Slater’s condition is not satisfied as both the
surrogate reward function rθ(x) and adversarial source critic c∗(x) may be arbitarily non-convex. However, we find
empirically that the guarantee of weak duality is sufficient to make the approach of Lagrangian duality both tractable and
effective in solving (7) to give us DynAMO.

Furthermore, we also find that solving the dual optimization problem in (49) requires us to first solve for the dual function
g(λ⃗)—this is a challenging task in general, and prior work has attempted to either approximate g(λ⃗) under specific
assumptions on the search space X (Yao et al., 2024) or forego solving for g(λ⃗) entirely by instead treating λ⃗ as a
hyperparameter to be manually tuned or set heuristically (Trabucco et al., 2021; Yu et al., 2021; Chen et al., 2023c). In our
work, we show how penalizing the optimization objective via a KL-divergence term as in (7) is sufficient to yield an exact
solution for the dual function g(λ⃗) (see Lemma 3.4). This is advantageous because it can be shown (Boyd & Vandenberghe,
2004) that g(λ⃗) is convex; assuming that the gradient of g(λ⃗) has a bounded Lipschitz constant, we can therefore arrive in
an ε-neighborhood around the optimal λ⃗∗ within O(1/ε) time (Bubeck, 2015; Grimmer et al., 2023; Zhang et al., 2019).
We leverage this convergence guarantee to solve for λ⃗∗ naı̈vely via gradient ascent in DynAMO (see Algorithm 1).

C.3. Wasserstein Distance and Optimal Transport

In our motivating problem formulation in (7), we introduce a constrained optimization problem where the constraint is
a function of a source critic c∗ : X → R with a bounded Lipschitz norm. In this section, we show how this choice in
adversarial source critic is connected to classical theory in optimal transport.

In general, the p-Wasserstein distance Wp(P (x)||Q(x)) is a distance function between pairs of probability distributions
P (x) and Q(x). Given a metric space (M,d), we define the p-Wasserstein distance as

Wp(P (x)||Q(x)) = inf
γ∈Γ(P,Q)

(
E(x,x′)∼γd(x, x

′)p
)1/p

(50)

for p ≥ 1, and where Γ(P,Q) is the set of all couplings between P (x), Q(x). Intuitively, one can think of the p-Wasserstein
distance as representing the cost associated with the optimal (i.e., cost-minimizing) strategy of ‘transporting’ the ‘mass’ of
one probability distribution to another.

For any two arbitrary multidimensional distributions, exactly computing the Wasserstein distance between them is computa-
tionally expensive (Pele & Werman, 2009; Watanabe & Isobe, 2025; Cuturi, 2013) and in many cases intractable in practice.
Instead, a common technique used by Arjovsky et al. (2017) and others is to leverage the Kantorovich-Rubinstein duality
theorem (Kantorovich & Rubinstein, 1958) to exactly rewrite (50) (specifically for the p = 1 Wasserstein distance) as

W1(P (x)||Q(x)) = sup
||c||L≤1

[
Ex∼P (x)c(x)− Ex∼Q(x)c(x)

]
(51)
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where ||c||L is the Lipschitz norm of a source critic function c : X → R. Intuitively, we can think of the function c(x) as
assigning of value of ‘in-distribution-ness’ relative to P (x): a larger value of c(x) (informally) means that the source critic
predicts the input x to be more likely to have been drawn from P (x) as opposed to Q(x). In DynAMO, we follow Arjovsky
et al. (2017); Yao et al. (2024); and others to constrain the MBO optimization problem by requiring that the estimated
Wasserstein distance between the distribution of generated designs and τ -weighted distribution of designs from the offline
dataset is less than a constant W0 according to (51)—see Algorithm 1 for additional details.

D. Additional Results
D.1. Additional Design Quality Results

We supplement the results shown in Table 1 with the raw Best@128 oracle quality scores reported for each of the 6 tasks in
our evaluation suite in Supplementary Table A1.

In Section 4, we define the Best@k score to evaluate the quality of observed designs according to a hidden oracle function
used for evaluation of candidate fitness. Achieving a high Best@B = k score ensures that a desirable design is found.
Consistent with prior work on batched optimization methods (Trabucco et al., 2021; Mashkaria et al., 2023; Krishnamoorthy
et al., 2023), we are also interested in the Median@k score defined as

Median@k({xF
i }ki=1) := median1≤i≤k r(xF

i ) (52)

to evaluate whether a batch of candidate designs (as opposed to any singular design) is generally of high quality according
to the oracle r(x). We report the Median@k score for k = 128 in Supplementary Table A2; in general, we find that
DynAMO does not perform as well as other objective-modifying baseline methods according to this metric. However, we
note that in many offline optimization applications, we are often not as interested in how the median design performs, but
rather if we are able to discover optimal and near-optimal designs. For this reason, we chose to focus on the Best@128
oracle scores in Table 1 to evaluate the quality of designs proposed by an optimizer in our main results. Nonetheless,
future work may explore how to better tune DynAMO (e.g., the τ and β hyperparameters in Algorithm 1) to achieve more
desirable Median@128 scores.

D.2. Additional Design Diversity Results

We supplement the results shown in Table 1 with the raw Pairwise Diversity scores reported for each of the 6 tasks in our
evaluation suite in Supplementary Table A1.

In Section 4, we describe the Pairwise Diversity metric previously used in prior work (Kim et al., 2023; Jain et al., 2022;
Maus et al., 2023) to measure the diversity of samples obtained from a given offline optimization method. We can think of
Pairwise Diversity as measuring the between-candidate diversity of candidates proposed by a generative algorithm. However,
this is far from the only relevant definition of diversity; other possible metrics might measure the following:

1. Candidate-Dataset Diversity: How novel is a proposed candidate compared to the real designs previously observed in
the offline dataset?

2. Aggregate Diversity: How well does the batch of candidate designs collectively cover the possible search space?

To evaluate (1), we follow prior work by Kim et al. (2023) and Jain et al. (2022) and evaluate the Minimum Novelty (MN)
for a batch of k final proposed candidates with respect to the offline dataset D, defined as

MN({xF
i }ki=1;D) := ExF

i

[
min
x∈D

d(xF
i , x)

]
(53)

where D is the task-specific dataset of offline sample designs and xF
i is the ith candidate design proposed by an optimization

experiment. Following (14), we define the distance function d(·, ·) as the normalized Levenshtein edit distance (Haldar &
Mukhopadhyay, 2011) (resp., Euclidean distance) for discrete (resp., continuous) tasks.

For (2), we report the L1 Coverage (L1C) of the candidate designs, defined as

L1C({xF
i }Bi=1) :=

1

dim(x)

dim(x)∑
k=1

max
i̸=j
|xF

ik − xF
jk| (54)
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Table A1. Quality and Diversity of Designs Under MBO Objective Transforms (Full). We evaluate DynAMO against other MBO
objective-modifying methods using six different backbone optimizers. Each cell consists of ‘Best@128/Pairwise Diversity’ oracle scores
separated by a forward slash. Both metrics are reported mean(95% confidence interval) across 10 random seeds, where higher is better. Dataset D
reports the maximum oracle score and mean pairwise diversity in the offline dataset. Bolded entries indicate overlapping 95% confidence
intervals with the best performing algorithm (according to the mean) per optimizer. Bolded (resp., Underlined) Rank and Optimality Gap
(Opt. Gap) metrics indicate the best (resp., second best) for a given backbone optimizer.

Grad. TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 43.9/65.9 59.4/57.3 60.5/60.0 88.9/36.7 40.0/66.0 88.4/85.7 —/— —/—

Baseline 90.0(4.3)/12.5(8.0) 80.9(12.1)/7.8(8.8) 60.2(8.9)/7.9(7.8) 88.8(4.0)/24.1(13.3) 36.0(6.8)/0.0(0.0) 65.6(14.5)/0.0(0.0) 5.0/5.5 6.8/-53.2
COMs– 60.4(9.8)/10.4(8.7) 60.2(12.4)/7.5(9.2) 60.2(8.8)/7.9(7.5) 88.4(4.0)/24.8(10.0) 22.5(3.2)/0.0(0.0) 71.2(10.7)/0.0(0.0) 7.3/6.5 -3.0/-53.5
COMs+ 93.1(3.4)/66.6(1.0) 67.0(0.9)/57.4(0.2) 64.6(1.0)/81.6(4.9) 97.1(1.6)/3.8(0.9) 41.2(4.8)/99.5(2.6) 91.8(0.9)/21.1(23.5) 2.5/2.8 12.3/-6.9
RoMA– 62.0(10.7)/12.3(8.3) 60.9(12.1)/7.9(8.9) 60.2(8.8)/7.7(7.6) 88.8(4.0)/24.2(13.3) 36.0(6.8)/0.0(0.0) 65.6(14.5)/0.0(0.0) 6.7/5.7 -1.2/-53.3
RoMA+ 66.5(0.0)/20.3(0.7) 77.8(0.0)/3.8(0.0) 63.3(0.0)/6.2(0.0) 84.5(0.0)/1.8(0.0) 49.0(1.6)/54.1(1.4) 95.2(1.2)/4.9(0.0) 3.8/5.8 9.2/-46.8
ROMO 98.1(0.7)/62.1(0.8) 66.8(1.0)/57.1(0.1) 63.0(0.8)/53.9(0.6) 91.8(0.9)/48.7(0.1) 38.7(2.5)/51.7(3.2) 87.8(0.9)/22.1(5.5) 4.2/2.8 10.9/-12.7

GAMBO 73.1(12.8)/17.3(12.8) 77.1(9.6)/11.2(10.3) 64.4(1.5)/6.9(7.7) 92.8(8.0)/22.1(10.5) 46.0(6.8)/0.0(0.0) 90.6(14.5)/1.5(3.2) 3.2/5.3 10.5/-52.1
DynAMO 90.3(4.7)/66.9(6.9) 86.2(0.0)/68.2(1.8) 64.4(2.5)/77.2(2.2) 91.2(0.0)/93.0(1.2) 44.2(7.8)/129(5.5) 89.8(3.2)/104(5.6) 2.8/1.2 14.2/27.8

Adam TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 62.9(13.0)/12.0(12.3) 69.7(10.5)/11.0(12.1) 62.9(1.9)/4.8(3.8) 92.3(8.9)/16.8(12.4) 37.8(6.3)/6.4(14.5) 58.4(18.5)/6.2(14.0) 4.5/6.0 0.5/-52.4
COMs– 62.9(13.0)/13.6(12.2) 65.1(11.0)/11.0(10.6) 62.9(1.9)/5.0(3.8) 92.4(1.0)/21.2(18.2) 22.5(3.2)/0.0(0.0) 57.3(19.5)/6.3(14.3) 6.0/5.3 -3.0/-52.4
COMs+ 95.6(2.6)/44.2(1.5) 67.1(0.6)/57.4(0.2) 64.6(0.9)/81.5(5.7) 95.3(1.9)/3.7(1.3) 39.6(5.8)/79.3(3.3) 67.1(9.5)/31.8(34.5) 3.2/3.0 8.1/-12.3
RoMA– 62.9(13.0)/12.3(12.4) 69.7(10.5)/10.9(12.0) 62.9(1.9)/4.7(3.8) 84.7(0.0)/16.8(12.4) 37.8(6.3)/6.4(14.5) 58.4(1.9)/6.2(14.0) 4.5/6.3 0.5/-52.4
RoMA+ 96.5(0.0)/21.3(0.3) 77.8(0.0)/3.8(0.0) 63.3(0.0)/5.9(0.2) 92.3(8.9)/1.8(0.0) 49.8(1.4)/49.4(6.1) 95.7(1.6)/14.8(0.6) 2.8/5.2 14.5/-45.8
ROMO 95.6(0.0)/55.7(0.3) 67.0(0.2)/56.3(0.1) 63.3(0.0)/53.5(0.1) 90.4(0.0)/50.7(0.0) 31.8(3.1)/25.5(20.3) 71.0(0.6)/7.2(3.9) 4.8/2.8 6.4/-20.5

GAMBO 94.0(2.2)/15.1(11.2) 60.0(12.6)/10.3(11.5) 60.9(8.7)/12.1(11.3) 91.4(6.3)/19.6(15.2) 37.8(6.3)/0.3(0.8) 88.4(13.8)/2.6(3.9) 5.3/5.8 8.6/-51.9
DynAMO 95.2(1.7)/54.8(8.9) 86.2(0.0)/72.3(3.4) 65.2(1.1)/84.8(9.2) 91.2(0.0)/89.9(5.3) 45.5(5.7)/158(37.3) 84.9(12.0)/126(5.7) 2.8/1.2 14.5/35.7

CMA-ES TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 87.6(8.3)/47.2(11.2) 86.2(0.0)/44.6(15.9) 66.1(1.0)/93.5(2.0) 106(5.9)/66.2(9.4) 49.0(1.0)/12.8(0.6) 72.2(0.1)/164(10.6) 3.7/3.8 14.4/9.5
COMs– 75.6(10.2)/46.0(17.6) 85.7(1.3)/56.2(15.8) 64.8(1.0)/63.1(23.0) 119(3.3)/58.8(24.2) 18.8(7.9)/22.0(7.9) 62.9(2.1)/67.2(8.0) 5.7/5.2 7.6/-9.7
COMs+ 68.0(6.0)/24.8(11.3) 77.2(9.7)/35.4(16.5) 63.6(0.5)/36.7(9.0) 116(5.6)/45.8(16.1) 36.8(3.5)/0.0(0.0) 62.2(15.5)/0.0(0.0) 7.3/7.8 7.1/-38.2
RoMA– 87.6(8.3)/46.7(11.2) 86.2(0.0)/44.8(15.8) 66.1(1.0)/93.5(2.1) 106(5.9)/66.2(9.4) 49.0(1.0)/12.8(0.6) 72.2(0.1)/164(10.6) 3.7/3.5 14.4/9.5
RoMA+ 85.9(7.0)/53.1(15.0) 79.8(3.7)/31.9(15.2) 64.6(1.1)/60.5(14.9) 118(6.6)/63.7(21.6) 44.6(3.2)/98.2(18.9) 72.2(0.1)/112(86.4) 5.0/4.8 14.1/8.0
ROMO 88.3(6.0)/57.5(11.6) 86.2(0.0)/40.2(13.1) 64.5(0.9)/66.5(13.5) 113(6.0)/70.2(11.5) 45.7(1.3)/97.7(15.4) 77.3(3.2)/20.9(40.9) 4.2/4.3 15.7/-3.1

GAMBO 90.4(4.4)/39.6(15.5) 86.2(0.0)/53.4(8.4) 66.2(1.6)/84.8(4.8) 121(0.0)/61.3(14.6) 45.2(3.5)/173(19.4) 72.2(0.1)/59.9(19.6) 2.2/4.3 16.7/16.8
DynAMO 89.8(3.6)/73.6(0.6) 85.7(5.8)/73.1(3.1) 63.9(0.9)/72.0(3.1) 117(6.7)/94.0(0.5) 50.6(4.8)/97.8(13.2) 78.5(5.5)/292(83.5) 3.3/1.8 17.5/55.2

CoSyNE TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 61.7(10.0)/5.6(5.0) 57.3(9.6)/12.7(9.8) 63.6(0.4)/28.2(11.3) 94.8(10.1)/12.2(7.3) 37.0(4.1)/0.0(0.0) 62.7(1.3)/0.0(0.0) 5.3/4.5 -0.6/-52.1
COMs– 70.1(12.8)/16.5(8.5) 73.2(8.9)/8.7(10.2) 63.5(0.4)/19.3(14.1) 88.4(11.7)/17.4(4.1) 28.6(5.5)/0.0(0.0) 63.8(1.6)/0.0(0.0) 5.7/5.7 1.1/-51.6
COMs+ 66.9(5.1)/15.4(4.9) 56.2(9.5)/26.5(6.8) 63.3(0.0)/18.5(7.0) 117(3.6)/17.8(8.1) 28.0(7.8)/34.3(13.5) 70.6(1.1)/16.6(9.0) 5.7/3.3 3.5/-40.4
RoMA– 61.7(10.0)/5.9(5.2) 57.3(9.6)/12.7(9.9) 63.6(0.4)/27.7(10.9) 94.8(10.1)/12.2(7.3) 37.0(4.1)/0.0(0.0) 62.7(1.3)/0.0(0.0) 5.3/4.5 -0.6/-52.2
RoMA+ 70.4(7.2)/17.7(5.5) 77.8(4.4)/11.9(4.0) 64.4(2.5)/19.8(3.9) 117(6.5)/10.2(4.4) 38.0(8.1)/0.0(0.0) 50.7(1.5)/0.0(0.0) 2.8/5.0 6.2/-52.0
ROMO 79.7(12.7)/15.7(10.1) 62.0(9.8)/5.8(4.6) 64.1(0.6)/27.6(12.4) 90.8(3.9)/17.3(9.8) 30.6(4.5)/0.0(0.0) 72.1(1.1)/0.1(0.2) 4.2/5.2 3.1/-50.8

GAMBO 79.8(10.6)/5.2(5.7) 68.0(12.5)/9.1(9.0) 64.2(0.9)/28.4(15.7) 99.4(15.0)/7.1(8.0) 37.0(4.1)/0.0(0.0) 62.7(1.3)/0.0(0.0) 3.7/6.3 5.0/-53.6
DynAMO 91.3(4.4)/18.1(13.0) 77.2(11.6)/20.3(2.3) 63.9(0.9)/35.0(17.9) 114(7.0)/22.8(11.9) 40.6(8.6)/74.4(46.3) 67.5(1.4)/77.0(35.9) 2.3/1.2 12.3/-20.7

BO-qEI TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 87.3(5.8)/73.7(0.6) 86.2(0.0)/73.8(0.5) 65.4(1.0)/99.3(0.1) 116(3.1)/93.0(0.5) 53.1(3.3)/190(0.8) 84.4(0.9)/124(7.4) 5.8/5.2 18.7/47.1
COMs– 93.2(2.7)/73.7(0.7) 86.2(0.0)/74.3(0.5) 66.4(0.4)/99.3(0.1) 121(0.0)/93.2(0.4) 43.2(5.1)/192(10.2) 86.2(0.9)/147(8.9) 4.3/4.0 19.2/51.4
COMs+ 84.5(5.5)/68.8(0.8) 85.6(0.8)/71.8(0.3) 65.1(0.8)/96.6(0.9) 121(0.0)/90.8(0.8) 47.3(4.1)/206(1.2) 84.9(1.1)/79.0(2.8) 6.0/5.7 17.9/40.3
RoMA– 95.2(2.2)/74.1(0.4) 86.3(0.1)/74.1(0.3) 65.4(1.1)/99.3(0.1) 121(0.0)/93.5(0.6) 53.1(3.3)/190(0.8) 85.8(0.7)/131(15.9) 2.7/3.3 21.0/48.4
RoMA+ 82.9(5.2)/67.5(2.0) 84.1(1.0)/64.2(1.0) 66.6(0.9)/98.6(0.2) 121(0.1)/78.0(3.8) 50.9(2.1)/196(0.5) 84.8(1.3)/115(15.3) 5.2/6.3 18.3/32.9
ROMO 93.8(1.6)/73.8(0.6) 86.3(0.1)/68.7(1.6) 63.9(0.8)/94.8(1.6) 118(5.5)/92.5(1.0) 48.5(3.7)/196(2.7) 85.5(1.7)/55.2(36.3) 5.0/6.0 19.2/34.9

GAMBO 94.1(1.9)/74.0(0.6) 86.3(0.2)/74.3(0.4) 66.8(0.7)/99.3(0.1) 121(0.0)/93.3(0.4) 50.8(3.3)/193(1.2) 86.7(1.1)/17.7(3.5) 2.2/4.0 20.8/30.0
DynAMO 91.9(4.4)/74.8(0.2) 86.2(0.0)/74.6(0.3) 67.0(1.3)/99.4(0.1) 121(0.0)/93.5(0.4) 53.5(5.0)/198(1.9) 85.5(1.1)/277(59.7) 3.0/1.3 20.7/74.2

BO-qUCB TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 88.1(5.3)/73.9(0.5) 86.2(0.1)/74.3(0.4) 66.4(0.7)/99.4(0.1) 121(1.3)/93.6(0.5) 51.3(3.6)/198(10.3) 84.5(0.8)/94.1(3.9) 3.7/3.0 19.4/43.5
COMs– 88.5(6.4)/73.4(0.6) 86.2(0.0)/74.2(0.7) 66.0(1.1)/99.2(0.1) 121(0.0)/93.3(0.4) 47.7(3.5)/198(1.6) 85.4(1.8)/107(5.5) 4.5/4.5 19.0/45.5
COMs+ 89.1(7.1)/69.0(0.8) 85.9(0.4)/72.3(0.5) 65.6(1.1)/97.1(0.9) 122(0.4)/91.2(0.6) 45.7(3.7)/261(50.0) 84.7(1.6)/89.2(14.0) 5.2/5.7 18.6/51.3
RoMA– 86.9(5.0)/73.9(0.5) 86.2(0.1)/74.4(0.4) 66.4(0.7)/99.4(0.0) 120(1.3)/93.7(0.5) 51.3(3.6)/198(10.3) 84.5(0.8)/94.1(3.9) 3.8/3.0 19.2/43.6
RoMA+ 84.6(5.9)/68.2(2.2) 84.3(1.1)/63.3(2.5) 66.9(1.0)/98.3(0.3) 121(0.2)/78.3(4.5) 52.1(3.2)/194(0.8) 82.9(1.2)/109(8.3) 4.7/6.5 18.5/39.9
ROMO 95.2(2.5)/74.0(0.5) 86.2(0.0)/67.2(2.0) 64.7(1.0)/94.9(1.3) 118(2.1)/92.4(1.0) 50.2(4.7)/197(1.3) 85.5(1.1)/45.2(5.6) 4.7/6.2 19.9/33.2

GAMBO 95.4(1.6)/74.0(0.5) 86.2(0.0)/74.3(0.3) 66.3(1.1)/99.3(0.1) 121(1.3)/93.4(0.4) 50.2(2.8)/190(9.3) 83.6(1.0)/22.0(2.1) 4.7/5.0 20.2/30.3
DynAMO 95.1(1.9)/74.3(0.5) 86.2(0.0)/74.4(0.6) 66.7(1.5)/99.3(0.1) 121(0.0)/93.5(0.6) 48.1(4.0)/211(22.8) 86.9(4.5)/175(44.7) 3.5/1.8 20.5/59.4
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Table A2. Additional Model-Based Optimization Quality Results. Each cell is the Median@128 oracle score (i.e., the median oracle
score achieved by 128 sampled design candidates), reported as mean(95% confidence interval) across 10 random seeds, where higher is better.
Bolded entries indicate overlapping 95% confidence intervals with the best performing algorithm (according to the mean) per optimizer.
Bolded (resp., Underlined) Rank and Optimality Gap metrics indicate the best (resp., second best) for a given backbone optimizer.

Grad. TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 33.7 42.8 50.9 87.6 6.7 77.8 —/— —/—

Baseline 58.1(6.1) 58.6(13.1) 59.3(8.6) 85.3(7.7) 36.0(6.7) 65.1(14.4) 4.3 10.5
COMs– 53.0(8.5) 58.3(13.2) 59.1(8.6) 84.0(7.2) 22.5(3.2) 71.0(10.7) 5.8 8.1
COMs+ 43.9(0.0) 59.0(0.5) 63.3(0.0) 93.2(7.7) 21.3(5.6) 89.9(1.0) 4.0 11.8
RoMA– 51.1(6.1) 58.6(13.1) 59.1(8.6) 85.3(7.7) 36.0(6.7) 65.1(14.4) 5.0 9.3
RoMA+ 48.2(4.3) 77.4(0.0) 63.3(0.0) 84.5(0.0) 38.2(0.8) 88.5(0.1) 3.2 16.8
ROMO 58.7(3.3) 37.7(0.3) 27.4(1.2) 61.8(2.6) 27.0(0.6) 46.0(11.7) 6.5 -6.8

GAMBO 63.8(13.7) 75.3(9.9) 60.1(3.3) 91.6(11.2) 46.0(6.7) 90.1(14.4) 1.8 21.2
DynAMO 47.0(2.8) 69.8(6.0) 61.9(2.2) 85.9(0.4) 23.4(8.5) 68.7(12.1) 4.5 9.5

Adam TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 54.7(8.8) 60.4(12.7) 59.2(8.6) 87.9(10.0) 37.4(6.2) 56.8(19.8) 3.3 9.5
COMs– 54.8(8.8) 59.5(12.7) 59.2(8.6) 90.8(10.4) 22.5(3.2) 57.1(19.6) 4.0 7.4
COMs+ 48.0(1.7) 59.1(0.5) 63.3(0.0) 89.3(10.4) 23.3(3.7) 56.4(13.3) 4.8 6.6
RoMA– 54.7(8.8) 60.4(12.7) 59.2(8.6) 87.9(10.0) 37.4(6.2) 56.8(19.8) 3.3 9.5
RoMA+ 50.1(4.3) 77.4(0.0) 63.3(0.0) 84.7(0.0) 34.9(1.8) 63.7(6.2) 3.3 12.4
ROMO 54.0(0.0) 36.8(0.1) 63.3(0.0) 50.5(0.3) 26.1(0.5) 30.9(0.0) 5.7 -6.3

GAMBO 49.5(8.9) 55.7(12.7) 57.7(9.1) 84.3(9.6) 37.4(6.2) 87.8(4.3) 5.0 12.1
DynAMO 47.7(3.0) 69.0(5.2) 62.4(1.9) 86.4(0.6) 23.0(6.0) 65.6(14.1) 4.7 9.1

CMA-ES TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 50.7(2.7) 71.7(10.4) 63.3(0.0) 83.9(1.0) 37.9(0.7) 59.3(10.9) 3.2 11.2
COMs– 45.0(2.2) 68.0(8.6) 60.5(3.0) 89.9(10.8) 18.8(7.9) 59.8(9.9) 5.3 7.1
COMs+ 44.3(3.6) 62.0(8.8) 59.7(4.3) 91.6(9.3) 29.0(5.9) 61.2(15.0) 5.0 8.0
RoMA– 50.7(2.7) 71.7(10.4) 63.3(0.0) 83.9(1.0) 37.9(0.7) 59.3(10.9) 3.2 11.2
RoMA+ 47.4(4.2) 58.0(7.0) 59.9(4.4) 91.6(10.0) 31.6(5.0) 60.4(7.7) 4.5 8.2
ROMO 48.9(3.1) 74.0(9.2) 60.0(3.4) 84.5(1.7) 22.8(1.6) 61.6(15.3) 3.5 8.7

GAMBO 44.2(0.8) 72.7(3.8) 62.7(1.1) 86.1(0.5) 21.4(2.0) 54.9(9.6) 5.5 7.1
DynAMO 45.3(2.4) 65.8(8.9) 59.3(3.8) 99.0(12.1) 22.5(5.1) 60.6(15.0) 4.8 8.8

CoSyNE TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 55.3(8.0) 53.6(10.2) 60.8(3.2) 87.4(16.6) 36.6(4.4) 59.3(14.5) 4.3 8.9
COMs– 51.7(10.6) 70.9(9.2) 62.8(0.7) 83.1(8.3) 28.3(5.4) 58.9(17.3) 5.3 9.3
COMs+ 53.9(2.4) 41.1(1.1) 63.3(0.0) 107(3.8) 23.4(7.9) 61.2(15.6) 4.2 8.4
RoMA– 55.3(8.0) 53.6(10.2) 60.8(3.2) 87.4(16.6) 36.6(4.4) 59.3(14.5) 4.3 8.9
RoMA+ 60.2(7.1) 67.7(8.7) 60.2(4.5) 103(11.2) 37.8(8.1) 48.9(13.9) 3.5 13.1
ROMO 69.1(12.9) 58.5(11.3) 62.1(1.4) 88.4(5.2) 29.9(4.5) 70.7(10.7) 3.2 13.2

GAMBO 59.5(12.0) 63.5(11.2) 55.4(9.6) 84.2(17.2) 36.6(4.4) 59.3(14.5) 4.5 9.8
DynAMO 53.8(11.0) 63.4(11.5) 59.3(3.8) 99.0(12.1) 20.5(5.8) 60.6(15.0) 5.3 9.5

BO-qEI TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 48.5(1.5) 59.9(2.0) 63.3(0.0) 86.7(0.6) 28.7(1.8) 72.4(1.8) 4.3 10.0
COMs– 50.9(1.9) 59.6(1.6) 63.3(0.0) 86.6(0.6) 19.4(1.1) 78.1(1.1) 4.7 9.7
COMs+ 43.6(0.0) 66.0(1.6) 63.3(0.0) 87.5(0.6) 20.6(0.9) 66.3(2.2) 4.5 8.0
RoMA– 50.0(1.6) 60.0(2.1) 63.3(0.0) 86.4(0.5) 28.7(1.8) 78.5(1.2) 3.5 11.2
RoMA+ 52.5(0.0) 61.0(1.1) 63.3(0.0) 93.3(5.7) 26.4(1.1) 74.3(1.3) 2.7 11.9
ROMO 49.9(2.2) 59.0(1.4) 63.3(0.0) 86.8(0.6) 24.6(0.8) 73.8(2.0) 4.7 9.6

GAMBO 46.4(1.8) 63.4(3.3) 63.3(0.0) 86.3(0.5) 28.9(1.1) 79.1(0.7) 3.5 11.3
DynAMO 51.5(0.9) 65.6(3.1) 63.3(0.0) 86.7(0.6) 23.5(2.4) 77.0(0.7) 3.3 11.3

BO-qUCB TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 50.3(1.8) 62.1(3.4) 63.3(0.0) 86.6(0.6) 31.7(1.2) 74.4(0.6) 2.7 11.5
COMs– 51.1(1.0) 61.0(2.9) 63.3(0.0) 86.3(0.7) 19.8(1.3) 74.2(1.3) 4.5 9.4
COMs+ 43.6(0.0) 65.6(1.4) 63.3(0.0) 87.5(0.9) 20.1(1.0) 54.2(11.9) 4.5 5.8
RoMA- 50.0(1.7) 62.1(3.4) 63.3(0.0) 86.7(0.6) 31.7(1.2) 74.4(0.6) 2.7 11.4
RoMA+ 52.5(0.0) 60.8(0.9) 63.3(0.0) 91.4(5.6) 29.5(1.4) 65.8(9.3) 3.2 10.6
ROMO 49.8(2.0) 58.2(0.2) 63.3(0.0) 86.8(0.5) 24.3(0.7) 75.0(1.7) 3.8 9.6

GAMBO 47.9(1.9) 59.8(1.2) 63.3(0.0) 86.0(0.6) 33.1(2.9) 73.8(1.2) 4.8 10.7
DynAMO 48.8(1.8) 65.9(3.7) 63.3(0.0) 86.5(0.5) 22.7(2.0) 50.4(14.6) 4.7 6.3
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where dim(x) is the number of design dimensions and xF
ik is the kth dimension of design xF

i . Note that the L1C
metric is only defined for designs sampled from a continuous search space; to compute the L1C metric for discrete
optimization tasks, we use task-specific foundation models to embed discrete designs into a continuous latent space.
For DNA design tasks (i.e., TFBind8 and UTR), we use the DNABERT-2 foundation model with 117M parameters
(zhihan1996/DNABERT-2-117M) from Zhou et al. (2024b) to embed candidate DNA sequences into a continu-
ous latent space. Similarly for molecule design tasks (i.e., ChEMBL and Molecule), we use the ChemBERT model
(jonghyunlee/ChemBERT ChEMBL pretrained) from Zhang et al. (2022) to embed candidate molecules into a
continuous latent space.

We report MN and L1C metric scores in Supplementary Table A3. We find that compared with other MBO objective-
modifying methods, DynAMO achieves the best Rank and Optimality Gap for 3 of the 6 optimizers evaluated (Grad., Adam,
and BO-qEI). For the remaining 3 optimizers evaluated, DynAMO is within the top 2 evaluated methods in terms of both
average Rank and Optimality Gap for the L1C (L1 coverage) metric. Altogether, our results support that DynAMO is
competitive according to the MN and L1C diversity metrics in addition to the Pairwise Diversity metric reported in Table 1.

What is the best notion of diversity? In our work, we focus on the Pairwise Diversity metric in our main results (Table
1)—however, this does not mean that this metric is the best for all applications. Rather, our focus on the Pairwise Diversity
metric is determined by our problem motivation. Compared with the minimum novelty and L1 coverage diversity metrics,
the definition of pairwise diversity best captures the notion of diversity that we are interested in—that is, capturing many
possible ‘modes of goodness’ in optimizing the oracle reward function. We note that these modes of goodness may not
necessarily be significantly ‘novel’ according to our task-specific distance metric, and so we treated the Minimum Novelty
metric as only a secondary diversity objective for evaluating DynAMO. (Indeed, because DynAMO encourages a generative
policy to match a distribution of designs constructed from the offline dataset, DynAMO may not increase the minimum
novelty of designs compared to those proposed by the comparable baseline optimizer.) Similarly, we find that the L1

Coverage metric is more sensitive to outlier designs when compared to the Pairwise Diversity, and therefore also treat it as a
secondary diversity evaluation metric for our experiments in Supplementary Table A3. Future work might explore other
methods that focus on improving not only the Pairwise Diversity metric, but also other diversity metric(s), too.

D.3. Imposing Alternative f -Divergence Diversity Objectives via Mixed-Divergence Regularization

The MBO problem formulation proposed in (7) introduces a weighted KL-divergence regularization of the original MBO
optimization objective. However, alternative distribution matching objectives have been used in prior work (Agarwal et al.,
2024; Gong et al., 2021; Ma et al., 2022), and one might hypothesize that we can similarly generalize (7) as

max
π∈Π

Jf (π) = Eqπ [rθ(x)]−
β

τ
Df (q

π||pτD)

s.t. Ex∼pτ
D(x)[c

∗(x)]− Ex∼qπ(x)[c
∗(x)] ≤W0

(55)

to any arbitrary f -divergence metric Df (·||·) that measures the difference between two probability distributions Q,P over a

space Ω defined by Df (Q||P ) :=
∫
Ω
dP f

(
dQ
dP

)
for a convex univariate generator function f . For example in our main

text, we specialize to the KL-divergence where fKL(u) := u log u traditionally used in the imitation learning literature.

However, we found that such a naı̈ve approach does not generalize well to alternative f -divergences: recall that a core
contribution of our work was the ability to reformulate the optimization objective as a weighted sum over distribution
entropy and divergence (i.e., Lemma 3.3) in order to admit an explicit, closed form solution for the dual function in Lemma
3.4. Such an approach is intractable using standard algebraic techniques. This is not ideal, as a number of prior works have
proposed that alternative divergences—such as the χ2-divergence defined by the generator fχ2(u) = (u−1)2/2—can better
penalize out-of-distribution surrogate behavior and better quantify model uncertainty when compared to the KL-divergence
(Tsybakov, 2008; Nishiyama & Sason, 2020; Ma et al., 2022; Wang et al., 2024).

In this section, we show how to overcome this limitation and demonstrate how our theoretical and empirical results
generalize to alternative f -divergence objectives for enforcing distribution matching in the sampling policy. Firstly, we
look to recent work by Huang et al. (2024a) and others describing ‘mixed f -regularization’ defined by a mixed generator
function fγ(u) := γf(u) + u log u for some weighting scalar γ ∈ [1,+∞), which admits a ‘mixed f -divergence’ given by

Df (Q||P ; γ) := γDf (Q||P ) +DKL(Q||P ) (56)
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Table A3. Additional Model-Based Optimization Diversity Results. Each cell is a value mn/l1c; where mn is the Minimum Novelty
and l1c the L1 Coverage. Both metrics are reported mean(95% confidence interval) across 10 random seeds, where higher is better. Bolded
entries indicate overlapping 95% confidence intervals with the best performing algorithm (according to the mean) per optimizer. Bolded
(resp., Underlined) Rank and Optimality Gap (Opt. Gap) metrics indicate the best (resp., second best) for a given backbone optimizer.

Grad. TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 0.0/0.42 0.0/0.31 0.0/1.42 0.0/0.68 0.0/6.26 0.0/0.58 —/— —/—

Baseline 21.2(3.0)/0.16(0.1) 51.7(2.9)/0.20(0.13) 97.4(3.9)/0.21(0.10) 79.5(19.7)/0.42(0.18) 95.0(0.7)/0.00(0.00) 102(6.1)/0.00(0.00) 3.3/6.3 74.5/-1.44
COMs– 22.1(2.7)/0.14(0.11) 51.4(3.2)/0.20(0.12) 97.4(3.9)/0.24(0.11) 89.0(7.7)/0.40(0.10) 94.1(0.7)/0.00(0.00) 100(4.8)/0.00(0.00) 3.3/7.7 75.7/-1.45
COMs+ 10.9(0.3)/0.49(0.02) 31.7(0.8)/0.31(0.00) 52.4(11.0)/1.11(0.16) 13.7(1.1)/0.61(0.09) 99.6(0.3)/0.37(0.11) 100(0.0)/0.80(0.76) 6.2/2.7 51.4/-1.00
RoMA– 21.2(3.1)/0.16(0.1) 51.7(2.9)/0.21(0.12) 97.4(3.9)/0.26(0.10) 79.5(19.7)/0.40(0.19) 95.0(0.7)/0.00(0.00) 102(6.1)/0.00(0.00) 2.8/5.8 74.5/-1.44
RoMA+ 18.1(1.4)/0.27(0.02) 40.1(0.2)/0.44(0.01) 18.7(0.1)/0.41(0.01) 95.3(0.0)/0.41(0.02) 7.1(0.8)/1.28(0.01) 0.2(0.0)/0.45(0.00) 5.8/3.5 29.9/-1.07
ROMO 16.1(0.5)/0.33(0.02) 32.9(0.1)/0.30(0.00) 5.0(0.7)/1.31(0.02) 23.1(0.0)/0.61(0.02) 78.5(0.5)/0.34(0.16) 153(0.4)/6.13(2.80) 6.0/2.7 51.5/-0.11

GAMBO 14.0(2.0)/0.17(0.10) 46.7(2.7)/0.24(0.13) 96.8(3.9)/0.25(0.16) 76.8(19.7)/0.37(0.11) 83.8(6.8)/0.00(0.00) 31.5(3.6)/0.09(0.14) 6.0/5.7 58.3/-1.42
DynAMO 21.1(1.1)/0.36(0.04) 52.2(1.3)/0.52(0.06) 98.6(1.5)/1.46(0.38) 85.8(1.0)/2.49(0.06) 95.0(0.4)/6.47(1.24) 107(6.7)/5.85(1.35) 2.2/1.3 76.7/1.25

Adam TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 23.7(2.8)/0.11(0.06) 51.1(3.5)/0.22(0.09) 95.5(5.3)/0.23(0.15) 79.3(21.2)/0.48(0.31) 94.8(0.7)/0.27(0.55) 103(6.3)/0.24(0.49) 3.5/5.8 74.5/-1.35
COMs– 23.8(2.8)/0.13(0.06) 51.6(3.0)/0.20(0.11) 95.5(5.3)/0.24(0.16) 78.6(20.7)/0.49(0.33) 94.1(0.7)/0.00(0.00) 102(6.0)/0.03(0.00) 3.3/6.8 74.2/-1.43
COMs+ 13.0(0.4)/0.44(0.02) 31.7(0.8)/0.31(0.00) 53.0(12.8)/1.10(0.20) 15.0(1.6)/0.50(0.12) 99.7(0.2)/0.58(0.28) 99.9(0.1)/0.88(0.95) 6.0/2.7 52.0/-0.98
RoMA– 23.6(2.8)/0.12(0.06) 51.1(3.5)/0.21(0.09) 95.5(5.3)/0.21(0.16) 79.3(21.2)/0.48(0.32) 94.8(0.7)/0.27(0.55) 103(6.3)/0.04(0.03) 3.3/6.8 74.5/-1.39
RoMA+ 18.3(0.5)/0.28(0.00) 40.1(0.2)/0.46(0.01) 18.9(0.2)/0.41(0.02) 95.3(0.0)/0.42(0.01) 47.6(2.4)/1.87(0.06) 5.1(0.2)/0.78(0.01) 6.0/3.7 37.6/-0.91
ROMO 13.6(0.2)/0.28(0.01) 32.9(0.1)/0.30(0.00) 21.9(0.0)/1.05(0.02) 23.4(0.0)/0.74(0.0) 98.1(0.0)/1.34(0.03) 99.8(0.1)/0.08(0.00) 6.0/3.7 48.3/-0.98

GAMBO 23.7(3.1)/0.14(0.06) 51.3(3.4)/0.22(0.10) 95.0(5.1)/0.35(0.24) 80.0(20.6)/0.50(0.34) 84.8(6.4)/0.26(0.53) 27.3(3.4)/0.09(0.12) 4.3/5.2 60.4/-1.35
DynAMO 14.7(1.9)/0.33(0.05) 46.2(0.5)/0.55(0.03) 98.7(1.2)/1.44(0.39) 85.9(1.8)/2.40(0.16) 94.9(0.4)/7.06(0.73) 108(7.2)/6.91(0.71) 3.0/1.2 74.7/1.50

CMA-ES TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 16.5(2.1)/0.33(0.05) 47.8(1.0)/0.48(0.04) 96.5(0.7)/2.18(0.04) 73.0(18.0)/1.82(0.12) 100(0.0)/3.26(1.42) 100(0.0)/3.77(1.36) 3.8/4.2 72.3/0.36
COMs– 13.6(0.7)/0.34(0.05) 46.9(0.9)/0.52(0.06) 97.3(2.6)/1.81(0.48) 84.7(6.9)/2.10(0.32) 100(0.0)/0.31(0.18) 100(0.0)/0.43(0.18) 4.7/4.7 73.7/-0.69
COMs+ 11.1(2.1)/0.32(0.04) 44.0(2.8)/0.43(0.06) 98.5(1.1)/1.20(0.27) 77.4(19.7)/1.85(0.16) 86.1(3.5)/0.06(0.01) 39.0(7.9)/0.02(0.00) 6.3/7.0 59.3/-0.96
RoMA– 16.5(2.2)/0.32(0.04) 47.9(0.9)/0.49(0.03) 96.6(0.7)/2.16(0.05) 73.0(18.0)/1.82(0.12) 100(0.0)/4.15(1.93) 100(0.0)/3.77(1.36) 3.5/4.0 72.3/0.51
RoMA+ 13.4(0.7)/0.36(0.04) 47.7(1.7)/0.42(0.07) 99.8(0.2)/1.35(0.39) 80.0(6.2)/1.80(0.45) 100(0.0)/0.30(0.15) 100(0.0)/3.97(2.11) 3.2/5.7 73.5/-0.24
ROMO 16.2(2.3)/0.38(0.02) 47.0(1.7)/0.49(0.06) 97.7(1.7)/2.01(0.24) 85.3(5.9)/2.13(0.15) 100(0.0)/3.14(1.85) 51.9(17.6)/0.50(0.33) 3.5/4.0 66.4/-0.17

GAMBO 24.3(0.9)/0.31(0.04) 53.3(1.4)/0.51(0.01) 95.0(1.5)/2.17(0.06) 72.5(23.6)/1.83(0.15) 85.6(3.0)/3.37(0.49) 41.5(2.0)/3.12(0.40) 5.5/4.3 62.0/0.27
DynAMO 12.9(0.8)/0.40(0.03) 48.0(1.6)/0.56(0.01) 96.7(3.5)/1.82(0.72) 81.8(13.4)/2.54(0.05) 94.5(0.7)/4.75(2.16) 112(7.8)/3.29(1.56) 4.0/2.2 74.3/0.62

CoSyNE TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 24.5(3.5)/0.10(0.07) 49.7(3.1)/0.22(0.10) 98.5(1.6)/0.39(0.20) 86.6(12.7)/0.27(0.13) 93.2(1.0)/0.10(0.00) 91.9(2.0)/0.10(0.00) 3.2/5.3 74.1/-1.41
COMs– 15.4(4.9)/0.23(0.09) 44.9(3.5)/0.20(0.13) 90.0(15.2)/0.38(0.27) 86.2(7.7)/0.39(0.29) 93.8(0.6)/0.07(0.01) 101(6.3)/0.06(0.00) 5.0/5.8 71.9/-1.39
COMs+ 12.8(0.6)/0.24(0.04) 42.7(1.4)/0.32(0.03) 34.1(14.4)/1.31(0.22) 50.0(1.9)/1.39(0.24) 87.8(3.1)/1.29(0.37) 30.8(5.7)/0.25(0.09) 7.5/1.5 43.0/-0.81
RoMA– 24.6(3.5)/0.10(0.07) 49.7(3.0)/0.22(0.11) 98.6(1.5)/0.40(0.20) 86.6(12.7)/0.27(0.12) 93.2(1.0)/0.10(0.00) 91.9(2.0)/0.10(0.00) 2.5/5.2 74.1/-1.41
RoMA+ 17.1(3.3)/0.22(0.05) 49.3(3.0)/0.42(0.09) 99.5(0.9)/0.53(0.13) 89.6(3.4)/0.55(0.22) 93.2(1.6)/0.10(0.00) 65.5(25.2)/0.05(0.03) 4.0/3.7 69.0/-1.30
ROMO 22.9(6.3)/0.18(0.09) 48.9(1.5)/0.25(0.10) 75.8(6.1)/1.20(0.21) 92.2(3.3)/0.39(0.12) 84.6(4.4)/0.09(0.00) 31.8(5.6)/0.06(0.10) 5.0/4.5 59.4/-1.25

GAMBO 22.8(2.8)/0.12(0.08) 50.8(1.5)/0.22(0.15) 90.8(14.2)/0.53(0.18) 91.9(3.4)/0.14(0.13) 86.0(3.3)/0.10(0.00) 29.6(3.6)/0.02(0.00) 4.5/6.3 62.0/-1.42
DynAMO 17.8(5.5)/0.21(0.11) 48.4(2.3)/0.18(0.09) 96.7(3.5)/0.64(0.42) 80.2(12.9)/0.43(0.34) 94.5(0.7)/1.85(0.22) 112(7.8)/0.94(0.17) 4.0/3.3 75.0/-0.90

BO-qEI TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 21.8(0.5)/0.41(0.02) 51.5(0.3)/0.55(0.01) 97.6(0.3)/2.37(0.03) 85.4(1.5)/2.11(0.15) 94.6(0.1)/7.84(0.01) 106(2.9)/6.61(0.33) 3.3/5.0 76.2/1.70
COMs– 21.9(0.5)/0.41(0.03) 51.8(0.2)/0.56(0.01) 97.3(0.5)/2.44(0.05) 85.2(0.5)/2.55(0.02) 92.5(1.2)/7.61(0.24) 105(1.6)/7.19(0.22) 4.0/3.0 75.6/1.85
COMs+ 12.7(0.4)/0.44(0.01) 43.2(0.2)/0.57(0.01) 83.3(2.1)/2.50(0.05) 79.4(1.3)/2.41(0.07) 85.5(0.4)/7.50(0.01) 35.5(1.2)/1.66(0.01) 7.5/3.8 56.6/0.90
RoMA– 21.6(0.3)/0.40(0.03) 51.7(0.3)/0.55(0.02) 97.7(0.5)/2.41(0.04) 85.9(1.1)/0.52(0.02) 94.6(0.1)/7.84(0.01) 105(3.5)/6.45(0.66) 3.2/5.2 76.1/1.42
RoMA+ 13.6(0.3)/0.31(0.02) 45.0(0.2)/0.56(0.01) 98.5(0.4)/1.86(0.05) 88.2(0.6)/1.99(0.06) 94.3(0.1)/7.87(0.01) 116(2.5)/7.09(0.49) 3.7/5.0 76.0/1.67
ROMO 15.6(0.4)/0.39(0.02) 47.5(0.2)/0.55(0.01) 87.7(1.3)/2.50(0.03) 87.9(1.0)/2.48(0.05) 86.6(2.2)/7.51(0.09) 30.8(25.4)/2.14(1.34) 5.5/5.3 59.3/0.98

GAMBO 15.4(0.3)/0.40(0.03) 51.8(0.2)/0.55(0.01) 97.8(0.3)/2.38(0.10) 84.9(0.9)/2.53(0.05) 85.1(0.4)/7.45(0.01) 14.3(1.5)/1.29(0.08) 5.7/6.3 58.2/0.82
DynAMO 21.0(0.5)/0.42(0.01) 51.9(0.2)/0.56(0.01) 97.4(0.4)/2.47(0.03) 85.2(0.9)/2.54(0.03) 94.8(0.1)/7.87(0.01) 126(14.6)/7.92(0.04) 3.0/2.2 79.4/2.02

BO-qUCB TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑

Baseline 21.6(0.3)/0.40(0.02) 51.7(0.2)/0.54(0.01) 97.9(0.4)/2.40(0.05) 85.3(1.1)/2.52(0.07) 93.8(0.6)/7.78(0.04) 98.8(1.1)/6.64(0.09) 3.5/4.7 74.8/1.77
COMs– 21.7(0.3)/0.40(0.02) 51.7(0.2)/0.56(0.01) 97.4(0.4)/2.40(0.06) 85.4(1.4)/2.49(0.04) 92.9(1.1)/7.75(0.09) 99.2(1.6)/6.84(0.11) 3.8/3.7 74.7/1.80
COMs+ 12.6(0.3)/0.44(0.02) 43.5(0.3)/0.57(0.01) 84.0(2.3)/2.52(0.05) 79.2(1.4)/2.38(0.08) 84.6(1.1)/7.51(0.02) 39.4(6.0)/1.66(0.01) 7.5/3.7 57.2/0.90
RoMA– 21.6(0.3)/0.39(0.03) 51.6(0.3)/0.55(0.01) 97.8(0.4)/2.37(0.05) 85.5(1.1)/2.54(0.07) 93.8(0.6)/7.78(0.04) 98.8(1.1)/6.64(0.09) 3.5/4.8 74.9/1.77
RoMA+ 13.9(0.3)/0.31(0.02) 45.1(0.5)/0.56(0.01) 98.8(0.3)/1.85(0.02) 88.5(0.5)/2.01(0.06) 94.1(0.1)/7.86(0.01) 112(2.5)/7.23(0.16) 3.3/5.2 75.4/1.69
ROMO 16.0(0.4)/0.40(0.02) 47.7(0.2)/0.55(0.01) 88.1(1.2)/2.51(0.06) 90.9(0.6)/2.49(0.05) 85.4(0.3)/7.48(0.02) 20.9(2.4)/1.60(0.03) 5.7/5.3 58.2/0.89

GAMBO 21.9(0.4)/0.40(0.01) 51.7(0.3)/0.56(0.01) 97.5(0.4)/2.39(0.05) 85.2(1.0)/2.52(0.04) 81.9(1.9)/7.37(0.09) 25.9(1.4)/1.34(0.04) 4.7/6.0 60.7/0.82
DynAMO 21.4(0.5)/0.40(0.02) 51.7(0.2)/0.55(0.01) 97.1(0.5)/2.47(0.07) 85.3(1.1)/2.54(0.05) 94.7(0.2)/7.88(0.03) 109(4.5)/7.80(0.23) 3.7/2.3 76.6/2.00
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for probability distributions Q,P .1 Given a mixed f -divergence, we can define a modified MBO objective as in (5):

Jf (π; γ) := Eqπ [rθ(x)]−
β

τ
Df (q

π||pτD; γ) = Eqπ [rθ(x)]−
β

τ
DKL(q

π||pτD)−
βγ

τ
Df (q

π||pτD)

= J(π)− βγ

τ
Df (q

π||pτD)
(57)

where rθ is again the forward surrogate model, J(π) is as in (5), pτD(x) is the τ -weighted probability distribution as in
Definition 3.2, and qπ(x) is the sampled distribution over designs admitted by the realized sampling policy π. Given this
expression for the modified MBO objective, it is easy to rewrite Jf (π; γ) similar to Lemma 3.3 in the main text:

Lemma D.1 (Generalized Entropy-Divergence Formulation for Mixed f -Divergence). Define Jf (π; γ) as in (57). An
equivalent representation of Jf (π; γ) is

Jf (π) ≃ −H(qπ(x))− (1 + β)DKL(q
π(x)||pτD(x))− βγDf (q

π(x)||pτD(x)) (58)

whereH(·) as the Shannon entropy and Df (·||·) as the f -divergence.

Proof. The proof is trivial using Lemma 3.3:

Jf (π) := Eqπ [rθ(x)]−
β

τ
Df (q

π||pτD;π) = J(π)− βγ

τ
Df (q

π||pτD)

≃ τ · J(π)− βγDf (q
π||pτD)

≃ −H(qπ)− (1 + β)DKL(q
π||pτD)− βγDf (q

π||pτD)

(59)

up to a constant independent of the policy π.

We now consider its derivative optimization problem constrained by source critic feedback analogous to (7):

max
π∈Π

Jf (π; γ) = Eqπ [rθ(x)]−
β

τ
Df (q

π||pτD; γ)

s.t. Ex∼pτ
D(x)c

∗(x)− Ex∼qπ(x)c
∗(x) ≤W0

(60)

where c∗(x) is again an adversarial source critic and W0 is some nonnegative constant. We can show that (60) admits an
explicit dual function which can be used to tractably solve this optimization problem.

Lemma D.2 (Explicit Dual Function of (60)). Consider the primal problem

max
π∈Π

Jf (π; γ) = Eqπ [rθ(x)]−
β

τ
Df (q

π||pτD; γ)

s.t. Ex∼pτ
D(x)[c

∗(x)]− Ex∼qπ(x)[c
∗(x)] ≤W0

(61)

for some convex function f where 0 /∈ dom(f). The Lagrangian dual function g(λ) is bounded from below by the function
gℓ(λ) given by

gℓ(λ) := β
[
(1 + γ)λ(Epτ

D
[c∗(x)]−W0)− Epτ

D
eλc

∗(x)−1 − γEpτ
D
f⋆(λc∗(x))

]
(62)

where f⋆(·) is the Fenchel conjugate of f .

Proof. Recall that the generator function of the mixed f -divergence penalty is given by fγ(u) = γf(u) + u log u for some
weighting scalar γ ∈ [1,+∞). Define fKL(u) := u log u. From (10), the dual function g(λ) : R+ → R of the primal

1It is trivial to verify both that fγ(u) is convex and that 0 /∈ dom(fγ) given a function f(u) that also satisfies both of these conditions.

28



Diversity By Design: Leveraging Distribution Matching for Offline Model-Based Optimization

problem is given by

g(λ) := min
π∈Π

[
(1 + β)Epτ

D
fKL

(
qπ

pτD

)
+ βγEpτ

D
f

(
qπ

pτD

)
− Eqπ log (qπ) + β(1 + γ)λ

(
Epτ

D
c∗(x)− Eqπc

∗(x)−W0

) ]
= min

π∈Π

[
(1 + β)Epτ

D
fKL

(
qπ

pτD

)
+ βγEpτ

D
f

(
qπ

pτD

)
−
(
Epτ

D
fKL

(
qπ

pτD

)
+ Eqπ log pτD

)
+ β(1 + γ)λ

(
Epτ

D
c∗(x)− Eqπc

∗(x)−W0

) ]
= min

π∈Π

[
βEpτ

D
fKL

(
qπ

pτD

)
+ βγEpτ

D
f

(
qπ

pτD

)
− Eqπ log pτD + β(1 + γ)λ

(
Epτ

D
c∗(x)− Eqπc

∗(x)−W0

) ]
(63)

where we define β(1 + γ)λ ∈ R+ as the Lagrangian multiplier associated with the constraint in (60) (recall that R+ is
closed under multiplication). We rearrange terms to rewrite g(λ) as

g(λ) = min
π∈Π

[
βEpτ

D

[
−
(
λc∗(x) · q

π

pτD

)
+ fKL

(
qπ

pD

)]
+ βγEpτ

D

[
−
(
λc∗(x) · q

π

pτD

)
+ f

(
qπ

pτD

)]

− Eqπ log pτD + β(1 + γ)λEpτ
D
c∗(x)− β(1 + γ)λW0

] (64)

The sum of function minima is a lower bound on the minima of the sum:

g(λ) ≥ βEpτ
D
min
π∈Π

[
−
(
λc∗(x) · q

π

pτD

)
+ fKL

(
qπ

pD

)]
+ βγEpτ

D
min
π∈Π

[
−
(
λc∗(x) · q

π

pτD

)
+ f

(
qπ

pD

)]
−max

π∈Π
Eqπ log pτD +min

π∈Π

[
β(1 + γ)λEpτ

D
c∗(x)− β(1 + γ)λW0

]
∼ βEpτ

D
min
π∈Π

[
−
(
λc∗(x) · q

π

pτD

)
+ fKL

(
qπ

pD

)]
+ βγEpτ

D
min
π∈Π

[
−
(
λc∗(x) · q

π

pτD

)
+ f

(
qπ

pD

)]
+ β(1 + γ)λEpτ

D
c∗(x)− β(1 + γ)λW0

(65)

ignoring the term maxπ∈Π [Eqπ log pτD] that is constant with respect to λ. We then perform the same tactic of minimizing
over the superset R+ ⊇ {z | ∃π ∈ Π s.t. qπ(x)/pτD(x) = z} as in Appendix A:

g(λ) ≥ βEpτ
D

min
z∈R+

[− (λc∗(x) · z) + fKL (z)] + βγEpτ
D

min
z∈R+

[− (λc∗(x) · z) + f(z)] + β(1 + γ)λ(Epτ
D
c∗(x)−W0)

= β
[
−Epτ

D
f⋆

KL(λc
∗(x))− γEpτ

D
f⋆(λc∗(x)) + (1 + γ)λ(Epτ

D
c∗(x)−W0)

]
(66)

where f⋆(·) is the Fenchel conjugate of a convex function f(·). The Fenchel conjugate of fKL(u) = u log u is f⋆
KL(v) = ev−1

(Borwein & Lewis, 2006), so

g(λ) ≥ β
[
−Epτ

D
eλc

∗(x)−1 − γEpτ
D
f⋆(λc∗(x)) + (1 + γ)λ(Epτ

D
c∗(x)−W0)

]
(67)

Define the right hand side of this inequality as the function gℓ(λ) and the result is immediate.

Corollary D.3 (Explicit Dual Function of (60) Using Mixed χ2-Divergence). As an example, we can consider the mixed
χ2-divergence defined by Dχ2(Q||P ; γ) = γDχ2(Q||P ) +DKL(Q||P ) as used in Huang et al. (2024a). The χ2-divergence
generator function is fχ2(u) = (u− 1)2/2, and its Fenchel conjugate is f⋆

χ2(v) = v + (v2/2) from Lemma C.4. Directly
applying Lemma D.2, our lower bound on the our dual function is

g(λ) ≥ gℓ(λ) := β

[
−Epτ

D
eλc

∗(x)−1 − γEpτ
D

(
1

2
(λc∗(x))2 + λc∗(x)

)
+ (1 + γ)λ(Epτ

D
c∗(x)−W0)

]
(68)

To experimentally evaluate the utility of distribution matching using a mixed χ2-KL-Divergence, we substitute the DKL(·||·)
divergence with the mixed χ2-Divergence Dfχ2 (·||·; γ) (setting γ = 1.0 for experimental evaluation) and its associated
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dual function bound from (68) into Algorithm 1. Practically, we find that this only requires updating the dual function per
Corollary D.3 and the Lagrangian of (60) given by

L(x;λ) = −Eqπ [rθ(x)] +
β

τ
[γDf (q

π||pτD) +DKL(q
π||pτD)] + β(1 + γ)λ

[
Epτ

D
c∗(x)− Eqπc

∗(x)−W0

]
(69)

in Algorithm 1.

Experimental Results. We compare DynAMO implemented with a mixed χ2 divergence penalty (with γ = 1.0) against our
original DynAMO implementation (i.e., γ = 0) in Supplementary Tables A4-A5. Empirically, we find that using the mixed
χ2-divergence penalty offers limited utility compared with KL-divergence alone: the latter is non-inferior to the former
according to both the Rank and Optimality Gap metrics for all 6 optimizers assessed according to the Best@128 oracle
score. Furthermore, DynAMO outperforms DynAMO with mixed χ2-divergence according to the Rank and Optimality Gap
metrics for 5 out of the 6 optimizers assessed according to the Pairwise Diversity metric. Based on our qualitative analysis,
we hypothesize that the over-conservatism often attributed to χ2-divergence-based penalties in related literature (Ma et al.,
2022; Huang et al., 2024a; Wang et al., 2024) may adversely affect the generative policy’s ability to sufficiently explore the
design space when compared to using KL-divergence-base distribution matching alone. Further work is needed to tune the
relative mixing parameter γ and/or explore how other alternative f -divergence metrics may be used with DynAMO.

D.4. Theoretical Guarantees for DynAMO

In this section, we seek to place an upper bound on the difference between true diversity-penalized objective

J⋆(π) := Ex∼qπ(x)[r(x)]−
β

τ
DKL(q

π(x)||pτ (x)) (70)

realized by the final generative policy π̂ ∈ Π learned by DynAMO (denoted as π∗ in the main text), and the true diversity-
penalized objective realized by the true optimal policy π⋆ := argmaxπ∈Π J⋆(π). Note that this objective J⋆(π) is not
equivalent to the offline MBO objective J(π) introduced in (5); importantly, the objective J(π) is a function of the true,
hidden oracle reward r(x) as opposed to the forward surrogate model rθ(x). Furthermore, the KL-divergence penalty is
computed with respect to the true τ -weighted probability distribution pτ (x), as opposed to its empirical estimate computed
from the offline dataset D as in Definition 3.2. In principle, (70) captures the true trade-off between diversity and quality of
designs that we hope to achieve by the theoretically optimal zero-regret generative policy π⋆ that maximizes (70) over Π.

Our main result is in Theorem D.9 below, although we first step through the relevant assumptions and intermediate results
necessary to arrive at our bound on (70). Firstly, we assume the following:
Assumption D.4 (Surrogate Model Error Bound). There exists a finite ε20 ∈ R+ such that

Ex∼pτ (x)[r(x)− rθ(x)]
2 ≤ ε20/4 (71)

for any choice in τ ≥ 0, where pτ (x) is the true τ -weighted probability distribution over X .
Assumption D.5 (Policy Realizability). Both the true optimal sampling policy π⋆ according to (70) and optimal sampling
policy π̂ according to (7) are contained in the (finite) policy class Π.
Assumption D.6 (Bounded Importance Weights). Define the importance weight w(x) as the ratio between probability
distributions qπ(x) and p(x). There exists a finite M ∈ R+ such that for all possible permutations of π ∈ {π̂, π⋆} and
p(x) ∈ {pτ (x), pτD(x)}, we have w(x) := qπ(x)/p(x) ≤M for all x ∈ X .

Remark. This assumption is mild assuming that (1) D is large enough such that pτD(x) ≈ pτ (x); and (2) the policy π has
been learned with sufficiently large β according to Algorithm 1 or a similar distribution matching objective, such that the
distribution of designs learned by the generative policy qπ̂(x) well-approximates the expert distribution pτD(x). Because the
optimal policy π⋆ should also well-approximate pτ (x) (and therefore pτD(x) by assumption), the assumption that such a
finite M exists is reasonable.

Under these assumptions, we first place a bound on the error of the forward surrogate model over the distribution of
generated designs from the optimal policies according to both the offline objective J(π) and true objective J⋆(π):
Lemma D.7 (Bounded Prediction Error). Assume there exists an M ∈ R+ finite satisfying Assumption D.6. Then with
probability at least 1− δ we have (for any δ > 0 and for both π = π⋆ and π = π̂)

Ex∼qπ(x) |r(x)− rθ(x)| ≤
ε0
2

+M

√
2 log(2|Π|/δ)

n
(72)
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Table A4. Quality of Design Candidates Using Mixed χ2-Divergence DynAMO. Using Corollary D.3 and (60), we show that it is
possible to extend DynAMO to leverage a mixed χ2-divergence that equally weights both χ2-divergence and KL-divergence to penalize
the original MBO objective. We evaluate this specialized implementation of DynAMO against baseline DynAMO and vanilla optimization
methods, and report the Best@128 (resp.., Median@128) oracle score achieved by the 128 evaluated designs in the top (resp., bottom)
table. Metrics are reported mean(95% confidence interval) across 10 random seeds, where higher is better. Bolded entries indicate average scores
with an overlapping 95% confidence interval to the best performing method. Bolded (resp., Underlined) Rank and Optimality Gap (Opt.
Gap) metrics indicate the best (resp., second best) for a given backbone optimizer.

Best@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 43.9 59.4 60.5 88.9 40.0 88.4 — —

Grad. 90.0(4.3) 80.9(12.1) 60.2(8.9) 88.8(4.0) 36.0(6.8) 65.6(14.5) 2.8 6.8
DynAMO-Grad. 90.3(4.7) 86.2(0.0) 64.4(2.5) 91.2(0.0) 44.2(7.8) 89.8(3.2) 1.2 14.2

Mixed χ2 DynAMO-Grad. 59.3(8.3) 86.2(0.0) 64.4(2.6) 120(1.4) 42.0(5.6) 83.6(1.4) 2.0 12.5

Adam 62.9(13.0) 69.7(10.5) 62.9(1.9) 92.3(8.9) 37.8(6.3) 58.4(18.5) 2.7 0.5
DynAMO-Adam 95.2(1.7) 86.2(0.0) 65.2(1.1) 91.2(0.0) 45.5(5.7) 84.9(12.0) 1.3 14.5

Mixed χ2 DynAMO-Adam 59.3(8.3) 86.2(0.0) 64.4(2.6) 120(1.4) 42.0(5.6) 83.6(1.4) 2.0 12.5

BO-qEI 87.3(5.8) 86.2(0.0) 65.4(1.0) 116(3.1) 53.1(3.3) 84.4(0.9) 2.8 18.7
DynAMO-BO-qEI 91.9(4.4) 86.2(0.0) 67.0(1.3) 121(0.0) 53.5(5.0) 85.5(1.1) 1.5 20.7

Mixed χ2 DynAMO-BO-qEI 92.2(4.1) 86.3(0.1) 66.8(1.2) 123(3.0) 51.7(4.4) 85.1(1.5) 1.7 20.7

BO-qUCB 88.1(5.3) 86.2(0.1) 66.4(0.7) 121(1.3) 51.3(3.6) 84.5(0.8) 2.2 19.4
DynAMO-BO-qUCB 95.1(1.9) 86.2(0.0) 66.7(1.5) 121(0.0) 48.1(4.0) 86.9(4.5) 1.7 20.5

Mixed χ2 DynAMO-BO-qUCB 85.7(5.4) 86.3(0.2) 66.3(0.9) 121(0.0) 51.5(4.3) 83.8(1.1) 2.0 19.0

CMA-ES 87.6(8.3) 86.2(0.0) 66.1(1.0) 106(5.9) 49.0(1.0) 72.2(0.1) 2.0 14.4
DynAMO-CMA-ES 89.8(3.6) 85.7(5.8) 63.9(0.9) 117(6.7) 50.6(4.8) 78.5(5.5) 1.7 17.5

Mixed χ2 DynAMO-CMA-ES 84.2(10.7) 84.5(2.6) 65.1(1.3) 113(4.8) 45.0(4.9) 81.8(4.0) 2.3 15.4

CoSyNE 61.7(10.0) 57.3(9.6) 63.6(0.4) 94.8(10.1) 37.0(4.1) 62.7(1.3) 2.8 -0.6
DynAMO-CoSyNE 91.3(4.4) 77.2(11.6) 63.9(0.9) 114(7.0) 40.6(8.6) 67.5(1.4) 1.5 12.3

Mixed χ2 DynAMO-CoSyNE 94.3(2.3) 78.3(8.3) 63.1(2.2) 100(10.9) 37.4(9.7) 82.3(4.1) 1.7 12.4

Median@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 33.7 42.8 50.9 87.6 6.7 77.8 — —

Grad. 58.1(6.1) 58.6(13.1) 59.3(8.6) 85.3(7.7) 36.0(6.7) 65.1(14.4) 2.0 10.5
DynAMO-Grad. 47.0(2.8) 69.8(6.0) 61.9(2.2) 85.9(0.4) 23.4(8.5) 68.7(12.1) 1.5 9.5

Mixed χ2 DynAMO-Grad. 45.2(6.9) 66.9(5.2) 58.3(6.5) 86.6(2.1) 20.6(1.4) 64.4(8.3) 2.5 7.1

Adam 54.7(8.8) 60.4(12.7) 59.2(8.6) 87.9(10.0) 37.4(6.2) 56.8(19.8) 1.8 9.5
DynAMO-Adam 47.7(3.0) 69.0(5.2) 62.4(1.9) 86.4(0.6) 23.0(6.0) 65.6(14.1) 1.7 9.1

Mixed χ2 DynAMO-Adam 45.2(6.9) 66.9(5.2) 58.3(6.5) 86.6(2.1) 20.6(1.4) 64.4(8.3) 2.5 7.1

BO-qEI 48.5(1.5) 59.9(2.0) 63.3(0.0) 86.7(0.6) 28.7(1.8) 72.4(1.8) 1.8 10.0
DynAMO-BO-qEI 51.5(0.9) 65.6(3.1) 63.3(0.0) 86.7(0.6) 23.5(2.4) 77.0(0.7) 1.7 11.3

Mixed χ2 DynAMO-BO-qEI 44.8(1.4) 66.1(3.0) 63.3(0.0) 86.4(0.6) 27.7(3.5) 73.9(2.8) 2.3 10.4

BO-qUCB 50.3(1.8) 62.1(3.4) 63.3(0.0) 86.6(0.6) 31.7(1.2) 74.4(0.6) 1.5 11.5
DynAMO-BO-qUCB 48.8(1.8) 65.9(3.7) 63.3(0.0) 86.5(0.5) 22.7(2.0) 50.4(14.6) 2.0 6.3

Mixed χ2 DynAMO-BO-qUCB 44.0(0.7) 68.2(3.0) 63.3(0.0) 86.5(0.6) 20.9(1.3) 74.5(2.0) 2.0 9.6

CMA-ES 50.7(2.7) 71.7(10.4) 63.3(0.0) 83.9(1.0) 37.9(0.7) 59.3(10.9) 1.5 11.2
DynAMO-CMA-ES 45.3(2.4) 65.8(8.9) 59.3(3.8) 99.0(12.1) 22.5(5.1) 60.6(15.0) 2.2 8.8

Mixed χ2 DynAMO-CMA-ES 48.5(3.0) 70.0(6.5) 63.2(0.3) 87.0(2.0) 19.4(3.8) 43.7(14.6) 2.3 5.4

CoSyNE 55.3(8.0) 53.6(10.2) 60.8(3.2) 87.4(16.6) 36.6(4.4) 59.3(14.5) 2.3 8.9
DynAMO-CoSyNE 53.8(11.0) 63.4(11.5) 59.3(3.8) 99.0(12.1) 20.5(5.8) 60.6(15.0) 2.3 9.5

Mixed χ2 DynAMO-CoSyNE 59.9(9.8) 65.4(9.9) 60.9(3.1) 89.3(14.8) 23.4(4.5) 66.6(5.9) 1.3 11.0
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Table A5. Diversity of Design Candidates Using Mixed χ2-Divergence DynAMO. Using Corollary D.3 and (60), we show that it is
possible to extend DynAMO to leverage a mixed χ2-divergence that equally weights both χ2-divergence and KL-divergence to penalize
the original MBO objective. We evaluate this specialized implementation of DynAMO against baseline DynAMO and vanilla optimization
methods, and report the pairwise diversity (resp., minimum novelty and L1 coverage) oracle score achieved by the 128 evaluated designs
in the top (resp., middle and bottom) table. Metrics are reported mean(95% confidence interval) across 10 random seeds, where higher is better.
Bolded entries indicate average scores with an overlapping 95% confidence interval to the best performing method. Bolded (resp.,
Underlined) Rank and Optimality Gap (Opt. Gap) metrics indicate the best (resp., second best) for a given backbone optimizer.

Pairwise Diversity@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 65.9 57.3 60.0 36.7 66.0 85.7 — —

Grad. 12.5(8.0) 7.8(8.8) 7.9(7.8) 24.1(13.3) 0.0(0.0) 0.0(0.0) 3.0 -53.2
DynAMO-Grad. 66.9(6.9) 68.2(10.8) 77.2(21.5) 93.0(1.2) 129(55.3) 104(56.1) 1.3 27.8

Mixed χ2 DynAMO-Grad. 16.8(12.6) 72.6(1.1) 47.0(31.1) 91.0(1.6) 182(45.9) 74.2(3.0) 1.7 18.7

Adam 12.0(12.3) 11.0(12.1) 4.8(3.8) 16.8(12.4) 6.4(14.5) 6.2(14.0) 3.0 -52.4
DynAMO-Adam 54.8(8.9) 72.3(3.4) 84.8(9.2) 89.9(5.3) 158(37.3) 126(57.3) 1.7 35.7

Mixed χ2 DynAMO-Adam 16.8(12.6) 72.6(1.1) 99.2(0.7) 91.0(1.6) 182(45.9) 74.2(3.0) 1.3 27.4

BO-qEI 73.7(0.6) 73.8(0.5) 99.3(0.1) 93.0(0.5) 190(0.8) 124(7.4) 2.5 47.1
DynAMO-BO-qEI 74.8(0.2) 74.6(0.3) 99.4(0.1) 93.5(0.4) 198(1.9) 277(59.7) 1.3 74.2

Mixed χ2 DynAMO-BO-qEI 73.6(0.7) 74.3(0.5) 99.4(0.0) 93.9(0.4) 167(41.5) 29.1(7.7) 2.2 27.5

BO-qUCB 73.9(0.5) 74.3(0.4) 99.4(0.1) 93.6(0.5) 198(10.3) 94.1(3.9) 2.2 43.5
DynAMO-BO-qUCB 74.3(0.5) 74.4(0.6) 99.3(0.1) 93.5(0.6) 211(22.8) 175(44.7) 1.7 59.4

Mixed χ2 DynAMO-BO-qUCB 73.4(0.7) 74.3(0.4) 99.5(0.1) 93.7(0.5) 177(25.2) 28.1(7.3) 2.2 29.0

CMA-ES 47.2(11.2) 44.6(15.9) 93.5(2.0) 66.2(9.4) 12.8(0.6) 164(10.6) 2.5 9.5
DynAMO-CMA-ES 73.6(0.6) 73.1(3.1) 72.0(3.1) 94.0(0.5) 97.8(13.2) 292(83.5) 1.3 55.2

Mixed χ2 DynAMO-CMA-ES 52.9(20.8) 51.5(22.1) 67.7(24.7) 69.7(12.4) 154(107) 86.9(72.9) 2.2 18.6

CoSyNE 5.6(5.0) 12.7(9.8) 28.2(11.3) 12.2(7.3) 0.0(0.0) 0.0(0.0) 3.0 -52.1
DynAMO-CoSyNE 18.1(13.0) 20.3(2.3) 35.0(17.9) 22.8(11.9) 74.4(46.3) 77.0(35.9) 1.7 -20.7

Mixed χ2 DynAMO-CoSyNE 22.4(8.1) 34.1(20.1) 34.1(20.1) 23.0(17.4) 104(77.9) 49.4(25.6) 1.3 -17.5

Minimum Novelty@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 0.0 0.0 0.0 0.0 0.0 0.0 — —

Grad. 21.2(3.0) 51.7(2.9) 97.4(3.9) 79.5(19.7) 95.0(0.7) 102(6.1) 2.3 74.5
DynAMO-Grad. 21.1(1.1) 52.2(1.3) 98.6(1.5) 85.8(1.0) 95.0(0.4) 107(6.7) 1.3 76.7

Mixed χ2 DynAMO-Grad. 14.6(2.8) 51.9(0.4) 99.2(0.7) 85.2(2.1) 85.2(1.6) 34.0(1.1) 2.3 61.7

Adam 23.7(2.8) 51.1(3.5) 95.5(5.3) 79.3(21.2) 94.8(0.7) 103(6.3) 2.0 74.5
DynAMO-Adam 14.7(1.9) 46.2(0.5) 98.7(1.2) 85.9(1.8) 94.9(0.4) 108(7.2) 1.7 74.7

Mixed χ2 DynAMO-Adam 20.4(3.3) 51.9(0.4) 87.3(57.9) 85.2(2.1) 85.2(1.6) 34.0(1.1) 2.3 60.7

BO-qEI 21.8(0.5) 51.5(0.3) 97.6(0.3) 85.4(1.5) 94.6(0.1) 106(2.9) 1.8 76.2
DynAMO-BO-qEI 21.0(0.5) 51.9(0.2) 97.4(0.4) 85.2(0.9) 94.8(0.1) 126(14.6) 2.0 79.4

Mixed χ2 DynAMO-BO-qEI 14.6(0.5) 51.9(0.4) 97.4(0.5) 85.5(1.3) 80.8(3.7) 16.6(4.5) 2.2 57.8

BO-qUCB 21.6(0.3) 51.7(0.2) 97.9(0.4) 85.3(1.1) 93.8(0.6) 98.8(1.1) 1.8 74.8
DynAMO-BO-qUCB 21.4(0.5) 51.7(0.2) 97.1(0.5) 85.3(1.1) 94.7(0.2) 109(4.5) 2.0 76.6

Mixed χ2 DynAMO-BO-qUCB 19.8(0.3) 52.0(0.1) 97.4(0.4) 85.6(1.3) 79.8(3.5) 14.9(3.3) 2.2 58.2

CMA-ES 16.5(2.1) 47.8(1.0) 96.5(0.7) 73.0(18.0) 100(0.0) 100(0.0) 2.3 72.3
DynAMO-CMA-ES 12.9(0.8) 48.0(1.6) 96.7(3.5) 81.8(13.4) 94.5(0.7) 112(7.8) 2.0 74.3

Mixed χ2 DynAMO-CMA-ES 23.0(1.6) 51.8(0.4) 98.0(0.9) 83.8(9.9) 87.1(2.1) 48.6(16.8) 1.7 65.4

CoSyNE 24.5(3.5) 49.7(3.1) 98.5(1.6) 86.6(12.7) 93.2(1.0) 91.9(2.0) 1.7 74.1
DynAMO-CoSyNE 17.8(5.5) 48.4(2.3) 96.7(3.5) 80.2(12.9) 94.5(0.7) 112(7.8) 2.3 75.0

Mixed χ2 DynAMO-CoSyNE 23.5(3.7) 52.5(2.0) 99.9(0.1) 80.6(21.5) 83.9(2.6) 30.3(4.2) 2.0 61.8

L1 Coverage@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 0.42 0.31 1.42 0.68 6.26 0.58 — —

Grad. 0.16(0.10) 0.20(0.13) 0.21(0.10) 0.42(0.18) 0.00(0.00) 0.00(0.00) 3.0 -1.44
DynAMO-Grad. 0.36(0.04) 0.52(0.06) 1.46(0.38) 2.49(0.06) 6.47(1.24) 5.85(1.35) 1.3 1.25

Mixed χ2 DynAMO-Grad. 0.16(0.09) 0.54(0.02) 0.87(0.58) 2.20(0.10) 6.67(1.68) 1.61(0.03) 1.7 0.40

Adam 0.11(0.06) 0.22(0.09) 0.23(0.15) 0.48(0.31) 0.27(0.55) 0.24(0.49) 3.0 -1.35
DynAMO-Adam 0.33(0.05) 0.55(0.03) 1.44(0.39) 2.40(0.16) 7.06(0.73) 6.91(0.71) 1.0 1.50

Mixed χ2 DynAMO-Adam 0.16(0.09) 0.54(0.02) 0.47(0.31) 2.20(0.10) 6.67(1.68) 1.61(0.03) 2.0 0.33

BO-qEI 0.41(0.02) 0.55(0.01) 2.37(0.03) 2.11(0.15) 7.84(0.01) 6.61(0.33) 2.3 1.70
DynAMO-BO-qEI 0.42(0.01) 0.56(0.01) 2.47(0.03) 2.54(0.03) 7.87(0.01) 7.92(0.04) 1.2 2.02

Mixed χ2 DynAMO-BO-qEI 0.39(0.02) 0.55(0.01) 2.39(0.04) 2.56(0.02) 6.11(0.64) 1.36(0.12) 2.5 0.62

BO-qUCB 0.40(0.02) 0.54(0.01) 2.40(0.05) 2.52(0.07) 7.78(0.04) 6.64(0.09) 2.5 1.77
DynAMO-BO-qUCB 0.40(0.02) 0.55(0.01) 2.47(0.07) 2.54(0.05) 7.88(0.03) 7.80(0.23) 1.2 2.00

Mixed χ2 DynAMO-BO-qUCB 0.39(0.02) 0.56(0.01) 2.41(0.05) 2.53(0.06) 5.96(0.78) 1.38(0.11) 2.3 0.59

CMA-ES 0.33(0.05) 0.48(0.04) 2.18(0.04) 1.82(0.12) 3.26(1.42) 3.77(1.36) 2.3 0.36
DynAMO-CMA-ES 0.40(0.03) 0.56(0.01) 1.82(0.72) 2.54(0.05) 4.75(2.16) 3.29(1.56) 1.7 0.62

Mixed χ2 DynAMO-CMA-ES 0.30(0.09) 0.52(0.05) 1.56(0.68) 1.97(0.19) 5.58(1.68) 4.03(3.01) 2.0 0.71

CoSyNE 0.10(0.07) 0.22(0.10) 0.39(0.20) 0.27(0.13) 0.10(0.00) 0.10(0.00) 2.8 -1.41
DynAMO-CoSyNE 0.21(0.11) 0.18(0.09) 0.64(0.42) 0.43(0.34) 1.85(0.22) 0.94(0.17) 2.0 -0.90

Mixed χ2 DynAMO-CoSyNE 0.20(0.04) 0.37(0.14) 0.74(0.47) 0.53(0.42) 3.85(2.79) 1.10(0.55) 1.2 -0.48
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where n := |D| is the number of datums in the offline dataset D.

Proof. Under Assumption D.4, Jensen’s inequality gives us

Ex∼pτ (x) |r(x)− rθ(x)| ≤
√
Ex∼pτ (x)[r(x)− rθ(x)]2 ≤

√
ε20
4

=:
ε0
2

(73)

Furthermore, Assumption D.6 and Cortes et al. (2010) yield∣∣∣Ex∼pτ (x) |r(x)− rθ(x)| − Ex∼qπ(x) |r(x)− rθ(x)|
∣∣∣

=

∣∣∣∣Ex∼pτ (x) |r(x)− rθ(x)| − Ex∼pτ
D(x)

[
qπ(x)

pτD(x)

∣∣∣r(x)− rθ(x)
∣∣∣]∣∣∣∣

≤M

√
2 log(2|Π|/δ)

n

(74)

with probability at least 1− δ. In the offline setting (as in our work) and assuming that the forward surrogate model rθ(x)
has been well-trained according to (2) or a similar learning paradigm (e.g., see Trabucco et al. (2021); Yu et al. (2021)), we
can reasonably assume that ε20 ≤ Ex∼qπ(x)[r(x)− rθ(x)]

2. We therefore have an upper bound on the prediction error of the
forward surrogate model over the distribution qπ(x) over generated designs:

Ex∼qπ(x) |r(x)− rθ(x)| ≤ Ex∼pτ (x) |r(x)− rθ(x)|+M

√
2 log(2|Π|/δ)

n
≤ ε0

2
+M

√
2 log(2|Π|/δ)

n
(75)

with probability at least 1− δ.

Under Assumption D.6, we can also place an upper bound on the true and realized KL-divergence penalties:

Lemma D.8 (Bounded KL-Divergence). Assume there exists an M ∈ R+ finite satisfying Assumption D.6. Then with
probability at least 1− δ we have (for any δ > 0 and for both π = π⋆ and π = π̂)

|DKL(q
π(x)||pτ (x))−DKL(q

π(x)||pτD(x))| ≤M
√

log(|Π|/δ) (76)

Proof. According to the definition of M and the definition of the KL-divergence from Definition C.1,

DKL(q
π(x)||pτ (x)) = Ex∼pτ (x)

[
qπ(x)

pτ (x)
log

(
qπ(x)

pτ (x)

)]
≤M logM (77)

From Hoeffding’s inequality (Hoeffding, 1963),

P (|DKL(q
π(x)||pτ (x))−DKL(q

π(x)||pτD(x))| ≥ ε) ≤ |Π| · exp
(
− 2ε2

M logM

)
(78)

for any ε > 0. We can choose to define ε :=
√
(M logM) · log(|Π|/δ)/2 such that

|DKL(q
π(x)||pτ (x))−DKL(q

π(x)||pτD(x))| ≤
√

(M logM) · log(|Π|/δ)√
2

≤
M
√
log(|Π|/δ)√

2
≤M

√
log(|Π|/δ) (79)

with probability at least 1− δ.

We are now ready to prove our main result:

Theorem D.9 (Bounded Diversity-Penalized Objective J⋆(π)). Assume that there exists an M ∈ R+ finite satisfying
Assumption D.6. Then with probability at least 1− δ, we have (for any δ > 0)

J⋆(π⋆)− J⋆(π̂) ≤ ε0 + 2M

(
2√
n
+

β

τ

)√
log

(
8|Π|
δ

)
(80)

where n := |D| is the size of the offline dataset D.
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Proof. Firstly, we combine Lemmas D.7 and D.8 using the triangle inequality to bound the difference between the true
reward J⋆(π̂) and the offline reward J(π̂), where π̂ ∈ Π maximizes J(π) as defined in (5).

J(π̂)− J⋆(π̂) :=

(
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τ
DKL(q
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8|Π|
δ

)
(81)

with probability 1 − (δ/2). Because π̂ := argmaxπ∈ΠJ(π), we must have J(π⋆) ≤ J(π̂). Substituting this into the left
hand side of (81) gives

J(π⋆)− J⋆(π̂) ≤ ε0
2

+M

(
2√
n
+

β

τ

)√
log

(
8|Π|
δ

)
(82)

Separately, we have (with probability 1− (δ/2))

J⋆(π⋆)− J(π⋆) :=
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(83)

following the derivation in (81) except for π⋆ (as opposed to π̂) that maximizes J⋆(π) (as opposed to J(π)). Summing (82)
and (83) gives

J⋆(π⋆)− J⋆(π̂) ≤ ε0 + 2M

(
2√
n
+

β

τ

)√
log

(
8|Π|
δ

)
(84)

with probability 1− δ.

Note that we only prove Theorem D.9 in the unconstrained optimization setting; in principle, a tighter bound could exist in
the adversarially constrained formulation introduced in (7), as a bound on the 1-Wasserstein distance between qπ̂(x) and
pτD(x) will almost surely place a favorably tighter bound on the forward surrogate model prediction error than Lemma D.7.

D.5. Comparison with Offline Model-Free Optimization Methods

In our main experimental results reported in Section 5, we focus on comparing DynAMO against other model-based
optimization (MBO) methods—that is, optimization methods that explicitly (1) learn a proxy forward surrogate model rθ(x)
for the oracle reward function from the offline dataset; and (2) optimize against rθ(x) and rank final candidate designs
according to a scoring metric involving rθ. Alternatively, recent work have also proposed methods that instead do not learn
a forward surrogate model rθ(x); we refer to such methods as model-free algorithms.

Survey of Existing Model-Free and Additional Model-Based Methods. Mashkaria et al. (2023) introduce BONET
(i.e., Black-box Optimization Networks), which learns an auto-regressive model on synthetically constructed optimization
trajectories that simulate runs of implicit black-box optimization experiments. The auto-regressive model is trained to learn
a rollout of monotonic transitions from low- to high- scoring design candidates using the offline dataset. Nguyen et al.
(2023) propose ExPT (i.e., Experiment Pretrained Transformers) as a task-agnostic method of pre-training a transformer
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foundation model to learn an inverse modeling of designs from input reward scores and associated contexts. DDOM (i.e.,
Denoising Diffusion Optimization Models) learns a generative diffusion model conditioned on the oracle reward values in
the offline dataset (Krishnamoorthy et al., 2023). Similarly, GTG (i.e., Guided Trajectory Generation) trains a diffusion
model to learn from synthetically constructed optimization trajectories conditioned on final scores. MINs (i.e., Model
Inversion Networks) from Kumar & Levine (2019) learn and optimize against an inverse mapping from reward scores
to candidate designs.2 Tri-Mentoring and ICT (i.e., Importance-aware Co-Teaching) co-learn an ensemble of multiple
surrogate models (Chen et al., 2023a; Yuan et al., 2023). Separately, PGS (i.e., Policy-Guided Search) from Chemingui et al.
(2024) learns a policy to optimize against a surrogate model (although only limit their method to first-order optimization
algorithms), and Match-Opt from Hoang et al. (2024) proposes a black-box gradient matching algorithm to learn better
forward surrogate mdoels. Finally, RGD (i.e., Robust-Guided Diffusion) uses a forward surrogate model to guide the
generative sampling process from a diffusion model (Chen et al., 2024). Other model-free optimization methods have been
proposed specifically for the biological sequence design problems (Kim et al., 2023; Chen et al., 2023b; Jain et al., 2022);
we exclude these from our analysis and instead focus on task-agnostic optimization algorithms. We also exclude Design
Editing for offline Model-based Optimization (DEMO) from Yuan et al. (2024), Noise-intensified Telescoping density-Ratio
Estimation (NTRE) from Yu et al. (2024), and Ranking Models (RaM) from Tan et al. (2024) from our analysis since there
are no presently available open-source implementations.

Experimental Results. We compare representative implementations of DynAMO (i.e., DynAMO with Gradient Ascent
(DynAMO-Grad.), Bayesian optimization with Upper Confidence Bound acquisition function (DynAMO-BO-qUCB),
and Covariance Matrix Adaptation Evolution Strategy (DynAMO-CMA-ES)) against other model-based optimization
methods using the respective backbone optimizer described by the original authors (i.e., RoMA from Yu et al. (2021) using
Adam Ascent, COMs from Trabucco et al. (2021) using Gradient Ascent, ROMO from Chen et al. (2023c) using Gradient
Ascent, GAMBO from Yao et al. (2024) using BO-qEI) against model-free optimization methods in Supplementary
Tables A6-A8. We find that DynAMO-augmented optimizers can be competitive in proposing high-quality designs—in
particular, DynAMO-BO-qUCB achieves both the second best Rank and Optimality Gap across all six tasks according
to the Best@128 oracle score metric. However, the improvement in diversity of designs using DynAMO is significant:
DynAMO-BO-qUCB achieves the best Rank and Optimality gap according to both the Pairwise Diversity and L1 Coverage
metrics, and DynAMO-Grad. achieves the best Rank and Optimality gap according to the Minimum Novelty metric.
Furthermore, DynAMO-BO-qUCB attains the best mean Pairwise Diversity score compared to the model-free optimization
methods evaluated in 5 out of the 6 tasks assessed. Altogether, our results suggest that DynAMO is a promising technique to
propose a diverse set of high-quality designs compared with existing state-of-the-art offline optimization methods.

D.6. Empirical Computational Cost Analysis

To evaluate the empirical cost associated with running DynAMO, we report both the runtime and maximum GPU utilization of
optimization methods both with and without DynAMO augmentation in Supplementary Table A9. Briefly, all experimental
results reported in Supplementary Table A9 were conducted on one internal cluster with 8 NVIDIA RTX A6000 GPUs,
and one 24-core Intel Xeon CPU—however, only a single GPU was made available for each program instance reported in
our experiments. Across all six optimization methods evaluated, DynAMO increases the runtime (resp., maximum GPU
usage) of the optimization method (averaged over all six tasks) by a mean of 181.7% (resp. 1.9%). While our experiments
reveal that DynAMO is indeed associated with additional computational costs, they also show that DynAMO is empirically
tractable to run even using a single GPU. Furthermore, we note that as discussed by Yao et al. (2024) and others, the primary
real-world application of offline optimization solvers is in generative design tasks where the true oracle reward function is
prohibitively expensive or inaccessible. In these settings, we argue that it is often worth leveraging additional compute to
use DynAMO (or other offline optimization methods) to generate the best results possible before final oracle evaluation.

D.7. τ -Weighted Distribution Visualization

In Definition 3.2, we define the τ -weighted probability distribution to serve as the reference distribution for a generative
policy to learn from in (7). This reference probability distribution is important and should ideally capture the diversity
of high-quality designs contained in the offline dataset. To investigate if this is indeed the case, we plot the empirical
τ -weighted distributions for each of the six offline optimization tasks in our experimental evaluation suite using τ = 1.0,

2One might argue that MINs (Kumar & Levine, 2019) are also a form of model-based optimization, as the method involves learning a
surrogate function f−1

θ : R → X . However, the method proposes a design x given an input score value, and therefore does not make
available an output proxy score by which to rank candidate designs. We therefore include MINs as a model-free optimization algorithm.
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Figure A1. Sample τ -Weighted Probability Distributions. We plot (τ = 1.0)-weighted distributions pτD(y) (blue) versus the original
distribution of oracle scores y in the public offline dataset D (orange) for the 6 offline optimization tasks in our experimental evaluation
suite: (1) TFBind8 (top left); (2) UTR (top middle); (3) ChEMBL (top right); (4) Molecule (bottom left); (5) Superconductor (bottom
middle); and (6) D’Kitty (bottom right). DynAMO penalizes a model-based optimization objective to encourage sampling policies to
match the diversity of (high-scoring) designs in the τ -weighted distribution. The x-axis represents the normalized oracle scores.

which is the value of the temperature hyperparameter used in our experiments in Table 1. The resulting plots are shown in
Figure A1; in general, we can see that our τ -weighted reference distributions weight optimal and near-optimal designs more
heavily (i.e., a distribution with negative skew), while still capturing a variety of different possible designs.

D.8. Distribution Analysis of Quality and Diversity Results

In our experimental results in the main text and in the Appendices, we primarily focus on reporting summative statistics: for
example, the Best@128 oracle score and the average Pairwise Diversity metric over the final batch of k = 128 samples. In
this section, we isolate a single representative experimental run and plot the distribution of scores achieved by all k = 128
designs from a single experimental run to better interrogate the robustness and empirical properties of DynAMO.

In Supplementary Figure A2, we first plot the distributions of the oracle reward score r(xF
i ) and minimum novelty score

minx′∈D d(xF
i , x

′) achieved by each of the k = 128 designs in the set {xF
i }ki=1 proposed by the CMA-ES optimizer with

and without DynAMO augmentation in a single experimental run. (Recall that D is the static, offline dataset of reference
designs and d(·, ·) is the normalized Levenshtein distance metric for this task.) We see that in general, DynAMO not only
enables the optimizer to discover more optimal designs with higher probability, but also yields a wider-tailed distribution of
oracle scores compared to the baseline method. Separately, we see that DynAMO augmentation decreases both the median
and mode Minimum Novelty score compared to the baseline method, in agreement with our discussion in Appendix D.2.

In the bottom row of Supplementary Figure A2, we visualize a heat map of pairwise diversity scores; that is, the color
of pixel (i, j) is correlated with the distance d(xF

i , x
F
j ) for any 1 ≤ i, j ≤ k pair of generated designs proposed by the
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Figure A2. Distribution of Generated Design Quality and Diversity Scores. We plot the distributions of the (top left) oracle score; (top
right) minimum novelty; and (bottom) pairwise diversity of the k = 128 proposed designs from a single representative experimental run
using the CMA-ES backbone optimizers with and without DynAMO on the TFBind8 task. Dashed blue (resp., dotted green) lines in the
top panels represent the mean score achieved by the Baseline CMA-ES (resp., DynAMO-CMA-ES) method from the experimental run.

optimization method. Even a cursory visual inspection reveals that DynAMO augmentation of the backbone CMA-ES
optimizer significance improves the pairwise diversity of candidate designs when compared to the baseline method.

D.9. Why Is Diversity Important?

Our principle motivation for obtaining a diverse sample of designs in offline MBO is to enable downstream secondary
exploration of other objectives that we might care about in real-world applications. For example, given a batch of proposed
candidates drugs that were optimized for maximal therapeutic efficacy in treating a disease, we might then try to quantify
each candidate’s manufacturing cost, difficulty of synthesize, profile of potential side effects, and other objectives. In
this setting, obtaining highly similar designs from offline MBO may result in strong therapeutic efficacy, but also equally
unacceptable values of other secondary objectives.

To validate this motivating claim that diversity is important to obtain a wide range of secondary objective values, we
compare the range and variance of secondary objective values within a batch of proposed candidate designs. We consider
the following 3 offline MBO tasks:

1. Vehicle Safety is continuous, 5-dimensional optimization problem from Liao et al. (2008) to find an optimal set of
car dimensions that minimize the total Mass of the vehicle. The problem initially stems from the multi-objective
optimization literature (Blank & Deb, 2020; Liao et al., 2008; Huo et al., 2022; Gonzalez de Oliveira et al., 2023),
where the secondary goals are to (1) minimize the worst-case Acceleration-induced biomechanical damage of the car
occupants in the event of a collision; and (2) minimize the worst-case toe board Intrusion of the vehicle in the event of
an ‘offset-frontal crash.’ We treat the Mass as the offline MBO optimization objective and Acceleration and Intrusion
as the downstream secondary objectives. We negate all objective values prior to max-min normalization as described in
Appendix B to frame this as a maximization problem in accordance with the setup in Table 1. An offline dataset of
n = 800 designs was synthetically constructed, and we used the oracle function from Liao et al. (2008) to compute all
3 objective values.
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2. Welded Beam is a continuous, 4-dimensional optimization problem from Ray & Liew (2002) to find an optimal set
of dimensions for a welded steel beam that minimizes the total manufacturing Cost. Similar to the Vehicle task, this
problem was initially proposed in the multi-objective optimization literature (Blank & Deb, 2020; Liao et al., 2008;
Kamil et al., 2021; Deb et al., 2006) where the secondary goal is to (1) minimize the end Deflection of the beam.3

Again, we negate all objective values prior to max-min normalization as described in Appendix B to frame this as a
maximization problem. An offline dataset of n = 800 designs was synthetically constructed, and we used the oracle
function from Ray & Liew (2002) to compute both objective values.

3. UTR is a discrete, 50-dimensional optimization problem from Angermüeller et al. (2020) and Sample et al. (2019) with
the goal of finding an optimal 50-bp DNA sequence that maximizes the gene expression from a 5’ UTR DNA sequence.
This is an offline MBO problem from the Design-Bench benchmarking suite (Trabucco et al., 2022) that we use to
evaluate offline MBO algorithms in our main experimental results in Table 1 and elsewhere. However, a secondary
objective is to minimize the GC Content of the resulting DNA sequence, which is correlated with the difficulty of
cloning and sequencing the DNA sequence using standard DNA amplification and analysis methods in the laboratory
setting (Benita et al., 2003; Yakovchuk et al., 2006; Gardner et al., 2002). To evaluate this secondary objective, we
use the same experimental setting as for the initial UTR experiments described in Appendix B and evaluate the GC
Content of the k = 128 proposed designs as the secondary objective according to Benita et al. (2003).

We used the standard deviation of secondary objective values achieved by a proposed set of designs to quantify the range of
secondary objective values, and the pairwise diversity metric (PD@128) to quantify the diversity of designs. We evaluated
both baseline and DynAMO-enhanced optimization methods on the three tasks above (Supplementary Table A10). Our
results consistently demonstrate that a greater diversity score of the final proposed designs (i.e., higher PD@128 score) is
correlated with a greater range of captured secondary objective values. As a result, a diverse set of designs (such as those
proposed by DynAMO-enhanced optimization methods) can better enable downstream evaluation of the trade-offs between
different objectives for a given design.

3The original problem from Ray & Liew (2002) was proposed as a constrained optimization problem with 5 sets of constraints on the
maximum considered shear stress, bending stress, buckling load, and other material testing parameters. To simplify our experimental
setting, we consider the unconstrained version of the optimization problem here.
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Table A6. Comparison of Design Quality Against Model-Free Optimization Methods. We evaluate DynAMO and other model-based
optimization methods against model-free optimization methods. We report the maximum (resp., median) oracle score achieved out of 128
evaluated designs in the top (resp., bottom) table. Metrics are reported mean(95% confidence interval) across 10 random seeds, where higher is
better. max(D) reports the top oracle score in the offline dataset. All metrics are multiplied by 100 for easier legibility. Bolded entries
indicate average scores with an overlapping 95% confidence interval to the best performing method. Bolded (resp., Underlined) Rank and
Optimality Gap (Opt. Gap) metrics indicate the best (resp., second best) for a given backbone optimizer.

Best@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 43.9 59.4 60.5 88.9 40.0 88.4 — —

Grad. 90.0(4.3) 80.9(12.1) 60.2(8.9) 88.8(4.0) 36.0(6.8) 65.6(14.5) 16.0 6.8
BO-qUCB 88.1(5.3) 86.2(0.1) 66.4(0.7) 121(1.3) 51.3(3.6) 84.5(0.8) 7.3 19.4
CMA-ES 87.6(8.3) 86.2(0.0) 66.1(1.0) 106(5.9) 49.0(1.0) 72.2(0.1) 10.2 14.4
BONET 95.5(0.0) 92.9(0.1) 63.3(0.0) 97.3(0.0) 39.0(0.7) 93.7(0.2) 8.0 16.8
DDOM 93.0(3.6) 85.3(0.5) 63.5(0.4) 87.9(0.6) 44.7(2.2) 63.0(12.1) 13.0 9.4

ExPT 89.3(5.7) 84.2(2.4) 63.3(0.0) 93.0(0.8) 48.5(11.0) 82.3(2.3) 12.0 13.3
MINs 89.0(3.4) 68.3(0.6) 63.9(0.9) 93.1(0.7) 45.8(2.1) 91.5(1.1) 11.2 11.8
GTG 92.1(0.0) 70.2(0.0) 63.3(0.0) 85.0(0.0) 52.5(0.0) 96.4(0.0) 9.7 13.1

Tri-Mentoring 82.4(0.0) 66.6(0.0) 68.4(0.0) 88.9(0.0) 50.9(1.1) 94.0(0.0) 10.2 11.7
ICT 93.3(3.4) 66.6(0.0) 68.4(0.0) 88.9(0.0) 48.9(1.4) 95.5(1.1) 9.0 13.4
PGS 79.6(7.5) 67.1(0.8) 68.4(0.0) 88.9(0.0) 54.8(0.8) 72.3(0.0) 11.3 8.3

Match-Opt 90.9(3.4) 68.4(0.8) 63.3(0.1) 87.8(0.6) 35.2(2.3) 72.2(0.1) 15.5 6.2
RGD 87.9(4.2) 68.7(0.6) 63.4(0.2) 90.2(0.3) 43.0(2.7) 88.5(1.1) 13.2 10.1

COMs 93.1(3.4) 67.0(0.9) 64.6(1.0) 97.1(1.6) 41.2(4.8) 91.8(0.9) 10.2 12.3
RoMA 96.5(0.0) 77.8(0.0) 63.3(0.0) 84.7(0.0) 49.8(1.4) 95.7(1.6) 9.7 14.5
ROMO 98.1(0.7) 66.8(1.0) 63.0(0.8) 91.8(0.9) 38.7(2.5) 87.8(0.9) 12.7 10.9

GAMBO 94.1(1.9) 86.3(0.2) 66.8(0.7) 121(0.0) 50.8(3.3) 86.7(1.1) 4.8 20.8

DynAMO-Grad. 90.3(4.7) 86.2(0.0) 64.4(2.5) 91.2(0.0) 44.2(7.8) 89.8(3.2) 9.5 14.2
DynAMO-BO-qUCB 95.1(1.9) 86.2(0.0) 66.7(1.5) 121(0.0) 48.1(4.0) 86.9(4.5) 6.3 20.5

DynAMO-CMA-ES 89.8(3.6) 85.7(5.8) 63.9(0.9) 117(6.7) 50.6(4.8) 78.5(5.5) 9.3 17.5

Median@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 33.7 42.8 50.9 87.6 6.7 77.8 — —

Grad. 58.1(6.1) 58.6(13.1) 59.3(8.6) 85.3(7.7) 36.0(6.7) 65.1(14.4) 10.7 10.5
BO-qUCB 50.3(1.8) 62.1(3.4) 63.3(0.0) 86.6(0.6) 31.7(1.2) 74.4(0.6) 6.8 11.5
CMA-ES 50.7(2.7) 71.7(10.4) 63.3(0.0) 83.9(1.0) 37.9(0.7) 59.3(10.9) 7.2 11.2
BONET 53.1(0.0) 46.5(0.6) 63.3(0.0) 91.2(0.1) 37.9(0.0) 92.1(0.0) 5.2 14.1
DDOM 55.9(0.7) 57.6(0.8) 63.3(0.0) 83.4(0.1) 21.9(1.7) 57.6(13.2) 12.2 6.7

ExPT 44.7(6.8) 57.0(4.8) 63.3(0.0) 89.8(3.3) 34.1(12.3) 67.8(14.1) 9.3 9.5
MINs 41.3(1.2) 58.0(0.5) 63.3(0.0) 88.3(0.3) 32.3(1.6) 68.9(15.9) 9.7 8.8
GTG 43.4(0.3) 64.2(0.0) 63.3(0.0) 83.1(0.0) 28.0(0.0) 90.6(0.0) 9.3 12.2

Tri-Mentoring 46.1(0.0) 61.1(0.0) 63.3(0.0) 88.9(0.0) 34.2(1.2) 88.4(0.0) 6.5 13.7
ICT 59.5(3.0) 61.1(0.0) 57.1(0.0) 88.9(0.0) 37.0(1.2) 88.4(0.1) 7.0 15.4
PGS 40.7(2.6) 60.3(0.7) 58.4(0.0) 88.9(0.0) 28.2(0.5) 70.9(0.7) 12.3 8.0

Match-Opt 40.7(1.2) 57.9(0.5) 63.3(0.0) 83.2(0.1) 14.5(0.9) 60.5(9.0) 15.0 3.4
RGD 41.1(1.3) 57.4(0.9) 63.3(0.0) 86.4(0.1) 20.7(0.6) 70.9(1.8) 12.3 6.7

COMs 43.9(0.0) 59.0(0.5) 63.3(0.0) 93.2(7.7) 21.3(5.6) 89.9(1.0) 8.5 11.8
RoMA 50.1(4.3) 77.4(0.0) 63.3(0.0) 84.7(0.0) 34.9(1.8) 63.7(6.2) 7.3 12.4
ROMO 58.7(3.3) 37.7(0.3) 27.4(1.2) 61.8(2.6) 27.0(0.6) 46.0(11.7) 15.8 -6.8

GAMBO 46.4(1.8) 63.4(3.3) 63.3(0.0) 86.3(0.5) 28.9(1.1) 79.1(0.7) 7.8 11.3

DynAMO-Grad. 47.0(2.8) 69.8(6.0) 61.9(2.2) 85.9(0.4) 23.4(8.5) 68.7(12.1) 11.0 9.5
DynAMO-BO-qUCB 48.8(1.8) 65.9(3.7) 63.3(0.0) 86.5(0.5) 22.7(2.0) 50.4(14.6) 9.7 6.3

DynAMO-CMA-ES 45.3(2.4) 65.8(8.9) 59.3(3.8) 99.0(12.1) 22.5(5.1) 60.6(15.0) 11.0 8.8
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Table A7. Comparison of Design Diversity Against Model-Free Optimization Methods. We evaluate DynAMO and other model-based
optimization methods against model-free optimization methods. We report the pairwise diversity (resp., minimum novelty) oracle score
achieved by the 128 evaluated designs in the top (resp., bottom) table. Metrics are reported mean(95% confidence interval) across 10 random
seeds, where higher is better. All metrics are multiplied by 100 for easier legibility. Bolded entries indicate average scores with an
overlapping 95% confidence interval to the best performing method. Bolded (resp., Underlined) Rank and Optimality Gap (Opt. Gap)
metrics indicate the best (resp., second best) for a given backbone optimizer.

Pairwise Diversity@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 65.9 57.3 60.0 36.7 66.0 85.7 — —

Grad. 12.5(8.0) 7.8(8.8) 7.9(7.8) 24.1(13.3) 0.0(0.0) 0.0(0.0) 18.7 -53.2
BO-qUCB 73.9(0.5) 74.3(0.4) 99.4(0.1) 93.6(0.5) 198(10.3) 94.1(3.9) 3.8 43.5

CMA-ES 47.2(11.2) 44.6(15.9) 93.5(2.0) 66.2(9.4) 12.8(0.6) 164(10.6) 10.8 9.5
BONET 46.7(2.5) 24.6(0.4) 14.9(1.6) 5.5(0.2) 0.2(0.0) 0.1(0.0) 17.3 -46.6
DDOM 51.3(1.0) 47.1(0.3) 21.9(3.6) 97.2(0.0) 1.9(0.1) 50.7(13.1) 12.5 -16.9

ExPT 15.3(5.6) 16.5(1.6) 21.3(1.8) 5.3(0.7) 8.1(2.3) 0.2(0.0) 17.5 -50.8
MINs 67.0(0.3) 56.8(0.4) 53.5(3.1) 34.1(2.6) 84.6(21.1) 4.3(0.3) 11.8 -11.9
GTG 60.9(0.0) 44.6(0.0) 2.8(0.0) 0.9(0.0) 114.8(0.1) 2.7(0.0) 15.0 -24.2

Tri-Mentoring 58.5(0.0) 57.6(0.0) 85.5(0.0) 39.9(0.0) 47.7(0.0) 62.5(0.0) 10.5 -3.3
ICT 44.8(6.0) 57.5(0.0) 89.9(1.8) 70.3(8.6) 78.9(3.7) 164(0.8) 9.3 22.3
PGS 65.8(1.6) 57.4(0.3) 63.2(0.0) 39.9(0.0) 36.7(0.6) 162(0.7) 10.5 8.9

Match-Opt 65.1(0.4) 55.9(0.1) 99.8(0.0) 97.2(0.0) 10.9(0.4) 202(0.5) 7.5 26.6
RGD 67.1(0.2) 58.4(0.2) 99.8(0.0) 97.3(0.0) 88.4(3.8) 76.2(0.7) 5.0 19.3

COMs 66.6(1.0) 57.4(0.2) 81.6(4.9) 3.8(0.9) 99.5(25.8) 21.1(23.5) 10.7 -6.9
RoMA 21.3(0.3) 3.8(0.0) 5.9(0.2) 1.8(0.0) 49.4(6.1) 14.8(0.6) 17.2 -45.8
ROMO 62.1(0.8) 57.1(0.1) 53.9(0.6) 48.7(0.1) 51.7(31.7) 22.1(5.5) 11.5 -12.7

GAMBO 74.0(0.6) 74.3(0.4) 99.3(0.1) 93.3(0.4) 193(1.2) 17.7(3.5) 5.5 30.0

DynAMO-Grad. 66.9(6.9) 68.2(10.8) 77.2(21.5) 93.0(1.2) 129(55.3) 104(56.1) 6.8 27.8
DynAMO-BO-qUCB 74.3(0.5) 74.4(0.6) 99.3(0.1) 93.5(0.6) 211(22.8) 175(44.7) 2.8 59.4

DynAMO-CMA-ES 73.6(0.6) 73.1(3.1) 72.0(3.1) 94.0(0.5) 97.8(13.2) 292(83.5) 5.2 55.2

Minimum Novelty@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 0.0 0.0 0.0 0.0 0.0 0.0 — —

Grad. 21.2(3.0) 51.7(2.9) 97.4(3.9) 79.5(19.7) 95(0.7) 102.2(6.1) 5.8 74.5
BO-qUCB 21.6(0.3) 51.7(0.2) 97.9(0.4) 85.3(1.1) 93.8(0.6) 98.8(1.1) 6.0 74.8

CMA-ES 16.5(2.1) 47.8(1.0) 96.5(0.7) 73.0(18.0) 100(0.0) 100(0.0) 7.8 72.3
BONET 94.6(1.3) 38.8(0.1) 41.2(0.3) 10.3(0.1) 1.3(0.0) 1.1(0.0) 14.7 31.2
DDOM 11.1(0.4) 38.6(0.1) 96.5(0.9) 94.2(0.1) 98.0(0.1) 100(0.0) 9.3 73.1

ExPT 11.1(1.6) 39.0(0.7) 54.2(2.0) 15.6(1.2) 69.8(6.8) 3.5(0.9) 15.2 32.2
MINs 12.2(0.4) 38.3(0.2) 48.7(2.9) 22.1(1.7) 6.1(1.1) 0.6(0.1) 16.5 21.3
GTG 13.8(0.0) 37.8(0.0) 99.3(0.0) 99.4(0.0) 67.7(0.0) 0.2(0.0) 10.5 53.0

Tri-Mentoring 13.9(0.0) 31.8(0.0) 74.7(0.0) 75.5(0.0) 44.0(0.0) 64.3(0.0) 14.3 50.7
ICT 19.3(1.2) 31.7(0.1) 70.8(0.4) 75.6(0.0) 46.2(0.4) 66.2(0.7) 13.2 51.6
PGS 11.5(0.4) 33.1(1.8) 16.0(0.0) 15.8(0.0) 45.0(0.2) 74.8(1.1) 16.3 32.7

Match-Opt 12.1(0.5) 40.0(0.1) 98.5(0.1) 94.9(0.1) 91.9(0.1) 85.8(2.6) 8.7 70.5
RGD 12.3(0.5) 39.0(0.2) 98.6(0.1) 94.2(0.1) 90.4(0.3) 90.5(2.3) 8.5 70.9

COMs 10.9(0.3) 31.7(0.8) 52.4(11.0) 13.7(1.1) 99.6(0.3) 100(0.0) 14.0 51.4
RoMA 18.3(0.5) 40.1(0.2) 18.9(0.2) 95.3(0.0) 47.6(2.4) 5.1(0.2) 11.0 37.6
ROMO 16.1(0.5) 32.9(0.1) 5.0(0.7) 23.1(0.0) 78.5(0.5) 153.3(0.4) 12.3 51.5

GAMBO 15.4(0.3) 51.8(0.2) 97.8(0.3) 84.9(0.9) 85.1(0.4) 14.3(1.5) 8.8 58.2

DynAMO-Grad. 21.1(1.1) 52.2(1.3) 98.6(1.5) 85.8(1.0) 95.0(0.4) 107.2(6.7) 3.8 76.7
DynAMO-BO-qUCB 21.4(0.5) 51.7(0.2) 97.1(0.5) 85.3(1.1) 94.7(0.2) 109(4.5) 5.3 76.6

DynAMO-CMA-ES 12.9(0.8) 48.0(1.6) 96.7(3.5) 81.8(13.4) 94.5(0.7) 112(7.8) 7.8 74.3
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Table A8. Comparison of Design Diversity Against Model-Free Optimization Methods (cont.). We evaluate DynAMO and other
model-based optimization methods against model-free optimization methods. We report the L1 coverage score achieved by the 128
evaluated designs. Metrics are reported mean(95% confidence interval) across 10 random seeds, where higher is better. All metrics are multiplied
by 100 for easier legibility. Bolded entries indicate average scores with an overlapping 95% confidence interval to the best performing
method. Bolded (resp., Underlined) Rank and Optimality Gap (Opt. Gap) metrics indicate the best (resp., second best) for a given
backbone optimizer.

L1 Coverage@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 0.42 0.31 1.42 0.68 6.26 0.58 — —

Grad. 0.16(0.10) 0.20(0.13) 0.21(0.10) 0.42(0.18) 0.00(0.00) 0.00(0.00) 19.5 -1.44
BO-qUCB 0.40(0.02) 0.54(0.01) 2.40(0.05) 2.52(0.07) 7.79(0.04) 6.64(0.09) 4.3 1.77
CMA-ES 0.33(0.05) 0.48(0.04) 2.18(0.04) 1.82(0.12) 3.26(1.42) 3.78(1.36) 8.5 0.36
BONET 0.11(0.00) 0.22(0.00) 0.72(0.02) 0.54(0.00) 0.03(0.00) 0.07(0.00) 17.8 -1.33
DDOM 0.43(0.01) 0.29(0.00) 0.68(0.05) 0.85(0.02) 9.24(0.23) 0.66(0.11) 10.8 0.41

ExPT 0.22(0.05) 0.25(0.01) 0.60(0.03) 0.29(0.03) 0.45(0.01) 0.10(0.00) 18.0 -1.29
MINs 0.43(0.02) 0.30(0.01) 1.32(0.03) 0.70(0.03) 0.86(0.13) 0.43(0.01) 11.0 -0.94
GTG 0.42(0.00) 0.30(0.00) 1.61(0.00) 1.96(0.00) 8.77(0.00) 0.31(0.00) 8.7 0.62

Tri-Mentoring 0.48(0.00) 0.30(0.00) 1.08(0.00) 0.53(0.00) 1.94(0.00) 3.79(0.00) 10.8 -0.26
ICT 0.34(0.02) 0.30(0.00) 0.90(0.02) 0.80(0.05) 0.56(0.01) 3.73(0.02) 12.8 -0.51
PGS 0.45(0.04) 0.30(0.01) 1.40(0.00) 0.60(0.00) 1.92(0.00) 3.66(0.04) 10.0 -0.22

Match-Opt 0.41(0.01) 0.32(0.01) 0.69(0.01) 0.86(0.02) 5.26(0.02) 5.22(0.07) 8.7 0.52
RGD 0.42(0.01) 0.33(0.00) 0.69(0.01) 0.86(0.02) 4.08(0.13) 4.90(0.07) 9.0 0.27

COMs 0.49(0.02) 0.31(0.00) 1.11(0.16) 0.61(0.09) 0.37(0.11) 0.81(0.76) 11.0 -1.00
RoMA 0.28(0.00) 0.46(0.01) 0.41(0.02) 0.42(0.01) 1.87(0.06) 0.79(0.01) 14.8 -0.91
ROMO 0.33(0.02) 0.30(0.00) 1.31(0.02) 0.62(0.02) 0.34(0.16) 6.13(2.81) 11.8 -0.11

GAMBO 0.40(0.03) 0.55(0.01) 2.38(0.10) 2.53(0.05) 7.45(0.01) 1.29(0.08) 6.3 0.82

DynAMO-Grad. 0.36(0.04) 0.53(0.06) 1.46(0.38) 2.50(0.06) 6.47(1.24) 5.85(1.35) 6.7 1.25
DynAMO-BO-qUCB 0.40(0.03) 0.55(0.01) 2.47(0.07) 2.54(0.04) 7.88(0.03) 7.80(0.23) 2.8 2.00

DynAMO-CMA-ES 0.40(0.03) 0.56(0.01) 1.82(0.72) 2.54(0.05) 4.75(2.16) 3.29(1.56) 6.3 0.62
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Table A9. Computational Requirements of DynAMO. To evaluate the computational cost of augmenting an MBO problem with
DynAMO, we compare both the total runtime and maximum GPU utilization of vanilla optimizers with that of their DynAMO equivalents
on six MBO problems. Runtime is reported mean(95% confidence interval) in seconds across 10 random seeds. Maximum GPU utilization is
reported for a single experimental run. The average metric across all six tasks is reported in the final column.

Runtime (seconds) TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Average ↓

Grad. 58.1(24.6) 240.0(11.1) 104.7(8.3) 458.7(28.2) 24.7(3.7) 10357(2044) 1874
DynAMO-Grad. 517.0(68.7) 2686(868.3) 297.0(100.0) 1091(243.1) 917.5(554.4) 13302(4301) 3135

Adam 26.1(0.5) 249.2(17.5) 75.3(13.2) 748.2(34.6) 24.4(2.6) 8797(1333) 1653
DynAMO-Adam 646.7(185.6) 616.6(106.1) 709.6(410.3) 953.7(140.9) 6941(205) 24444(2466) 5719

BO-qEI 182.4(51.6) 339.6(61.7) 494.3(34.2) 1548(56.4) 567.8(119.3) 3196(158.4) 838.0
DynAMO-BO-qEI 449.9(111.0) 952.8(140.6) 494.4(161.8) 1307(232.1) 1122(150.0) 5973(1245) 1717

BO-qUCB 186.9(36.4) 414.4(73.7) 289.8(80.0) 589.8(50.2) 524.9(232.5) 8424(1336) 1738
DynAMO-BO-qUCB 408.4(66.3) 1531(146.6) 932.3(323.1) 1525(357.1) 2100(1547) 11648(5091) 3024

CMA-ES 109.4(66.0) 130.0(3.2) 66.0(1.4) 604.1(12.4) 20.0(0.3) 14027(2651) 2493
DynAMO-CMA-ES 10744(7904) 9551(2717) 751.3(381.0) 8088(1533) 4796(445) 13727(5870) 7943

CoSyNE 133.9(81.3) 187.0(1.7) 110.3(2.6) 716.8(30.0) 25.8(0.5) 9876.8(735.3) 1842
DynAMO-CoSyNE 8823(3370) 11388(2375) 1374(584.6) 8002(1802) 6261(3202) 17147(3856) 8832

Max GPU Utilization (MB) TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Average ↓
Grad. 307.9 786.8 503.9 1920 133.6 131.7 630.7

DynAMO-Grad. 374.1 994.8 503.9 1920 208.3 160.1 693.6

Adam 307.9 786.8 503.9 1920 133.6 131.7 630.7
DynAMO-Adam 374.4 995.0 503.9 1920 208.4 160.1 693.7

BO-qEI 307.9 786.8 519.1 1920 372.6 544.1 741.8
DynAMO-BO-qEI 371.4 789.0 503.9 1920 479.4 445.2 751.6

BO-qUCB 597.3 786.8 642.3 1920 712.4 879.5 923.1
DynAMO-BO-qUCB 516.2 786.8 646.9 1920 718.0 406.1 832.4

CMA-ES 307.9 786.8 503.9 1920 133.6 131.7 630.7
DynAMO-CMA-ES 307.9 786.8 503.9 1920 133.6 131.7 630.7

CoSyNE 307.9 786.8 503.9 1920 133.6 131.7 630.7
DynAMO-CoSyNE 307.9 786.8 503.9 1920 133.6 131.7 630.7
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Table A10. Pairwise Diversity as a Predictor for Downstream Secondary Exploration. We evaluate the pairwise diversity achieved
by 128 proposed designs (PD@128); and also the variance of the distribution of oracle secondary objective values of those same 128
proposed designs. Note that the secondary objectives are not explicitly optimized against in the offline MBO setting. Metrics are reported
mean(95% confidence interval) across 10 random seeds, where higher is better (i.e., more diverse designs and better capture of the range of
secondary objective values). All metrics are multiplied by 100 for easier legibility.

Vehicle Safety Welded Beam UTR

Method PD@128 Acceleration Intrusion PD@128 Deflection PD@128 GC Content

Grad. 0.0(0.0) 0.1(0.0) 0.0(0.0) 0.0(0.0) 0.1(0.3) 7.8(8.8) 0.7(0.7)

DynAMO-Grad. 2.5(0.2) 12.6(0.5) 10.7(0.9) 19.6(33.3) 31.7(9.3) 68.2(10.8) 3.4(0.7)

Adam 0.0(0.0) 0.1(0.1) 0.1(0.1) 0.0(0.0) 1.5(1.6) 11.0(12.1) 4.0(5.9)

DynAMO-Adam 2.2(0.1) 12.6(0.6) 10.3(1.0) 11.1(3.5) 49.5(21.3) 72.3(3.4) 14.0(3.1)

CMA-ES 0.0(0.0) 0.5(0.2) 0.4(0.2) 0.1(0.1) 0.0(0.0) 44.6(15.9) 36.5(8.3)

DynAMO-CMA-ES 8.6(6.0) 28.5(10.8) 30.8(20.0) 43.9(6.0) 19.8(18.8) 73.1(3.1) 42.0(2.3)

CoSyNE 0.0(0.0) 0.6(0.1) 0.5(0.1) 0.1(0.0) 16.8(6.5) 12.7(9.8) 1.6(2.5)

DynAMO-CoSyNE 1.9(2.7) 4.0(4.2) 2.2(2.6) 55.1(65.3) 65.8(13.2) 20.3(2.3) 1.0(1.3)

BO-qEI 1.3(0.1) 7.5(0.4) 7.2(0.4) 46.3(2.0) 8.0(0.3) 73.8(0.5) 44.8(0.8)

DynAMO-BO-qEI 2.4(0.1) 13.3(0.2) 10.5(0.2) 78.1(18.0) 26.6(2.1) 74.6(0.3) 45.7(0.6)

BO-qUCB 1.2(0.1) 5.7(0.4) 6.1(0.4) 46.5(7.5) 7.8(0.2) 74.3(0.2) 45.3(0.4)

DynAMO-BO-qUCB 2.8(0.1) 12.3(0.2) 10.9(0.1) 63.9(4.2) 29.0(1.9) 74.4(0.6) 45.2(0.5)
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E. Ablation Experiments
E.1. Sampling Batch Size Ablation

Recall from (7) that a key component of our DynAMO algorithm is the estimation of the empirical KL-divergence between
the τ -weighted probability distribution of real designs from the offline dataset and the distribution of sampled designs from
the generative policy. The latter distribution of generated designs is fundamentally dependent on our sampling batch size b
in Algorithm 1—the larger the batch size per sampling step, the better our empirical estimate of the KL divergence between
our two distributions. However, as the batch size increases, there also exists a greater likelihood of significant regret in the
sampling policy when compared to the optimal sequential policy (Gonzalez et al., 2016; Wilson et al., 2017). To better
evaluate the impact of the sampling batch size parameter b DynAMO, we experimentally evaluate sampling batch size values
logarithmically ranging between 2 ≤ b ≤ 512. We use a BO-qEI sampling policy with the DynAMO-modified objective
on the TFBind8 optimization task, and evaluate both the Best@128 oracle score and Pairwise Diversity of the 128 final
proposed design candidates across 10 random seeds.

Our ablation experiment results are shown in Figure A3. We find that the Best@128 design quality scores do not vary
significantly as a function of the batch sizes that were evaluated; however, there exists an optimal batch size (b = 64 in our
experiments) that maximizes the diversity of designs according to the pairwise diversity metric.
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Figure A3. Sampling Batch Size Ablation. We vary the sampling batch size b in Algorithm 1 between 2 and 512, and report both the
(left) Best@128 Oracle Score and (right) Pairwise Diversity score for 128 final designs proposed by a DynAMO-BO-qEI policy on the
TFBind8 optimization task. We plot the mean ± 95% confidence interval over 10 random seeds.

E.2. Adversarial Critic Feedback and Distribution Matching Ablation

Recall that instead of solving the original MBO optimization problem in (3), DynAMO leverages weak Lagrangian duality
to solve the constrained optimization problem in (7)—copied below for convenience:

max
π∈Π

J(π) = Eqπ [rθ(x)]−
β

τ
DKL(q

π||pτD)

s.t. Ex∼pτ
D(x)c

∗(x)− Ex∼qπ(x)c
∗(x) ≤W0

(85)

We can think of this problem formulation as as the fusion of two separable components: (1) Adversarial feedback via a
source-critic model c∗(x) to prevent out-of-distribution evaluation of rθ(x); and (2) Diversity (via KL-divergence-based
distribution matching with a diverse reference distribution pτD) in Model-based Optimization. These two components together
form the foundation of DynAMO presented in Algorithm 1. To better understand how each of these two components affects
the performance of DynAMO-augmented optimizers, we can separate these two components and study them individually.

AMO is our ablation method that solves the related optimization problem

max
π∈Π

Eqπ [rθ(x)]

s.t. Ex∼pτ
D(x)c

∗(x)− Ex∼qπ(x)c
∗(x) ≤W0

(86)

instead of (85). Note that AMO solves the same constrained optimization problem as DynAMO in the setting where β = 0.
We note that our derivation of the Lagrange dual function of (7) in Appendix A is invalid when β = 0, and so we cannot
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exactly solve (86) using the same methodology presented in Algorithm 1. Instead, we leverage the adaptive Source
Critic Regularization (aSCR) algorithm from Yao et al. (2024) to approximate a solution to (86) in the Lagrangian dual
space—we use their publicly available implementation of aSCR at github.com/michael-s-yao/gabo and defer to
their work for additional discussion regarding the specific implementation details of aSCR.

DynMO is our separate ablation method that solves the related (unconstrained) optimization problem

max
π∈Π

J(π) = Eqπ [rθ(x)]−
β

τ
DKL(q

π||pτD) (87)

instead of (85). To implement DynMO empirically, we modify Algorithm 1 by ignoring the subroutine to solve for the
globally optimal Lagrange multiplier λ using (13), and instead fixing λ = 0 for the entire optimization process to effectively
remove any contributions from the adversarial source critic c∗(x). All other implementation details were kept constant.

We compare DynAMO with AMO and DynMO in Supplementary Tables A11-A13. Firstly, we note that DynAMO and
AMO are competitive in proposing the high-quality designs according to the Best@128 oracle scores, alternating between
having the highest and second best Rank and Optimality Gaps across all six tasks when compared with DynMO and the
baseline optimizer for all optimizers evaluated. This makes sense, as the purpose of the adversarial source critic-dependent
constraint in (85) and (86) is to minimize out-of-distribution evaluation of rθ(x) during optimization—as a result, the
forward surrogate model rθ(x) can provide a better estimate of the quality of sampled designs, leading to higher quality
designs according to the true oracle function r(x). Separately, we find that DynMO and DynAMO also perform similarly
in terms of the all 3 diversity metrics evaluated. However, we find that DynMO (resp., AMO) struggles on proposing
high-quality (resp., diverse) sets of final designs. These experimental results collectively allow us to conclude that both
the adversarial source critic supervision and KL-divergence-based distribution matching are important for DynAMO
to propose both high-quality and diverse sets of designs.

E.3. β and τ Hyperparameter Ablation

Fundamentally, DynAMO relies on two important hyperparameters that define the constrained optimization problem in
(7): (1) the β hyperparameter dictates the relative weighting of the KL-divergence penalty relative to the original MBO
objective; and (2) the τ temperature hyperparameter describes the distribution of reference designs weighted according
to their oracle scores in the offline dataset. To better interrogate how these hyperparameters impact the performance of
DynAMO-augmented MBO optimizers, we (independently) ablate the values of both β and τ logarithmically between
0.01 ≤ β, τ ≤ 100. Similar to our experiments in Appendix E.1, we use a BO-qEI sampling policy with the DynAMO-
modified objective on the TFBind8 optimization task, and evaluate both the Best@128 oracle score and Pairwise Diversity
of the 128 final proposed design candidates across 10 random seeds.

Our experimental results for our β ablation study are shown in Supplementary Figure A4. Firstly, as the strength of the
KL-divergence term β increases, the diversity of proposed designs (according to the Pairwise Diversity metric) increases
roughly proportional to the logarithm of β (Supplementary Fig. A4). This is expected: as the distribution matching
objective becomes more important relative to the rθ(x) forward surrogate model, the generative policy is rewarded for
finding an increasingly diverse set of designs that matches the τ -weighted reference distribution. Similarly, we found that
for sufficiently large values of β (i.e., β ≥ 0.03 in our particular experimental setting), the quality of designs (according
to the Best@128 oracle score) decreases due to the inherent trade-off between design quality (according to rθ(x)) and
diversity (according to the KL-divergence in (7)). Interestingly, for small values of β (i.e., β ≤ 0.03) the quality of designs
actually increases with β. This is because in this regime, naı̈vely optimizing against primarily rθ(x) leads to the policy
exploiting suboptimal regions of the design space—penalizing the optimization objective with a ‘small amount of’ the
diversity objective helps the policy explore new regions of the design space that can contain more optimal designs according
to the hidden oracle objective r(x).

Separately, the experimental results for our τ ablation study are shown in Supplementary Figure A5. (Note that in these
experiments, we fix β = τ so that the ratio β/τ in Algorithm 1 remains constant.) As the value of τ increases, the diversity
of designs captured by the reference τ -weighted probability distribution decreases and approaches a (potential mixture of)
Dirac delta functions with non-zero support at the optimal designs in the offline dataset. As a result, distribution matching
via the KL-divergence objective no longer encourages the generative policy to find a diverse sample of designs, as the
reference distribution is no longer diverse itself for τ ≫ 1. Similar to our β ablation study, we find that there is a unique
exploration-exploitation trade-off phenomenon according to the Best@128 oracle score as a function of τ : in our particular
experimental setting, we find that for τ ≤ 1, the Best@128 oracle score (modestly) increases, while for τ ≥ 1, the score
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Figure A4. β Hyperparameter Ablation. We vary the value of the KL-divergence regularization strength hyperparameter β in Algorithm
1 between 0.01 and 100, and report both the (left) Best@128 Oracle Score and (right) Pairwise Diversity score for 128 final design
candidates proposed by a DynAMO-BO-qEI policy on the TFBind8 optimization task. We plot the mean ± 95% confidence interval over
10 random seeds in both plots. The dotted horizontal line corresponds to the β = 0 experimental mean score, which could not be plotted
as a point on the logarithmic x-axis.
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Figure A5. τ Temperature Hyperparameter Ablation. We vary the value of the temperature hyperparameter τ in Algorithm 1 between
0.01 and 100, and report both the (left) Best@128 Oracle Score and (right) Pairwise Diversity score for 128 final designs proposed by a
DynAMO-BO-qEI policy on the TFBind8 optimization task. We plot the mean ± 95% confidence interval over 10 random seeds.

decreases. For τ ≈ 1, we find that the generative policy is encouraged to match a sample of high-quality samples that is
simultaneously diverse enough for the generative policy to explore new regions of the design space.

E.4. Oracle Evaluation Budget Ablation

Recall that in our experiments, we evaluate DynAMO and baseline methods using an oracle evaluation budget of k = 128
samples consistent with prior work (Mashkaria et al., 2023; Yu et al., 2021; Trabucco et al., 2021; Chen et al., 2023c; Yao
et al., 2024). More specifically, this means that any offline optimization method proposes exactly k design candidates that
are evaluated by the hidden oracle function r(x) as the final step for experimental evaluation. In Table 1, we reported both
the Best@k and Pairwise Diversity@k metrics, where Best@k represents the maximum oracle score achieved by the k final
design candidates; and Pairwise Diversity@k represents the pairwise diversity averaged over the k candidates.

However, in different experimental settings we might have a different evaluation budget available—larger values of k are
more costly but enable us to evaluate more designs that are potentially promising, whereas smaller, more practical budgets
may preclude the evaluation of optimal designs according to r(x). In this section, we evaluate the performance of DynAMO
as a function of the allowed evaluation budget 16 ≤ k ≤ 1024. We compare DynAMO-augmented optimizers against the
corresponding vanilla backbone optimization method on the TFBind8 task, and plot the mean and 95% confidence interval
Best@k and Pairwise Diversity@k metrics as a function of k in Supplementary Figure A6.
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As expected, the Best@k oracle score is monotonically non-decreasing as a function of k for all DynAMO-enhanced and
baseline optimizers (Supplementary Fig. A6). We also find that in the limit of k ≫ 1, the DynAMO optimizers are able
to propose best designs that are more optimal than the designs by their baseline counterparts for first-order, evolutionary,
and Bayesian optimization algorithms. Furthermore, DynAMO achieves a mean Best@k score non-inferior to that of the
baseline method for all k ≥ 128 across all the optimization methods evaluated on the TFBind8 task.

Separately, we find that the Pairwise Diversity of the k designs proposed by DynAMO-augmented first-order optimizers (i.e.,
DynAMO-Grad. and DynAMO-Adam) increases as a function of k. This makes sense, as first-order methods generally
produce optimization trajectories that are simple curves in the design space as a function of the acquisition step. As a
result, increasing k can be informally thought of as increasing the fraction of the trajectory curve connecting the initial
and final samples during the acquisition process. In contrast, we find that the Pairwise Diversity decreases after a certain
optimizer-dependent threshold k for evolutionary and Bayesian optimization-based backbone optimizers. This is because as
both classes of optimization methods do not necessarily sample repeatedly from any given region of the input space; as a
result, the pairwise diversity between any two sampled points may decrease as more of the design space has been explored
as a function of k. Finally, we found that leveraging DynAMO improves the Pairwise Diversity of designs compared to the
baseline objective for almost all optimizers and values of k assessed, as expected.

Altogether, these results suggest that DynAMO helps optimization methods discover both high-quality and diverse sets of
designs across a wide range of oracle evaluation budgets.

E.5. Optimization Initialization Ablation

In Algorithm 1, we initialize DynAMO by sampling the initial batch of b = 64 designs according to a pseudo-random
Sobol sequence as described in Appendix B. This initial batch of designs is used as the ‘starting point’ in our first-order
optimization experiments. However, most first-order offline MBO algorithms reported in prior work (Trabucco et al., 2021;
Yu et al., 2021) do not follow this same initialization schema. Instead, they perform a top-k initialization strategy where the
top k = b designs in the dataset with the highest associated reward score constitute the initial batch of designs. First-order
optimization is then performed on these initial top-k designs. However, it is possible that for many MBO problems, these
top-k initial designs constitute only a small ‘area’ of the overall search space, resulting in a lower diversity of final designs
when compared to Sobol sequence initialization.

To interrogate whether the gains in diversity of designs obtained with DynAMO are due to our Sobol sequence-based
initialization strategy, we evaluated baseline Gradient Ascent, COMs, RoMA, ROMO, GAMBO with Gradient Ascent, and
DynAMO with Gradient Ascent using both Sobol sequence-based and top-k-based initialization strategies. All algorithms
were initialized using k = b = 64 samples and used Gradient Ascent as the backbone optimizer (except for RoMA from Yu
et al. (2021), which used Adam Ascent in line with the original method proposed by the authors).

Our results are shown in Supplementary Table A14. Empirically, we found that the relative performance of Sobol
sequence-initialized and Top-k-initialized optimizer largely depends on the specific algorithm; for example, COMs and
RoMA strongly benefit from using Top-k initialization in obtaining high-quality designs. This makes sense, as the original
authors for both methods use Top-k initialization for all their experiments. In contrast, the quality of designs proposed by
GAMBO and DynAMO is better with Sobol sequence initialization.

While DynAMO using Sobol sequence initialization does indeed outperform the Top-k-initialized counterpart across all
tasks, both initialization strategies consistently propose batches of designs with competitive pairwise diversity scores
when compared to other first-order optimization algorithms. This suggests that DynAMO is able to provide a significant
advantage in proposing diverse designs that extend beyond the choice of initialization strategy alone. Separately for the
other first-order optimization methods assessed, there is no clear advantage in obtaining diverse designs when using Sobol
sequence initialization according to the pairwise diversity metric across all tasks. In summary, these results suggest that
DynAMO is able to propose both high-quality and diverse sets of designs with performance exceeding what is possible with
a switching to a Sobol sequence initialization alone.
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Table A11. Quality of Design Candidates in Ablation of Adversarial Critic Feedback (AMO) and Diversity in (DynMO) Model-
based Optimization. We evaluate our method (1) with the KL-divergence penalized-MBO objective as in (11) only (DynMO); (2)
with the adversarial source critic-dependent constraint as introduced by Yao et al. (2024) only (AMO); and (3) with both algorithmic
components as in DynAMO described in Algorithm 1. We report the Best@128 (resp., Median@128) oracle score achieved by the 128
evaluated designs in the top (resp., bottom) table. Metrics are reported mean(95% confidence interval) across 10 random seeds, where higher is
better. Bolded entries indicate average scores with an overlapping 95% confidence interval to the best performing method. Bolded (resp.,
Underlined) Rank and Optimality Gap (Opt. Gap) metrics indicate the best (resp., second best) for a given backbone optimizer.

Best@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 43.9 59.4 60.5 88.9 40.0 88.4 — —

Grad. 90.0(4.3) 80.9(12.1) 60.2(8.9) 88.8(4.0) 36.0(6.8) 65.6(14.5) 3.2 6.8
AMO-Grad. 73.1(12.8) 77.1(9.6) 64.4(1.5) 92.8(8.0) 46.0(6.8) 90.6(14.5) 1.8 10.5

DynMO-Grad. 61.3(9.7) 63.6(11.6) 59.8(8.6) 89.3(5.6) 36.3(6.9) 70.4(12.0) 3.5 0.0
DynAMO-Grad. 90.3(4.7) 86.2(0.0) 64.4(2.5) 91.2(0.0) 44.2(7.8) 89.8(3.2) 1.5 14.2

Adam 62.9(13.0) 69.7(10.5) 62.9(1.9) 92.3(8.9) 37.8(6.3) 58.4(18.5) 2.8 0.5
AMO-Adam 94.0(2.2) 60.0(12.6) 60.9(8.7) 91.4(6.3) 37.8(6.3) 88.4(13.8) 2.8 8.6

DynMO-Adam 66.6(12.9) 68.7(10.1) 63.7(0.4) 92.0(8.3) 38.6(5.7) 66.5(14.6) 2.5 2.5
DynAMO-Adam 95.2(1.7) 86.2(0.0) 65.2(1.1) 91.2(0.0) 45.5(5.7) 84.9(12.0) 1.7 14.5

BO-qEI 87.3(5.8) 86.2(0.0) 65.4(1.0) 117(3.1) 53.1(3.3) 84.4(0.9) 3.5 18.7
AMO-BO-qEI 94.1(1.9) 86.3(0.2) 66.8(0.7) 121(0.0) 50.8(3.3) 86.7(1.1) 1.5 20.8

DynMO-BO-qEI 93.2(3.3) 86.2(0.0) 66.0(0.8) 121(0.0) 49.6(2.6) 85.9(1.0) 2.7 20.2
DynAMO-BO-qEI 91.9(4.4) 86.2(0.0) 67.0(1.3) 121(0.0) 53.5(5.0) 85.5(1.1) 1.8 20.7

BO-qUCB 88.1(5.3) 86.2(0.1) 66.4(0.7) 121(1.3) 51.3(3.6) 84.5(0.8) 2.2 19.4
AMO-BO-qUCB 95.4(1.6) 86.2(0.0) 66.3(1.1) 121(1.3) 50.2(2.8) 83.6(1.0) 2.7 20.2

DynMO-BO-qUCB 93.6(3.0) 86.2(0.1) 66.0(0.9) 121(0.0) 49.9(3.0) 83.9(1.1) 2.7 20.0
DynAMO-BO-qUCB 95.1(1.9) 86.2(0.0) 66.7(1.5) 121(0.0) 48.1(4.0) 86.9(4.5) 2.2 20.5

Baseline-CMA-ES 87.6(8.3) 86.2(0.0) 66.1(1.0) 106(5.9) 49.0(1.0) 72.2(0.1) 2.8 14.4
AMO-CMA-ES 90.4(4.4) 86.2(0.0) 66.2(1.6) 121(0.0) 45.2(3.5) 72.2(0.1) 1.8 16.7

DynMO-CMA-ES 85.2(10.1) 86.2(0.0) 65.0(0.6) 104(7.8) 51.6(2.0) 83.6(3.1) 2.7 15.8
DynAMO-CMA-ES 89.8(3.6) 85.7(5.8) 63.9(0.9) 117(6.7) 50.6(4.8) 78.5(5.5) 2.7 17.5

CoSyNE 61.7(10.0) 57.3(9.6) 63.6(0.4) 94.8(10.1) 37.0(4.1) 62.7(13.1) 3.5 -0.6
AMO-CoSyNE 79.8(10.6) 68.0(12.5) 64.2(0.9) 99.4(15.0) 37.0(4.1) 62.7(13.1) 2.2 5.0

DynMO-CoSyNE 63.6(10.1) 59.3(10.8) 63.9(1.6) 90.1(12.7) 37.0(4.1) 62.7(13.1) 3.0 -0.7
DynAMO-CoSyNE 91.3(4.4) 77.2(11.6) 63.9(0.9) 114(7.0) 40.6(8.6) 67.5(14.1) 1.2 12.3

Median@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 33.7 42.8 50.9 87.6 6.7 77.8 — —

Grad. 58.1(6.1) 58.6(13.1) 59.3(8.6) 85.3(7.7) 36.0(6.7) 65.1(14.4) 3.2 10.5
AMO-Grad. 63.8(13.7) 75.3(9.9) 60.1(3.3) 91.6(11.2) 46.0(6.7) 90.1(14.4) 1.2 21.2

DynMO-Grad. 50.5(6.5) 58.6(13.1) 59.7(8.7) 85.1(8.1) 36.3(6.9) 70.0(12.0) 3.0 10.1
DynAMO-Grad. 47.0(2.8) 69.8(6.0) 61.9(2.2) 85.9(0.4) 23.4(8.5) 68.7(12.1) 2.7 9.5

Adam 54.7(8.8) 60.4(12.7) 59.2(8.6) 87.9(10.0) 37.4(6.2) 56.8(19.8) 2.3 9.5
AMO-Adam 49.5(8.9) 55.7(12.7) 57.7(9.1) 84.3(9.6) 37.4(6.2) 87.8(4.3) 3.0 12.1

DynMO-Adam 54.0(9.9) 60.5(12.6) 59.3(8.6) 85.9(10.8) 37.7(6.4) 63.6(15.6) 2.2 10.2
DynAMO-Adam 47.7(3.0) 69.0(5.2) 62.4(1.9) 86.4(0.6) 23.0(6.0) 65.6(14.1) 2.3 9.1

BO-qEI 48.5(1.5) 59.9(2.0) 63.3(0.0) 86.7(0.6) 28.7(1.8) 72.4(1.8) 2.5 10.0
AMO-BO-qEI 46.4(1.8) 63.4(3.3) 63.3(0.0) 86.3(0.5) 28.9(1.1) 79.1(0.7) 2.2 11.3

DynMO-BO-qEI 50.5(1.5) 61.1(2.8) 63.3(0.0) 86.4(0.7) 28.4(0.7) 79.1(0.9) 2.3 11.5
DynAMO-BO-qEI 51.5(0.9) 65.6(3.1) 63.3(0.0) 86.7(0.6) 23.5(2.4) 77.0(0.7) 2.0 11.3

BO-qUCB 50.3(1.8) 62.1(3.4) 63.3(0.0) 86.6(0.6) 31.7(1.2) 74.4(0.6) 1.7 11.5
AMO-BO-qUCB 47.9(1.9) 59.8(1.2) 63.3(0.0) 86.0(0.6) 33.1(2.9) 73.8(1.2) 2.8 10.7

DynMO-BO-qUCB 50.3(1.7) 60.1(2.2) 63.3(0.0) 86.4(0.6) 32.4(2.7) 74.3(0.8) 2.0 11.2
DynAMO-BO-qUCB 48.8(1.8) 65.9(3.7) 63.3(0.0) 86.5(0.5) 22.7(2.0) 50.4(14.6) 2.5 6.3

CMA-ES 50.7(2.7) 71.7(10.4) 63.3(0.0) 83.9(1.0) 37.9(0.7) 59.3(10.9) 2.2 11.2
AMO-CMA-ES 44.2(0.8) 72.7(3.8) 62.7(1.1) 86.1(0.5) 21.4(2.0) 54.9(9.6) 3.2 7.1

DynMO-CMA-ES 50.7(2.7) 75.2(9.1) 63.3(0.0) 82.5(1.2) 38.7(3.9) 65.8(9.1) 1.7 12.8
DynAMO-CMA-ES 45.3(2.4) 65.8(8.9) 59.3(3.8) 99.0(12.1) 22.5(5.1) 60.6(15.0) 2.8 8.8

CoSyNE 55.3(8.0) 53.6(10.2) 60.8(3.2) 87.4(16.6) 36.6(4.4) 59.3(14.5) 2.5 8.9
AMO-CoSyNE 59.5(12.0) 63.5(11.2) 55.4(9.6) 84.2(17.2) 36.6(4.4) 59.3(14.5) 2.2 9.8

DynMO-CoSyNE 59.2(10.8) 55.6(8.2) 60.4(5.9) 87.9(12.5) 36.6(4.4) 59.3(14.5) 2.3 9.9
DynAMO-CoSyNE 53.8(11.0) 63.4(11.5) 59.3(3.8) 99.0(12.1) 20.5(5.8) 60.6(15.0) 2.5 9.5
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Table A12. Diversity of Design Candidates in Ablation of Adversarial Critic Feedback (AMO) and Diversity in (DynMO) Model-
based Optimization. We evaluate our method (1) with the KL-divergence penalized-MBO objective as in (11) only (DynMO); (2)
with the adversarial source critic-dependent constraint as introduced by Yao et al. (2024) only (AMO); and (3) with both algorithmic
components as in DynAMO described in Algorithm 1. We report the pairwise diversity (resp., minimum novelty) oracle score achieved
by the 128 evaluated designs in the top (resp., bottom) table. Metrics are reported mean(95% confidence interval) across 10 random seeds, where
higher is better. Bolded entries indicate average scores with an overlapping 95% confidence interval to the best performing method.
Bolded (resp., Underlined) Rank and Optimality Gap (Opt. Gap) metrics indicate the best (resp., second best) for a given optimizer.

Pairwise Diversity@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 65.9 57.3 60.0 36.7 66.0 85.7 — —

Grad. 12.5(8.0) 7.8(8.8) 7.9(7.8) 24.1(13.3) 0.0(0.0) 0.0(0.0) 3.0 -53.2
AMO-Grad. 17.3(12.8) 11.2(10.3) 6.9(7.7) 22.1(10.5) 0.0(0.0) 1.5(3.2) 2.7 -52.1

DynMO-Grad. 20.9(15.1) 3.0(3.2) 58.2(24.0) 13.5(8.6) 0.0(0.0) 0.0(0.0) 3.0 -46.0
DynAMO-Grad. 66.9(6.9) 68.2(10.8) 77.2(21.5) 93.0(1.2) 129(55.3) 104(56.1) 1.0 27.8

Adam 12.0(12.3) 11.0(12.1) 4.8(3.8) 16.8(12.4) 6.4(14.5) 6.2(14.0) 3.0 -52.4
AMO-Adam 15.1(11.2) 10.3(11.5) 12.1(11.3) 19.6(15.2) 0.3(0.8) 2.6(3.9) 3.0 -51.9

DynMO-Adam 13.1(11.4) 10.3(9.6) 57.0(26.0) 23.8(15.1) 6.4(14.5) 0.0(0.0) 2.8 -43.5
DynAMO-Adam 54.8(8.9) 72.3(3.4) 84.8(9.2) 89.9(5.3) 158(37.3) 126(57.3) 1.0 35.7

BO-qEI 73.7(0.6) 73.8(0.5) 99.3(0.1) 93.0(0.5) 190(0.8) 124(7.4) 3.7 47.1
AMO-BO-qEI 74.0(0.6) 74.3(0.4) 99.3(0.1) 93.3(0.4) 193(1.2) 17.7(3.5) 2.8 30.0

DynMO-BO-qEI 74.5(0.3) 74.3(0.6) 99.3(0.1) 93.3(0.7) 200(3.0) 135(11.2) 2.3 50.8
DynAMO-BO-qEI 74.8(0.2) 74.6(0.3) 99.4(0.1) 93.5(0.4) 198(1.9) 277(59.7) 1.2 74.2

BO-qUCB 73.9(0.5) 74.3(0.4) 99.4(0.1) 93.6(0.5) 198(10.3) 94.1(3.9) 2.5 43.5
AMO-BO-qUCB 74.0(0.5) 74.3(0.3) 99.3(0.1) 93.4(0.4) 190(9.3) 22.0(2.1) 3.7 30.3

DynMO-BO-qUCB 74.7(0.2) 74.3(0.4) 99.2(0.1) 93.6(0.5) 198(12.0) 92.6(3.8) 2.2 43.5
DynAMO-BO-qUCB 74.3(0.5) 74.4(0.6) 99.3(0.1) 93.5(0.6) 211(22.8) 175(44.7) 1.7 59.4

CMA-ES 47.2(11.2) 44.6(15.9) 93.5(2.0) 66.2(9.4) 12.8(0.6) 164(10.6) 2.3 9.5
AMO-CMA-ES 39.6(15.5) 53.4(8.4) 84.8(4.8) 61.3(14.6) 173(19.4) 59.9(19.6) 2.3 16.8

DynMO-CMA-ES 33.5(2.6) 11.1(1.1) 34.5(2.8) 4.5(5.0) 38.1(5.4) 14.4(1.2) 3.8 -39.3
DynAMO-CMA-ES 73.6(0.6) 73.1(3.1) 72.0(3.1) 94.0(0.5) 97.8(13.2) 292(83.5) 1.5 55.2

CoSyNE 5.6(5.0) 12.7(9.8) 28.2(11.3) 12.2(7.3) 0.0(0.0) 0.0(0.0) 2.8 -52.1
AMO-CoSyNE 5.2(5.7) 9.1(9.0) 28.4(15.7) 7.1(8.0) 0.0(0.0) 0.0(0.0) 3.7 -53.6

DynMO-CoSyNE 27.4(10.3) 13.0(11.8) 53.3(24.2) 18.1(13.8) 0.0(0.0) 0.0(0.0) 2.2 -43.3
DynAMO-CoSyNE 18.1(13.0) 20.3(2.3) 35.0(17.9) 22.8(11.9) 74.4(46.3) 77.0(35.9) 1.3 -20.7

Minimum Novelty@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 0.0 0.0 0.0 0.0 0.0 0.0 — —

Grad. 21.2(3.0) 51.7(2.9) 97.4(3.9) 79.5(19.7) 95.0(0.7) 102(6.1) 2.3 74.5
AMO-Grad. 14.0(2.0) 46.7(2.7) 96.8(3.9) 76.8(19.7) 83.8(6.8) 31.5(3.6) 3.8 58.3

DynMO-Grad. 21.9(3.0) 53.6(2.1) 93.1(6.6) 86.4(10.2) 95.0(0.7) 102(6.1) 1.8 75.4
DynAMO-Grad. 21.1(1.1) 52.2(1.3) 98.6(1.5) 85.8(1.0) 95.0(0.4) 107(6.7) 1.7 76.7

Adam 23.7(2.8) 51.1(3.5) 95.5(5.3) 79.3(21.2) 94.8(0.7) 103(6.3) 2.7 74.5
AMO-Adam 23.7(3.1) 51.3(3.4) 95.0(5.1) 80.0(20.6) 84.8(6.4) 27.3(3.4) 3.0 60.4

DynMO-Adam 22.9(2.3) 51.6(2.9) 99.2(0.6) 87.3(9.7) 94.7(0.7) 103(6.3) 1.8 76.4
DynAMO-Adam 14.7(1.9) 46.2(0.5) 98.7(1.2) 85.9(1.8) 94.9(0.4) 108(7.2) 2.3 74.7

BO-qEI 21.8(0.5) 51.5(0.3) 97.6(0.3) 85.4(1.5) 94.6(0.1) 106(2.9) 2.5 76.2
AMO-BO-qEI 15.4(0.3) 51.8(0.2) 97.8(0.3) 84.9(0.9) 85.1(0.4) 14.3(1.5) 3.3 58.2

DynMO-BO-qEI 20.4(0.4) 51.8(0.1) 97.7(0.3) 85.7(1.3) 94.4(0.5) 108(3.2) 2.2 76.4
DynAMO-BO-qEI 21.0(0.5) 51.9(0.2) 97.4(0.4) 85.2(0.9) 94.8(0.1) 126(14.6) 2.0 79.4

BO-qUCB 21.6(0.3) 51.7(0.2) 97.9(0.4) 85.3(1.1) 93.8(0.6) 98.8(1.1) 2.0 74.8
AMO-BO-qUCB 21.9(0.4) 51.7(0.3) 97.5(0.4) 85.2(1.0) 81.9(1.9) 25.9(1.4) 2.7 60.7

DynMO-BO-qUCB 20.7(0.4) 51.8(0.2) 97.1(0.5) 84.9(0.6) 93.2(1.4) 98.0(1.8) 3.2 74.3
DynMO-BO-qUCB 21.4(0.5) 51.7(0.2) 97.1(0.5) 85.3(1.1) 94.7(0.2) 109(4.5) 2.2 76.6

CMA-ES 16.5(2.1) 47.8(1.0) 96.5(0.7) 73.0(18.0) 100(0.0) 100(0.0) 2.3 72.3
AMO-CMA-ES 24.3(0.9) 53.3(1.4) 95.0(1.5) 72.5(23.6) 85.6(3.0) 41.5(2.0) 3.0 62.0

DynMO-CMA-ES 14.3(0.3) 46.1(0.4) 98.2(1.0) 83.3(1.0) 100(0.0) 100(0.0) 2.0 73.7
DynAMO-CMA-ES 12.9(0.8) 48.0(1.6) 96.7(3.5) 81.8(13.4) 94.5(0.7) 112(7.8) 2.3 74.3

CoSyNE 24.5(3.5) 49.7(3.1) 98.5(1.6) 86.6(12.7) 93.2(1.0) 91.9(2.0) 1.8 74.1
AMO-CoSyNE 22.8(2.8) 50.8(1.5) 90.8(14.2) 91.9(3.4) 86.0(3.3) 29.6(3.6) 2.5 62.0

DynMO-CoSyNE 19.3(5.5) 46.3(2.3) 93.4(3.7) 88.3(5.2) 85.7(3.2) 29.6(3.6) 3.2 60.4
DynAMO-CoSyNE 17.8(5.5) 48.4(2.3) 96.7(3.5) 80.2(12.9) 94.5(0.7) 112(7.8) 2.5 75.0
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Table A13. Diversity of Design Candidates in Ablation of Adversarial Critic Feedback (AMO) and Diversity in (DynMO) Model-
based Optimization (cont.). We evaluate our method (1) with the KL-divergence penalized-MBO objective as in (11) only (DynMO); (2)
with the adversarial source critic-dependent constraint as introduced by Yao et al. (2024) only (AMO); and (3) with both algorithmic
components as in DynAMO described in Algorithm 1. We report the L1 coverage score achieved by the 128 evaluated designs as
mean(95% confidence interval) across 10 random seeds, where higher is better. Bolded entries indicate average scores with an overlapping 95%
confidence interval to the best performing method. Bolded (resp., Underlined) Rank and Optimality Gap (Opt. Gap) metrics indicate the
best (resp., second best) for a given backbone optimizer.

L1 Coverage@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Rank ↓ Opt. Gap ↑
Dataset D 0.42 0.31 1.42 0.68 6.26 0.58 — —

Grad. 0.16(0.10) 0.20(0.13) 0.21(0.10) 0.42(0.18) 0.00(0.00) 0.00(0.00) 3.3 -1.44
AMO-Grad. 0.17(0.10) 0.24(0.13) 0.25(0.16) 0.37(0.11) 0.00(0.00) 0.09(0.14) 2.5 -1.42

DynMO-Grad. 0.20(0.13) 0.22(0.15) 1.23(0.63) 0.28(0.17) 0.00(0.00) 0.00(0.00) 2.8 -1.29
DynAMO-Grad. 0.36(0.04) 0.52(0.06) 1.46(0.38) 2.49(0.06) 6.47(1.24) 5.85(1.35) 1.0 1.25

Adam 0.11(0.06) 0.22(0.09) 0.23(0.15) 0.48(0.31) 0.27(0.55) 0.24(0.49) 2.8 -1.35
AMO-Adam 0.14(0.06) 0.22(0.10) 0.35(0.24) 0.50(0.34) 0.26(0.53) 0.09(0.12) 3.0 -1.35

DynMO-Adam 0.20(0.12) 0.21(0.15) 1.10(0.60) 0.45(0.29) 0.27(0.55) 0.03(0.00) 3.0 -1.23
DynAMO-Adam 0.33(0.05) 0.55(0.03) 1.44(0.39) 2.40(0.16) 7.06(0.73) 6.91(0.71) 1.0 1.50

BO-qEI 0.41(0.02) 0.55(0.01) 2.37(0.03) 2.11(0.15) 7.84(0.01) 6.61(0.33) 2.8 1.70
AMO-BO-qEI 0.40(0.03) 0.55(0.01) 2.38(0.10) 2.53(0.05) 7.45(0.01) 1.29(0.08) 3.7 0.82

DynMO-BO-qEI 0.40(0.02) 0.55(0.01) 2.42(0.05) 2.55(0.03) 7.83(0.02) 6.72(0.48) 2.3 1.80
DynAMO-BO-qEI 0.42(0.01) 0.56(0.01) 2.47(0.03) 2.54(0.03) 7.87(0.01) 7.92(0.04) 1.2 2.02

BO-qUCB 0.40(0.02) 0.54(0.01) 2.40(0.05) 2.52(0.07) 7.78(0.04) 6.64(0.09) 2.8 1.77
AMO-BO-qUCB 0.40(0.01) 0.56(0.01) 2.39(0.05) 2.52(0.04) 7.37(0.09) 1.34(0.04) 3.3 0.82

DynMO-BO-qUCB 0.39(0.02) 0.55(0.00) 2.40(0.08) 2.52(0.04) 7.76(0.07) 6.64(0.13) 2.5 1.77
DynAMO-BO-qUCB 0.40(0.02) 0.55(0.01) 2.47(0.07) 2.54(0.05) 7.88(0.03) 7.80(0.23) 1.3 2.00

CMA-ES 0.33(0.05) 0.48(0.04) 2.18(0.04) 1.82(0.12) 3.26(1.42) 3.77(1.36) 2.3 0.36
AMO-CMA-ES 0.31(0.04) 0.51(0.01) 2.17(0.06) 1.83(0.15) 3.37(0.49) 3.12(0.40) 2.5 0.27

DynMO-CMA-ES 0.34(0.09) 0.39(0.12) 0.66(0.43) 0.60(0.42) 1.85(2.28) 0.94(1.73) 3.7 -0.81
DynAMO-CMA-ES 0.40(0.03) 0.56(0.01) 1.82(0.72) 2.54(0.05) 4.75(2.16) 3.29(1.56) 1.5 0.62

CoSyNE 0.10(0.07) 0.22(0.10) 0.39(0.20) 0.27(0.13) 0.10(0.00) 0.10(0.00) 2.8 -1.41
AMO-CoSyNE 0.12(0.08) 0.22(0.15) 0.53(0.18) 0.14(0.13) 0.10(0.00) 0.02(0.00) 2.8 -1.42

DynMO-CoSyNE 0.28(0.09) 0.32(0.13) 0.33(0.23) 0.79(0.65) 0.10(0.00) 0.02(0.00) 2.3 -1.30
DynAMO-CoSyNE 0.21(0.11) 0.18(0.09) 0.64(0.42) 0.43(0.34) 1.85(0.22) 0.94(0.17) 1.8 -0.90
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Figure A6. Oracle Evaluation Budget Ablation. We vary the allowed oracle evaluation budget k in Algorithm 1 between 16 and 1024,
and report both the (first two rows) Best@128 Oracle Score and (last two rows) Pairwise Diversity score for k final designs proposed by
both DynAMO-augmented and base optimizers on the TFBind8 task. We plot the mean ± 95% confidence interval over 10 random seeds.
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Table A14. Optimization Initialization Ablation. We evaluate DynAMO with Gradient Ascent and other first-order model-based
optimization methods against model-free optimization methods. We report the maximum oracle score (resp., pairwise diversity score)
achieved out of 128 evaluated designs in the top (resp., bottom) table. Metrics are reported mean(95% confidence interval) across 10 random
seeds, where higher is better. max(D) reports the top oracle score in the offline dataset. All metrics are multiplied by 100 for easier
legibility. Bolded entries indicate the higher average scores for a given optimization method.

Best@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Win Rate ↑
Dataset D 43.9 59.4 60.5 88.9 40.0 88.4 —

Grad. (Sobol) 90.0(4.3) 80.9(12.1) 60.2(8.9) 88.8(4.0) 36.0(6.8) 65.6(14.5) 3/6
Grad. (Top-k) 85.1(3.1) 64.0(0.7) 63.3(0.0) 90.1(0.3) 27.1(1.0) 67.8(0.0) 3/6

COMs (Sobol) 84.7(5.3) 60.4(2.2) 63.3(0.0) 91.4(0.4) 17.3(0.5) 82.8(2.9) 0/6
COMs (Top-k) 93.1(3.4) 67.0(0.9) 64.6(1.0) 97.1(1.6) 41.2(4.8) 91.8(0.9) 6/6

RoMA (Sobol) 96.5(0.0) 77.8(0.0) 63.3(0.0) 85.5(2.4) 46.5(2.5) 93.9(1.0) 4/6
RoMA (Top-k) 96.5(0.0) 77.8(0.0) 63.3(0.0) 84.7(0.0) 49.8(1.4) 95.7(1.6) 6/6

ROMO (Sobol) 97.7(1.2) 67.0(1.3) 68.3(0.5) 90.8(0.4) 45.5(1.6) 86.1(0.5) 3/6
ROMO (Top-k) 98.1(0.7) 66.8(1.0) 63.0(0.8) 91.8(0.9) 38.7(2.5) 87.8(0.9) 3/6

GAMBO (Sobol) 73.1(12.8) 77.1(9.6) 64.4(1.5) 92.8(8.0) 46.0(6.8) 90.6(14.5) 5/6
GAMBO (Top-k) 78.5(9.3) 68.3(0.5) 63.0(0.0) 90.6(0.3) 27.1(1.0) 77.8(0.0) 1/6

DynAMO (Sobol) 90.3(4.7) 86.2(0.0) 64.4(2.5) 91.2(0.0) 44.2(7.8) 89.8(3.2) 6/6
DynAMO (Top-k) 81.9(8.4) 64.4(1.2) 63.3(0.0) 90.8(0.3) 29.4(4.4) 75.3(11.6) 0/6

Pairwise Diversity@128 TFBind8 UTR ChEMBL Molecule Superconductor D’Kitty Win Rate ↑
Dataset D 33.7 42.8 50.9 87.6 6.7 77.8 —

Grad. (Sobol) 12.5(8.0) 7.8(8.8) 7.9(7.8) 24.1(13.3) 0.0(0.0) 0.0(0.0) 3/6
Grad. (Top-k) 8.3(4.7) 40.3(3.6) 63.1(8.3) 28.4(6.0) 0.0(0.0) 0.0(0.0) 5/6

COMs (Sobol) 65.4(0.5) 57.3(0.1) 59.3(1.1) 72.6(0.7) 43.9(16.5) 33.8(1.7) 2/6
COMs (Top-k) 66.6(1.0) 57.4(0.2) 81.6(4.9) 3.8(0.9) 99.5(25.8) 21.1(23.5) 4/6

RoMA (Sobol) 21.0(0.2) 3.8(0.0) 5.9(0.0) 1.8(0.0) 70.3(13.6) 8.1(0.3 4/6
RoMA (Top-k) 21.3(0.3) 3.8(0.0) 5.9(0.2) 1.8(0.0) 49.4(6.1) 14.8(0.6) 5/6

ROMO (Sobol) 64.4(1.3) 56.9(0.2) 59.3(0.9) 39.0(0.9) 58.3(12.9) 10.9(0.5) 3/6
ROMO (Top-k) 62.1(0.8) 57.1(0.1) 53.9(0.6) 48.7(0.1) 51.7(31.7) 22.1(5.5) 3/6

GAMBO (Sobol) 15.1(11.2) 10.3(11.5) 12.1(11.3) 19.6(15.2) 0.3(0.8) 2.6(3.9) 2/6
GAMBO (Top-k) 59.2(5.0) 54.1(2.5) 79.33.4) 33.4(1.9) 0.0(0.0) 0.0(0.0) 4/6

DynAMO (Sobol) 66.9(6.9) 68.2(10.8) 77.2(21.5) 93.0(1.2) 129(55.3) 104(56.1) 6/6
DynAMO (Top-k) 55.2(10.5) 46.4(5.2) 76.8(4.5) 36.4(3.1) 120(30.0) 85.7(50.0) 0/6
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