Under review as a conference paper at ICLR 2026

UML-COT: STRUCTURED REASONING AND
PLANNING WITH UNIFIED MODELING LANGUAGE
FOR ROBOTIC ROOM CLEANING

Anonymous authors
Paper under double-blind review

ABSTRACT

Chain-of-Thought (CoT) prompting improves reasoning in large language models
(LLMs), but its reliance on unstructured text limits interpretability and executabil-
ity in embodied tasks. Prior work has explored structured CoTs using scene or
logic graphs, yet these remain fundamentally limited: they model only low-order
relations, lack constructs like inheritance or behavioral abstraction, and provide
no standardized semantics for sequential or conditional planning. We propose
UML-CoT, a structured reasoning and planning framework that leverages Uni-
fied Modeling Language (UML) to generate symbolic CoTs and executable action
plans. UML class diagrams capture compositional object semantics, while activity
diagrams model procedural control flow. Our three-stage training pipeline com-
bines supervised fine-tuning with Group Relative Policy Optimization (GRPO),
including reward learning from answer-only data. We evaluate UML-CoT on
MRoom-30k, a new benchmark of cluttered room-cleaning scenarios. UML-CoT
outperforms unstructured CoTs in interpretability, planning coherence, and exe-
cution success, highlighting UML as a more expressive and actionable structured
reasoning formalism.

1 INTRODUCTION

Embodied Al systems, particularly those handling real-world tasks like robotic room cleaning, face
significant challenges in multi-step reasoning and decision-making. These tasks require a nuanced
understanding of object interactions, spatial relationships, and action dependencies. Recent advance-
ments in large language models (LLMs) have enabled agents to generate reasoning traces through
Chain-of-Thought (CoT) prompting (Wei et al.} 2022} Kojima et al.l 2022), leading to substantial
improvements in planning and problem-solving. However, most existing CoT methods are limited
by their reliance on unstructured, free-form text representations.

While text-based CoT approaches are flexible, they suffer from key limitations: (i) a lack of ex-
plicit structure to model object, action, and environment relationships, resulting in shallow world
models (Zhang et al.l 2024} Wang et al., [2023a)), (ii) difficulty in interpreting or verifying reasoning
traces, especially in cases with complex dependencies (Creswell et al.||2023), and (iii) susceptibility
to ambiguity, repetition, and inconsistency across reasoning steps, which degrade planning quality
and execution. To mitigate these issues, prior work has introduced symbolic representations like
scene graphs or logic graphs (Pan et al., 2023} Besta et al., 2024} [Yao et al.| [2023)) to bring struc-
ture into the reasoning process. Despite their advantages over plain text, traditional graph-based
reasoning (Pan et al., [2023}; |Besta et al., [2024; |Yao et al.| [2023) has its own limitations. Graphs
typically model binary or ternary relations but lack the expressive constructs needed for inheritance,
aggregation, and behavioral abstraction. Furthermore, they lack standardized semantics for encod-
ing procedural plans or control flows, making it challenging to represent sequential, conditional,
or looping behaviors. Additionally, most graph-based methods are task-specific and require ad hoc
modifications to accommodate new domains or reasoning levels.

To overcome these shortcomings, we adopt the Unified Modeling Language (UML)—a standardized
formalism from software engineering (Ashbacher} 2004)—as the foundation for structured CoT rea-
soning and planning. UML addresses the deficiencies of graph-based reasoning: it complements

Under review as a conference paper at ICLR 2026

Please provide a detailed cleaning plan according to the image, including: "1. Main
messy areas identification", "2. Cleaning priority order", "3. Specific cleaning steps and
organization methods”

<think> <answer>

(b)

</think> </answer>
<think> n <answer>

</think> [stncs & </answer>

Figure 1: Structured vs. Unstructured Chain-of-Thought Reasoning for Robotic Room Cleaning. (a)
Input: a cluttered room image and a text instruction. (b) Output from a plain-text CoT model, where reasoning
and planning are expressed only in free-form language, lacking formal semantics and executable structure.
(c) Output from our proposed UML-based framework, where reasoning is encoded as a UML class diagram
and the corresponding plan is formalized as a UML activity diagram. This structured approach improves
interpretability, ensures alignment between reasoning and action, and supports modular, executable planning.
Please zoom in to view details clearly.

limited relational expressivity with class diagrams that natively model inheritance, aggregation, and
object hierarchies; it resolves the absence of procedural semantics by providing activity diagrams for
sequential, conditional, and iterative control flows; and it avoids task-specific fragmentation through
a formalized syntax and semantics that ensure consistency and adaptability across domains. Ad-
ditionally, UML’s visual and modular nature enhances interpretability, making reasoning processes
more transparent and verifiable in autonomous systems.

Building on these advantages, we introduce UML-CoT, a framework for structured reasoning and
planning in embodied Al The agent first performs symbolic reasoning over the environment by con-
structing UML class diagrams, representing objects, attributes, and relationships. It then generates
an executable cleaning plan using UML activity diagrams, which describe sequential and conditional
actions based on the physical scene. We introduce a three-stage learning strategy for training this
framework: (1) Supervised fine-tuning (SFT) on annotated reasoning and planning traces in UML,;
(2) Reinforcement learning fine-tuning (RLFT) using Group Relative Policy Optimization (GRPO)
(Shao et al.,[2024), where the model receives rewards based on the correctness of the final plan; and
(3) Further GRPO training on answer-only data to enable effective learning even without intermedi-
ate reasoning annotations. We evaluate our framework on the MRoom-30k dataset, which simulates
diverse, cluttered room scenarios. Comparisons across four configurations—from plain-text reason-
ing to fully UML-based pipelines—show that our structured approach significantly improves plan
coherence, execution success, and structural fidelity. Stage 2 RLFT further enhances performance,
validating the effectiveness of staged reinforcement.

Recent embodied Al work, including SayCan (Ichter et al., 2022), RT-1/RT-2 (Brohan et al.,
2023bja), ThinkAct (Huang et all [2025), and EMAC+ (Ao et al |2025), has demonstrated the
promise of combining LLMs with robotic planning. Yet these systems still rely on loosely structured
intermediate forms. Our work shows that UML offers a standardized, interpretable, and domain-
adaptable representation that improves reasoning fidelity and execution reliability. Fig. [T]illustrates
the contrast between unstructured and UML-structured CoT reasoning in robotic room cleaning.

Our contributions are: (1) A UML-based structured reasoning and planning framework that uni-
fies symbolic CoT reasoning with executable action planning for robotic room cleaning; (2) A three-
stage training pipeline that combines supervised and reinforcement learning to optimize reasoning

Under review as a conference paper at ICLR 2026

quality and plan execution; (3) The introduction of MRoom-30k, a benchmark dataset of cluttered
room scenarios for evaluating structured reasoning methods; (4) Empirical evidence that UML repre-
sentations improve expressiveness, interpretability, and planning reliability compared to text-based
and graph-based baselines.

2 RELATED WORK

Chain-of-Thought Reasoning. Chain-of-Thought (CoT) prompting enables large language mod-
els (LLMs) to perform multi-step reasoning by generating intermediate steps before the final an-
swer (Wei et al., [2022). Variants such as Self-Consistency (Wang et al., 2023b) and Least-to-
Most Prompting (Zhou et al., [2023) enhance robustness via sampling and decomposition strategies.
Other improvements include iterative self-refinement (STaR (Zelikman et al., 2022)), debate-style
prompting (ChainLM (Cheng et al., |2024))), and compressed intermediate reasoning (Compressed
CoT (Cheng & Durme, [2024)). Several recent methods incorporate symbolic cues into CoT. Semi-
Structured CoT (Su et al., |2024) blends structured graphs with unstructured context, while Faithful
Logical CoT (Xu et al.| 2024)) and Structured CoT (Sultan et al.,2024) use logic programs or finite-
state models. However, most of these approaches treat structure as auxiliary signals and operate on
shallow or task-specific graphs. In contrast, our work frames CoT reasoning itself as a structured
modeling task, using UML class diagrams to capture symbolic reasoning and UML activity dia-
grams to generate executable plans. This offers a unified, expressive, and interpretable framework
that integrates reasoning and planning under a single formalism.

Structured Reasoning and Symbolic Planning. Graph-based symbolic reasoning has been ex-
plored to improve LLM interpretability and grounding. Scene graphs and logic graphs (Zhang| |2024;
Xu et al.| [2024) capture structured object-centric relations, while symbolic planners such as Sym-
Planner (Xiong et al., 2025) enhance action generation through ranking or verification. Extensions
of classical planning languages, including LLM+MAP (Chu et al., [2025) and InterPreT (Han et al.,
2024), map natural language descriptions into PDDL for symbolic task planning. However, these
approaches remain limited: they focus on basic relational modeling, lack constructs for procedural
logic (e.g., conditionals, loops), and often require task-specific tailoring with poor generalization.
In contrast, we adopt UML as a standardized and extensible formalism that integrates both reason-
ing and planning. UML class diagrams enable expressive structural modeling of objects, attributes,
and hierarchies, while activity diagrams capture procedural control flows such as sequential, con-
ditional, and iterative actions. Compared with PDDL’s logic-centric syntax, UML provides richer
expressiveness, standardized semantics, and visual interpretability, yielding a unified, transparent,
and domain-adaptable symbolic interface from perception to action.

Multi-Stage Training and GRPO. Recent work has shown that combining supervised learning
with reinforcement learning improves reasoning alignment and robustness. InstructGPT (Ouyang
et al.| [2022) and RRHF (Yuan et al.| [2023)) use reward-based fine-tuning to align outputs with hu-
man preferences. GRPO (Shao et al [2024) introduces reward propagation to train intermediate
reasoning steps based on final-answer feedback, improving CoT quality in low-supervision settings.
Inspired by this, our framework adopts a three-stage pipeline tailored to structured CoT: (1) su-
pervised fine-tuning on annotated UML diagrams; (2) intermediate RLFT using final-plan rewards
to guide structural reasoning; and (3) answer-only GRPO to optimize planning when intermediate
annotations are unavailable. This strategy improves both reasoning fidelity and execution success,
especially in low-resource or semi-supervised scenarios

3 METHODOLOGY

3.1 TASK DEFINITION

We formulate room cleaning as a multimodal planning task, where an agent reasons about cluttered
environments and generates executable cleaning strategies based on visual input. Each task consists
of a single image x of a messy room. The agent must produce two outputs: (i) a structured rea-
soning trajectory enclosed in <think>...</think> tags, and (ii) a final cleaning plan enclosed in
<answer>..</answer> tags.

Under review as a conference paper at ICLR 2026

© ClaningPlan 1 estartunl 31 class Desk { Class MaintenanceTips {
‘ 2 class CleaningPlan { 32| + clearItens() + dailyTidy()
—— o dovelopCioaningPlan) ~—___ 3 + developCleaningPlan() 33 + categorizeltens() + weeklySchedule()
} - 1 — P 3 + wipesurfaces ()
— \ ~ 5 35 + organizeEssentials
//— T A\ ~ 6 class MainAreas { 36 + managePapers () r
T [@peon L 7| e bed 7) 68+ identifyRe
,, e ~ desk 38 69+ inspectConputerAreal()
(@ clescingsieps | _ Figar 39 class ClothesStorage { 70+ handleCurtains()
10 - clothesStorage 40 | + sortClothes() Lo
1 _ Surfacesbacen 4 + foldstore() 2 CleaningPlan -
2o @ + assessRack()
5 a3) 74
/ / 1 class Priorityorder £ 41
class Floor 76
/ 15 + first: Bed
/ 4 + vacuun() n n -
[o= [® — == 16 ¥ seconis besk “ 7 Gl
N B e) S 18+ fourth: Floor o o 28 Matiiress o CisthesSiorsge
\ |o earcutiery > checkLghtng) By < assessRack) 19 + fifth: Surfaces " S
\ \ < checiUnderBed fSirorigee e T 50 81 Mainreas #— Floor
\ 0 2 3
\ \ 7 pol ISt 51 class Surfacesdecor { 82 MainAreas %-- SurfacesDeco
\ / - 52 | + dustshelves() 83 Bed —> Considerations : checks
pandies /checks _~Tnspects
~— 2 * resoveltens() sa + checkLighting() 85 SurfacesDecor —> Considerations : handles
| © comaermions 24|+ sortItens() palil G Prioribituder
T« ocyclagotos) 2 *+ strinBed(). 56 87 Priorityorder
identiyRedObject() 26 + washLinens() 57 class StorageSolutions { 88 PriorityOrder
< impecommtaiead 27 + makeBed() 58 | + addBins() 8 PriorityOrder —>
28 + checkUnderBed () 59 | + useOrganizers(9 Priority0rder —> Su
2) 60)

(b)

Figure 2: UML class diagram and its corresponding PlantUML source shown in two equivalent forms:
(a) UML class diagram; (b) PlantUML source code.Please zoom in to view details clearly.

(@)

elongings;

, air out mat
e ; : 1 e
3 x + v 3 partition "Main Messy Areas Identification” { % partition "Desk”
oo s oy v 4 iIdentify the bed with scattered items; 2 ar all itess off the
5 Tdentify the cluttered desk with various items;
- N ¥ 2 - 2 6 Identify clothing disorganization on rack and floor;
[) [rep— 7 Tdentify general floor/surfaces and hidden clutter;
4 v v 8 Identify lack of organization in storage areas; 2
s) »
| 0 B
[11 partition “Cleaning Priority Order" { b
[12 Prioritize clearing and resetting the bed; 7 part
13 Prioritize decluttering and organizing the desk; 3
14 Prioritize clothing management (rack, floor, and bed); 32 ’
15 Prioritize cleaning floors and general surfaces; " SHETVES) Sid dEcOi: L1t
16 :Prioritize final touches of decor/lighting/maintenance; ,, A—
7y 3 1 d
"
P
%
'

)
Figure 3: UML activity diagram and its corresponding PlantUML source presented in two equivalent
forms: (a) UML activity diagram; (b) corresponding PlantUML code. Please zoom in to view details clearly.

Unlike conventional Chain-of-Thought (CoT) approaches using unstructured textual reasoning, we
employ a symbolic representation based on Unified Modeling Language (UML):

* The reasoning process is represented as a UML class diagram G, capturing entities,
attributes, and relationships.

* The cleaning plan is represented as a UML activity diagram G iy, detailing an ordered
sequence of actions with control-flow dependencies.

Formally, the objective is to learn a mapping: f : @ — (Gelass; Gaciivity) -

Note that the model generates PlantUML code, which can be rendered into UML diagrams using
external tools. Figures[2]and3]explicitly demonstrate this equivalence, showing that a UML diagram
and its PlantUML source are two interchangeable representations of the same structure.

To evaluate plan quality, we define a semantic similarity metric between the predicted activity di-
agram Glcivity and its ground-truth reference, which serves as a reward signal in reinforcement
learning. Details are provided in Section [3.4]

3.2 DATASET CONSTRUCTION

Existing indoor scene datasets, such as the MIT Indoor Scenes dataset (Quattoni & Torralbal |2009),
suffer from a pronounced cleanliness bias—featuring predominantly tidy environments and lacking
sufficient coverage of cluttered or disorganized household settings. To address this limitation, we
conduct the MRoom-30k dataset, which focuses on messy indoor scenes for structured reasoning
and cleaning plan generation. The dataset consists of 30,792 images sourced from Google, Bing,
Baidu, and Rednote, as well as the Messy Rooms Dataset (Bhalgat et al.l [2023)). These images
span various household environments (e.g., kitchens, bathrooms, bedrooms, and living rooms) and
varying levels of messiness (mild, moderate, severe). MRoom-30k is annotated in two forms:

» Standard Plans: All images, except for a subset of 1,000, are annotated with final cleaning
plans using GPT-40, with consistent prompting to ensure a unified structure across outputs.

Under review as a conference paper at ICLR 2026

Chat Text
Message Tokenizer

InternLM2.5
v
Response

Pixel MLP
VIT P 0shuftig™ Projector’

v

Figure 4: Model architecture. The image is preprocessed via dynamic resolution slicing and fed into a ViT-
based encoder (InternViT-300M), followed by pixel unshuffling and MLP projection. The language decoder
(InternL.M2.5) receives both visual features and tokenized textual prompts, and generates two symbolic outputs:
a UML class diagram for structured reasoning, and a UML activity diagram for executable cleaning plans.
Please zoom in to view details clearly.

* CoT-Enhanced Subset: A random subset of 1,000 images is annotated with both in-
termediate reasoning (Chain-of-Thought, CoT) and final cleaning plans, generated using
DeepSeek-R1.

Each instance is represented in both textual and UML-based structured formats for controlled
comparison across different reasoning and planning modalities. Further details regarding the dataset
construction and annotation process are provided in appendix

3.3 MODEL ARCHITECTURE AND I/O REPRESENTATION

We adopt InternVL 2.5 (Chen et al., 2024; |Wang et al., 2024) as the backbone for our structured
multimodal reasoning framework. InternVL is a state-of-the-art vision-language model that inte-
grates a visual encoder and a language decoder in a unified architecture, enabling effective grounding
between image content and symbolic reasoning.

Each input instance consists of a single image depicting a cluttered room. To preserve both global
context and local detail, InternVL apply a dynamic resolution slicing strategy that divides the image
into fixed-size patches while retaining a resized global view. The visual features are passed through a
pixel unshuffle and MLP projector before being fed into the decoder. Meanwhile, the text prompt is
tokenized and also passed to the decoder, forming a joint multimodal input. The decoder component
InternL.M 2.5 then generates the symbolic reasoning and planning outputs. For per image, the model
produces G iqss and Gyctivity-

This architecture (Fig.) enables joint modeling of visual perception and structured symbolic rea-
soning, producing interpretable outputs that bridge scene understanding and action generation.

3.4 MULTI-STAGE TRAINING STRATEGY

To equip the model with structured reasoning and planning capabilities in cleaning tasks, we propose
a three-stage training strategy that progressively enhances performance through both supervised and
reinforcement-based learning.

Stage 1: Supervised Fine-tuning (SFT). In Stage 1, we perform supervised fine-tuning to
initialize the model’s multimodal understanding and reasoning. Each instance consists of a
room image and two structured outputs: (1) a UML class diagram in <think>...</think>
tags, representing symbolic Chain-of-Thought (CoT) reasoning; (2) a UML activity diagram in
<answer>...</answer> tags, encoding an executable cleaning plan grounded in CoT.

This stage trains the model to generate interpretable, structured outputs without explicit rewards,
focusing on imitating high-quality reasoning and planning from annotated data. The success of later
GRPO stages relies on the quality of this foundation, proved in section

Under review as a conference paper at ICLR 2026

For subsequent experiments, we prepare variants with: (a) Plain-text CoT and plain-text plans, and
(b) Plain-text CoT followed by UML-based plans. These variations allow us to analyze the impact
of different reasoning and output structures.

Stage 2: Reinforcement Learn- t [Candidate [} i[Revaral: iravantagel;
ing Fine-tuning (RLFT) In Stage ot) =} Caleulate* i Growp ;

. CoT Model » [Candidates| ;> 1 |Rewardz| > . [Advantagez|s
2, we apply Reinforcement Learn- [cor) ;: Reyard :: Computaon ::
ing Fine-tuning (RLFT) on the same ‘[tandidatedt i[Rewarad]: idvantaged:
CoT-annotated dataset used in SFT. Feoomees fremeet o et T

Backpropagate and update Compute Loss Select Best

The reward is computed only based
on the final answer, enabling indi-

rect supervision of intermediate rea- Figure 5: Overview of Group Relative Policy Optimization

. (GRPO), applicable to both Stage 2 and Stage 3. The model re-
soning. After the SFT stage, the ceives ima;)erj CoT, and plan asginput, gener%ites multiple candi-
modpl is capable of Corre(,ttly Out- (gates, evaluates them using advantage scores, and updates its pa-
putting format tags, class diagrams, rameters based on the best-scoring candidate.

and activity diagrams, which are pre-

requisites for RLFT.

As shown in Fig. [5] the model receives three inputs: a room image, a Chain-of-Thought (CoT),
and the corresponding ground-truth cleaning plan. It generates GG plan candidates, and for each, a
composite reward is computed as:

reward = format_reward + accuracy_reward (D)

* Format Reward: 1.0 if both <think> and <answer> tags are present; O otherwise.

* Accuracy Reward: Based on semantic similarity between the predicted and reference
UML activity diagrams, computed using al1l-MiniIM-L12-v2.

The diagram is parsed into three predefined partitions: Main Messy Areas, Cleaning Priority Order,
and Specific Cleaning Steps. A greedy matching algorithm is used to compute the accuracy reward
based on cosine similarity between predicted and reference nodes.

The raw rewards for all G candidates are normalized to obtain a relative advantage score:

advantage;, = Lok 2)
g €
where ¢ and o are the mean and standard deviation of rewards among the candidates, and € is a
small constant for stability. The candidate with the highest advantage score is selected, and its
log-probability is scaled by the advantage score. The final policy loss is:

L = —logmy (y|x) - advantage () 3)

This loss is backpropagated to update the model. Notably, although CoT is part of the input, rewards
are computed only on the final answer, allowing the model to refine its reasoning chain through latent
reward propagation.

Since only structured UML outputs are used at this stage, discussion of purely textual rewards is
excluded in this phase.

Stage 3: Guided Reward Propagation Optimization (GRPO). In Stage 3, we apply GRPO to
a broader dataset with only final cleaning plans annotated. The model receives a room image and
a ground-truth plan as input, without chain-of-thought reasoning traces, and generates GG candidate
plans. Rewards are computed (Equation|[I)) for each candidate to guide model updates.

For reward evaluation, two pipelines are used: For UML-based outputs, the reward function from
Stage 2 is reused, including UML verification and semantic similarity across structured partitions.
For textual outputs, a simplified reward is used:

* Format reward: 1.0 if both <think> and <answer> tags are present; 0 otherwise.

Under review as a conference paper at ICLR 2026

* Accuracy reward: Cosine similarity between predicted and reference plans, using
all-MinilLM-L12-v2 embeddings.

After computing raw rewards, group normalization is applied to obtain advantage scores (Equa-
tion[2). The candidate with the highest advantage score is selected, and the final loss is computed
(Equation [3)), allowing the model to improve plan quality through reward-based fine-tuning, even
without intermediate reasoning supervision.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We conduct our experiments on MRoom-30k, introduced in section [32} Except 1,000
instances annotated with reasoning traces, the remaining samples are randomly split into 80% for
training, 10% for validation, and 10% for testing. Due to computational constraints, 2,000 training
samples are randomly selected for Stage 3 GRPO fine-tuning. During evaluation, we sample 1,000
test instances to assess model performance across all metrics.

Implementation Details. The model backbone is based on InternVL 2.5-1B. We investigate four
distinct input-output configurations: (i) Textual CoT — Textual Cleaning Plan, (ii) Textual CoT —
UML-based Cleaning Plan, (iii) UML-based CoT — UML-based Cleaning Plan, and (iv) UML-
based CoT — UML-based Cleaning Plan (3-stage). The first configuration, Textual CoT — Textual
Cleaning Plan, is a well-established approach found in VLM-R1 (Shen et al.| [2025)). In addition
to this, we compare the performance of Tree of Thoughts (ToT) (Yao et al.l 2023) and Graph of
Thoughts (GoT) (Besta et al.| 2024) against our proposed configurations. Complete training argu-
ments across three stages are shown in appendix [C]

Evaluation Metrics. Conventional metrics such as ROUGE are inadequate for assessing room-
cleaning plans due to their subjective nature. We therefore adopt a semantic similarity—based eval-
uation pipeline using the al1-MiniIM-L12-v2 model. Predictions and references are decom-
posed into structured partitions, and node-level alignment is performed via similarity matrices with
greedy matching. We report both regression-style metrics, defined as the average similarity across
all matched node pairs, and classification-style metrics, where a fixed threshold (0.5) determines
matches: nodes matched above the threshold are TP, unmatched ground-truth nodes are FN, and
unmatched predictions are FP. Precision, Recall, and F1-score are then computed from these counts.

In particular, we interpret Recall as the task execution success rate, as it measures the proportion of
ground-truth steps covered by the model’s prediction. High recall ensures that critical cleaning steps
are included, whereas lower precision (due to redundant steps) may still yield successful execution.
To ensure consistent evaluation, textual instructions are converted into UML activity diagrams using
GPT-40 before scoring.

4.2 TRAINING DYNAMICS

PPy v 2000
s 141 ‘
2 0.8 “J 3) c“ 9 Text/UML(2S)
=0 = 212 = 1000 UML/UML(2S)
> | —— Text/UML(2S) > —— Text/UML(2S) > | —— Text/UML(2S) > —— UML/UML(3S)
| UML/UML(2S) 04 UML/UML(2S) UML/UML(2S)
06!’ —— UML/UML(3S) —— UML/UML(3S) 1.0 —— UML/UML(3S)
0 100 200 0 100 200 0 100 200 0 0 100 200
Training Step Training Step Training Step Training Step
(a) Format Reward (b) Accuracy Reward (c) Total Reward (d) Loss

Figure 6: Comparison of training metrics across experimental configurations: (a) Format reward, (b)
Accuracy reward, (c) Total reward, and (d) Loss.

We compare three configurations during Stage 3 GRPO fine-tuning: i) Textual CoT — UML answer
(w/o Stage 2); ii)) UML CoT — UML answer (w/o Stage 2); and iii)) UML CoT — UML answer
(w/ Stage 2). Since the text-based configuration uses a purely textual dataset and converts outputs to

Under review as a conference paper at ICLR 2026

UML format only during evaluation, its training dynamics are indirectly reflected through post-hoc
conversion. For fair comparison, we omit its learning trends in this section.

Effect of Structured Reasoning. As shown in Fig. the two-stage model using UML-based
CoT (UML/UML 2S) initially trails but gradually catches up even slightly outperformss its textual
CoT counterpart (Text/UML 2S) across all reward metrics. Specifically, UML-based reasoning
achieves significantly higher format reward due to better syntactic consistency, and also surpasses
textual reasoning in semantic alignment and total reward.

This performance gap highlights the advantage of structured intermediate representations. Even
without additional reinforcement optimization, UML-based CoT enables more interpretable and
accurate planning compared to unstructured textual chains, confirming the benefits of symbolic ab-
straction.

Impact of Intermediate RLFT. Further gains are achieved by introducing an additional interme-
diate RLFT stage. The three-stage model (UML/UML 3S) not only achieves the highest overall
reward scores, but also shows smoother and more stable convergence behavior, as seen in Fig. [6d}
In contrast, the two-stage variants exhibit larger fluctuations and higher loss variance, especially in
the textual setting.

This improvement validates the role of Stage 2 RLFT as a targeted optimization step: by leveraging
reward signals from final plans, it indirectly refines the reasoning process, leading to better plan-
ning quality and training stability. These findings support our design of progressive reward-guided
optimization over structured reasoning.

4.3 EVALUATION RESULTS

Beyond training dynamics, we also benchmark our method against state-of-the-art ap-
proaches—including text-based CoTs (Shen et al., [2025), Tree of Thoughts (Yao et al.l [2023), and
Graph of Thoughts (Besta et al., [2024)—with results summarized in Table

Table 1: Performance comparison with state-of-the-art approaches. Best results are highlighted in bold,
and second-best results are underlined.

Method Similarity Precision Recall F1 Success Rate
SOTA Tree of Thoughts (Yao et al.,|[2023) 0.4209 0.4854 0.4639 0.4695 0.4639
Graph of Thoughts (Besta et al.[[2024) 0.5383 0.5263 0.5579 0.5371 0.5579
Text/Text (2S) (Shen et al.|[2025) 0.5498 0.5489 0.6280 0.5811 0.6280
Text/UML (2S) 0.5562 0.5384 0.6438 0.5812 0.6438
Ours UML/UML (2S) 0.5617 0.5304 0.6536 0.5803 0.6536
UML/UML (3S) 0.5694 0.5326 0.6744 0.5904 0.6744

Notably, while Textual CoT with Textual Plan achieves the
highest precision (0.5489), it lags behind in recall and overall
F1, suggesting that while it generates more accurate matches,
it fails to capture a significant portion of valid responses. The

0.0010
—— uml_cot_uml_answer
0.0005 text_cot_uml_answer
----- uml_answer (w/o cot)

Accuracy Reward (Value)

Tree of Thoughts and Graph of Thoughts demonstrate lower 0.0000] e
performance across key metrics, particularly in similarity and 0.0005

recall, despite achieving relatively higher precision. '

By contrast, switching the plan output from text to UML (Tex- ~0.0010% 100 200

t/UML 2S) results in improvements in similarity and recall, step

indicating that UML-based outputs facilitate better alignment
with structured targets, even when the CoT remains textual.
Furthermore, When both CoT and plan are represented as
UML (UML/UML 28S), the model further benefits in recall and
similarity, validating the effectiveness of fully symbolic reasoning.

Figure 7: Comparison of accuracy
reward across different datasets.

Among all settings, the best overall performance is achieved by the UML/UML (3S) configuration,
with the highest semantic similarity (0.5694), recall (0.6744), and F1 score (0.5904), demonstraing

Under review as a conference paper at ICLR 2026

that both structured representation and additional RLFT fine-tuning in Stage 2 (even without inter-
midiate reasoning supervision) contribute significantly to improved planning quality.

4.4 ABLATION STUDY

Necessity of SFT Prior to GRPO To evaluate the necessity of SFT, we tested whether GRPO
alone could generate valid UML outputs by applying it to a dataset containing only annotated final
answers. Since the reward function relies on detecting UML tags and calculating accuracy, models
without prior SFT failed to produce UML-formatted outputs, resulting in zero accuracy rewards
and undefined advantage functions. We also applied GRPO to datasets with UML- and text-based
reasoning, but observed the same issue, as rewards were only given for final answers. These results,
shown in Fig. [7] highlight that SFT is crucial for GRPO to effectively generate UML-formatted
answers.

Effect of GRPO beyond SFT To determine whether per-
formance gains arise from longer training or Group Relative
Policy Optimization (GRPO), we analyze test results under
different SFT epochs. As shown in Fig. [§] similarity, preci-
sion, recall, and F1 improve rapidly in the first few epochs but
plateau after the 5th epoch, indicating convergence. In con-
trast, applying GRPO from the SFT epoch 5 checkpoint re-
sults in consistent improvements across all metrics according
to Table[I] Since extended SFT alone does not produce these
gains, we attribute the improvements to GRPO’s reward-based
optimization. This comparison highlights that i) SFT saturates
around 5 epochs, and ii) GRPO provides additional improvements.

similarity

precision
—— recall

—— fl

epoch

Figure 8: Test set metrics across dif-
ferent SFT epochs.

4.5 CROSS-TASK GENERALIZATION

Cross-task generalization is cru-
cial for evaluating how well
models can adapt to different
Task Model Similarity Precision Recall F1 ta5ks beyond their training do-
text/text 2S 0.6357 02010 04219 02694 main. Table 2] evaluates model
text/uml 28 0.5705 0.2683 0.4269 0.3213 performance across cooking and

Table 2: Generalization Results.

Cooking \mijumi2s 06058 04119 04059 03076 painting tasks. In cooking, the
text/text 2S 0.6040 0.1471 03665 0.2087 best, particularly in similarity
Painting toXV/uml 28 0.5750 0.1750 0.1555 0.1643 and FI score, suggesting strong

uml/uml 2S 0.6156 0.1566 0.1498 0.1531 task generalization. In contrast,
uml/uml 3S 0.6503 0.1892 0.2769 0.1715 the ‘text/text 2S’ model, despite
better precision and recall, un-
derperformed in F1, highlighting the limitations of text-based models. For painting, all models
showed poor performance, with ‘uml/uml 3S’ slightly outperforming others in similarity but still
struggling in F1. This emphasizes the challenge of cross-task generalization, indicating that further
task-specific model improvements are necessary.

5 CONCLUSION

We present a structured reasoning framework for multimodal room cleaning that integrates UML-
based representations into the Chain-of-Thought (CoT) paradigm. Reasoning is expressed as
UML class diagrams and executable plans as UML activity diagrams, yielding an interpretable
pipeline grounded in visual input. A progressive three-stage training strategy—SFT, RLFT, and
GRPO—further refines reasoning and planning. Experiments on MRoom-30k show that UML-
based CoT surpasses textual and mixed baselines, while GRPO improves structural fidelity and
execution quality. Semantic similarity—based evaluation confirms the robustness and effectiveness
of our approach.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work adheres to ethical standards in data collection and usage. The MRoom-30k dataset consists
of publicly available images collected from platforms such as Google, Bing, Baidu, and Xiaohong-
shu. These images were carefully curated to ensure compliance with platform privacy policies. No
personal or sensitive data is involved, and the dataset does not contain identifiable information. All
image annotations and subsequent model training were conducted with a focus on fairness and min-
imizing biases. Ethical considerations, particularly around the use of Al for real-world tasks such
as room cleaning, were rigorously assessed to ensure the safety, transparency, and fairness of the
models employed.

REPRODUCIBILITY STATEMENT

The models, datasets, and code used in this research will be made publicly available in the near
future. Once released, detailed instructions for replicating the experiments will be provided, includ-
ing the dataset, environment setup, and evaluation metrics. We are committed to ensuring that the
research is reproducible and accessible to the broader research community for validation and further
exploration.

LLM CLARIFICATION

In this research, GPT-40 was used for data annotation, specifically for generating textual cleaning
plan and PlantUML cleaning plan associated with the images in the MRoom-30k dataset. Addi-
tionally, GPT-40 was utilized during the evaluation phase to convert textual plans into UML activity
diagrams. Furthermore, DeepSeek is employed for annotating Chain-of-Thought (CoT) data, en-
abling structured reasoning traces to guide the task.

REFERENCES

Shuang Ao, Flora D. Salim, and Simon Khan. EMAC+: embodied multimodal agent for collabora-
tive planning with VLM+LLM. CoRR, abs/2505.19905, 2025.

Charles Ashbacher. “the unified modeling language reference manual, second edition”, by james
rumbaugh. J. Object Technol., 3(10):193-195, 2004.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Giani-
nazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoe-
fler. Graph of thoughts: Solving elaborate problems with large language models. In AAAI pp.
17682-17690. AAAI Press, 2024.

Yash Bhalgat, Iro Laina, Jodo F. Henriques, Andrea Vedaldi, and Andrew Zisserman. Contrastive
lift: 3d object instance segmentation by slow-fast contrastive fusion. In NeurIPS, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex Her-
zog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
2: Vision-language-action models transfer web knowledge to robotic control. In arXiv preprint
arXiv:2307.15818, 2023a.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, Jasmine Hsu, Julian Ibarz, Brian

10

Under review as a conference paper at ICLR 2026

Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J. Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl
Pertsch, Jornell Quiambao, Kanishka Rao, Michael S. Ryoo, Grecia Salazar, Pannag R. Sanketi,
Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong T. Tran, Vin-
cent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
and Brianna Zitkovich. RT-1: robotics transformer for real-world control at scale. In Robotics:
Science and Systems, 2023b.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271,
2024.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
dense representations. CoRR, abs/2412.13171, 2024.

Xiaoxue Cheng, Junyi Li, Wayne Xin Zhao, and Ji-Rong Wen. Chainlm: Empowering large lan-
guage models with improved chain-of-thought prompting. In LREC/COLING, pp. 2969-2983.
ELRA and ICCL, 2024.

Kun Chu, Xufeng Zhao, Cornelius Weber, and Stefan Wermter. LLM+MAP: bimanual robot
task planning using large language models and planning domain definition language. CoRR,
abs/2503.17309, 2025.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large lan-
guage models for interpretable logical reasoning. In /CLR. OpenReview.net, 2023.

Muzhi Han, Yifeng Zhu, Song-Chun Zhu, Ying Nian Wu, and Yuke Zhu. INTERPRET: interactive
predicate learning from language feedback for generalizable task planning. In Robotics: Science
and Systems, 2024.

Chi-Pin Huang, Yueh-Hua Wu, Min-Hung Chen, Yu-Chiang Frank Wang, and Fu-En Yang.
Thinkact: Vision-language-action reasoning via reinforced visual latent planning. CoRR,
abs/2507.16815, 2025.

Brian Ichter, Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog,
Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, Dmitry Kalashnikov, Sergey Levine,
Yao Lu, Carolina Parada, Kanishka Rao, Pierre Sermanet, Alexander Toshev, Vincent Vanhoucke,
Fei Xia, Ted Xiao, Peng Xu, Mengyuan Yan, Noah Brown, Michael Ahn, Omar Cortes, Nicolas
Sievers, Clayton Tan, Sichun Xu, Diego Reyes, Jarek Rettinghouse, Jornell Quiambao, Peter
Pastor, Linda Luu, Kuang-Huei Lee, Yuheng Kuang, Sally Jesmonth, Nikhil J. Joshi, Kyle Jeffrey,
Rosario Jauregui Ruano, Jasmine Hsu, Keerthana Gopalakrishnan, Byron David, Andy Zeng, and
Chuyuan Kelly Fu. Do as I can, not as I say: Grounding language in robotic affordances. In
CoRL, volume 205 of Proceedings of Machine Learning Research, pp. 287-318. PMLR, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In NeurIPS, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In NeurIPS, 2022.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-Im: Empowering large
language models with symbolic solvers for faithful logical reasoning. In EMNLP (Findings), pp.
3806-3824. Association for Computational Linguistics, 2023.

Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In CVPR, pp. 413—420. IEEE
Computer Society, 2009.

11

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qiangian Zhang, Ruochen Xu, and Tiancheng Zhao. VLM-R1: A stable
and generalizable r1-style large vision-language model. CoRR, abs/2504.07615, 2025.

Xin Su, Tiep Le, Steven Bethard, and Phillip Howard. Semi-structured chain-of-thought: Integrating
multiple sources of knowledge for improved language model reasoning. In NAACL-HLT, pp.
8597-8613. Association for Computational Linguistics, 2024.

Md. Arafat Sultan, Jatin Ganhotra, and Ramén Fernandez Astudillo. Structured chain-of-thought
prompting for few-shot generation of content-grounded QA conversations. In EMNLP (Findings),
pp- 16172-16187. Association for Computational Linguistics, 2024.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. In ACL (1), pp. 2609-2634. Association for Computational Linguistics, 2023a.

Weiyun Wang, Zhe Chen, Wenhai Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu,
Xizhou Zhu, Lewei Lu, Yu Qiao, and Jifeng Dai. Enhancing the reasoning ability of multimodal
large language models via mixed preference optimization. arXiv preprint arXiv:2411.10442,
2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In ICLR. OpenReview.net, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In NeurIPS, 2022.

Siheng Xiong, Jieyu Zhou, Zhangding Liu, and Yusen Su. Symplanner: Deliberate planning in
language models with symbolic representation. CoRR, abs/2505.01479, 2025.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-Li Lee, and Wynne Hsu. Faithful logical
reasoning via symbolic chain-of-thought. In ACL (1), pp. 13326-13365. Association for Compu-
tational Linguistics, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
NeurlPS, 2023.

Zheng Yuan, Hongyi Yuan, Chuanqgi Tan, Wei Wang, Songfang Huang, and Fei Huang. RRHF: rank
responses to align language models with human feedback without tears. CoRR, abs/2304.05302,
2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning. In NeurlIPS, 2022.

Li Zhang. Structured event reasoning with large language models. CoRR, abs/2408.16098, 2024.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
chain-of-thought reasoning in language models. Trans. Mach. Learn. Res., 2024, 2024.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting
enables complex reasoning in large language models. In /CLR. OpenReview.net, 2023.

12

Under review as a conference paper at ICLR 2026

A MROOM-30K DATASET CONSTRUCTION

This section provides a detailed description of the construction and annotation of the MRoom-30k
dataset, a large-scale visual dataset of messy indoor scenes used for training our structured reasoning
agent.

A.1 DATA COLLECTION AND CLEANING

To address the clean-scene bias of existing indoor datasets (e.g., MIT Indoor Scenes), we curate a
large-scale image dataset focusing on cluttered and disorganized household environments. MRoom-
30k contains 30,792 high-quality images collected from four platforms: Google, Bing, Baidu, and
Xiaohongshu (RED). These images cover a wide variety of spaces including kitchens, bathrooms,
bedrooms, living rooms, balconies, and garages, and span varying levels of messiness (mild, mod-
erate, severe).

Multi-Platform Crawling Strategy. We designed platform-specific query strategies to reflect lin-
guistic, cultural, and platform-dependent nuances. A total of 100 search queries were used (25 per
platform). Western platforms like Google and Bing emphasize metaphorical or event-driven expres-
sions (e.g., “post-party dorm mess”), while Baidu queries target Chinese lifestyle scenarios, and
Xiaohongshu queries incorporate younger-generation and emotionally expressive hashtags. These
queries span seven scene categories and seven messiness types. Full query lists are given in Table[3]

Google

Bing

Baidu (translated)

Xiaohongshu (translated)

Hoarding disorder room
Post-party messy dorm

Cluttered desk with food scraps

Moldy bathroom corners
Overflowing garbage can
Greasy kitchen cabinets
Pile of unwashed dishes
Broken furniture clutter
Cockroach-infested kitchen
Stained carpet close-up
Rotting food in fridge
Post-apocalyptic room
Pigsty-like bedroom
Disaster zone kids room
Biohazard-level bathroom
Post-gaming session mess
Moldy refrigerator interior
Clogged sink with sludge
Depression nest reality
College frat house filth
Moldy walls in rainy season
Heater leak damaged floor
Dorm move-out day mess
Pet urine stained carpet
Thanksgiving party aftermath

Trash-filled apartment
Abandoned squatter house
Dirty mattress on floor

Pet hair-covered couch
Decomposing food pile
Tornado-hit kids playroom
Trashed living room

Spring cleaning failure
Airless moldy basement
Bachelor pad disaster
Post-riot room chaos
Squalid homeless shelter
Stained mattress dump
Cigarette butt-filled ashtray
Zombie apocalypse bedroom
Overflowing diaper pail
Broken glass and debris
Dorm room after finals
Cluttered makeup vanity
Disaster area garage
Peeling wallpaper mold
Shoes scattered at entrance
Dusty bookshelf neglect
Cluttered garage with tools
Christmas decoration chaos

Real photos of dirty rental rooms

Greasy kitchens in old apartments

Failed waste sorting scenes

Failed dorm hygiene inspections
Landlord’s nightmare tenant rooms

Mold stains in bathrooms

Living rooms piled with junk

Balconies used as recycling depots
Expired food mold in fridges

Dust and spider webs under bed
Trash-filled bedrooms

Extremely messy bedrooms

Cockroach nests

Smelly and disgusting toilets

Floor too dirty to step on

Post-quarantine room scenes

Hygiene disputes in co-rentals

Food boxes growing worms

Moldy secondhand furniture

Wall leakage and mildew

Water dripping from walls in humid season
Flooded room from northern heater bursts
Junk-filled hallways in old apartments
Battery fire hazard in shared hallway
Kitchen chaos after New Year’s Eve dinner

Rental warning: messy rooms in real life
Student dorms after chaos

Messy room self-rescue for loners
Hygiene issues in co-living apartments
Influencer Airbnb fails

Trash house before renovation
Cleaners’ breakdown moments

Scary scenes left after moving out
Room conditions after lease termination
Pet disaster aftermath

Makeup spilled all over desk

Instant noodle soup-soaked carpet
Expired moldy cosmetics

Living room buried in delivery boxes
Mold spots from wet laundry

OCD warning: extreme mess

Ghosting friends due to mess

Landlord confiscating deposit scenes
Students after finals chaos

One-month quarantine without cleaning
Slightly dusty windowsills

Mountain of delivery boxes from sales
Shocked landlord on move-out day
Urine-stained carpet cry for help

Moldy clothes in wardrobe during rainy season

Table 3: Cross-Platform Crawling Keywords for Messy Room Image Collection

Crawler Architecture and Anti-Bot Strategy. We implement a three-stage multi-engine crawler
covering Google, Bing, and Baidu. The pipeline includes query URL generation, page traversal, and
image parsing. As shown in Figure [J] the system dynamically switches between Selenium-based
browser simulation (for JavaScript-driven engines like Google and Bing) and API-based access (for
Baidu). Anti-crawling countermeasures include randomized headers, proxy rotation, scroll simula-
tion, and delayed thumbnail expansion.

For Xiaohongshu, which is login-gated, we de-
sign a signed API pipeline using pre-acquired
cookies and encrypted signature tokens (X-s
and X-t). Multi-stage signing and response
token decoding allow for scalable retrieval of
public note images.

.| Browser
Automation

Query

Construction

API
Interface

Input
Parameters
Engine
Construction
Data Parsing

|

Figure 9: Crawling System Architecture

13

Under review as a conference paper at ICLR 2026

A.2 DATA FILTERING AND DEDUPLICATION

Due to duplicate URLs, CDN variations, and repeated crawling attempts, redundant and near-
duplicate images frequently occur. To ensure training quality and generalization, we apply two-layer
filtering:

(1) File-level Hashing. We compute MD5 fingerprints to remove byte-identical images.

(2) Perceptual Hashing (pHash). We apply perceptual hashing based on DCT coefficients of
grayscale-resized images. Images with Hamming distances below a threshold are considered visu-
ally redundant.

(3) Irrelevant Image Filtering. To detect irrelevant or clean images (e.g., text-only slides,
tidy apartments), we prompt InternVL 2.5-38B with: ““Is this a messy room? Answer
with only yes or no."“ Images with negative answers are excluded from the dataset.

After filtering, we obtain a curated dataset of 30,792 high-quality messy room images.

A.3 ANNOTATION PIPELINE

We annotate MRoom-30k with structured cleaning plans to support reasoning-based model training.
It should be noted that for both base plan annotation and chain-of-thought annotation, we prepare
textual annotation and UML-based annotation.

Base Plan Annotation (30k). We prompt chatgpt-4o to generate detailed cleaning plans including
three structured fields: (i) messy area identification, (ii) cleaning priority, and (iii) step-by-step
actions.

Prompt used:

Please provide a detailed cleaning plan according to the image, including:
1. Main messy areas identification

2. Cleaning priority order

3. Specific cleaning steps and organization methods

Chain-of-Thought Annotation (1k). We select 1,000 images from MRoom-30k for Chain-of-
Thought (CoT) annotation. As DeepSeek-R1 is not multimodal, we first use InternVL 2.5 to extract
image descriptions. These descriptions are then passed to DeepSeek Reasoner via API to generate a
reasoning trajectory and final cleaning plan.

Annotation format conversion. While the basic cleaning plan annotations and chain-of-thought
annotations introduced earlier are originally provided in textual form, subsequent experiments re-
quire them to be represented in UML format to ensure structural consistency and enable symbolic
reasoning. To accomplish this conversion, we employ ChatGPT-40 with the following prompt:

* Chain-of-Thought:

Convert the following structured plan into a PlantUML activity diagram. The
output should only include three partitions: “Main Messy Areas Identifica-
tion”,““Cleaning Priority Orde”, and“Specific Cleaning Steps”. Return only valid
PlantUML code, starting with @startuml and ending with @enduml.

* Cleaning Plan:

Convert the following thinging process into a PlantUML class diagram. Return
only valid PlantUML code, starting with @startuml and ending with @enduml.

This completes the construction of the MRoom-30k dataset and its structured annotations.

14

Under review as a conference paper at ICLR 2026

Algorithm 1 Reward Computation Pipeline

Require: Predicted output yprq, reference output yrer
1: Initialize format_reward <— 0, accuracy_reward < 0
2: if yprea contains valid tags <think> and <answer> then

3: format_reward < 1.0
4: end if
5: if reference output is UML then
6: if ypreq contains @startuml and @enduml then
7 for all partition p € {MessyAreas, PriorityOrder, Steps} do
8 if p exists in both ypreq and yrer then
9: Encode all nodes in p using MiniLM — vectors
10: Compute similarity matrix .S,
11: Perform greedy node matching in .S,
12: Accumulate similarities for matched pairs
13: else
14: Add 0.0 for all unmatched ground-truth nodes in p
15: end if
16: end for
17: accuracy_reward < average of all matched node similarities
18: else
19: accuracy_reward < 0.0
20: end if
21: else if reference output is text then
22: Encode ypreq and yrer as whole paragraphs
23: accuracy _reward < cos(vPed yref)
24: end if

25: return reward = format_reward + accuracy_reward

B REWARD COMPUTATION PIPELINE

To optimize the model using Group Relative Policy Optimization (GRPO), we design a reward
pipeline that evaluates the quality of generated cleaning plans through two components: syntactic
validity and semantic correctness. The full logic for reward evaluation—including format checking,
semantic comparison, and routing—is detailed in Algorithm[I] The total reward is defined as:

reward = format_reward + accuracy_reward %)

1. Format Reward. This binary reward evaluates syntactic correctness:

1.0 if output passes format checks
0.0 otherwise

&)

format_reward = {

We consider format valid if the output includes both <t hink> and <answexr> blocks.

2. Accuracy Reward. The accuracy reward measures the semantic quality of a generated plan
relative to the reference plan. We support two formats:
* UML-based plan evaluation: used when the output is a structured UML activity diagram.

» Text-based plan evaluation: used when the output is a plain-text cleaning plan.

(A) UML-BASED EVALUATION. The UML-based accuracy reward begins by verifying whether
the generated output includes valid PlantUML syntax markers (@startuml and @enduml). Only
outputs that pass this check are eligible for further structural evaluation. If the output lack PlantUML
syntax markers, the accuracy reward is 0.

15

Under review as a conference paper at ICLR 2026

Following the Stage 1 SFT prompt design, all activity diagrams are expected to follow a standardized
three-part structure: (i) Main Messy Areas Identification, (ii) Cleaning Priority Order, and (iii)
Specific Cleaning Steps

To robustly extract the content of each partition, we implement a stack-based bracket matching
algorithm. This approach uses a nesting counter to ensure that all sub-activity nodes are fully and
correctly parsed within their respective partitions.

Unlike traditional string-matching approaches, we use semantic similarity to compare nodes. Activ-
ity nodes such as “organize the desk surface” and “clear items from the desk” may differ lexically
but are semantically equivalent. To capture this, we employ the a11-MiniIM-L12-v2 from Sen-
tence Transformer to encode each node into a semantic vector.

For each of the three partitions:

o If a partition is missing in the prediction, all ground-truth nodes under that partition are
considered unmatched (assigned similarity 0.0).

* If both prediction and reference contain the partition, we compute pairwise cosine similar-
ities between all activity nodes in that partition.

A greedy matching algorithm is then applied to align each ground-truth node with its most similar
counterpart in the predicted set. Let M denote the matched node pairs and sim(i, j) their cosine
similarity. The accuracy reward is computed as:

1
accuracy rewardyyy = ™ E sim(,) ©)
(i,5)eM

Each node is treated as an equally weighted evaluation unit, and the final reward reflects the average
semantic fidelity of matched activity steps across all partitions.

(B) TEXT-BASED EVALUATION. For text-only cleaning plans, we compute similarity at the doc-
ument level. The predicted and reference plans are treated as entire paragraphs and embedded as a
whole using the same encoder (a11-MinilLM-L12-v2).

Let vP¢ and v™ denote the embedding vectors of the predicted and reference cleaning plans, re-
spectively. The accuracy reward is then defined as:

accuracy _reward, , = cos(vP™?, v™f) (7)

text

This formulation avoids sentence segmentation and captures holistic semantic similarity between
the entire predicted and ground-truth plans.

(c) SUMMARY. The final accuracy reward is selected as:

accuracy rewardy,, ~ UML-formatted

accuracy_reward =
accuracy_reward Textual

text

This dual-mode reward computation allows consistent evaluation across symbolic and natural lan-
guage output styles, enabling flexible fine-tuning strategies.

C FULL TRAINING ARGUMENTS BY STAGE

For reproducibility and clarity, table fprovide the complete training arguments used in each stage
of our pipeline. Stage 1 corresponds to supervised fine-tuning (SFT) on CoT-labeled data, Stage 2
applies GRPO on the same CoT-labeled subset with customized reward functions, and Stage 3 con-
tinues GRPO on the answer-only subset.

16

Under review as a conference paper at ICLR 2026

Table 4: Key configurations across the three training stages.

Setting Stage 1: SFT Stage 2: GRPO (CoT Data) Stage 3: GRPO (Answer-Only)
Data CoT-labeled JSON CoT-labeled subset Answer-only subset
Epochs 5 3 2

Batch size / Accum. 474 8/2 8/2

Precision bf16 bf16 bf16

Frozen modules Backbone frozen None frozen None frozen

Max seq. length 4096 4096 4096

Learning rate 4e-5 (cosine) — (policy gradient) — (policy gradient)

Reward funcs

Accuracy, Format

Accuracy, Format

Reward method — Clean_plan_.UML Clean_plan_.UML
Generations — 8 8

Beta — 0.04 0.04
Deepspeed ZeRO-1 ZeRO-2 ZeRO-2

D EXTENDED UML DIAGRAM EXAMPLES

We present three representative examples from the MRoom-30k dataset. For each example, we
display: 1) A real-world messy room image input; ii) The generated UML class diagram representing
structured chain-of-thought (CoT) reasoning; and iii) The corresponding UML activity diagram

encoding an executable cleaning plan.

These cases demonstrate the model’s ability to translate
complex spatial messes into interpretable symbolic rea-
soning and structured, actionable cleaning strategies.

D.1 EXAMPLE
1: LIVING ROOM WITH BROKEN GLASS AND TRASH

The image (Figure [I0) depicts a cluttered living space
with broken glass, scattered bottles, and floor-level haz-
ards. The model identifies key mess areas and generates
a safety-first cleaning strategy.

As illustrated in Figures [TTa] and [TTb] the structured di-
agrams represent mess categorization, prioritization, and
modular cleanup logic.

Figure 10: Input image (Example
00254): A heavily cluttered living room
with bottles, glass shards, and surface
debris.

1

l

(a) UML Class Diagram: The structured CoT iden-

tifies four main messy zones (floor, coffee table,
sofa, windows), categorizes mess types (e.g., ’broken
glass”, “scattered items”), and links them with corre-
sponding cleaning priorities and tools. The diagram
includes fallback modules such as missed step consid-

erations for robustness.

(b) UML Activity Diagram: The plan first addresses
hazardous items (glass shards), then proceeds through
logical cleaning phases: bottle disposal, surface wip-
ing, floor vacuuming, and final reorganization. Spe-
cific methods are modularized for safety, efficiency,
and completeness.

Figure 11: Structured reasoning and executable plan generated for an image with broken glass and

cluttered zones.

17

Under review as a conference paper at ICLR 2026

D.2 EXAMPLE 2: STORAGE
ROOM WITH MIXED TOOLS AND DISORGANIZATION

This example (Figure shows a cluttered study room with cardboard boxes, scattered tools, and
multiple organization challenges. The model outputs a modular cleanup workflow that balances
safety and order.

As shown in Figures [T4aJand [T4b] the diagrams reflect object-oriented reasoning and compositional
task plans.

Figure 13: Input image (Example
01123): A cluttered work desk with
papers, electronics, and mixed sta-
tionery.

Figure 12: Input image (Example 00877):
A disorganized study room with cardboard
boxes, tools, books, and wall stains.

(ﬁ)

(a) UML Class Diagram: The reasoning process orga-
nizes the room via object-centric modules like book-
shelf, toolbox, black bag, etc. Each object is tied to
relevant actions, organized hierarchically under clean-
ing priorities and safety considerations. The structure
facilitates task grouping and dependency handling.

(b) UML Activity Diagram: The plan starts with safety
(securing ladder and tools), then performs floor declut-
tering (sorting, binning), followed by object-specific
storage (foam inserts, dividers), and ends with surface
polishing. The sequence ensures both hazard reduc-
tion and semantic order.

Figure 14: Structured reasoning and execution plan for a cluttered workshop scene with tool and

storage elements.

D.3 EXAMPLE 3: DESK SCENE WITH PAPER

CLUTTER

This case (Figure[I3)) involves a messy work desk with scattered documents, electronics, and writing
tools. The model infers a structured prioritization strategy across semantic object groups.

The reasoning and planning structures, shown in Figures [I5a and [I5b} highlight the use of high-

/medium/low task tiers.

18

Under review as a conference paper at ICLR 2026

(a) UML Class Diagram: The CoT decomposes
the desk scene into semantically meaningful object
groups: papers, writing tools, electronics, wall decor.
Cleaning priorities (high/medium/low) are assigned
based on object criticality and mess severity. Orga-
nization methods (e.g., trays, cables) are explicitly en-
coded.

v
[

(b) UML Activity Diagram: The cleaning plan is split
into three priority levels. High-priority actions (wash-
ing, paper sorting) are followed by medium (tool gath-
ering, notebook filing), then low (dusting, wall orga-
nization). Task modularity reflects practical execution
flows.

Figure 15: Structured CoT and executable plan for a desk-centric messy scene.

19

	Introduction
	Related Work
	Methodology
	Task Definition
	Dataset Construction
	Model Architecture and I/O Representation
	Multi-Stage Training Strategy

	Experiments
	Experimental Setup
	Training Dynamics
	Evaluation Results
	Ablation study
	Cross-Task Generalization

	Conclusion
	MRoom-30k Dataset Construction
	Data Collection and Cleaning
	Data Filtering and Deduplication
	Annotation Pipeline

	Reward Computation Pipeline
	Full Training Arguments by Stage
	Extended UML Diagram Examples
	Example 1: Living Room with Broken Glass and Trash
	Example 2: Storage Room with Mixed Tools and Disorganization
	Example 3: Desk Scene with Paper Clutter

