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Abstract

Deep learning based image segmentation methods have achieved great success, even having
human-level accuracy in some applications. However, due to the black box nature of deep
learning, the best method may fail in some situations. Thus predicting segmentation quality
without ground truth would be very crucial especially in clinical practice. Recently, people
proposed to train neural networks to estimate the quality score by regression. Although
it can achieve promising prediction accuracy, the network suffers robustness problem, e.g.
it is vulnerable to adversarial attacks. In this paper, we propose to alleviate this problem
by utilizing the difference between the input image and the reconstructed image, which
is conditioned on the segmentation to be assessed, to lower the chance to overfit to the
undesired image features from the original input image, and thus to increase the robustness.
Results on ACDC17 dataset demonstrated our method is promising.
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1. Introduction

Segmentation quality assessment with the absence of ground truth, which estimates seg-
mentation accuracy without human or expert intervention, is of high interest in medical
imaging research and clinical fields. In many applications, the deep learning based segmen-
tation methods can even achieve expert-level accuracy. However, in practice, deep learning
methods may fail due to many factors: such as domain shift (Patel et al., 2015), adversarial
noise, and low image quality. Therefore predicting segmentation quality without ground
truth would be very crucial and of high interest for the downstream analysis.

One straightforward idea is to predict segmentation quality using a CNN regression
network, where the image and its segmentation are concatenated as different channels to
feed into the network (Robinson et al., 2018b,a). However, that state-of-the-art method
suffers the robustness problem if the input images have a different distribution from that of
those training datasets for the regress network. This can be demonstrated with adversarial
attacks, in which it involves adding hand-crafted perturbations to the images drew from
the distribution of training data and leading to misbehave for deep neural networks.

Inspired by the work of representation learning and factorization (Mirza and Osindero,
2014; Chartsias et al., 2018), we propose to improve the prediction robustness by extract-
ing features directly related to the segmentation. More precisely, we propose to utilize
the difference of the original input image and the reconstructed image conditioned on the
input image and the input segmentation. Our work is most related to Kohlberger et al.’s
work (Kohlberger et al., 2012), in which the quality assessment score is estimated by re-
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Figure 1: The work flow of proposed segmentation quality assessment method.

gression based on numerous statistical and energy measures from segmentation algorithms.
Our method also shares merits of unsupervised lesion or outlier detection (Schlegl et al.,
2017; Baur et al., 2018; Chen and Konukoglu, 2018; Pawlowski et al., 2018; Seeböck et al.,
2016; Alaverdyan et al., 2018), where only normal data (ground truth segmentation in our
scenario) is utilized in the training of the reconstruction network.

Contributions: In this paper, we propose to make use of features directly related to
segmentation to improve the robustness of the quality regression network for segmentation
quality assessment. To achieve this goal, we have developed two CNNs: one is a recon-
struction network (REC-Net), which aims to reconstruct the original image from the image
masked by the provided segmentation; the other is a quality regression network (REG-Net),
which predicts the segmentation quality based on the reconstruction difference image and
the provided segmentation. Our experiments on ACDC17 dataset 1 have demonstrated
highly promising performance of the proposed method.

2. Method

Assume the input image, its ground truth segmentation and the candidate segmentation
(to be assessed) are Iin ∈ Rn×n, Sgt ∈ Zn×n and Sseg ∈ Zn×n, respectively. It is trivial to
apply any metric functions (e.g. Dice, Jaccard scores) to the pair Sgt and Sseg to get the
ground truth segmentation quality score, e.g. GT dice. However, the absence of Sgt makes
generating Dice prediction Pdice non-trivial.

The flow of the proposed method is demonstrated as in Fig. 1. We use Iin|S to represent
the image with the segmented target S being masked by zero, in which Sij = 1 if the
corresponding pixel belongs to the target; otherwise Sij = 0. More specifically, Iin|S =
Iin · (1−S). In other words, all pixels that are labeled by S as the target object in Iin are
set to zero intensity. The reconstructed image using the proposed reconstruction network
(REC-Net) from Iin|S , is denoted as Irec. The difference image Idif , which serves as one
input channel to the quality regression network (REG-Net), is defined as: Idif = Iin−Irec.
The output of REG-Net Pdice is the predicted score for the segmentation quality.

During the training of REC-Net, only pairs of Iin and its Sgt are utilized. The rationale
behind is that the REC-Net is trained to well recover the original input image only when
S is a good segmentation. However, during the training of REG-Net, segmentations of
different quality have to be used to teach the REG-Net the quality measure. The REC-Net
and the REG-Net have a U-net and Alex-net architectures, respectively.

1. https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
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Method ε = 0 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.3

Robinson et al. 0.04±0.05 0.08±0.06 0.11±0.07 0.14±0.08 0.16±0.09

proposed 0.04±0.05 0.07±0.06 0.09±0.06 0.09±0.07 0.12±0.09

Table 1: Mean absolute errors of dice prediction under different levels of adversarial attack.

3. Experiments

3.1. Data

To validate the proposed segmentation quality assessment method, we utilize a public
dataset: Automated Cardiac Diagnosis Challenge (ACDC) MICCAI challenge 2017. For
our experiments, only segmentation of left-ventricular myocardium (LVM), which is very
challenging, was considered. To train the REG-Net, segmentations of different quality have
to be generated first. In our experiments, in contrast to random forests used in (Robinson
et al., 2018a), U-nets with different depths, different number of starting filters and differ-
ent training epochs, were applied to generate the simulated segmentations with different
quality.

3.2. Adversarial attacks generation

We compared the robustness of our proposed method with respect to adversarial attacks
against the state-of-the-art methods (Robinson et al., 2018a, 2017, 2018b). We applied a
simple fast gradient sign method (Kurakin et al., 2016) to generate the adversarial images
for REG-Net to conduct our experiments. Only adversarial attacks on the original images
Iin and the difference image Idif were considered and no changes were made to Sseg.

3.3. Performance comparison

The mean absolution error (MAE) of the Dice scores, MAE =
∑SN

i=1 |Pi
dice−GT

i
dice|

SN , was utilized
as the metric, where SN is total number of slices in the test set. The results without
adversarial attacks are shown in column ε = 0 in Table. 1. As can be seen, when there is
no attack, the proposed method works as well as Robinson et al.’s (Robinson et al., 2018a,
2017, 2018b). The performance when having attacks is demonstrated in the right most four
columns in Table. 1. It can be noticed that for both methods, the MAEs are monotonically
non-decreasing as the attack level increases. However, the proposed method has a smaller
increasing rate and works better than Robinson et al.’s.

4. Conclusion

In this paper, a robust method for segmentation quality assessment has been proposed. We
make use of the image difference between the input image and the reconstructed image using
our proposed image reconstruction network (REC-Net), as the feature image for the quality
score regression network (REG-Net). Results on ACDC17 dataset verified our method is
more robust.
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