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Abstract

In many real-world scenarios, encountering continual shifts in domain during inference is
very common. Consequently, continual test-time adaptation (CTTA) techniques leveraging a
teacher-student framework have gained prominence, allowing models to adapt continuously
even after deployment. In such a framework, a weight-averaged mean teacher is used to
produce pseudo-labels from test data for self-training. The mean teacher gets updated as
an exponential moving average of the student parameters using a high value of momentum
that is kept fixed even if different distributions of test data are encountered. To combat the
resulting drift of the model, we propose a novel controlled teacher adaptation methodology
that dynamically sets a proper momentum value depending on the quality of the incoming
data. Additionally, we estimate class prototypes from the source pretrained model to help
align the target data as they come in. Importantly, our method does not require access to
source data or its statistics at any stage of the pipeline, making it truly source-free. We
perform extensive experiments on benchmark datasets to demonstrate that our approach
outperforms different state-of-the-art adaptation frameworks, many of which require access
to source data.

1 Introduction

Deep Neural Networks have demonstrated remarkable representation and generalization capabilities on various
scene understanding tasks. While the promise is certainly there, the real-life performance of many of these
methods falls significantly when faced with distributional shifts in applications. This is because data in the
domain where the models are deployed (target domain) is not distributed identically to the training data in
the domain where they are trained (source domain). To address this gap, it is often necessary to adapt a
source pre-trained network to the target domain without any supervision from the target domain (known as
unsupervised domain adaptation, UDA) (Araslanov & Rothl [2021} |Ganin et al., [2016; Hoffman et al., 2018;
Long et al., [2015; Mei et al.| [2020; [Sahoo et al., [2021} [Tzeng et al., [2017). Current UDA approaches assume
that labeled source data and unlabeled target data are available during adaptation. However, both these
assumptions can be unrealistic in many scenarios. Although pre-trained models are easily available nowadays,
the source data used for training these are often not available due to privacy, storage or financial constraints.
Moreover, for an already deployed model, it may be imperative not to wait long to collect data from the new
domain as inference must continue. To address this challenge, Test-Time Adaptation (TTA) (Niu et al., [2022;
Shin et al, 2022; [Wang et al., 2021)) has emerged as a promising approach.

Existing TTA approaches rely on a restrictive assumption that the target domain is isolated and stationary.
However, in real-world scenarios, the target domain can continually evolve. For example, a model trained
with data from clear weather conditions, may need to work on-the-fly in diverse weather conditions such
as snow, rain, fog or haze. To address the continual drift in data distribution in absence of source data,
researchers have started to explore continual test time adaptation (CTTA) methods (Chakrabarty et al.l
2023} IDobler et al.l 2023} Niloy et al.l 20245 (Wang et al., |2022; [2024). Typically, CTTA approaches adapt
the model by updating its parameters during the test phase via self-training. This is done by employing a
teacher-student setup, where the student model acts as the primary model, trained using pseudo-labels that
are generated by the teacher model. In the continually changing environment, the model may gradually shift
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Figure 1: To justify our design choices, we conducted three experiments on the ImageNet-C dataset. (a) The frequency
distribution of entropy values of 75,000 images spanning over 15 types of corruptions. Green distribution is for the
samples with correct pseudo-labels while the red distribution is for the incorrect ones. Samples correctly predicted are
likely to have lower entropy predictions. (b) Average error across all 15 noise types with different levels of severity
(corruption severity levels 1 and 5) with the RMT (Débler et al., 2023) model. z axis lists different fixed momentum
(a) values with which the RMT teacher is updated. Performance varies differently with the choice of a@ depending
on the distribution shift. (¢) The number of noise types achieving minimum error rates vs. « demonstrates that
performance is optimal at different o values for different noise types, highlighting the need for a method to compute «
dynamically. (Best viewed in color.)

and thus the pseudo-labels can become progressively noisier. Such mis-calibrated samples, when used in
further adaptation, can lead to error accumulation.

Motivated by the success of weight-averaged models in self-supervised learning (Polyak & Juditsky, (1992

Tarvainen & Valpolal 2017)), recent CTTA approaches have leveraged a weight-averaged teacher (Dobler et al.
2023; Wang et al [2022). The student model is continuously updated using pseudo-labels generated by the

teacher. The teacher is updated using an exponential moving average (EMA), where a momentum value o
controls the influence of the current batch on the running average. A low value of « incurs a drastic change to
the teacher, while a high value more or less maintains the status quo. Ideally, if data from the current domain
is drastically different, then the generated pseudo-labels are noisy and unreliable. The model, naturally, gets
confused, and this is manifested by the increased entropy of the prediction by the teacher model. As shown
in Fig. [Ta] samples that give incorrect pseudo-labels tend to produce higher entropy compared to those with
correct pseudo-labels. Thus, in contrast to previous works (Dobler et al., |2023; [Wang et al., 2022) which use
a fixed momentum, we propose to adaptively choose higher or lower momentum values depending on the
prediction entropy of a batch. By dynamically adjusting the momentum, the teacher model strikes a balance
between adapting to distribution shifts and maintaining stability, leading to improved performance.

An important drawback of many recent CTTA approaches is that they often remain dependent on source
data. For example, RMT (Dabler et al., 2023) and SANTA (Chakrabarty et al., [2023)) utilize source data to
establish class-wise source prototypes for warm-starting the adaptation process. While this technique helps
in achieving meaningful clustering and good class separation in unseen domains, it requires access to the
source data and thus such approaches can not be regarded as truly source-free. To effectively tackle this, we
employ an alternate approach to estimate the source class prototypes by utilizing the pre-trained model itself.
Specifically, we treat the weights learned by the classifier in the last layer of the source pre-trained models
as the class prototypes. As the dot product of the features and last layer weights to a particular output
neuron determines the score of the corresponding class, the weights are aligned with the features of the class.
Hence, we use the weight vectors from the classifier for each output neuron as the source class prototypes.
By leveraging the source pre-trained model only, our approach eliminates the need for source data at any
stage of the framework. After warm-starting, the class prototypes are updated with confident target domain
samples to incorporate valuable domain-specific information with continually changing domains.

Our proposed approach DMSE (Dynamic Momentum and Source Estimation) dynamically updates the model
and harnesses the pre-trained model towards source-free CTTA. Extensive experiments on four benchmark
datasets demonstrate the superiority of our method over the state-of-the-art, including ones requiring access
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to source data. We perform extensive ablations to depict the importance of each component of the framework.
Our contributions include:

e We propose a dynamic momentum update based on the average prediction entropy enabling the teacher to
adapt to distribution shifts, leading to better CTTA performance.

« Unlike existing approaches, we leverage the classifier itself to estimate source prototypes without requiring
access to the source domain data at all during adaptation.

o Extensive experiments and ablations over multiple benchmark datasets, showing consistent benefits of
DMSE (implementation to be made public) over SOTA.

2 Related Works

Unsupervised Domain Adaptation: Unsupervised Domain Adaptation (UDA) adapts a source pre-trained
model to a target domain when data from the source model is available, and data from the target domain is
also available but without labels. Traditionally, UDA approaches align source and target data by minimizing
domain discrepancy (Chen et al., 2020a; [Shen et al. 2018} Sun & Saenkol 2016)) or maximizing domain
confusion (Liu et al., [2021a; Long et al., 2018; Tzeng et al., 2017). Recently, self-supervised approaches e.g.,
contrastive learning (Li et al., 2020a; [Prabhu et al., [2021; Sahoo et al., [2021), solving pretext tasks (Carlucci
let all [2019; [Mei et al., 2020) and pseudo-labels (Chen et al., 2019} |Sahoo et al., 2023 Xie et al., 2018)) have
been applied in aligning domains. These are especially popular in adapting domains source-free, where source
data is inaccessible (Ahmed et al. 2021} Ding et al., [2022; Kumar et al., 2023; Liang et al., 2020; Xia et al.,
[2021). Some existing works adapt without source data relying on generative modeling (Kurmi et al., 2021}

et a1.|, .

Test-Time Adaptation: Traditionally, UDA methods are dependent on huge amount of target domain data
regardless of whether source data is utilized. Once deployed, such models are incapable of training under
changing scenarios before new target domain data can be collected. Test Time Adaptation (TTA) is a variant
that leverages test samples encountered in the target domain after deployment to adapt the source pre-trained
model. A popular direction is to adjust some of the model parameters by minimizing unsupervised loss
functions on the unlabeled test samples. TENT (Wang et al) [2021) updates the batch-norm statistics of the
pre-trained model by minimizing the entropy of the predictions. Authors in (Iwasawa & Matsuol [2021)) train
only the final classification layer with pseudo-prototypes from the test data. Some approaches (Liu et al.|
[2021b; [Sun et al.l 2020) introduce additional self-supervised tasks during source training. During testing, this
additional module is adapted on test data from the target domain. SHOT (Liang et al [2020]), uses source
data to train a specialized module using diversity regularizer with label smoothing in addition to entropy
minimization. Naturally, the reliance of this paradigm on additional model modifications in both training
and inference phases, makes it impractical and non-scalable in real-world scenarios.

Continual Test-Time Adaptation (CTTA): While adapting to a single target domain presents a challenge
in itself, a more realistic scenario presents the need for continual adaptation to a series of domain shifts.
There have been attempts to apply TTA approaches on the CTTA setting as well. However, vanilla TTA
methods (Mirza et all [2022; Wang et al., 2021)) when applied in this setting, suffer from error accumulation
by continually drifting away from source knowledge. Recent works try to address this challenge by proposing
targeted techniques to overcome the error accumulation. CoTTA (Wang et al., [2022) introduced a self-training
technique using augmentation averaged predictions between a moving average teacher and student model.
RMT (Dobler et al., 2023) makes use of a symmetric cross-entropy in a teacher-student framework, coupled
with a contrastive loss to bring the test feature space closer to the source feature space. SANTA
removes the requirement of maintaining a teacher model and uses source anchoring for self-training.
EATA introduces weight regularization to keep the adapted weights close to the source
pretrained model. Authors in (Niloy et al.l |2024) use batch-norm statistics of the incoming batches to detect
domain change and modulate model resets. Most of these works require the source data at some stage or do
not follow the fully online setting. We focus on the fully test-time setting where, instead of using source data
we make use of the pretrained classifier to get the source prototypes and dynamically adjust the momentum
parameter of the teacher to gracefully handle model drift due to error accumulation.
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Figure 2: The proposed DMSE architecture: The student model is trained with pseudo labels from the mean
teacher. The teacher is updated using EMA from the student with a dynamically determined a based on the student’s
prediction entropy. If the entropy falls below a threshold, the teacher model resets to the source model. Additionally,
class-wise prototypes are dynamically updated using confidently pseudo-labelled test data. For inference, a summation
of outputs of both the student model and the teacher model is considered.

3 Methodology

In the Continual Test-Time Adaptation (CTTA) setting, given a source pre-trained model fy,, we have to
continually adapt this pre-trained source model to a sequence of varying target domains {Dk}szl, where K is
the total number of target domains. The test samples arrive in an online fashion and are encountered by the
learner only once. At each time-step ¢, the learner encounters test samples z; ; from domain Dj. The learner
must make predictions fg, (z4,) on the encountered test samples, z; x, and adapt itself (fo, — fo,,,) for the
test samples yet to come, in the future timesteps. Furthermore, in our fully test-time adaptation setting,
source data is not available for use at any point. This decision stems from concerns about data privacy and
unavailability in real-life scenarios.

In this work, we propose a source-free continual test-time adaptation approach that addresses the challenges
of adapting to distribution shifts while maintaining model performance. Our approach employs a controlled
teacher adaptation mechanism, enabling the teacher model to adapt to changing distributions while pre-
serving its robustness. Additionally, we estimate class-wise prototypes from the source pre-trained model to
form disentangled clusters for unseen domains, further enhancing the model’s ability to generalize to new
environments. The overall scheme of the proposed approach is shown in Fig. [2| In the subsequent subsections,
we delve into the details of the controlled teacher adaptation and class-wise prototype estimation.

3.1 Controlled Teacher Adaptation

Self-training a network by using its own predictions as pseudo labels has proven to be very effective in
semi-supervised learning and unsupervised domain adaptation (Manohar et al., [2018; |[Sahoo et al., |2023;
[Sohn et al [2020)). Vanilla self-training methods using pseudo-labels 2013; [Wang et all, [2021)) thrive
when the pseudo-labels are reliable as a result of more or less unchanging data distribution. However, in
CTTA with continually changing target domains, the distribution shift results in noisy pseudo-labels and
self-training with them leads to error accumulation. The mean-teacher framework (Tarvainen & Valpolal, 2017)
has been employed by existing CTTA approaches (Débler et al.l [2023; Wang et al, |2022; [2024) to produce
pseudo-labels and mitigate accumulation of errors to some extent. A mean teacher in a student-teacher
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framework has no gradient flowing through it and shares the same architecture as the student model. Its
parameters get updated using exponential moving average (ema) over the current teacher parameters and the
updated student parameters. Mathematically,

i1 =0+ (1—a) O (1)

where 6 and 6’ are the student and teacher parameters respectively with the subscripts denoting the timesteps.
a € [0,1] is the momentum value that controls the influence of the student model on the weight updates in
the current teacher model. A low value of « allows the teacher model to adapt more readily to the changing
data distribution, but it also risks adapting too much to a student model which can be detrimental especially
if incorrect pseudo-labels are prevalent. Existing teacher-student frameworks tend to rely on a fixed and high
value of a. However, using a high « not only limits the adaptability of the teacher model to an evolving data
distribution, but also a fixed momentum value may lead to sub-optimal performance, as we show below.

Demonstrating the problem with a fixed «: To this end, we conduct an experiment using an ImageNet
pretrained ResNet-50 model. We took a SOTA teacher-student framework RMT (Dobler et al., [2023) and
presented corrupted test images from the ImageNet-C dataset (Hendrycks & Dietterichl [2019) after applying
15 different types of corruptions. We experimented with the highest and lowest corruption severity levels (5
and 1 respectively) for this purpose with different fixed values of « ranging from 0.8 to 0.999. Fig. shows
how the performance (average error across 15 noise types) varies with the momentum (o) values when the
teacher model is updated with these fixed o’s. A high noise severity implies less reliable pseudo-labels and
thus high momentum values help. However, for less severe noise, the data distribution does not change much
and the pseudo-labels are more reliable. As the change in data distribution is low, the student sees very
similar data to what the teacher has seen till now and thus there is very little difference between the two
models. As a result, the optimal performance is indifferent to whether the new teacher is influenced more by
the current teacher (high «) or the current student (low «) as shown by the nearly constant performance
across the whole range of « (ref. Fig. . This experiment shows that the optimal momentum value can be
different depending on the type of data the model encounters. While we do not deny that a higher momentum,
on average, gives a lower error over different sets of corruptions, we emphasize that it isn’t necessary that one
fixed momentum value would give best performance for every noise over a sequence of corruptions. This is
further shown in Fig. [Id which shows that different a values are optimal for different noise types depending
on the severity of the noises. Detailed results for individual noise types are provided in the appendix.

Addressing the problem: To tackle this, we propose a controlled momentum variation approach where
the extent of knowledge transfer between the student and the teacher models would be adjusted on the
basis of the quality of incoming test batches. The distribution shift and the subsequent reliability of the
generated pseudo-labels are manifested by the entropy of the prediction by the teacher. When the underlying
distribution of the data changes significantly, it causes a noticeable increase in the prediction entropies. So,
we propose to adjust the « value depending on the entropy, where a test batch with lower entropy is assigned
a lower « (i.e., more knowledge transfer from the student model) and vice-versa. Specifically, for the average
prediction entropy e of a batch by the student model, we calculate o as follows:

a = min(emi, + e+ 6,1) (2)

where a,;n is a hyper-parameter that denotes the minimum value of « and 3 is the scaling factor. Additionally,
to maintain stability and prevent potential collapse in the teacher model, we incorporate a resetting strategy
inspired by (Niu et al. 2023). This strategy involves resetting the parameters of the teacher model to the
original pre-trained weights. The resetting is triggered when the prediction entropy of the student model drops
below a specified entropy threshold e,,;,, since this serves as an indicator of overconfidence and potential
overfitting to recent data.

3.2 Class-wise Prototype Estimation

Recent works have resorted to using source data either partially to counter the effect of domain shift during
test time (Niu et al.l [2022) or fully to fetch source class-wise prototypes to warm up the model before
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adaptation (Chakrabarty et all [2023; Dobler et al., 2023)). While class-wise prototypes help in target
alignment, requiring access to the source data at any stage of the pipeline is a privilege and narrows down
the applicability of such approaches. Hence, we rely on the source pre-trained classifier to estimate the source
prototypes not requiring access to the source data.

We denote the source pre-trained model as fp,, where the subscript 0 indicates the initial time step. For
notational convenience, we drop the subscript and refer to it simply as fy. The source pre-trained model is
a composition of a CNN feature extractor (g) and a linear classifier (h), i.e., f9 = h(g). The input z goes
through the feature extractor g to generate features g, € R? which, in turn, goes through the classifier
to obtain class-wise logits. Specifically, for C' classes, considering W, € RE*¢ as the weight matrix of the
classifier, the prediction § € R is given by, ¥ = W), g,. Each element in ¥ is a result of the dot product
between a row (vector) of the weight matrix Wy, and the feature vector g,. Ideally, features from an image
belonging to a class ¢ will have the highest dot product value with the ¢ row of W;,. This suggests that
normalized features from images belonging to the ¢!” class tend to cluster around this vector, making it a
good candidate for a prototype for that class, in absence of source data. In our work, these C' row vectors
from W), act as the initial class prototypes pf where the subscript 0 corresponds to the initial time-step.

While these class prototypes help in the initial alignment of domains, as the shift in data distribution is
continual in CTTA, the prototypes need to be updated with newly arriving data, otherwise, target features
would drift away from the class prototypes. Unlike existing approaches (Chakrabarty et al.l [2023} [Débler]|
2023), we propose to dynamically update these class-wise prototypes to improve alignment with target
features, particularly in cases of significant domain variations. Let the i*" input sample at timestep ¢ be
denoted as ;. Note that the current CNN feature extractor is a result of update from the previous timestep
t —1 and is denoted by g;—1(+). So, the feature generated at the current timestep is g;—1(z;). We compute the
cosine distance dist(g;—1(z;), p§,) between the test samples (x;, Vi) and the class prototypes (p,Vc), where ¢’
is a previous timestep compared to t. The distance is computed as 0.5(1 — cos(gi—1(x;), p§,)) where cos(x,y)
denotes cosine similarity. The factor 0.5 scales the cosine distance to lie within the [0, 1] range. After getting
these distances, we find the closest class prototype to the sample as, ¢ = argmin dist(g¢—1(z;),p§). The

sample z; is assigned a pseudo-label ¢;. The average feature of all the samples }Yz;ving the same pseudo-label
provides the updated prototype of that class at the current timestep. However, instead of blindly believing
all samples, we consider only those samples that are close enough to their assigned class in the feature space.
Mathematically for ¢’ < ¢,

> gr—a(xa)W(dist(ge—1 (), p5) <)
¢ i with &=c (3)

by = > U(dist(ge—1(zi),05) <)

1 with é;=c

v is the threshold to filter out the samples as described above. Specifically, we experimented with two separate
settings of pj,. We used the initial class prototypes pf and the immediately previous class prototypes p§_; in
the right hand side of the equation above to get the updated class prototypes pf. Our ablation study (ref.
Table@ shows that using the initial class prototypes (i.e., using ¢’ = 0) helps more.

3.3 Final Objective

In line with (Dobler et al.l [2023} |Chakrabarty et all, 2023, we use two losses — a) symmetric cross-entropy
loss (Wang et al., [2019) and b) contrastive loss (Khosla et al., [2020). The symmetric cross-entropy loss
between two distributions p and ¢ with C' elements is,

C C
Lscr(q:p) ==Y qclogpe — Y pelogqe, (4)
c=1 c=1

For an input x, we compute Lgcg by comparing the softmax predictions of the teacher model (fp(x)) and
the student model (fp(x)). To enhance prediction stability against slight changes, we compute the symmetric
cross-entropy loss between fy/(x) and predictions made on a randomly augmented version Z by the student
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Time t

Method clipart painting sketch Mean
CoTTA 45.2 35.7 49.2 43.4
RDumb 43.2 35.0 46.8 41.7
SANTA 38.8 34.1 43.8 38.7
RMT 37.8 32.4 42.6 37.6
DMSE 38.3 32.1 41.9 37.4

Table 1: Classification error rate (%) DomainNet-126 (with the real domain as source domain). Note that both
RMT and SANTA require access to the source data at the start of adaptation.

model, represented as fp(Z). This process yields a self-training loss as follows:
1
Lst = 5(Lscr(fo(z), for(2)) + Lscr(fo(Z), for (2))) (5)

The contrastive loss brings a test example closer to its nearest class prototype as well as to an alternative
augmented view of the test image. With these two additional inputs for each test example, the input batch
contains three times the number of samples in the original test batch. Following (Khosla et al.l |2020)), each of
these inputs is passed through a small learnable projection layer and the outputs from this layer are used to
finally compute the contrastive loss. Let, A(x) be the set of all images except z, and V(x) be the different
views of x including the closest class prototype to x, then the contrastive loss is formulated as:

exp (sim(2s, 20)/7)
Lo =— Z Z log ' ’ ©)
rzeX veV (x) ae%(m)exp(snn(z:m Za)/T)

where z,, z, and z, are the normalized projections of the samples x, v and a respectively. 7 is the temperature
and sim(u,v) = uTv/(||ul/||v]]) is the cosine similarity. The overall loss function is formed by summing up the
two losses Lo and Lgr.

Liotat = LsT + AcrLLcr (7)

where Ao, € [0, 1] is the hyperparameter controlling the weight of Loy,. This loss updates the parameters
of the student model 8, while the teacher model is updated by ema of the existing teacher and the student
models.

Inference: During inference, in accordance with (Dobler et al., |2023]), a mean prediction of the student and
the teacher model outputs is used for classifying the incoming test images.

4 Experiments

Datasets and Metrics Used: We evaluate DMSE on several benchmark datasets - DomainNet-126 (Saito
et all 2019), ImageNet-C, CIFAR10-C and CIFAR100-C (Hendrycks & Dietterichl 2019). CIFAR10-C,
CIFAR100-C and ImageNet-C consist of 10, 100, and 1000 classes, respectively. FEach of these datasets
comprises of 15 different corruptions representing new domains with five severity levels of corruption, while
DomainNet consists of images from 4 different domains. The sequence of corruptions used for evaluation
follows standard practice (Chakrabarty et al., 2023} [Dobler et al 2023; [Wang et al., |2022)) and we report the
error rates on various domains arriving sequentially as well as the average error over all corruptions for the
highest severity level (5). For CIFAR10-C and CIFAR100-C, there are 10,000 images per corruption type,
while the ImageNet-C split which most previous works (Wang et all 2022; Niu et al., [2022; |Dobler et al.)
2023) adopt from RobustBench (Croce et al [2021)) comprises 5,000 images per corruption by default (referred
as ImageNet-C-5k) H Inspired by (Press et al., [2023}; (Chakrabarty et all 2023), to further investigate the
adaptation performance on larger dataset splits, we test our approach on the complete ImageNet-C test
set, which comprises 50,000 images per corruption (referred to as ImageNet-C-50k) and we also test on

IThe default ImageNet-C split from RobustBench, as used by most previous baselines, uses 5000 samples per corruption type.
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Time t
g e & 2 g N g 5 o 2
Method g § 3 ¢ § g VooQ § S ¢ § 5§ F F &\ vem
g 5 < g ? & & © 4
RMT 802 764 745 771 744 662 576 57.0 501 480 391 606 47.3 425 434 | 60.2
SANTA 741 729 TL6 757 T4l 642 555 556 629 466 361 699 50.6 443 485 | 60.1
. | DusE’ 789 722 712 722 700 629 551 538 578 453 352 639 458 413  43.8 | 58.0
% [Sourcconly | 978 971 082 817 898 8.2 780 835 771 750 413 045 825 793 686 | 82.0
Q| BN + Adapt | 85.0 83.7 85.0 847 843 737 612 66.0 682 521 349 827 559 513 50.8 | 686
2 | TENT-cont. | 81.6 74.6 727 77.6 738 655 553 616 63.0 5.7 382 721 508 474 533 | 626
S | DeYO-cont. | 745 654 649 737 70.2 650 574 622 623 519 395 630 50.3 463 489 | 50.7
£ | CoTTA 847 821 806 813 79.0 686 575 60.3 605 483 366 661 47.2 412 46.0 | 62.7
= | RDumb 752 670 653 TAO0 69.6 65.0 57.3 629 622 537 4Ll 641 522 438 49.3 | 60.2
RMT* 80.3 769 740 756 738 648 566 566 582 483 306 57.8 466 432 444 | 59.8
SANTA* | 753 732 715 755 746 660 557 563 63.0 466 369 69.4 501 453 484 | 60.5
DNSE 79.0 724 707 722 706 635 556 543 57.3 454 353 642 460 410 445 | 58.1
RMT 245 200 255 139 246 149 133 160 158 156 1L1 150 183 146 16.9| 173
SANTA 239 200 280 116 274 126 102 141 132 122 74 103 191 133 185 16.1
DMSE® 243 214 263 119 253 123 102 145 142 119 7.5 107 178 141 195 | 16.1
O [Sowrceonly | 723 65.7 729 469 543 348 420 251 413 260 93 467 266 585 30.3 | 435
S | BN 4 Adapt | 281 261 363 128 353 142 121 173 174 153 84 126 238 197 273 | 204
& | TENT-cont. | 24.8 20.6 286 144 3L1 165 141 191 186 186 122 203 257 208 249 | 20.7
E | DeYOcont. | 249 195 289 126 30.7 146 125 17.2 165 164 0.7 124 244 188 246 | 189
S | coTTA 243 213 266 116 27.6 122 103 148 141 124 7.5 106 183 134 17.3 | 16.2
RDumb 243 192 277 127 291 139 115 162 153 148 9.3 129 215 162 20.6 | 17.6
RMT* 244 202 255 126 255 143 125 153 152 143 105 136 17.7 136 161 | 167
SANTA* | 240 195 280 115 283 124 100 147 140 123 7.6 104 195 146 209 | 165
DNSE 242 213 275 116 275 124 102 146 143 120 74 109 183 142 203 | 164
RMT 105 36.1 363 277 339 285 264 200 200 325 251 274 282 263 293 | 304
SANTA 365 331 351 259 349 277 254 205 209 331 236 267 319 275 352 | 303
DNSE" 30.5 360 361 284 335 283 263 286 200 310 243 263 280 264  30.0 | 30.1
O [Sowrceonly | 73.0 68.0 394 293 541 308 288 395 458 503 295 551 372 747 412 | 464
S | BN 4 Adapt | 42.1 407 427 27.6 419 207 27.9 349 350 415 265 30.3 357 329 412 | 354
= | TENT-cont. | 372 358 417 37.9 512 483 485 584 63.7 711 704 823 880 885 904 | 60.9
£ | DeYO-cont. | 364 328 358 287 37.7 30.8 284 341 330 371 300 313 363 325 402 | 33.7
S | coTTA 401 377 307 269 380 27.9 264 328 318 403 247 269 325 283 335 | 325
RDumb 371 346 397 341 443 39.2 380 446 455 50.1 458 530 578 549 626 | 45.1
RMT* 40.6 367 368 282 339 284 267 205 289 314 253 274 283 268 20.6 | 30.6
SANTA* | 367 334 354 259 358 281 249 208 209 338 234 266 312 278 355 | 30.5
DNSE 40.0 359 369 283 334 284 262 287 203 322 244 265 279 271 30.8 | 30.4
RMT 736 659 643 743 720 7.0 699 702 719 703 662 747 685 673 67.9| 69.9
SANTA 736 751 732 762 768 G641 535 558 GL7 437 345 727 492 439 502 | 603
.. | DuSE® 738 69.7 691 720 712 610 528 552 582 443 340 653 46.8 418 486 | 57.6
2 [Sowrcconly | 978 971 981 821 00.2 852 775 83.1 767 756 4L1 046 830 794 684 | 82.0
O | BN + Adapt | 84.9 840 842 850 847 736 612 656 669 520 347 832 558 510 60.2 | 685
Z | TENT-cont. | 715 661 693 23 90.0 949 970 988 993 993 992 996 994 994 994 | 910
< | DeYO-cont. | 645 5.6 635 809 973 997 99.8 99.8 99.9 998 998 998 99.9 999 99.9 | 90.9
£ | CoTTA 784 684 644 748 718 69.3 674 721 7L1 670 622 735 694 G6T.1 68.6 | 69.7
= | RDumb 649 626 641 691 65.8 537 486 519 545 40.4 334 577 449 309 455 | 53.2
RMT* 740 662 646 744 720 TL2 697 703 7L9 702 657 746 687 669 67.4| 699
SANTA* | 741 746 735 765 768 638 535 555 619 437 347 732 490 4382 501 | 60.3
DMSE 732 703 682 721 715 60.7 533 551 581 444 340 636 474 428 482 575

Table 2: Classification error rate (%) on CIFAR10-to-CIFAR10-C, ImageNet-to-ImageNet-C, and
CIFAR100-to-CIFAR100-C: Error rates are calculated on the highest corruption severity i.e., level 5. For
each dataset, the upper rows list the approaches that use source data for prototyping, while the lower rows list
approaches that do not use source data anywhere during adaptation. For RMT and SANTA (which use the source for
computing the prototypes by default), we re-implemented them with our proposed source prototype estimation, for
fair comparison; for these two methods, superscript * denotes source prototypes are estimated using the pre-trained
classifier weights without using original source data (ref. section . Conversely, for the proposed DMSE, superscript s
means source prototypes are obtained by using original source data. Best results are highlighted in bold.

DomainNet-126 (Saito et al., 2019), a subset of DomainNet (Peng et al., 2019), comprising ~18k, ~30k and
~24k images in clipart, painting, and sketch, domains respectively. Throughout our experiments, we follow
the fully continual TTA setup (Wang et al., 2022; [Dobler et al., 2023|) wherein there is no assumption of
domain switch knowledge being available.

Implementation Details: Following existing works (Chakrabarty et al. 2023; [Dobler et al., 2023; [Wang
et all 2022), we follow the RobustBench (Croce et al., 2021)) benchmark and use pre-trained models. The
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#Samples | 2.5k 5k 7.5k 10k 15k 25k 50k
DMSE 59.5 58.1 579 578 577 576 575
RDumb 62.7 60.2 58.7 570 559 543 53.2

Table 3: Comparison of trends between DMSE and RDumb on ImageNet-C over different number of images per
corruption.

ImageNet-to-ImageNet-C and DomainNet-126 adaptation is performed on a pre-trained ResNet-50 backbone
while CIFAR10-to-CIFAR10-C and CIFAR100-to-CIFAR100-C adaptations are performed on WideResNet-28
(Zagoruyko & Komodakis, [2016)) and ResNeXt-29 (Xie et al.l 2017) respectively. In line with previous
works (Wang et al.l 2022; |Dobler et al., |2023; |Chakrabarty et al., 2023) ImageNet-to-ImageNet-C and
DomainNet-126 adaptations are performed using an SGD optimizer with Ir 0.01, while for CIFAR10-to-
CIFAR10-C and CIFAR100-to-CIFAR100-C, an Adam Optimizer with Ir 0.001 is used. aynin, A and by, are
set to 0.99,0.01 and 0.2 respectively for all the datasets. Likewise, the distance threshold = is set to 0.3 for
all the datasets. Following (Wang et al, 2022; [Dobler et al., |2023), the hyperparameters have been chosen
by performing a small-scale sensitivity analysis on ImageNet-to-ImageNet-C (ref. Supplementary Materials)
and the same set is used across all the datasets subsequently. All experiments were conducted on a 24GB
NVIDIA A5000 GPU.

4.1 Comparison on Benchmark Datasets

We compared against several source-free approaches e.g., CoTTA (Wang et all 2022) RDumb (Press et al.,
2023), Tent (Wang et al., |2021)), DeYO (Lee et al., 2024) as well as the source-only baseline, which is a
source pre-trained model without any adaptation. DMSE is also compared with RMT (Dobler et al., |2023))
and SANTA (Chakrabarty et al., |2023|) which require source data to compute class-wise prototypes at the
start. A notable strength of our approach is its ability to achieve superior performance without accessing the
source data at any stage of the adaptation. However, when provided with source domain data for accurate
source prototype estimation (rows denoted with superscript s in Table , our model’s performance is further
enhanced showing its versatility.

For a fair comparison, we ran source-free versions of RMT and SANTA as well, where source prototypes were
estimated from the pre-trained classifier only, without using original source data. Our approach consistently
achieves superior performance in both source-free and non-source-free setups compared to existing methods.
We also experimented with two recent test-time adaptation approaches — Tent (Wang et all 2021) and
DeYO (Lee et al.;2024) run in a CTTA setting (referred to as Tent-cont. and DeYO-cont. respectively).
These methods are adapted during test-time by minimizing their own prediction entropy. While such strategies
have worked for test-time adaptation, it can not handle continually changing domains at test-time. It can be
noted that the performances of the closest approaches RMT and SANTA deteriorate over time in comparison
to DMSE, as observed from the error margins for the latter corruptions, in Table [2]and Table across all
datasets. This verifies our approach to be more effective in combating catastrophic forgetting and error
accumulation.

Comparison with RDumb: We extensively compare DMSE with RDumb (Press et al., [2023)), a work which
challenges the evolution in CTTA techniques. The results from Table [2] and Table [I] show that RDumb
particularly performs very well on ImageNet-C-50k. To investigate any underlying trends with the amount of
test data, we perform a comparison between the performances of DMSE and RDumb in Table [3] These results
suggest that RDumb performs well for more data-intensive CTTA settings wherein a large number of samples
from each corruption are available while DMSE can quickly adapt to changing distribution without needing
too many sample at test-time. The performance at data scarce scenario is more significant as this reflects the
methods’s performance for difficult cases and the better performance of the proposed approach in this, shows
the ability of DMSE for quicker and more generalizable test-time adaptation.

4.2 Ablation Studies and Additional Analysis

We perform ablation experiments for each component of our approach and list our findings in Table

Need for Controlled Adaptation of Teacher: In this experiment, instead of dynamically updating the
momentum « with input batches, we use a fixed value of @ = 0.999, as is commonly used in literature [Dobler
et al.| (2023)); Wang et al.| (2022); Brahma & Rail (2023)); [Yuan et al.| (2023)), during the EMA update of the
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Avg Error (%) Source BN+Adapt Tent-cont. DeYO-cont CoTTA  RDumb RMT SANTA DMSE

ImageNet-C-50k  82.0 68.5 84.4+6.3 86.9+£5.8  65.5+£3.6 53.6+£0.3 64.245.8 60.3+£0.2 57.1+0.6
CIFAR10-C 24.7 14.2 24.5 20.0 11.1 11.8 10.4 10.7 10.5
CIFAR100-C 33.6 30.1 79.0 31.7 27.4 28.4 27.0 26.2 26.1

Table 4: Top: Average error (%) over 10 different corruption sequences of the ImageNet-C dataset. Bottom: Average
error (%) in the continual adaptation setting with gradually varying severities for the CIFAR10-C and CIFAR100-C
datasets.

Class Prototype | CTA |ImageNet-C | Cifar100-C | Cifar10-C
Fixed - 59.9 30.7 17.8

Re-calibrated - 59.6 30.4 17.5
Fixed v 58.5 30.4 16.5

Re-calibrated | v 58.1 30.4 16.4

Table 5: Component-wise contributions: Mean error obtained over 15 corruptions. v' in CTA denotes « is
dynamically updated.

Source adaptation | Source RMT SANTA DMSE
X 23.7 25.3 23.6 24.4
v 23.7 25.1 23.8 23.5

Table 6: Classification error rates on clean test set of CIFAR100 after performing CTTA on 15 corruption types in the
CIFAR100-C.

teacher. Table [5| shows that controlled teacher adaptation (denoted by a checkmark in column CTA) leads to
significant performance improvement across all datasets.

Re-calibrating Class-wise Prototypes: Class-wise prototypes play a pivotal role in disentangling the
target domain features by aligning with them. Previous works [Chakrabarty et al.| (2023); [Dobler et al.| (2023)
tend to continue with the same class-wise prototypes initially computed from the source data. We propose to
re-calibrate the class-wise prototypes with the changing target features as new target data arrives. In this
experiment we compare the performance between fixed prototypes and our proposed re-calibration. As shown
in Table [5 the reduction in error rates in going from fixed to continually evolving prototypes (ref. column
‘Class prototype’) is a testament to our hypothesis.

Performance over different corruption sequences: Following |Chakrabarty et al.| (2023), to investigate
generalizability, we performed experiments over 10 random permutations of the 15 corruption sequences of
the TmageNet-C-50k. Table [4] (top) reports the mean error over these permutations. Since the 10 sequences
used are randomly sampled orderings of the corruptions, the results too have some variability and may alter
the relative performance across methods. DMSE achieves the best results on CIFAR100-C, while ranking the
second best in other cases. The consistently better performance of DMSE on difference corruption sequences is
also shown in Fig (a), showcasing its robustness and adaptability to diverse corruption patterns.

Performance over gradual domain-shifts: In a standard setting, the corruption types change from one
noise to other at the maximum severity level. However, there can be scenarios where the domain changes
are more gradual compared to the standard setup. Hence, following Wang et al.| (2022), we evaluate our
approach in the gradual setup where the severity levels within each noise change gradually as follows:

.= 2>51—-1—-2—-3—-4—>5—-4—-3—>2—>1—>1—>2—...

ct-1 and before ct corruption type, with changing severity ct+1 and after

ct represents the corruption type. Table 4| (bottom), presents the performance in the gradual test-time
adaptation setup. DMSE performs at par or better than existing approaches.

Performance trends over varying batch sizes: As observed in Table[7] a larger batch size results in
improved performance across all methods, with the performance across almost all batch sizes being better for
DMSE.

Revisiting the clean source data: While a CTTA model adapts to changing conditions, it is also important
to maintain a good performance on the original source distribution. Following |Chakrabarty et al.| (2023), we

10
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Figure 3: Ablation studies on DMSE over ImageNet-C: (a) Comparison of mean errors over 10 different sequences
of the 15 corruptions, using different CTTA methods (b) Mean errors over 15 corruptions with varying cosine-distance
threshold for class-wise prototype estimation (c) Mean errors over 15 corruptions with varying scaling factor (3). (d)
Variation of Momentum («) over 15 corruption types. The red dotted lines indicate the boundaries between different
corruption categories

Batch Sizes | 16 32 64 128
RMT 84.2 60.8 59.8 59.7
SANTA 68.1 63.1 60.5 59.3
DMSE 70.2 60.9 58.1 58.0

Table 7: Classification error rates of different batch sizes for CTTA on ImageNet-C-5k.

used the model adapted on CIFAR100-C to perform inference on a held-out test data of clean CIFAR100
(ref. Table @ The percentage error of the original source pre-trained model is 23.7. The top row shows
the performance in this setting where SANTA performs best with even lower error compared to the original
source pre-trained model. However, CTTA enables us to adapt in test time and thus, it is quite natural to
exploit this ability on the held-out source data in test time. Allowing the approaches to continue adapting to
the source test data shows the superiority of our model over the competing approaches (bottom row). It is
worth noting that both SANTA and RMT uses source data for accurately estimating the class prototypes
during adaptation which is not required in our case.

Sensitivity analysis on : We ran a sensitivity analysis of the threshold v used to update the class-wise
prototypes (ref Eqn. |3). Figure b) shows the analysis on ImageNet-C dataset. The best performance is
obtained with v = 0.3 and this value is used throughout for our experiments.

11
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Sensitivity Analysis on «, 3, and e: As described in Section [d] we perform a small-scale sensitivity
analysis on the ImageNet-C dataset to determine the optimal hyperparameters and use them across all
datasets. Table 8| and Figure c) show the results obtained from the experiments conducted over a grid
search for hyperparameters in Eqn. [2] Based on these results, ayin, 8 and e, are set to 0.99,0.01 and 0.2
respectively for all the datasets.

Cmin €101 |015] 02 |025| 0.3
0.98 60.8 | 59.1 | 58.6 | 58.9 | 59.6
0.985 60.1 | 58.5 | 58.1 | 58.8 | 59.7
0.99 58.8 | 58.3 | 58.1 | 58.8 | 59.6
0.995 59.8 | 59.8 | 59.4 | 59.5 | 60.7
0.999 60.9 | 60.6 | 59.9 | 60.4 | 60.9

Table 8: Sensitivity Analysis of aunmin and e: Mean error obtained over 15 corruptions on ImageNet-C 5k dataset.

Deep-dive into dynamic momentum adjustment: Fig. d) depicts the variation of teacher momentum
over a sequence of changing corruptions as observed during continual test-time adaptation. As is clear
from the trend, the teacher model’s momentum value shows a tendency to decrease over the sequence of
corruptions suggesting more imbibition from student with increasing student prediction confidence i.e. lower
batch entropy. While this imbibition is desirable, we also want to prevent too much drift of the teacher
away from the original target distribution, since corruptions coming consecutively might be dissimilar from
each other but will still hold a certain degree of resemblance with the original target distribution. For this
purpose, we reset our teacher model intermediately if too much drift is observed, as can be observed by the
intermediate spikes in teacher momentum to withhold too much knowledge imbibition from student model.

Different ways of updating the prototypes: As described in Eqn. |3} We tried with both initial (p§)
as well as immediately previous prototypes (p§_,) for getting p$, and observed a better performance in the
former. The comparatively higher error rate in the latter setting with changing prototype centers, as seen in
Table [9] could possibly be attributed to more than desired drift of the prototypes from the real prototypes.

pf using | Error Rate
6 58.1
Pi_1 59.1

Table 9: Comparison between class prototype updation methods: The mean errors over 15 corruptions on

ImageNet-C-5k shows that updates based on the initial source prototypes (p§) work better compared to updates based

on the immediately previous prototypes. This is possibly due to increased drift from the actual source class features
in the later case.

5 Limitations

As shown in Table @, DMSE underperforms compared to SANTA (Chakrabarty et al., |2023) and the source
pretrained model in maintaining good inference performance on the held-out test data of clean CIFAR-100
when adapted on CIFAR-100. This reduced performance relative to other approaches can be attributed to the
dynamic momentum mechanism, which increases adaptability but also leads to more drift. However, when
adaptation is allowed on the held-out test data of the source domain, our model outperforms the competing
approaches, demonstrating its ability to quickly adapt to new domains.

6 Conclusion

In this paper, we addressed the challenge of continual test-time adaptation with our proposed (DMSE) approach.
DMSE enhances the model performance across evolving target domains by using a controlled mean teacher
updated using dynamically decided momentum. We also estimate class-wise source prototypes directly from
the pre-trained source model. This method mitigates error accumulation and ensures robust adaptation
without requiring access to source data at any stage of the pipeline addressing data storage and privacy
constraints. We demonstrate the effectiveness of our approach on four benchmark datasets, significantly
outperforming several competing methods, some of which require access to source data or its statistics to
warmup the process.
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A Appendix
A.1 Effect of momentum on different corruptions

We investigate the effect of momentum («), in a vanilla mean teacher-student setup, on different corruptions
by adapting using an RMT-like approach on one corruption at a time. Fig. [4]shows how the error rates change
for different domains of the ImageNet-C 5k dataset for different momentum («) values, which reinforces our
motivation that having a high momentum throughout isn’t optimal when adapting over long sequences of
continually changing domains.
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Figure 4: Motivation for dynamic momentum: (a) The mean of all the single noise adaptation errors over the 15
corruptions in ImageNet-C-5k. (b)-(p) The errors obtained on different corruption domains of ImageNet-C-5k, taken
one at a time. We calculated the error rates for different o values over different types of noises and different severity
levels of the Imagenet-C dataset. We found that while on average a high o helps improve the average accuracy, as
seen in (a), different types of noises perform optimally at different « values as seen in (b)-(p), thus justifying a need
for a dynamic momentum adjustment. Additionally, these optimum « values also vary with varying noise severities.
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A.2 Sensitivity Analysis of 7 and Ao

Following the design choices in RMT (Dobler et al., [2023)), we set the contrastive loss temperature to 0.1 and
its weight to 0.5. To further verify the robustness of this setting, we performed a sensitivity analysis over the
ImageNet-C-5k benchmark by varying both the temperature and the loss weight. As shown in Table [I0} our
results show that the original values consistently provide the best trade-off between adaptation performance
and stability across corruption types.

Aot 0 0.25 0.5 0.0.75 1.0

-
0.1 60.97 | 59.17 | 58.1 | 58.58 | 58.27
0.5 59.34 | 59.14 | 59.15 | 59.11 | 59.14
1.0 59.59 | 59.63 | 59.75 | 59.28 | 58.96

Table 10: Sensitivity Analysis of 7 and Acr: Mean error obtained over 15 corruptions on ImageNet-C-5k dataset.

A.3 Need for Resetting the Teacher Model

We perform an experiment to evaluate the effectiveness and need of the teacher model resetting as mentioned
in Section m Performing continual adaptation without resetting gives a poorer average error rate of 59.9%
on the ImageNet-C-5k dataset as compared to the result of 58.1% obtained via DMSE with the resetting
technique active.

A.4 Protection Against Teacher Collapse

To analyse the effectiveness of our approach in providing protection against teacher collapse over long streams,
we conducted additional experiments on the ImageNet-C-50k dataset, which contains 50,000 images per
corruption domain. We evaluated our method using both fixed and dynamic momentum settings across these
long sequences. The fixed momentum approach gives a 70.2% error rate while our approach with dynamic
momentum gives an error rate of 57.5% on this ImageNet-C-50k sequence. This significant improvement
demonstrates that dynamic momentum not only enhances adaptability over long streams but also provides
effective protection against error accumulation and teacher collapse, thereby highlighting the robustness of
DMSE in continual adaptation scenarios.

A.5 Importance of the Projection Layer in Contrastive Loss

Contrastive loss helps align the test feature distribution with the source domain, where the pre-trained model
is more reliable and well-calibrated. This alignment enhances the model’s generalization capability in the
target domain. Adding a projection layer significantly improves the performance as shown
[2019} |Chen et al.l [2020b)). Following the best practices as detailed in (Appalaraju et al |2020) non-linear
projection layer helps preserve only the most discriminative information to make classification. We have
also performed an experiments with and without the projection layer to reinvestigate the same empirically.
Without the projection layer we get an error rate of 60.6% on the ImageNet-C-5k dataset compared to the
58.1% as obtained using DMSE.

A.6 Validation of Source Estimation and Prototype Alignment

To validate the core design of our prototype-based approach, we provide a t-SNE visualization demonstrating
the alignment between classifier-derived prototypes and true source prototypes, as well as the proximity of
test-time prototypes to them. Specifically, we randomly sampled 500 test-time prototypes (p§) generated
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Figure 5: Validation of Prototype Alignment: t-SNE plot showing 500 test-time prototypes (blue), source
prototypes from classifier weights (red), and source prototypes from source data (black). Prototypes estimated using
classifier weights align with true source prototypes, and test-time prototypes remain close to them.

Loss Type|ImageNet-C-5k | Cifar100-C | Cifar10-C
CE 62.9 33.4 23.6
SCE 58.1 30.4 16.4

Table 11: Ablation study comparing symmetric cross-entropy (SCE) loss with categorical cross-entropy
(CE) loss on ImageNet-C-5k, CIFAR10-C, and CIFAR100-C. Performance consistently drops when replacing
SCE with CE, demonstrating the effectiveness of SCE in the DMSE framework.

at different time steps during the continual test-time adaptation process from the CIFAR10-C dataset and
plotted their t-SNE representations (blue dots). Here, the estimated source prototypes (red dots) correspond
to classifier weights from the WideResNet-28 backbone as used during CIFAR10 to CIFAR10-C continual
test-time adaptation, and these are the same as our initial prototype estimates (p§ as used in Eqn. |3). The
original source prototypes (black stars) correspond to the mean of features obtained by passing the CIFAR10
source domain data through the same pretrained feature extractor (i.e. the entire model without the classifier
layer) from the WideResNet-28 backbone, and prior works like RMT (Débler et all, 2023) or SANTA
(Chakrabarty et al., [2023) use this method to obtain source prototypes. Alongside, we plotted the source
prototypes estimated from the classifier weights (red dots) and those computed directly from the source
domain data (black stars).

As shown in Fig. [5] we obtain 10 clusters depicting 10 different classes of the CIFAR10 dataset, and the
estimated source prototypes, derived from the classifier weights, are observed to be more or less well aligned
with the true source prototypes obtained from the source data. Moreover, the test-time prototypes remain
consistently close to these source prototypes, validating the stability and reliability of our prototype estimation
throughout the adaptation process. This visualization reinforces the consistency and alignment of different
types of prototypes, which along with the experimental results from Table [5] supports the effectiveness of our
prototype-based formulation.

A.7 Significance of SCE loss

To assess the effectiveness of the symmetric cross-entropy (SCE) loss within our DMSE framework, we
performed an ablation study in which SCE was replaced with the standard categorical cross-entropy (CE) loss.
We conducted experiments on three benchmark datasets — ImageNet-C-5k, CIFAR10-C, and CIFAR100-C. As
shown in Table [TT] substituting CE for SCE consistently led to a decrease in performance across all datasets.
These results confirm that the choice of SCE loss is critical to achieving the reported performance gains.
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