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ABSTRACT
Existing plant disease classification models have achieved remark-
able performance in recognizing in-laboratory diseased images.
However, their performance often significantly degrades in classify-
ing in-the-wild images. Furthermore, we observed that in-the-wild
plant images may exhibit similar appearances across various dis-
eases (i.e., small inter-class discrepancy) while the same diseases
may look quite different (i.e., large intra-class variance). Motivated
by this observation, we propose an in-the-wild multimodal plant
disease recognition dataset that contains the largest number of
disease classes but also text-based descriptions for each disease.
Particularly, the newly provided text descriptions are introduced to
provide rich information in textual modality and facilitate in-the-
wild disease classification with small inter-class discrepancy and
large intra-class variance issues. Therefore, our proposed dataset
can be regarded as an ideal testbed for evaluating disease recog-
nition methods in the real world. In addition, we further present
a strong yet versatile baseline that models text descriptions and
visual data through multiple prototypes for a given class. By fus-
ing the contributions of multimodal prototypes in classification,
our baseline can effectively address the small inter-class discrep-
ancy and large intra-class variance issues. Remarkably, our baseline
model can not only classify diseases but also recognize diseases
in few-shot or training-free scenarios. Extensive benchmarking re-
sults demonstrate that our proposed in-the-wild multimodal dataset
sets many new challenges to the plant disease recognition task and
there is a large space to improve for future works.

CCS CONCEPTS
• Computing methodologies→ Object recognition.

KEYWORDS
Plant disease, Vision language models

1 INTRODUCTION
Plants often face threats from a wide range of diseases caused by
bacteria, pests, and viruses. The Food and Agriculture Organization
of the United Nations estimates annual losses of approximately
220 billion dollars due to plant diseases [1]. Accurate recognition
of plant diseases is essential to mitigate damage and prevent the
spread of these diseases.
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Figure 1: Left: Illustration of intra-class variances and inter-
class discrepancies among plant disease images. Right: sta-
tistics of existing plant disease datasets. The marker size
corresponds to the number of plant diseases. Our proposed
PlantWild dataset not only encompasses the largest number
of disease classes but also includes the highest volume of
in-the-wild images.

Recent deep learning-based plant disease recognition methods
have achieved promising performance on in-laboratory images
[11, 19, 27]. However, they would suffer drastic performance degra-
dation when plant images are captured in the wild [29] due to the
large domain gap caused by complex backgrounds, viewpoints, and
lighting conditions. The existing in-the-wild plant disease recog-
nition dataset PlantDoc [29] only contains 2,598 images with 27
disease types, and thus it might not meet the practical needs in
the real world. Therefore, it is necessary to collect a large-scale
in-the-wild plant disease dataset with more common disease types.

As illustrated in Figure 1, we observed that in-the-wild plant
images sometimes exhibit very similar appearances across differ-
ent diseases, known as small inter-class discrepancies, while the
same disease shows very distinct appearances, known as large
intra-class variances. Therefore, we speculate that a deep classifica-
tion model would struggle to accurately distinguish different plant
diseases solely based on images. Unlike the previous in-the-wild
disease dataset [29] that only contains disease labels as ground
truth, we supplement descriptive textual prompts for each disease.
The prompts can provide more discriminative information to assist
plant disease recognition.

In this work, we curate a large-scale multimodal in-the-wild
plant disease dataset PlantWild that contains not only diseased and
healthy plant images but also multiple text descriptions for each
class, as shown in Figure 2. Specifically, the image data are crowd-
sourced from diverse internet sources and the descriptions of each
class are obtained from Wikipedia and GPT-3.5 [4]. To ensure the
quality of images and the correctness of the corresponding labels,
we invite five annotators to filter low-quality or irrelevant images of
our crowd-sourced data and then annotate image labels (i.e., disease
classes). The labels and text descriptions of collected images are
checked at least by two annotators and verified by an expert. In
total, we collect 18,542 plant images that are captured in various

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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viewpoints, lighting conditions and backgrounds, and contain 89
disease types. Our PlantWild dataset is the largest in-the-wild plant
disease dataset in terms of image numbers and disease classes.

To better understand the new challenges posed by PlantWild,
we provide a strong yet versatile baseline method. Our proposed
baseline is introduced to fully exploit the multimodal information
provided by PlantWild and support various disease recognition
scenarios, such as training-free and few-shot learning. As observed,
the intra-class variances could be very large. Thus, we opt to model
each class with multiple prototypes instead of only one prototype.
Specifically, we leverage CLIP [22] to extract visual features from
training images and then group the features within each class to
generate multiple prototypes. As multiple visual prototypes can
cover the majority of visual characteristics of a class, the intra-class
variance problem can be significantly mitigated.

Furthermore, considering inter-class discrepancies might be
small in visual data, directly learning from plant images does not
lead to discriminative decision boundaries. Therefore, we resort to
the textual modality to aid our disease recognition model in learn-
ing discriminative boundaries. To be specific, we also extract textual
features from the text descriptions of each class via the CLIP textual
encoder and then employ the textural features of each class as the
textual prototype. In this fashion, visually hard-to-distinguishing
samples can still be semantically separated in the textual feature
space. This further motivates us to take both visual and textual fea-
tures into account for final classification. Since text descriptions are
not available in the testing phase, we feed visual features into both
the visual and textural prototypes and then fine-tune the prototypes
with the classification losses. Thanks to the multimodal prototypes,
our baseline model can be applied to conventional classification
tasks as well as few-shot and training-free ones.

We conduct extensive experiments on our proposed PlantWild
dataset and benchmark state-of-the-art methods in the conventional
classification task as well as few-shot and training-free situations.
Additionally, we also evaluate another two plant disease datasets,
i.e., PlantVillage and PlantDoc. Moreover, although our versatile
baseline model outperforms the state-of-the-art in various tasks,
PlantWild also imposes a plethora of challenges to current plant
disease recognition, such as accurate identification of disease areas
from complex backgrounds, large intra-class appearance variances
and small inter-class discrepancies. These challenges further mani-
fest the practicality and necessity of our PlantWild dataset.

2 RELATEDWORK
2.1 Plant Disease Classification
Plant disease classification [14, 29] is critical to prevent the spread
of disease among plants. PlantVillage [11] is the most widely used
plant disease dataset. It contains 54,309 images of 38 classes. All the
images in PlantVillage are captured in laboratory environments,
thus lacking complex backgrounds in the wild conditions. In con-
trast, PlantDoc [29] consists of 2,598 wild images of 27 categories.
As its images are collected from Internet sources, it usually has
diverse backgrounds and accounts to the real-world complexity.
Built on those datasets, Ramesh et al. [26] propose a bi-linear con-
volution neural network that consists of two pathways to produce
the plant disease representations. Wang et al. [35] further present

a dual-stream hierarchical bilinear pooling model, which leverages
the interaction between the last few layers from the two pathways.
Wang et al. [34] introduce a trilinear convolutional neural network
model by utilizing three CNNs as its base network. Borhani et al.
[3] propose a vision transformer-based method that combines both
attention blocks and CNN blocks to improve the recognition speed.
More recently, Joseph et al. [14] investigate how the diseases affect
eleven plants and how the diseases can be identified from plant leaf
images using CNN-based models.

2.2 Vision-Language Modeling
Large pre-trained Vision-Language Models (VLMs) [2, 5, 7, 12, 17,
22] have been developed to bridge the gap between vision and
language modalities. CLIP [22] is the most widely-used VLM and
contains two encoders to project images and texts into the same
joint embedding space. Furthermore, CLIP illustrates a remarkable
zero-shot ability for classification tasks.

Some CLIP-based follow-up approaches introduce extra learn-
able parameters to improve performance on downstream datasets.
Specifically, Coop [40], CoCoop [39], LiFT [16], TPT [28] andMaPLe
[15] optimize learnable prompts rather than using hand-crafted
prompts. CLIP-Adapter [8] introduces feature adapters to fine-tune
the features extracted by CLIP encoders. These methods can greatly
improve classification performance on downstream tasks by opti-
mizing the learnable parameters with a few training data, while
the parameters of the original CLIP model are kept frozen. Some
cache-based methods like Tip-Adapter [38], CaFo [37] and Sus-X
[32] have been proposed. They usually store features extracted
from few-shot training samples and make predictions based on the
affinities of the stored features and test features. These methods
achieve classification in a training-free manner, while their per-
formance can be further boosted if training is available. However,
these methods are proposed to address generic zero/few-shot or
conventional fully supervised problems, and do not fully take the
characteristics of plant diseases (i.e., high inter-class similarity and
high intra-class diversity) into account, and thus direct employ-
ment of these methods to plant disease recognition does not lead
to satisfactory results.

2.3 Prompt Design with Large Language Models
Large language models (LLMs) [4, 23–25, 31] have made significant
achievements in processing natural languages and demonstrated
remarkable capacity in text generation. This superior capability has
been employed by some works [37, 41] via prompts for downstream
tasks. For instance, CLIP utilizes manually crafted prompts as input
for its textual encoder. These prompts are usually structured as “a
photo of a [CLASS]”, where [CLASS] denotes the name of a category.
Previous research [13, 21, 36] has demonstrated that incorporating
prior knowledge into prompts can enhance the performance of
zero-shot learning. By fully exploiting linguistic knowledge and
aligning visual features to textual semantics, we speculate textual
semantics would help to solve some visually hard-to-distinguished
cases. Motivated by this, we employ GPT-3.5 [4] to produce text
descriptions of each disease with diverse prompts in our PlantWild.
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Figure 2: The curation process of our PlantWild dataset. Before annotations, data contains many irrelevant images and is very
noisy. After annotations, PlantWild consists of in-the-wild disease-relevant images and text descriptions for each class.

Figure 3: Illustration of statistics of our PlantWild dataset. It contains 56 diseased and 33 healthy classes. The number of images
within a class ranges from 589 to 44 images.

3 METHODOLOGY
3.1 Proposed PlantWild Dataset
3.1.1 Data Collection and Filtering. Existing in-the-wild plant dis-
ease recognition dataset falls short in scale. Motivated by this fact,
we curate a large-scale in-the-wild plant disease recognition dataset
in the wild, covering a wide range of categories. Based on previous
plant disease datasets [11, 29] and other common plant species,
we determine 89 classes, including 33 healthy plant classes and
56 diseased classes. Following the convention [29], we collect our
data by downloading images from Google Images1 and Ecosia2. In
addition, we also download images from Baidu Images, the largest
image search engine in Chinese. As China has vast farms, covering
a wide range of areas and crops, sources from Chinese websites
can greatly expand our dataset. We employ the common names of
each class in English and Chinese as keywords for querying images.
From these sources, we have collected more than 50,000 images in
total. As shown in the left side of Figure 2, there are many irrelevant
images and thus cleaning the data is necessary.

Our annotators filter the data mainly based on the image exem-
plars of plant diseases from UMN3, i.e., removing erroneous images

1https://www.google.com/
2https://www.ecosia.org/?c=en
3https://extension.umn.edu/solve-problem/plant-diseases

from the respective folders of disease classes. To ensure annotation
accuracy, each image is cross-validated by at least two experts. If
the two annotators cannot reach a consensus on a particular image,
we invite another expert to review and correct the annotations. The
resulting dataset consists of 18,542 images across 89 classes. The
class with the most images includes 589 images and the class with
the fewest images includes 44 images. The statistics of the dataset
is shown in Figure 3. To the best of our knowledge, our PlantWild
dataset is the largest in-the-wild plant disease recognition dataset
and also contains the most classes.

3.1.2 Textual Prompt Generation. In the field of plant diseases,
certain diseases may present similar overall appearances but differ
in specific aspects. For instance, both potato early blight and late
blight result in brown spots on leaves. However, early blight causes
roughly round spots and there are concentric circular patterns
within the spots, while late blight spots are generally irregular and
look like water-soaked. To capture such fine-grained features, we
provide rich text descriptions (i.e., textual prompts) for each class in
PlantWild. Some works [21, 37] indicate that descriptive prompts
with prior knowledge can help visual representations to focus on
fine-grained image details, thus the classification performance is
benefited. Motivated by this, we leverage the large-scale language
model GPT-3.5 [4] to generate descriptive prompts. The ample
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Figure 4: Overall architecture of our baseline. CLIP encoders
extract features from images and text for each category and
then multiple prototypes are constructed by grouping visual
features. Given a test image, both the visual and textual pro-
totypes can be used for classification.

semantic information of these prompts can help identify the subtle
differences between different plant diseases. Considering the visual
diversity within the same category in our dataset, relying on a single
prompt for each class might not sufficiently cover all representative
features. Therefore, we generate multiple prompts for each category,
where different text prompts focus on describing diverse visual
features of a class. We will release both the images and the prompts
of our PlantWild datasets.

3.1.3 Practicality and Necessity of PlantWild. Many existing datasets
only focus on diseases that affect specific crops, such as citrus [27],
apple [30], and cassava [19]. Themost widely-used dataset, PlantVil-
lage [11], includes 38 classes across 14 plant species, thus it provides
generalizability across different species. However, PlantVillage con-
sists solely of laboratory images. Those images are taken under
controlled environments at experimental research stations, devoid
of real-world complex background information. In response, Plant-
Doc [29] is introduced. PlantDoc contains wild images sourced from
the internet and is more suitable for training models in real-world
plant disease recognition. Nonetheless, PlantDoc comprises only
about 2,600 images, significantly smaller than PlantVillage in scale.
Furthermore, the plant species and diseases in PlantDoc are also
limited as it only includes 27 classes across 13 plant species. In con-
trast, our PlantWild dataset is the largest in-the-wild image dataset
and it will be public available. It includes a significantly broader
range of categories compared to existing plant disease datasets.
Additionally, PlantWild is enriched with textual annotations for all
89 categories, providing a multi-modal annotation framework for
potential performance improvements.

3.2 Multimodal Versatile Plant Disease
Recognition Baseline

We propose a multimodal versatile baseline, named MVPDR, for
effective plant disease recognition. The overall framework of our
baseline is illustrated in Figure 4 and is also elaborated in Algorithm

Algorithm 1 Prototype construction and training procedure of
MVPDR
Input: Training images 𝑰 , descriptive prompts 𝑷 .
Output: Visual prototypes 𝑽 , textual prototypes 𝑻
1: {𝐹 𝑣, 𝑻 } ← Extract features from {𝑰 , 𝑷 } using CLIP
2: Phase 1: Prototype construction:
3: for class m = 1, . . . ,𝑀 do
4: Initialize 𝑘 cluster centroids randomly: 𝐶𝑚1,𝐶𝑚2, . . . ,𝐶𝑚𝑘
5: Assign each visual vector 𝑓 𝑣 (𝑖 )𝑚 to the nearest centroid and

update each centroid with the mean of the features:
6: 𝐶𝑚𝑖 ← 1

𝑁 𝑖

∑𝑁 𝑖

𝑖=1 𝑓
𝑣 (𝑖 )
𝑚 , 𝐶𝑚𝑖 is assigned with 𝑁 𝑖 samples

7: Repeat steps 5 and 6 until convergence
8: 𝑽 ← Concatenate all the feature vectors of centroids 𝐶𝑚𝑖
9: end for
10: Phase 2: Training the obtained prototypes:
11: 𝑽 ← Train visual prototypes by optimizing Eq.4
12: 𝑻 ← Train textual prototypes by optimizing Eq.5 and Eq. 6
13: return 𝑽 , 𝑻

1. Specifically, MVPDR utilizes visual data and text descriptions to
construct prototypes for classification. Visual prototypes are ob-
tained by clustering image representations per class, and thus they
can store information of visual characteristics. Textual prototypes
are based on descriptive text prompts, which provide semantic infor-
mation to better identify the symptoms of different plant diseases.
MVPDR combines the contributions of the multimodal prototypes
to enhance accuracy.

3.2.1 Prototype Construction. We respectively construct the visual
and textual prototypes with the visual and the textual encoder of
CLIP [22]. Given a dataset with𝑀 classes, all images 𝑰 = {𝐼𝑖 }𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1
in the training set are fed into the CLIP’s visual encoder to obtain
the image features 𝐹 𝑣 ∈ R𝑁𝑡𝑟𝑎𝑖𝑛×𝐷 , where 𝑁𝑡𝑟𝑎𝑖𝑛 is the number of
all training samples and 𝐷 denotes the dimension of each feature
vector. We iteratively apply the grouping technique K-means [18]
for each class to get 𝐾 clusters, thus the image features with similar
representations are clustered together. As containing representative
visual characteristics from training samples, every centroid of these
clusters is employed as a visual prototype. The prototypes are
assigned to the corresponding class where they are obtained from.
Therefore, we have𝑀 × 𝐾 visual prototypes in total, and they are
stored as prototypes 𝑽 ∈ R𝑀×𝐾×𝐷 . On the other hand, we leverage
the textual encoder of CLIP to extract textual features from the
descriptive prompts 𝑷 ∈ R𝑀× 𝐽 , where 𝐽 represents the number
of prompts for each class. With multiple prompts for each class,
we directly employ the textual features to construct the textual
prototypes 𝑻 ∈ R𝑀× 𝐽 ×𝐷 .

3.2.2 Multimodal Prototype Learning. The constructed prototypes
can serve as initialized weights of a classifier for recognition. To
classify an image 𝐼 , MVPDR first extracts it into a feature vector
𝒙 ∈ R𝐷 using the CLIP’s visual encoder. Afterward, the cosine
similarity matrices between 𝒙 and all the prototypes can be acquired
as cos(𝒙, 𝑽𝑘

𝑖
) and cos(𝒙, 𝑻 𝑗

𝑖
), where 𝑽𝑘

𝑖
and 𝑻 𝑗

𝑖
represent the 𝑘-th

visual and 𝑗-th textual prototype of the 𝑖-th category. 𝑽𝑘
𝑖
, 𝑻 𝑗
𝑖
and 𝒙

are L2 normalized, thus the cosine similarity values vary from 0 to 1.
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Typically, the prediction is assigned to the category of the prototype
that is most similar to the input feature. As each class has multiple
visual and textual prototypes, we take several integrating strategies
for visual and textual prototypes to obtain class-level prediction. To
produce the classification logits via the visual prototypes, we sum
the cosine similarity of the prototypes in each class and calculate
the probability of 𝑖-th class using Softmax:

𝑝v𝑖 =
exp

( ∑𝐾
𝑘=1 cos(𝒙, 𝑽

𝑘
𝑖

)
/𝜏
)∑𝑀

𝑚=1 exp
( ∑𝐾

𝑘=1 cos(𝒙, 𝑽
𝑘
𝑚)/𝜏

) , (1)

where 𝜏 denotes the temperature factor. In terms of textual proto-
types, we separately obtain two logits by conducting a maximum
operation and average operation for each class on the similarity
matrix of textual prototypes. The maximized probability logits are
computed as:

𝑝tmax𝑖 =
exp

(
cos(𝒙, 𝑻 𝑗

𝑖
)/𝜏

)∑𝑀
𝑚=1 exp

(
cos(𝒙, 𝑻 𝑗𝑚)/𝜏

) , (2)

where 𝑗 = argmax𝑗 cos(𝒙, 𝑻
𝑗
𝑖

)
, representing the index of the pro-

totype with the highest similarity score. 𝑝tmax𝑖 only focus on the
prototype that is most similar to the input feature vector but may
overlook useful information contained in other prototypes. We also
obtain the averaged logits to fully utilize all the text features. The
averaged probability of 𝑖-th class can be written as:

𝑝tavg𝑖 =
exp

( ∑𝐽
𝑗=1 cos(𝒙, 𝑻

𝑗
𝑖
)/(𝜏 ∗ 𝐽 )

)∑𝑀
𝑚=1 exp

( ∑𝐽
𝑗=1 cos(𝒙, 𝑻

𝑗
𝑚)/(𝜏 ∗ 𝐽 )

) . (3)

Prototypes 𝑽 and 𝑻 can be regarded as weights of classifiers.
Extracted from training images and descriptive textual prompts,
they preserve the prior knowledge from the pre-trained CLIP and
thus can benefit the classification performance. To further improve
the accuracy, we set the prototypes as learnable parameters. We
leverage cross-entropy losses for obtained logits to train the proto-
types while keeping the parameters of the CLIP backbone frozen.
The losses corresponding to 𝑝v𝑖 , 𝑝tmax𝑖 and 𝑝tavg𝑖 are as follows:

𝐿𝑣 = −
1

𝑁𝑡𝑟𝑎𝑖𝑛

∑︁𝑁𝑡𝑟𝑎𝑖𝑛

𝑛=1

∑︁𝑀

𝑖=1
𝑦𝑛𝑖 log𝑝

𝑛
v𝑖 , (4)

𝐿𝑡𝑚𝑎𝑥 = − 1
𝑁𝑡𝑟𝑎𝑖𝑛

∑︁𝑁𝑡𝑟𝑎𝑖𝑛

𝑛=1

∑︁𝑀

𝑖=1
𝑦𝑛𝑖 log 𝑝

𝑛
tmax𝑖 , (5)

𝐿𝑡𝑎𝑣𝑔 = −
1

𝑁𝑡𝑟𝑎𝑖𝑛

∑︁𝑁𝑡𝑟𝑎𝑖𝑛

𝑛=1

∑︁𝑀

𝑖=1
𝑦𝑛𝑖 log 𝑝

𝑛
tavg𝑖 , (6)

where 𝑁𝑡𝑟𝑎𝑖𝑛 is the number of training samples, 𝑦𝑖 = 1 if 𝑖 equals to
the ground truth label, otherwise 𝑦𝑖 = 0. The overall loss function
is given by:

𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝐿𝑣 + 𝜆1 · 𝐿𝑡𝑚𝑎𝑥 + 𝜆2 · 𝐿𝑡𝑎𝑣𝑔, (7)

where 𝜆1 and 𝜆2 are the weights for the loss functions.

3.2.3 Inference. With the prototypes trained on training images,
we can conduct classification according to the probability logits
obtained in Eq. 1, 2 and 3. To improve the classification performance,
we integrate each output probability by adjusting three hyper-
parameters. The overall logits are ensembled as:

𝑝𝑖 = 𝛼 · 𝑝v𝑖 + 𝛽 · 𝑝tmax𝑖 + 𝛾 · 𝑝tavg𝑖 , (8)

where 𝑝𝑖 denotes the final prediction probability of the 𝑖-th category.
𝛼 , 𝛽 and 𝛾 are hyper-parameters to balance the weights of each
probability. Among𝑀 classes, the class with the highest probability
value is then selected as the final prediction.

4 EXPERIMENTS
4.1 Experiment Setups
Datasets and evaluation metrics We conduct experiments on
our curated PlantWild dataset, as well as other two existing plant
disease datasets PlantDoc [29] and PlantVillage [11]. Among the
three datasets, PlantVillage is curated under laboratory environ-
ments while PlantWild and PlantDoc contain in-the-wild images.
Our datasets are split into three subsets: training set, validation
set, and test set, with ratios of 70%, 10%, and 20% respectively. For
PlantDoc and PlantVillage, we follow the given standard for the
data split. Following the conventions of classification tasks, we
use Accuracy (marked by Acc) to evaluate the performance of our
proposed method and existing methods. In addition, we also apply
Macro precision (denoted by M-P) and Macro recall (denoted by
M-R) to evaluate the methods’ performance by considering false
positives and false negatives in the dataset. Macro precision as-
sesses the ability to identify true positives across all classes, while
Macro recall assesses the ability to identify all relevant instances.
Marco F1-score (i.e., the average F1 scores across all the classes,
marked by M-F1) is also reported to provide a balanced assessment
by considering both precision and recall.

Implementation The core of our baseline involves extracting
features from descriptive texts and training images using CLIP [22]
and then constructing prototypes in both modalities. For CLIP’s
backbones, we employ ResNet101 [10] as the image encoder and
a transformer for the textual encoder to generate prototypes. We
conduct few-shot, and fully-supervised experiments to evaluate
the recognition ability of a model in different scenarios. Under
few-shot scenarios, we randomly select 16 samples for each class
for visual prototype construction and training, while all training
images are available in the fully supervised experiment setting. Dur-
ing the training process, we set the visual and textual prototypes
to be learnable while all the parameters of CLIP backbones are
kept frozen. We set the batch size to 64 and train our model for 30
epochs. We choose the AdamW optimizer with a cosine scheduler
for both visual and textual prototypes. The initial learning rate is
set to 0.003. In addition, we also explore the training-free classifi-
cation capability of our method. When training is prohibited, we
leverage the initially constructed prototypes and descriptive texts
for classification.

Competing baselines As our baseline method is built on CLIP,
we also include CLIP-based methods (such as CoOp [40], CLIP-
Adapter [8], Tip-Adapter [38]). Furthermore, state-of-the-art plant
disease classification methods (T-CNN [34], DHBP [35]) are also
employed to evaluate our PlantWild dataset. Note that, state-of-the-
art plant disease classification methods are in general trained in a
fully supervised manner. Thus, their results are mainly reported
under fully supervised experiment settings. For the CLIP-based
methods that can be used for few-shot classification, we also report
their performance in few-shot experiment settings and compare
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Methods PlantVillage PlantDoc PlantWild
Acc M-P M-R M-F1 Acc M-P M-R M-F1 Acc M-P M-R M-F1

Fu
lly

-s
up

er
vi
se
d CoOp [40] 91.00 91.09 85.94 86.89 66.73 63.94 64.85 63.92 61.16 58.66 55.95 56.26

CLIP-Adapter [8] 92.25 91.62 87.07 87.53 53.07 49.14 49.58 48.52 56.49 52.57 50.34 50.19
Tip-Adapter-F [38] 94.05 94.30 90.57 91.94 63.56 62.69 61.34 60.91 58.83 57.66 55.03 55.80

T-CNN [34] 98.80 98.65 98.69 98.67 64.36 63.54 62.03 61.09 63.61 59.29 58.84 58.70
DHBP [35] 98.88 98.55 98.21 98.33 65.94 65.41 63.84 62.82 65.92 60.62 60.20 59.66

MVPDR (ours) 97.72 97.40 96.44 96.83 69.90 69.92 68.97 68.87 67.20 64.03 62.64 62.84

Fe
w
-s
ho

t KNN (N=16) 62.89 65.47 65.00 59.06 41.19 44.50 43.31 41.46 36.66 36.49 35.79 33.67
CoOp* [40] 72.37 70.52 70.75 67.49 57.03 56.49 56.70 55.82 51.21 47.48 50.22 47.66

CLIP-Adapter* [8] 26.84 26.49 27.08 22.84 41.78 40.88 41.36 39.65 36.12 33.02 34.00 31.32
Tip-Adapter-F* [38] 81.39 82.67 80.03 79.21 58.61 58.73 58.12 56.71 50.07 48.17 49.94 47.84
MVPDR* (ours) 85.20 83.45 85.23 82.89 58.42 57.84 57.81 56.50 51.80 49.01 50.27 48.21

Table 1: Classification results of different methods on plant disease datasets. All the CLIP-based methods take ResNet101 as the
backbone of visual encoders. For CoOp, CLIP-Adapter, Tip-Adapter-F and our baseline, we train them with all the training
samples in the fully-supervised setting and 16 samples in the few-shot setting.

the results with our baseline. As aforementioned, our versatile
baseline not only constructs multiple prototypes for each class
in both modalities but also can be applied to various scenarios.
Additionally, we evaluate the classification ability of our baseline
without training, in comparison to training-free methods such as
KNN [20], CALIP [9], CuPL [21] and SuS-X [32].

4.2 Main Results
Comparison with the state-of-the-art methods Table 1 pro-
vides a summary of the key results. Our MVPDR achieves satis-
factory performance across the three plant disease datasets. No-
tably, MVPDR demonstrates a significant advantage on wild im-
age datasets, i.e., PlantWild and PlantDoc. On PlantWild, MVPDR
achieves better accuracy than the state-of-the-art T-CNN andDHBP,
surpassing them by 3.59% and 1.28% on Accuracy, respectively. The
performance gaps become even larger on PlantDoc i.e., 4.54% and
3.96% on Accuracy, respectively. In addition, MVPDR also demon-
strates consistent superiority in other metrics, including macro
precision, macro recall and macro F1-score.

For the laboratory-based images from PlantVillage, although
MVPDR still achieves the highest performance among CLIP-based
approaches, it slightly underperforms T-CNN and DBHP. We spec-
ulate that the performance gap on PlantVillage is because (i) there
is a domain gap between laboratory images and in-the-wild images
and (ii) we only fine-tune the prototypes while T-CNN and DBHP
train the entire networks. The domain gap is further validated by
the result of CLIP (zero-shot) in Table 2. Due to the domain gap,
only fine-tuning the feature prototypes in MVPDR is not sufficient.
It implies that the features should be adapted to the laboratory
images. The unsupervised scenario in Table 2 consolidates that in
PlantVillage image features from the same class are very similar,
and using KNN can achieve satisfactory performance. This also
implies that compared to the laboratory image dataset, in-the-wild
datasets, such as PlantDoc and our PlantWild, are more challenging.

Comparision of training-free classification accuracy For
the unsupervised and zero-shot settings in Table 2, MVPDR only

uses the visual prototypes and textual prototypes to measure simi-
larity, respectively. We evaluate the classification ability of exist-
ing training-free baselines, including zero-shot CLIP, Tip-Adapter,
CuPL, CALIP, SuS-X and KNN. As indicated by Table 2, KNN sur-
prisingly outperforms the other CLIP-based unsupervised methods
across all the datasets. It is worth noting that compared with the
few-shot setting in Table 1 KNN performance drops significantly,
e.g., almost 15% on Acc in PlantWild. The performance of KNN
is still much inferior to the fully supervised results of parametric
methods in Table 1.

In the zero-shot setting, there are no training images available
for all the methods, and all the competing methods solely rely on
the similarity between the visual features of test samples and text
descriptions of each class to make predictions. The results in Table
2 (Zero-shot) indicate that MVPDR achieves the best performance
between zero-shot methods on the three datasets.

Overall, the experiments in Table 1 and Table 2 indicate that
MVPDR performs well when training is permitted or data is not
available. In the case that training is not permitted while data is
available, KNN is a good option.

4.3 Ablation Study
Weights of loss functions We investigate various weights 𝜆1
and 𝜆2 to ensemble the overall loss in Eq. 7. We adjust the two
hyper-parameters within the range of 0.0 to 10.0. We first vary 𝜆1
while keeping 𝜆2 fixed as 1. According to the upper part of Table
3, the classification accuracy reaches its peak when 𝜆1 equals 0.1.
In the lower part of Table 3, we set 𝜆1 to the optimal value 0.1 and
then investigate the impact of 𝜆2. The results illustrate that better
performance is achieved when 𝜆2 is set to 0.1. Therefore, the values
of 𝜆1 and 𝜆2 are chosen as 0.1. This indicates that the parameters of
visual prototypes require larger gradients than textual prototypes
during backpropagation.
Ratios for logits ensemble We also conduct ablation studies
on the ratios for the logits ensemble in the inference process. We
adjust the values of 𝛼 , 𝛽 and 𝛾 from 0 to 1.0 sequentially. While
one ratio is adjusted, the other two are kept fixed. The fixed ratio
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Methods PlantVillage PlantDoc PlantWild
Acc M-P M-R M-F1 Acc M-P M-R M-F1 Acc M-P M-R M-F1

U
ns
up

er
vi
se
d KNN (N=1) 86.92 84.29 82.71 82.87 52.47 52.52 50.84 50.80 51.07 48.55 46.95 47.18

KNN (N=5) 88.84 87.20 85.04 85.33 58.61 58.70 56.62 56.58 52.65 49.51 46.72 47.01
KNN (N=10) 89.40 89.15 85.56 86.33 54.06 54.35 51.78 51.42 55.18 53.91 49.29 50.01

Tip-Adapter [38] 21.28 19.30 17.99 12.61 37.23 35.82 33.99 30.90 25.02 27.95 24.02 20.12
MVPDR (ours) 61.42 70.37 62.42 56.37 47.33 47.67 45.75 42.13 38.56 49.50 37.91 35.72

Ze
ro
-s
ho

t CLIP [22] 8.42 9.42 8.26 3.68 35.84 36.89 34.66 30.95 25.94 26.40 24.98 21.41
CALIP [9] 8.77 8.98 8.38 3.89 36.23 35.44 33.77 30.57 26.35 26.94 24.85 21.20
CuPL [21] 18.69 16.90 15.52 9.65 37.22 41.43 35.37 32.93 30.29 35.93 27.62 24.71
SuS-X [32] 19.49 15.55 15.04 9.72 38.02 40.15 36.38 34.17 30.24 33.92 27.46 24.39

MVPDR† (ours) 20.19 20.23 16.85 12.55 40.00 40.38 38.37 36.45 32.77 34.92 31.85 29.04

Table 2: Classification results of different training-free methods. For the unsupervised setting, images are available but without
labels. For the zero-shot setting, only text descriptions are available.

𝜆1
0.03 0.10 0.30 1.0 3.0 10.0
65.24 66.41 65.87 65.71 65.46 65.19

𝜆2
0.03 0.10 0.30 1.0 3.0 10.0
66.85 67.20 66.55 66.41 66.11 66.09

Table 3: Impacts of different weights of the overall loss on
PlantWild.

values are initially set to 0.5 but are later adjusted to the optimal
value based on the results. According to Figure 6(a), the best values
of 𝛼 , 𝛽 , and 𝛾 are 0.3, 0.5, and 0.5, respectively, as these values lead
to the highest accuracy. The results indicate that textual prototypes
are slightly more effective in improving performance compared to
visual prototypes. In addition, the maximized and averaged logits
based on textual prototypes have equal importance in weighting
the final probability logits.
Different cluster numbers We investigate the influence of the
number of cluster numbers on classification performance. During
the construction process of visual prototypes, we utilize the K-
Means to cluster image features and employ the cluster centroids
as visual prototypes. We respectively choose 1, 2, 4, 8, 16 clusters
to train MVPDR. We conduct each experiment 5 times and aver-
age the results to obtain the final outcome. The results in Figure
6(b) illustrate that increasing the number of clusters can enhance
accuracy. As the number continues to increase, the improvements
become less pronounced. This demonstrates that an appropriate
number of prototypes can represent diverse features within each
category sufficiently.
Single and multi-modal prototypes To offer further insight
into prototypes in different modalities, we explore the effective-
ness of single-modal prototypes. Instead of fine-tuning multi-modal
prototypes simultaneously, we only train prototypes from a sin-
gle modality (visual or textual). The comparisons are conducted
on the three plant disease datasets. As depicted in Figure 6(c), the
results of multi-modal prototypes demonstrate superior accuracy
compared to those of solely relying on visual or textual prototypes.
This implies that prototypes of both modalities contribute to per-
formance. We also notice that textual prototypes exhibit slightly
better classification performance than visual prototypes.

Backbones RN50 RN101 ViT-B/32 ViT-B/16 ViT-L/14

PlantVillage 98.12 97.89 98.22 98.27 97.80
PlantDoc 68.51 69.50 69.90 72.48 77.23
PlantWild 65.30 67.20 66.85 70.76 76.18

Table 4: Performance of MVPDR with different CLIP back-
bones.

Variants with different backbones We conduct experiments
with different backbones of CLIP’s visual encoder, including vari-
ants of ResNet [10] and ViT [6]. Table 4 demonstrates that a larger
backbone leads to better performance of MVPDR on PlantDoc and
PlantWild. This suggests that larger CLIP backbones are better at
identifying plant diseases in complex conditions.

4.4 Discussion
Prototype Visualization To better observe the initially con-
structed prototypes and their changes during the training process,
we employ t-SNE [33] to visualize the textual and visual prototypes
of MVPDR. The distributions of prototypes before and after train-
ing are presented in Figure 7(a) and Figure 7(b) respectively. The
numbers from 0 to 4 represent the following plant disease: apple
rust, bean rust, corn rust, ginger leaf spot, peach leaf curl, and t and
v in legends stand for textual prototypes and visual prototypes,
respectively. Figure 7(a) illustrates that visual prototypes from dif-
ferent classes have much closer distances than those of textual
prototypes. In addition, the distances between textual and visual
prototypes within the same class may not always be smaller than
the distances between prototypes belonging to different categories,
potentially resulting in misclassification. Figure 7(b) demonstrates
that after training, prototypes belonging to different classes are
more effectively separated, and the distances between visual and
textual prototypes of the same class are significantly minimized.

Visualization for Explainability To explore the explainabil-
ity of MVPDR, we visualize the attention maps to figure out the
focused regions. Given the visual features extracted from input
images, we generate their activation maps concerning zero-shot
CLIP features, as well as textual and visual prototypes According
to the results in Figure 5, we can find the parts of images that have
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Figure 7: The t-SNE visualization of prototypes of top-5 per-
forming categeries on PlantWild. After training, the visual
and textual prototypes of the same category become closer.

high similarities with prototypes and are highly correlated to the
predictions. The text features extracted by zero-shot CLIP gener-
ally cannot effectively localize the lesion sites of plants, while the
trained prototypes show remarkable capability in addressing the
infected parts. We observe that the activation maps generated by

textual prototypes are more precise in recognizing the diseased
parts compared to visual prototypes, which is also consistent with
the quantitative results presented in Figure 6(c).

5 CONCLUSION
In this paper, we explore the main challenges of effectively identify-
ing plant disease images with complex backgrounds, including intra-
class variance and inter-class discrepancy issues. To investigate
these problems, we curate a multimodal in-the-wild plant disease
dataset named PlantWild. To the best of our knowledge, PlantWild
is currently the largest dataset containing wild plant disease images.
In addition, we introduce a versatile multimodal multi-protoype-
based plant disease baseline that can be tailed to various testing sce-
narios, including fully-supervised, few-shot and zero-shot learning.
Extensive experiments demonstrate that our baseline outperforms
the state-of-the-art on the in-the-wild plant disease data but also
the challenges of the newly proposed PlantWild dataset. Moreover,
we find that our baseline MVPDR can effectively localize the posi-
tions of plant disease lesions, showcasing its potential for disease
detection tasks.
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