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Abstract
Motivated by an open direction in existing lit-
erature, we study the 1-identification problem,
a fundamental multi-armed bandit formulation
on pure exploration. The goal is to determine
whether there exists an arm whose mean reward is
at least a known threshold µ0, or to output None
if it believes such an arm does not exist. The
agent needs to guarantee its output is correct with
probability at least 1 − δ. (Degenne & Koolen,
2019) has established the asymptotically tight
sample complexity for the 1-identification prob-
lem, but they commented that the non-asymptotic
analysis remains unclear. We design a new algo-
rithm Sequential-Exploration-Exploitation (SEE),
and conduct theoretical analysis from the non-
asymptotic perspective. Novel to the literature, we
achieve near optimality, in the sense of matching
upper and lower bounds on the pulling complexity.
The gap between the upper and lower bounds is
up to a polynomial logarithmic factor. The numer-
ical result also indicates the effectiveness of our
algorithm, compared to existing benchmarks.

1. Introduction
The 1-identification problem is a fundamental multi-armed
bandit formulation on pure exploration. The goal of the
learning agent is to identify an arm whose mean reward is
at least a known threshold µ0 if such an arm exists, and
otherwise to return None if no such arm exists. We study
the fixed confidence setting, where the agent aims to return
the correct answer with probability at least 1− δ for a given
tolerance parameter δ ∈ (0, 1), while ensuring the number
of arm pulls, aka sample complexity, as small as possible.

The 1-identification problem models numerous real-world
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problems. For example, consider a firm experimenting mul-
tiple new campaigns, and seeks to know if any new cam-
paign is more effective than the existing one. The firm
may have a long history of applying the existing campaign,
with sufficient data to determine the impact and reward by
utilizing this campaign. Similar scenario applies to other
industries such as service operations, pharmaceutical tests,
simulation which involves comparisons between a bench-
mark and alternatives, in terms of profit, welfare or other
metrics.

Summary of Contributions. We make two contributions
to the 1-identification problem. Firstly, existing research
works only guarantee asymptotic optimality (Degenne &
Koolen, 2019; Jourdan & Réda, 2023), or non-asymptotic
near optimality in the case where all the mean rewards
are smaller than the threshold ((Jourdan & Réda, 2023),
or applying a Best Arm Identification algorithm). Novel
to the literature, our proposed algorithm achieves the non-
asymptotic optimality in the sample complexity both the
positive case when there is a qualified arm, i.e. an arm
with mean reward at least the threshold, and the negative
case when there is no qualified arm. We prove matching
upper and lower sample complexity bounds, and the gap
between these upper and lower bounds is up to a polynomial
logarithm factor.

Secondly, we conduct numeric experiments to compare the
performance of 1-identification algorithms. The numeric re-
sults suggest the excellency of our proposed SEE algorithm
and also the weakness of some benchmark algorithms.

Notation. For an integer K > 0, denote [K] = {1, . . . ,K}.
For µ ∈ [0, 1], we denote N(µ, σ2) as the normal distribu-
tion with mean µ and variance σ2. Denote E and Eν,alg as
the expectation operator while the second one is to highlight
that the expectation is determined by both the instance ν
and algorithm alg.

2. Model
An instance of 1-identification is specified by the tuple Q =
([K], ν = {νa}a∈[K], µ0, δ). The set [K] represents the
collection of K arms. For each a ∈ [K], νa is the probability
distribution of the reward received by pulling arm a once.
The probability distribution νa, and in particular its mean
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µa := ER∼νa
R, are not known to the agent. For each

arm a ∈ [K], which has random reward Ra ∼ νa, we
assume that the random noise Ra − µa is 1-sub-Gaussian.
The parameter µ0 is a known threshold. The agent’s main
goal is to ascertain whether there is an arm a ∈ [K] such
that µa ≥ µ0. The parameter δ ∈ (0, 1) is the tolerant
probability of a wrong prediction. Unless otherwise stated,
we always assume µ1 ≥ µ2 ≥ · · · ≥ µK , but the order
remains unknown to the agent.

Dynamics. The agent’s pulling strategy (π, τ, â) is
parametrized by a sampling rule π = {πt}∞t=1, a stop-
ping time τ and a recommendation rule â ∈ [K] ∪
{None}. When a pulling strategy is applied on a 1-
identification problem instance ν, the strategy generates
a history A1, X1, · · · , Aτ , Xτ . Action At ∈ [K] is chosen
contingent upon the history H(t−1) = {(As, Xs)}t−1

s=1, via
the function πt(H(t− 1)). In addition, we have Xt ∼ νAt .
The agent stops pulling at the end of time step τ , where τ is
a stopping time1 with respect to the filtration {σ(H(t))}∞t=1.
Upon stopping, the agent outputs â ∈ [K] ∪ {None} to
be the answer, using the information H(τ). Outputting
â ∈ [K] means that the agent concludes with arm â satis-
fying µâ ≥ µ0, while outputting â = None means that the
agent concludes with no arm having mean reward≥ µ0. We
allow the possibility of non-termination τ = ∞, in which
case there is no recommendation â.

To facilitate our discussions, we introduce the definitions of
positive and negative instances.

Definition 2.1 (Positive and Negative Instances). Denote ν
as a distribution vector equipped with a mean reward vector
{µa}Ka=1. We call ν a positive instance, if µ1 > µ0. And
we call ν a negative instance, if µ1 < µ0.

Correspondingly, we denote Spos = {ν : µ1 > µ0} and
Sneg = {ν : µ1 < µ0}. For ∆ > 0, we further define
Spos
∆ = {ν : µ1−µ0 ≥ ∆} and Sneg

∆ = {ν : µ0−µ1 ≥ ∆}.
It is clear that Spos = ∪∆>0Spos

∆ and Sneg = ∪∆>0Sneg
∆ . In

this paper, we assume that the underlying instance belongs
to Spos ∪ Sneg. For an instance ν ∈ Spos ∪ Sneg, we define
i∗(ν) as the set of correct answers. For ν ∈ Spos, we have
i∗(ν) = {a : µa ≥ µ0}, while for instance ν ∈ Sneg, we
have i∗(ν) = {None}. We mainly focus on analyzing PAC
algorithms, with the following definitions.

Definition 2.2. A pulling strategy is δ-PAC, if for any
δ ∈ (0, 1), ν ∈ Spos ∪ Sneg, it satisfies Prν(τ < +∞, â ∈
i∗(ν)) > 1− δ.

Definition 2.3. A pulling strategy is (∆, δ)-PAC, if it is δ-
PAC, and for any ∆, δ > 0, we have supν∈Spos

∆ ∪Sneg
∆

Eντ <
+∞.

Clearly, if a 1-identification pulling strategy is (∆, δ)-PAC,

1For any t, the event {τ = t} is σ(H(t))-measurable

it is also δ-PAC.

Objective. The agent aims to design a (∆, δ)-PAC pulling
strategy (π, τ, â) that minimizes the sampling complexity
E[τ ].

3. Literature Review
We review existing research works on the 1-identification
problem. To aid our discussions, we define the following
notations for describing bounds on sampling complexity.
We define ∆i,j = |µi − µj | for all i, j ∈ [K] ∪ {0} and

Hneg
1 =

K∑
a=1

2

∆2
0,a

, H low
1 =

∑
a:µa<µ0

2

∆2
1,a

,

Hpos
1 =

K∑
a=1

2

max{∆2
0,a,∆

2
1,a}

, H =
2

∆2
0,1

H1 =

K∑
a=2

2

∆2
1,a

, H0 =
∑

a:µa≥µ0

2

∆2
0,a

,

HBAI
1 =

2

∆2
0,1

+

K∑
a=2

2

∆2
1,a

.

(1)

Since ∆1,1 = 0, we equivalently have Hpos
1 = 2

∆2
0,1

+∑K
a=2

2
max{∆2

0,a,∆
2
1,a}

. Table 1 summarizes the existing
algorithms and their performance guarantees with notations
in (1). Details are as follows.

The 1-identification problem is a pure exploration problem
with possibly multiple answers, which has been studied
in (Degenne & Koolen, 2019). They consider the case
when νa belongs to the one-parameter one-dimensional
exponential family for each a ∈ [K], and propose the
Sticky-Track-and-Stop (S-TaS) algorithm. S-TaS satisfies
lim supδ→0

E[τ ]
log(1/δ) = T ∗(µ), which depends not only on

{µa}{0}∪[K] but also {νa}a∈[K]. With their lower bound
lim infδ→0

E[τ ]
log(1/δ) ≥ T ∗(µ) on any δ-PAC algorithm, they

conclude S-TaS achieves asymptotic optimality. We display
the bound T ∗(µ) in the special case when νa = N(µa, 1)
for each a ∈ A, where T ∗(µ) specializes to the bounds in
the first row in Table 1. Nevertheless, the non-asymptotic
sample complexity of the 1-identification problem remains
a mystery in (Degenne & Koolen, 2019), who comment
that “Both lower bounds and upper bounds in this paper are
asymptotic. . . A finite time analysis with reasonably small
o(log 1

δ ) terms for an optimal algorithm is desirable.”

(Kano et al., 2017) study the Good Arm Identification prob-
lem, where the agent aims to output all arms whose mean
reward is greater than µ0. This objective is different from
our objective, which requires returning only a qualified arm
if exists, but the expected stopping time of their first output
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Table 1. Comparison of bounds. ”pos” and ”neg” in the second column correspond to µ1 > µ0 and µ1 < µ0 respectively. The definitions
of different H’s are at the equation (1). We determine whether a sampling complexity upper bound is nearly optimal by comparing with
the lower bound. An upper bound is nearly optimal iff the gap is up to a polynomial logarithm factor.

Algorithm Bound Nearly Opt
in Positive

Nearly Opt
in Negative

Comment

S-TaS lim
δ→0

Eτ
log 1

δ

=

{
H pos
Hneg

1 neg
√ √

Asymptotic

HDoC Eτ ≤

{
O(H log K

δ
+H1 log log

1
δ
+ K

ϵ2
) pos

O(Hneg
1 log K

δ
+ K

ϵ2
) neg

× ×
ϵ = min

{
min
a∈[K]

∆0,a,

min
a∈[K−1]

∆a,a+1

2

}
APGAI Eτ ≤

{
O(H0(log

K
δ
)) pos

O(Hneg
1 (log K

δ
)) neg

×
√

Asymptotic Optimal
in the case neg

SEE
(This work)

Eτ ≤

{
O(H log 1

δ
) +O(Hpos

1 log K
∆0,1

) pos

O(Hneg
1 (log 1

δ
+ logHneg

1 )) neg
√ √

Even the O(log 1
∆0,1

)

matches lower bound
in some cases

Lower Bound
(This work)

Eτ ≥

{
Ω(H log 1

δ
+ 1

m
H low

1 − 1
∆2

1,m+1
) pos

Ω(Hneg
1 log 1

δ
) neg

NA NA In pos, m ∈ [K] satis-
fies µm ≥ µ0 > µm+1

is exactly the Eτ in our formulation. They propose algo-
rithm HDoC, whose sub-optimality of their sampling com-
plexity upper bound comes from two perspectives. Firstly,
the term 1

ϵ2 implies that the upper bound is vacuous (equal
to infinity) when there exists a ∈ [K] such that µa = µ0,
even in the case of µ1 > µ0. Secondly, when µ1 > µ0,
(Kano et al., 2017)’s bound includes H1 log log(1/δ), and
H1 grow linearly with K. (Kano et al., 2017) comment that
“Therefore, in the case that . . . K = Ω(

log 1
δ

log log 1
δ

). . . there
still exists a gap between the lower bound in . . . and the
upper bound in . . . ”. (Tsai et al., 2024) incorporate the LIL
concentration event (Lemma 3 in (Jamieson et al., 2014))
into the algorithm HDoC with an additional warm-up stage.
But the proposed algorithm lilHDoC still suffers from the
same sub-optimality as HDoC.

(Jourdan & Réda, 2023) mainly focus on designing any-
time algorithms on Good Arm Identification. They propose
pulling rule APGAI with the stopping rule GLR. Their algo-
rithm achieves nearly optimal asymptotic sample complex-
ity bounds on negative instances, but is still sub-optimal on
positive instances. The stopping rule GLR can be combined
with other pulling rules to guarantee the δ-PAC property,
but in general there is no non-trivial upper bound on Eτ .
Finally, we remark that the Good Arm Identification formu-
lation assumes µa ̸= µ0 for all a ∈ [K], and their upper
bounds are vacuous if there exists an arm a whose mean
reward is exactly µ0.

Table 1 summarizes the comparison, with imprecision on
HDoC and APGAI. Details are in appendix A.2. Among
them, S-TaS is (∆, δ)-PAC, but the non-asymptotic pulling

complexity remains unclear. Appendix A.3 proves algo-
rithm HDoC, lilHDoC, APGAI are not (∆, δ)-PAC, and
Appendix E.3 provides additional discussion on APGAI.

Besides the above work, there are other research works
related to 1-identification, despite not directly solving the
1-identification. (Kaufmann et al., 2018) provide asymptotic
sample complexity bounds on classifying positive and nega-
tive instances, but their algorithm does not output a quali-
fied arm â ∈ [K] on a positive instance. (Katz-Samuels &
Jamieson, 2020) propose the idea of “Bracketing” to solve
the 1-identification problem. Their algorithm only applies
for positive instances but not the negative instances, since
the algorithm is not required certifying if there is no arm
with mean reward at least µ0. More discussion on (Katz-
Samuels & Jamieson, 2020) is provided in Appendix A.1.

The 1-identification problem can be solved by considering
a Best Arm Identification(BAI) problem, which has been
well studied. We can take arm 0 as a virtual arm which
always returns a deterministic reward with value µ0. Apply-
ing an algorithm for the fixed confidence setting (Even-Dar
et al., 2002; Gabillon et al., 2012; Jamieson et al., 2013;
Kalyanakrishnan et al., 2012; Karnin et al., 2013; Jamieson
& Nowak, 2014), the agent achieves a non-asymptotic high
probability upper bound. For example, (Jamieson & Nowak,
2014) guarantee Prν(τ < O(HBAI

1 (log 1
δ + logHBAI

1 ))) >
1−δ for ν ∈ Spos, Prν(τ < O(Hneg

1 (log 1
δ +logHneg

1 ))) >
1 − δ for ν ∈ Sneg. And the logarithmic term HBAI

1 , Hneg
1

can be improved. Nevertheless, the high probability up-
per bound cannot imply Eτ < +∞. To address this issue,
(Chen & Li, 2015; Chen et al., 2017) develop the Parallel
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Simulation Algorithm, which takes a BAI algorithm as an
Oracle and converts this algorithm into a new algorithm.
The new algorithm is still δ-PAC, and guarantees not only
the above high probability upper bound, but also finite up-
per bound on Eτ . (Garivier & Kaufmann, 2016; Kaufmann
et al., 2016; Garivier et al., 2019) provide asymptotic up-
per bounds relating to Eτ , complemented with matching
lower bounds. Though there are many existing works on the
BAI problem, the comparison of asymptotic results in these
two formulations (Garivier & Kaufmann, 2016; Degenne
& Koolen, 2019) suggests that it is inefficient to solve the
1-identification by the corresponding BAI problem.

Our work is related to other topics, such as BAI in the fixed
budget setting and the ϵ-Good Arm Identification problem.
We provide additional discussions in Appendix A.1.

4. Algorithm
4.1. An Informal Algorithm

Algorithm 1 SEE(Informal)
1: Input: Action set [K], threshold µ0, tolerance level δ,

C > 1.
2: Tune {δk, T et

k , T
ee
k }

+∞
k=1.

3: for Phase k = 1, 2, · · · do
4: (Exploration) Run algorithm LUCB G with tolerance

level δk and previous exploration history.
Stops until one of the two conditions holds.

5: • Total pulling times in all exploration phases is
greater than T ee

k . Take âk = Not Complete
6: • LUCB G stops and output âk ∈ [K] ∪ {None}.
7: if âk ∈ [K] then
8: (Exploitation) Keep pulling arm âk with samples

independent of exploration.
Stops until one of the two conditions holds.

9: • Pulling times of âk is greater than T et
k .

10: • LCB defined by δ is above µ0, output âk as a
qualified arm

11: else if âk = None and δk < δ
3 then

12: Output the instance is negative
13: end if
14: end for

Before rigorously describing the algorithm, we provide
an overview with a simple algorithm sketch. This sketch
presents the overall framework of SEE, but some required
adaptations are explained in the full in the subsequent parts
of this section.

Algorithm 1 introduces the key idea of SEE. Algorithm
LUCB G in line 4 is defined in (Kano et al., 2017), which
can be considered an adapted BAI algorithm UCB in
(Jamieson & Nowak, 2014). In each round, LUCB G pulls
the arm with the highest upper confidence bound (UCB),

and stops if there is an arm whose lower confidence bound
(LCB)is > µ0. LUCB G guarantees the high probabil-
ity bound Prν(µâ > µ0, τ < O(Hpos

1 log(Hpos
1 /δ′))) >

1 − δ′ for ν ∈ Spos, and Prν(â = None, τ <
O(Hneg

1 log(Hneg
1 /δ′))) > 1 − δ′ for ν ∈ Sneg, where

δ′ ∈ (0, 1) is the input tolerance level.

Algorithm 1 takes LUCB G as an oracle by sequentially
calling it with tolerance level δk at phase k. The sequence
{δk}k∈N is non-increasing with k, and in a phase k δk
should be larger than the required tolerance level δ. In
line 12 of Algorithm 1, we trust the negative prediction
of LUCB G only when the δk is smaller than the required
tolerance level δ. The intuition is consistent with the conclu-
sion in (Degenne & Koolen, 2019), which concludes lower
bound Ω(Hneg

1 log 1
δ ) is required for a negative instance.

Then, it is natural to accept the negative output ”None”
when δk < O(δ).

While meeting a positive instance, we wish LUCB G can
identify a qualified arm with pulling times O(Hpos

1 log
Hpos

1

δk
),

which is line 6. Then we turn to keep pulling âk with confi-
dence bound defined by true tolerance level δ, corresponding
to the line 8. Line 5 is to avoid LUCB G from getting stuck
into a non-stopping loop, which is possible when the ”good
event” doesn’t hold.

Based on the above idea, Algorithm 1 seems to be able to
solve the problem. However, there are still two main con-
cerns in Algorithm 1, stopping us from adopting it directly.
The first one is LUCB G cannot guarantee the lower bound
of µâk

−µ0, which makes it hard to set up maximum pulling
times T et

k in the exploitation phase. To address this issue,
we introduce a tunable parameter C > 1 and adopt a larger
radius when calculating the LCB in Algorithm 3.

The second concern is LUCB G requires at the start of
an exploration phase k, LCBa(δk) < µ0 holds for all
a ∈ [K]. But in Algorithm 1, it is possible that at the end
of phase k − 1, the last collected sample of arm âk−1 is so
large, such that LCB of âk−1 is still above µ0 at the start
of phase k. To address this issue, we define a temporary
container Q. When the LUCB G is going to output an arm
âk−1, we transfer the latest collected sample of âk−1 into Q.
If we pull arm âk−1 ∈ [K] in the future exploration period,
we transfer the sample back from Q to history. The reason
of transferring back from Q is concentration inequality like
(3) requires consecutive integer index summation, and we
cannot skip or abandon any samples.

4.2. Sequential Exploration Exploitation

For simplicity, define ⌈x⌉+ = max{⌈x⌉, 1}. We define the
confidence radius

U(t, δ) =

√
2 · 2⌈log2 t⌉+ log 2(⌈log2 t⌉+)2

δ

t
. (2)
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To rigorously present the algorithm design, we split Algo-
rithm 1 into three parts with more adaptation. Algorithm 2
is the main body, calling Algorithms 3 and 4 to conduct the
pulling procedure. We elaborate on them one by one.

Algorithm 2 Sequential-Explore-Exploit(SEE)
1: Input: Action set [K], threshold µ0, confidence level

δ, C > 1, scheduling parameter {δk, αk, βk}+∞
k=1.

{Default: C = 1.01, δk = 1/3k, αk = 5k, βk = 2k).}
2: Calculate T ee

k = 1000(C+1)2Kβk log(4K/δk), T et
k =

1000βk log(4αkK/δ).
3: Initialize: Hee = Het = Q = ∅, N ee

a = N et
a = 0,∀a ∈

[K].
4: for Phase k = 1, 2, · · · do
5: (Exploration) Call Algorithm 3 with

K ← K,µ0 ← µ0, δ ← δk, C ← C,Hee ← Hee,
Q← Q,T ← T ee

k ,
denote (âk,Hee, Q, τ ee

k ) as the output.
6: if âk ∈ [K] then
7: (Exploitation) Call Algorithm 4 with

K ← K,µ0 ← µ0, δ ← δ,Het ← Het,
T ← T et

k , â← âk, α← αk,
denote (ans,Het, τ et

k ) as the output.
8: if ans = Qualified then
9: Return â = âk.

10: end if
11: else if âk = None and δk < δ/3 then
12: Return â = None.
13: end if
14: end for

SEE, displayed in Algorithm 2, takes
µ0,K, δ, C, {δk, αk, βk}+∞

k=1 as input, where µ0,K, δ
are model parameters and C, {δk, αk, βk}+∞

k=1 are tunable
parameters. Besides C = 1.01, δk = 1/3k, αk = 5k, βk =
2k, other choices are also available, see Appendix B.1.

Following Algorithm 1, Algorithm 2 sequentially calls ex-
ploration and exploitation oracles in each phase, while main-
taining three sample setsHee,Het, Q. When calling the Ex-
ploration Algorithm 3, Hee, Q are updated. When calling
Exploitation Algorithm 4,Het is updated.

Besides Hee,Het, Q, Algorithm 2 further specifies
T ee
k = 1000(C + 1)2Kβk log(4K/δk) and T et

k =
1000βk log(4αkK/δ). The coefficient 1000 is to simplify
the calculation in the proof of Lemma B.1. If we replace
1000 with another fixed positive constant, the main conclu-
sion still holds.

Algorithm 3 follows LUCB G in (Kano et al., 2017), with
three major modifications. The first is adopting (2) as the
radius of the confidence interval, which is smaller than the
original LUCB G. The second is adopting C · U(·, ·) for
the LCB in line 2, where C > 1. In the case of a positive

Algorithm 3 SEE-Exploration
1: Input: Action set [K], threshold µ0, confidence

level δ, tunable parameter C > 1, History Hee =

∪Ka=1{(a,Xee
a,s)}

N ee
a

s=1, Temporary Container Q, Termi-
nation Round T .

2: Define µ̂a(Hee) = µ̂a,N ee
a
=

∑Nee
a

s=1 Xee
a,s

N ee
a

, t = |Hee ∪Q|,
UCBa(Hee, δ) = µ̂a(Hee) + U(N ee

a , δ/K),
LCBa(Hee, δ) = µ̂a(Hee)− C · U(N ee

a , δ/K).
3: while True do
4: Determine Aee

t = argmaxa∈[K] UCBa(Hee, δ).
5: Get (X,Q,∆t) by calling Sampling Rule(Alg 5),

A← Aee
t , Q← Q

6: NAee
t

= NAee
t
+ 1, t = t + ∆t, Hee = Hee ∪

{(Aee
t , X)}

7: if t ≥ T then
8: Break and take â = Not Complete
9: else if ∀a ∈ [K], UCBa(Hee, δ) ≤ µ0 then

10: Break and take â = None
11: else if LCBAee

t
(Hee, δ) > µ0 then

12: Hee = Hee \ {(Aee
t , X)}

13: N ee
Aee

t
= N ee

Aee
t
− 1, Q = Q ∪ {(Aee

t , X)}
14: Break and take â = a
15: end if
16: end while
17: Return (â,Hee, Q, t)

Algorithm 4 SEE-Exploitation
1: Input: Action set [K], threshold µ0, confidence level

δ, Termination Round T , Predicted arm â ∈ [K], Toler-
ance Controller α, HistoryHet = ∪Ka=1{(a,Xet

a,s)}
N et

a
s=1,

t = |Het|
2: while N et

â ≤ T do
3: Sample X ∼ νâ,
4: Het = Het ∪ {(â, X)}, N et

â = N et
â + 1, t = t+ 1

5: if
∑Net

â
s=1 Xet

â,s

N et
â

− U(N et
â ,

δ
Kα ) > µ0 then

6: return (Qualified,Het, t)
7: end if
8: end while
9: return (Unqualified,Het, t)

Algorithm 5 Sampling Rule
1: Input: Arm a ∈ [K], Temporary Container Q
2: if ∃(a,X) ∈ Q such that a = A then
3: Q = Q \ {(a,X)},∆t = 0, return X,Q,∆t
4: else
5: Sample X ∼ νA,∆t = 1, return X,Q,∆t
6: end if
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instance, factor C > 1 can guarantee µâk
> ωµ1 + (1 −

ω)µ0 where ω = C−1
C+3 , conditioned on an event that holds

with probability ≥ 1 − π2δk
6 . Details are in Lemma B.4.

The third is using the temporary container Q to conduct the
modified sampling of an arm X in line 5.

Algorithm 5 conducts the modified sampling for Algorithm
3. It only collects a new sample for arm A ∈ [K] when
Q does not contain a sample on A. We only increase the
total pulling times t when we collect a new sample from νA.
Algorithm 5 returns the updated Q together with the sample
X . The necessity of using Q to temporarily store the latest
collected sample X in line 13 in Algorithm 3 is discussed
in section 4.1 and Lemma B.6. From the above discussion,
we know for each a ∈ [K], Q contains at most one tuple
whose first element is a:

Lemma 4.1. Throughout the pulling process, |Q| ≤ K
holds with certainty.

Algorithm 4 takes (K,µ0, δ, T, â) as the input. The parame-
ters K,µ0, δ are model parameters, which remain the same
in all phases. By contrast, the parameters T and â generally
change across different phases. During phase k, Algorithm
4 keeps pulling arm âk until one of the two following con-
ditions is met. The first is when the total pulling times of
arm âk in all exploitation periods is T , which should be T et

k

at the phase k. In this case, the exploitation period cannot
guarantee that µâk

> µ0 holds with probability ≥ 1 − δ,
and requires Algorithm 2 to run the next exploration period
with a smaller tolerance level δk+1. The second condition is
when the LCB, defined with the input tolerance level δ, of
âk is above µ0. In this case, Algorithm 2 adopts this result
and outputs âk as â, asserting that the instance is positive.

Throughout the pulling process, the samples collected
among all the exploration periods are shared, as are the
exploitation periods. By contrast, the exploration periods
never share samples with the exploitation period. To dis-
tinguish between the two sets of periods, we denote τ ee

k

and τ et
k as the total pulling times of Algorithms 3 and 4,

from the start of phase 1 to the end of phase k. We also
denote N ee

a (τ ee
k ), N et

a (τ
et
k ) as the total pulling times of arm

a ∈ [K] stored inHee andHet, at the end of phase k. From
the algorithm design, it is clear that the following Lemma
holds.

Lemma 4.2. At the end of phase k, 1. τ ee
k ≤ T ee

k ,
τ et
k ≤

∑k
p=1 T

et
p . 2. |Q| + |Hee| = τ ee

k . 3.

Since |Hee| =
∑K

a=1 N
ee
a (τ ee

k ), we can further conclude∑K
a=1 N

ee
a (τ ee

k ) ≤ τ ee
k ≤ K +

∑K
a=1 N

ee
a (τ ee

k ).

5. Main Results
In this section, we demonstrate upper bounds of Eτ by
applying SEE, and provide lower bounds on Eτ for any

δ-PAC algorithm. The lower bound mainly comes from the
existing results in the literature.

5.1. Performance Guarantee of Algorithm 2

Before stating the main theorems of Algorithm 2, we in-
troduce some notation. Define µ̂ee

a,t = (1/t)
∑t

s=1 X
ee
a,s,

µ̂et
a,t = (1/t)

∑t
s=1 X

et
a,s, and

κee =min

{
k ∈ N : ∀a ∈ [K],∀t ∈ N,

∣∣µ̂ee
a,t − µa

∣∣ ≤ U(t,
δk
K

)

}
,

κet =min

{
k ∈ N : ∀a ∈ [K],∀t ∈ N,

∣∣µ̂et
a,t − µa

∣∣ ≤ U(t,
δ

Kαk
)

}
.

(3)

Here κee, κet are the minimum phase indices such that the
respective concentration inequality hold, as in phase k, we
use U(t, δk

K ) and U(t, δ
Kαk

) to define the UCBs and the
LCBs during the exploration and exploitation periods. Not
hard to see κee, κet are random variables. By Lemma D.3 in
the Appendix, we have the following.
Lemma 5.1. For all k ∈ N, it holds that

Pr(κee ≥ k) ≤ π2δk−1

6
, Pr(κet ≥ k) ≤ π2

6
· δ

αk−1
.

Since limk→∞ δk = 0, limk→∞ αk = +∞, we observe
that Pr(κee < +∞) = 1,Pr(κet < +∞) = 1. We first
show that Algorithm 2 is δ-PAC, which is mainly due to the
design of our stopping rule.
Theorem 5.2. Algorithm 2 is δ-PAC.

Sketch Proof of Theorem 5.2. The first step is to show
Pr(τ = +∞) ≤ Pr(κee = +∞) + Pr(κet = +∞) = 0,
indicating that τ < +∞ with certainty. Then, we know
â ∈ [K] ∪ {None} in Algorithm 2 is well defined with
certainty.

If ν is positive, the event â /∈ i∗(ν) occurs only in the
following two scenarios. The first scenario is when an
exploration period outputs None in phase k such that δk <
δ/3. The second scenario is when an exploitation period
outputs an arm with mean reward < µ0. The probabilities of
both events are at most δ multiplied by an absolute constant,
and we can conclude Prν(â /∈ i∗(ν)) < δ.

If ν is negative, the event â /∈ i∗(ν) occurs only when an
exploitation period outputs an arm, which is the same as the
second case in the discussion of positive ν. We then have
Prν(â /∈ i∗(ν)) < δ again, hence the Lemma is proved.

6
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The full proof is in Appendix B.2. The following theorem
shows that Algorithm 2 is nearly optimal in minimizing Eτ .
Theorem 5.3. Apply Algorithm 2 to an instance ν, we have

Eτ ≤

{
γ ·
(

log 1
δ

∆2
0,1

+ (log K
∆2

0,1
) ·Hpos

1

)
ν ∈ Spos

γ · (Hneg
1 (log 1

δ + logHneg
1 )) ν ∈ Sneg

, where

γ only depends the constant C but independent of model
parameters K, δ and {µa}Ka=1, In particular, when we set
C to be an absolute constant such as C = 1.01, γ is also
an absolute constant.

From the definition of Hpos
1 , we know K ≤ Hpos

1 ,
and 1/∆2

0,1 ≤ Hpos
1 . Thus, we have log(K/∆2

0,1) ≤
2 logHpos

1 . Meanwhile, since max{∆2
0,a,∆

2
1,a} ≥ ∆2

0,1/4,
we have Hpos

1 ≤ 8K/∆2
1,0, leading to logHpos

1 ≤ log 8 +
log(K/∆2

1,0). Thus, it is equivalent to state the upper bound

as Eτ ≤

{
γ ·
(

log 1
δ

∆2
0,1

+ (logHpos
1 ) ·Hpos

1

)
ν ∈ Spos

γ · (Hneg
1 (log 1

δ + logHneg
1 )) ν ∈ Sneg

. As

Theorem 5.7 discusses the existence of log 1
∆0,1

, we adopt
the current expression for further comparison. The full proof
is in Appendix B.2.

Sketch Proof of Theorem 5.3. The main idea is to split τ =
τ ee + τ et, and we derive upper bounds for both Eτ ee and
Eτ et. In the following, we only summarize the main steps
of upper bounding Eτ ee, when instance ν is positive. Proofs
for other cases are similar.

Define L′ = ⌈log2
24(C+1)2Hpos

1

K ⌉, L′′ = ⌈log2
192(C+1)2

ω2∆2
0,1
⌉,

where ω = C−1
C+3 . Via routine calculations, we have L′′ ≥

L′. To prove Theorem 5.3, the most important intermediate
step is to show that in phase k ≥ max{κee, L′}, Algorithm
3 always outputs â ∈ [K], µâ > ωµ1 + (1 − ω)µ0 with
certainty. In addition,

τ ee
k ≤O

(
Kβmax{κee,L′}−1 log

4K

δmax{κee,L′}−1

)
+

O

 K∑
a=1

log K
δk

+ log log 1
max{∆2

1,a,∆
2
0,a}

max{∆2
1,a,∆

2
0,a}

 .

(4)

The intuition is as follows. Firstly, at the end of phase
max{κee, L′} − 1, we have

τ ee
max{κee,L′}−1 ≤ O

(
Kβmax{κee,L′}−1 log

4K

δmax{κee,L′}−1

)
.

This is guaranteed by the Lemma 4.2. Then, starting from
phase max{κee, L′}, T ee

k is large enough, such that Algo-
rithm 3 will not enter the case of line 8. By induction, we
have

Na(τ
ee
k ) ≤ max

{
Na(τ

ee
max{κee,L′}−1),

O

 log K
δk

+ log log 1
max{∆2

1,a,∆
2
0,a}

max{∆2
1,a,∆

2
0,a}

}

holds for all k ≥ max{κee, L′}, a ∈ [K] with certainty.
Summing up the above inequality for all a ∈ [K] and using
the fact that τ ee

k ≤ K +
∑K

a=1 Na(τ
ee
k ) (Lemma 4.2), we

complete the proof of (4). Lemmas B.4, B.6, B.8 contain
more details.

The next step is to show conditioned on µâk
≥ ωµ1 + (1−

ω)µ0, k ≥ max{κet, L′′} can guarantee the exploitation pe-
riod output Qualified, and the algorithm must stop. This is
straightforward, as k ≥ κet guarantees U(N et

âk
, δ
Kαk

) <

ω(µ1−µ0)
2 implies

∑Net
âk

s=1 Xet
âk,s

N et
âk

− U(N et
âk
, δ
Kαk

) > µ0.

Meanwhile, having k ≥ L′′ guarantees T et
k is large enough

such that Algorithm 4 will not quit the While loop before
N et

âk
is large enough such that U(N et

âk
, δ
Kαk

) < ω(µ1−µ0)
2

holds. Combining these intermediate steps, we have

τ ee

≤O

(
Kβmax{κee,L′} log

4K

δmax{κee,L′}

)
+

O

 K∑
a=1

log K
δmax{κee,κet,L′,L′′}

+ log log 1
max{∆2

1,a,∆
2
0,a}

max{∆2
1,a,∆

2
0,a}


≤O (Hpos

1 logHpos
1 ) +O

(
Kβκee log

4K

δκee

)
+

O

(
KβL′ log

4K

δL′

)
+O

(
Hpos

1 log
1

δκee

)
+

O

(
Hpos

1 log
1

δL′′

)
+O

(
Hpos

1 log
1

δκet

)
+

O

(
Hpos

1 log
1

δL′

)
holds with certainty. Take expectation on both sides, we

can use inequalities such as

Eβκee log
4K

δκee
≤

+∞∑
k=1

βk log
4K

δk
Pr(κee = k)

Lemma 5.1
≤

+∞∑
k=1

π2δk−1

6
· βk log

4K

δk
= O(logK)

to derive the upper bound of Eτ ee.

Combining Theorems 5.2 and 5.3, we know Algorithm 2 is
(∆, δ)-PAC.

5.2. Lower Bounds

We derive lower bounds for both positive and negative in-
stances based on techniques in existing works. Without
extra description, we assign unit variance Gaussian noise
for each of the arm in the constructed instances. The results
in (Garivier & Kaufmann, 2016; Degenne & Koolen, 2019)
can be adopted to show the following:
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Theorem 5.4. For a unit variance Gaussian instance
equipped with mean reward vector {µa}Ka=1, µ0 >
max1≤a≤K µa, any δ-PAC 1-identification algorithm alg
would satisfy Ealgτ ≥ Ω(Hneg

1 log(1/δ)).

Detailed proof can be found in Appendix C.1. Comparing
with the upper bound in Theorem 5.3, the gap between
the upper and lower bounds in the negative case is up to a
constant and a polynomial logarithm factor polylog(Hneg

1 )
in the δ independent part. We also derive a lower bound for
a positive instance, based on the analyses in (Degenne &
Koolen, 2019) and (Katz-Samuels & Jamieson, 2020).

Theorem 5.5. Consider any {µa}Ka=0 ∈ [0, 1]K+1 satis-
fying µ1 ≥ µ2 ≥ · · · ≥ µK , µ1 > µ0. Consider in-
stance ν that takes a permutation of {µa}Ka=1 as the re-
ward vector, and µ0 as the threshold. Then, for any δ-PAC
1-identification alg, any δ ∈ (0, 1), we have Eν,algτ ≥
Ω(H log 1

δ ) = Ω(
log 1

δ

∆2
0,1

).

Theorem 5.6. Consider any {µa}Ka=0 ∈ [0, 1]K+1 satis-
fying µ1 > µ0 ≥ µ2 ≥ · · · ≥ µK . For any δ-PAC
1-identification alg, any δ ∈ (0, 1

16 ), we can find a posi-
tive instance ν whose mean reward vector is a permuta-
tion of vector {µa}Ka=1 and the threshold is µ0, such that
Eν,algτ ≥ Ω (H1).

The full proof is in Appendix C.2. The last step is to com-
bine Theorem 5.5 and 5.6. If we assume µ1 > µ0 ≥ µ2 ≥
· · ·µK , for any δ-PAC algorithm, we can find an instance ν
taking {µa}Ka=1 ∈ [0, 1]K as a permutation of reward vec-
tor, such that Eντ ≥ Ω

(
log 1

δ

∆2
0,1

+
∑K

a=2
1

max{∆2
1,a,∆

2
0,a}

)
.

The reason is ∆1,a > ∆0,a holds for all a ≥ 2.
Together with Theorem 5.3, we deduce that the gap
between upper and lower bounds is at most a factor
poly(log 1

∆0,1
, {log K

max{∆0,a,∆1,a}}
K
a=2), if the mean re-

ward vector satisfies µ1 > µ0 ≥ µ2 · · · ≥ µK . Theorem
5.3 guarantees our bound’s dependence on log 1/δ is nearly
optimal, but it still remains unclear what would be a tight
upper and lower bound of the δ independent part, if there
are multiple arms above µ0.

Besides the lower bounds for the total expected pulling
times, we also derive a lower bound for the pulling times
of arm a whose µa < µ0. The following theorem can only
imply the possibility that the O(log(1/∆2

0,1)) in Theorem
5.3 is required.2

Theorem 5.7. Fixed any µ0 ∈ [0, 1], {µa}Ka=2 ∈ [0, 1]K−1

satisfying µ0 > µ2 ≥ · · · ≥ µK . For any (∆, δ)-PAC
1-identification alg, any δ < 1/e8, we can find a small
enough ∆̄0,1 > 0, such that for any µ1 ∈ (µ0, µ0 + ∆̄0,1],
we can find a problem instance ν whose mean reward vec-

2We do not find any related results in the literature, which
motivates us to state the partial result in what follows.

tor is {µa}Ka=1 and the alg must satisfy Eν,algNa(τ) ≥
Ω(log(1/∆2

1,0)/∆
2
1,a),∀a ≥ 2.

The full proof is in Appendix C.3. Theorem 5.7 implies
the expected pulling times of unqualified arms would be
impacted by the gap between the best arm and the thresh-
old. Nevertheless, we caution that this impact might only
occur when ∆1,0 is sufficiently small. If ∆1,0 is suffi-

ciently small, it is possible
∑K

a=2

log(1/∆2
1,0)

∆2
1,a

< 1
∆2

1,0
. Thus,

the O(log(1/∆2
1,0)) term might not occur in the upper

bound of Eτ , since the upper bound of Eτ usually contains
O(1/∆2

1,0).

6. Numerical Experiments
We conduct numerical evaluations on SEE and existing
benchmark algorithms on synthetic instances. The bench-
mark algorithms include HDoC, LUCB G in (Kano et al.,
2017), lilHDoC in (Tsai et al., 2024), Murphy Sampling
(MS) in (Kaufmann et al., 2018) and TaS in (Garivier &
Kaufmann, 2016). Algorithm MS and TaS are not origi-
nally designed for 1-identification, but we adapt these algo-
rithms by applying the GLR stopping rule (see Lemma 2
in (Jourdan & Réda, 2023)). In what follows, we call these
adapted versions as adapted-MS and adapted-TaS respec-
tively. While adapted-MS and adapted-TaS are still δ-PAC,
there is no non-trivial theoretical guarantees on their sample
complexity bounds. Hence, these adapted algorithms are
heuristic. In Appendix E.3, we discuss APGAI in (Jour-
dan & Réda, 2023) on its numerical performance, which
presents a significantly different trend from others.

We do not include algorithms S-TaS (Degenne & Koolen,
2019) and APT G (Kano et al., 2017) in the benchmark
algorithm list, since the performance of algorithm S-TaS
heavily relies on the position of the qualified arm in the
positive case, as shown by (Jourdan & Réda, 2023). And
(Kano et al., 2017) show that empirically APT G performs
poorly compared to the HDoC, LUCB G.

We consider six different groups of reward vectors, which
are “All Worse”, “Unique Qualified”, “One Quarter”, “Half
Good”, “All Good” and “Linear”. The main difference
among these groups is the number of qualified arms. All
instances in “All Worse” group are negative, whose mean
rewards of all arms are below µ0. Due to the low execu-
tion speed of algorithm MS on group “All Worse”, we do
not apply MS to the instance “All Worse”. Other groups
of instances are positive, meaning that there is at least one
arm whose mean reward is > µ0. We set 108 as our forced
stopping threshold for each group of experiments. Every
algorithm stops and outputs an answer at or before the num-
ber of arm pulls reaches 108. The details of the numerical
setting, tuning of the hyper-parameters in SEE, and other
implementation details can be found in Appendix E.1.
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Figure 1. Numerical Experiments on SEE and Benchmarks

Figure 1 illustrates the numerical results. In “AllWorse”, our
proposed algorithm SEE outperforms all the benchmarks,
and the advantage of SEE becomes more obvious as K
increases. In “One Quarter”, “Half Good”, “All Good”,
“Linear ”, adapted-TaS and adapted-MS outperform SEE
when K ≤ 50. However, as K increases, the leading gap
of adapted-TaS and adapted-MS becomes smaller. When
K = 200, SEE outperforms adapted-TaS and adapted-MS
in instances “One Quarter”, “Half Good”, “All Good”. In
instances “Unique Qualified”, adapted-TaS and adapted-MS
consistently have better numerical performance. In compar-
ison with benchmark algorithms in (Kano et al., 2017), our
proposed SEE outperforms HDoC, lilHDoC and LUCB G
in most of the instances, except K = 10, 20 in the “Unique
Qualified” group. When δ gets smaller, the above phe-
nomenon is more pronounced. Altogether, SEE is competi-
tive among all the algorithms with theoretical claims.

The numerical performance is consistent with our theoret-
ical analysis. As Theorem 5.3 suggests, if we apply SEE
to a positive instance, the empirical stopping times increase
proportionally to K. However, our dependence on K is bet-
ter than the existing algorithms’ sample complexity bounds,
in the sense that the coefficient of the δ in our sample com-
plexity bound is independent of K on positive instances.
This property does not hold for the sample complexity up-
per bounds for algorithms HDoC and lilHDoC. The above
provides intuition on a larger leading gap of SEE in the case
of smaller δ.

In our numerical experiments, adapted-MS and adapted-
TaS have good performances, especially in the case of a
small arm number. However, from figure 2 in the appendix
E.2, it can be observed that their empirical stopping times
are not monotonically decreasing as the proportion of the
qualified arm increases. In contrast, SEE performs better
when the proportion increases, which suggests the stability
and robustness of our proposed SEE.

7. Conclusion
We study the 1-identification problem in the fixed confidence
setting, and design a new algorithm SEE. We establish a non-
asymptotic sample complexity upper bound for Eτ under
SEE, which is nearly optimal in the negative instance and
positive instance with a unique qualified arm. The superior
performance of SEE is also corroborated by our numerical
experiments.
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A. Additional Literature Review
A.1. Additional Review on (Katz-Samuels & Jamieson, 2020) and Others

(Katz-Samuels & Jamieson, 2020) put forward FWER-FWPD (Algorithm 2) to solve their proposed k-identification problem,
which is slightly different from the definition in this paper. FWER-FWPD is an anytime algorithm, returning a subset
Rt ⊂ [K] at each round t, and never stops. The setRt contains all the arms whose mean reward are believed to be greater
than µ0 up to time t. The setR1 is initialized as the empty set. Algorithm FWER-FWPD sequentially adds more and more
arms intoRt. While (Katz-Samuels & Jamieson, 2020) do not provide explicit stopping time τ in their algorithms, in their
analysis they consider another sequence of stopping times λk = min{t : |Rt ∩ {a : µa > µ0}| ≥ k}, denoting the first
round index whoseRt contains at least k qualified arms. Since the set {a : µa > µ0} is unknown to the agent, Algorithm
FWER-FWPD is unable to figure out the exact value of {λk}, which is called Unverifiable Stopping Time. It is evident
that λk is equal to infinity, if {a : µa > µ0} = ∅. In this case, the algorithm FWER-FWPD may never stop with keeping
Rt = ∅,∀t ∈ N, meaning that the Algorithm FWER-FWPD cannot handle a negative instance ν. For this reason, we do not
conduct a direct comparison between the FWER-FWPD and the algorithms in table 1.

If we apply the Algorithm FWER-FWPD to a positive instance ν, we can still derive a conclusion by adapting the upper
bound of Eλ1. Theorem 8 in (Katz-Samuels & Jamieson, 2020) guarantee that Pr(∃t,Rt ∩ {a : µa < µ0}) < 10δ. Thus,
we can consider stopping time τ = min{t : Rt ̸= ∅} as the termination round in our formulation. Taking â as the unique
element inRτ , we have Pr(µâ < µ0) ≤ Pr(∃t,Rt ∩ {a : µa < µ0}) < 10δ. It is evident that τ ≤ λ1. By the upper bound
mentioned in Theorem 8 in (Katz-Samuels & Jamieson, 2020) we have

Eλ1 ≤ O

((
(
K

m
− 1) ·

log 1
δ

∆2
+ log

K
m

δ

)
log

(
(
K

m
− 1) ·

log 1
δ

∆2
+ log

K
m

δ

))
,

The above bound can be taken as an upper bound of Eτ of the FWER-FWPD Algorithm in (Katz-Samuels & Jamieson,
2020) coupled with the stopping time λ1. The sub-optimality of the above upper bound mainly comes from two parts.
Firstly, the dependence on δ is log 1

δ log log
1
δ instead of the commonly seen result log 1

δ . Then, in the asymptotic regime,
i.e. δ → 0, this upper bound is larger than all the upper bounds on positive instance in table 1. Secondly, the coefficient
of log 1

δ log log
1
δ is the inverse minimum gap between qualified arms and µ0. In the case ∆ << ∆1,0, the upper bound is

much larger than the lower bound, the upper bound becomes loose. This theoretical upper bound remains competitive only
when the number of qualified arm m is proportional to K, and the δ is considered a constant. These are also the assumptions
adopted by (Katz-Samuels & Jamieson, 2020).

There are research works aiming to output all the arms better than the threshold µ0. As previously mentioned, (Kano et al.,
2017) aim to output all the arm sequentially and its first outputting round is indeed the τ . Besides the fixed confidence
setting adopted by the above papers, (Locatelli et al., 2016; Mukherjee et al., 2017) work on the fixed budget setting, which
aims to maximize the probability of correct output given a finite number of rounds.

Another related topic is ϵ-Good Arm Identification. The agent needs to find all the arms (Mason et al., 2020) in {a :
µa ≥ µ1 − ϵ} or only one arm (Even-Dar et al., 2002; Gabillon et al., 2012; Kalyanakrishnan et al., 2012; Kaufmann &
Kalyanakrishnan, 2013; Katz-Samuels & Jamieson, 2020). In the second case, if the gap ∆0,1 is known to us, then the
ϵ−Good Arm Identification and 1-identification are equivalent by taking ϵ = ∆0,1. But it is unclear whether equivalence
still holds if the largest mean reward of {µa}Ka=0 is unknown. Besides the fixed confidence setting, (Zhao et al., 2023) works
on simple regret, under the fixed budget setting.

A.2. Comments on Table 1

Due to the space limit, we only present imprecise upper bounds for algorithm HDoC and APGAI in the table 1. Their actual
upper bounds are larger, still suffering from the suboptimality discussed in the section 3. Following are more details.

Regarding algorithm HDoC, Theorem 3 in (Kano et al., 2017) proves for ν ∈ Spos, we have

Eντ ≤ n1 +

K∑
a=2

(
log(Kmaxj∈[K] nj)

2(∆1,a − 2ϵ)2
+ δna

)
+

K
2− ϵ2

(mina∈[K] ∆0,a−ϵ)2

2ϵ2
+

K(5 + log 1
2ϵ2 )

4ϵ2
,

where na = 1
(∆0,a−ϵ)2 log

(
4
√

K/δ

(∆0,a−ϵ)2 log
5
√

K/δ

(∆0,a−ϵ)2

)
, ϵ = min

{
min
a∈[K]

∆0,a, min
a∈[K−1]

∆a,a+1

2

}
. It is easy to see n1 ≥

11
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Ω( logK/δ
∆2

0,1
),

K(5+log 1
2ϵ2

)

4ϵ2 ≥ Ω(Kϵ2 ). In addition, log(Kmaxj∈[K] nj) ≥ Ω(log log 1
δ ), suggesting that

K∑
a=2

(
log(Kmaxj∈[K] nj)

2(∆1,a − 2ϵ)2

)

≥Ω

(
K∑

a=2

log log 1
δ

2(∆1,a − 2ϵ)2

)

≥Ω

(
K∑

a=2

log log 1
δ

2∆2
1,a

)

≥Ω(H1 log log
1

δ
).

Thus, we can conclude

Ω

(
H log

K

δ
+H1 log log

1

δ
+

K

ϵ2

)

≤n1 +

K∑
a=2

(
log(Kmaxj∈[K] nj)

2(∆1,a − 2ϵ)2
+ δna

)
+

K
2− ϵ2

(mina∈[K] ∆0,a−ϵ)2

2ϵ2
+

K(5 + log 1
2ϵ2 )

4ϵ2
,

and the actual upper bound for ν ∈ Spos still suffers from the suboptimality from two perspectives mentioned in the section
3. The term 1

ϵ2 implies the upper bound can be infinity. And the term H1 log log(1/δ) suggests there is still gap between the
upper and lower bounds.

Regarding algorithm APGAI, (Jourdan & Réda, 2023) do not explicitly provide upper bound for Eτ . Therorem 2 in (Jourdan
& Réda, 2023) suggests

Eντ ≤ Cpos(δ) +
Kπ2

6
+ 1, ν ∈ Spos

Eντ ≤ Cneg(δ) +
Kπ2

6
+ 1, ν ∈ Sneg,

with definition

Cpos(δ) = sup

t : t ≤

 ∑
a:µa≥µ0

2

∆2
0,a

 (
√
c(t, δ) +

√
3 log t)2 +Dpos({µa}Ka=1)


Cneg(δ) = sup

{
t : t ≤

(
K∑

a=1

2

∆2
0,a

)
(
√
c(t, δ) +

√
3 log t)2 +Dneg({µa}Ka=1)

}

2c(t, δ) =W̄−1

(
2 log

K

δ
+ 4 log log(e4t) +

1

2

)
W̄−1(x) =−W−1(−e−x) ≈ x+ log x.

W−1 is the negative branch of the Lambert W function. And Dpos({µa}Ka=1), D
neg({µa}Ka=1) are further defined in

the appendix F in (Jourdan & Réda, 2023). From the above definition, we know c(t, δ) ≥ Ω(log K
δ ), suggesting that

(
√
c(t, δ) +

√
3 log t)2 ≥ Ω(log K

δ ). Further, we can conclude Cpos(δ) ≥ Ω(H0(log
K
δ )) and Cpos(δ) ≥ Ω(Hneg

1 (log K
δ )).

Thus, if there exists a ∈ [K], µa = µ0 for an instance ν ∈ Spos, Cpos(δ) =∞, resulting in a vacuous upper bound.

A.3. lilHDoC, HDoC, APGAI are not (∆, δ)-PAC

In this subsection, we are going to show lilHDoC in (Tsai et al., 2024), HDoC in (Kano et al., 2017), APGAI in (Jourdan &
Réda, 2023) are not (∆, δ)-PAC. To do this, we suffice to construct an instance ν ∈ Spos, such that Eντ = +∞ holds for all
these three algorithms.

12
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Consider a two-arm instance ν with µ1 > µ0 = µ2. Arm 1 follows unit variance Gaussian and arm 2 returns constant
reward. Easy to validate ν ∈ Spos.

Algorithm lilHDoC applies uniform sampling on 2 arms, by pulling each arm T times. With non-zero prob p, UCB1(t) < µ0

holds for all t ≤ T . Then, arm 1 will get removed from the arm set, so as algorithm HDoC. In this case, both lilHDoC and
HDoC will keep pulling arm 2 without termination. In other words, we find an event with positive probability, such that
τ = +∞. We can conclude Eν,HDoCτ = +∞, Eν,lilHDoCτ = +∞.

The same idea also applies to the algorithm APGAI. With non-zero probability, the first collected sample from arm 1 is
below µ0. Conditioned on this event, APGAI will keep pulling arm 2 without a termination, meaning that Eν,APGAIτ = +∞.

B. Analysis of Algorithm 2
B.1. Selection Rules of C, {δk, αk, βk}+∞

k=1

Regarding C, any C > 1 is available for the algorithm analysis. And C will only impact the constant coefficient in the upper
bound mentioned in Theorem 2, which is ignored as C is predetermined.

Regarding {δk, αk, βk}+∞
k=1, there are some restrictions on the decreasing/increasing speed of the sequence. Generally

speaking, we require {δk}+∞
k=1 is a decreasing sequence with limit zero and {αk, βk}+∞

k=1 are increasing sequences with limit
infinity. And they should fulfill following properties

βk+1 ≥ 2βk, βk+1 log
1

δk+1
≥ 2βk log

1

δk
+∞∑
k=1

δk−1βk log
αk

δk
< +∞

+∞∑
k=1

1

αk−1
βk log

αk

δk
< +∞

+∞∑
k=1

1

αk
≤ 1

4
.

With out loss of generality, we can take δ0 = β0 = α0 = 1. Considering all these requirements, taking δk = 1
3k
, βk =

2k, αk = 5k is a suitable choice. It is also possible to find other sequences.

B.2. Proof of Main Theorems

Before illustrating the proof of Theorem 5.2 and 5.3, we need some preparations. Section B.3 includes all the required
lemmas to complement the proof.

We firstly prove Theorem 5.2, which asserts Algorithm 2 is δ-PAC. Recall the definition of of δ-PAC, we need to prove
Prν(τ < +∞, â ∈ i∗(ν)) > 1− δ holds for any δ ∈ (0, 1) and ν ∈ Spos ∪Sneg. Here we split the proof into two steps. The
first part is to show Pr(τ < +∞) = 1, which is guaranteed by Lemma B.2. Then, given the first step, we just need to show
Prν(â ∈ i∗(ν)) > 1− δ. Equivalently, suffice to prove Prν(â /∈ i∗(ν)) < δ holds for any δ ∈ (0, 1) and ν ∈ Spos ∪ Sneg.

Proof of Theorem 5.2. By the Lemma B.2, we know τ < +∞ with certainty. Thus, â ∈ [K] ∪ {None} in Algorithm 2 is
well defined with certainty.

For positive instance ν,

Pr(â /∈ i∗(ν))

≤Pr(â = None) + Pr(â ∈ [K], µâ < µ0)

≤Pr

(
∃t ∈ N,∃δk <

δ

3
,

∑t
s=1 X

ee
1,s

t
+ U(t,

δk
K

) < µ0

)
+
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Pr

(
∃t ∈ N,∃a ∈ [K], µa < µ0,

∑t
s=1 X

et
a,s

t
− U(t,

δ

Kα1
) > µ0

)

≤Pr

(
∃t ∈ N,

∑t
s=1 X

ee
1,s

t
+ U(t,

δ

3K
) < µ0

)
+

Pr

(
∃t ∈ N,∃a ∈ [K], µa < µ0,

∑t
s=1 X

et
1,s

t
− U(t,

δ

Kα1
) > µa

)

≤π2

6
(
δ

3
+

δ

5
) < δ.

For negative instance ν,

Pr(â /∈ i∗(ν))

=Pr(â ∈ [K])

≤Pr

(
∃t ∈ N,∃a ∈ [K], µa < µ0,

∑t
s=1 X

et
a,s

t
− U(t,

δ

Kα1
) > µ0

)

≤δ

5

π2

6
< δ.

To prove Theorem 5.3, i.e the upper bound of Eτ , we need more preparations. As the sketch proof in section 5 illustrated,
the most important step is to find the upper bound of phase index such that that the Algorithm 3 starts to output correct
answer with an appropriate upper bound of τ ee

k .

Since the proof is too long, we split the proof of Theorem 5.3 into two parts. In the first part, we prove the upper
bound Eτ ≤ O

(
log 1

δ

∆2
0,1

+ (log K
∆2

0,1
) ·Hpos

1

)
, for the case ν ∈ Spos. In the second part, we prove the upper bound

Eτ ≤ O(Hneg
1 (log 1

δ + logHneg
1 )), for the case ν ∈ Sneg. Lemma B.4, B.6 and B.8 are required for the case ν ∈ Spos. And

Lemma B.5, B.7 and B.9 are required for the case ν ∈ Sneg.

Proof of Theorem 5.3, positive case. Denote L′ = ⌈log2
24(C+1)2Hpos

1

K ⌉, L′′ = ⌈log2
192(C+1)2

ω2∆2
0,1
⌉, where ω = C−1

C+3 . Easy to

see L′ ≤ L′′. We split τ = τ ee + τ et and derive an upper bound for Eτ ee and Eτ et separately.

Since we take βk = 2k, δk = 1
3k

, we have

βL′ ≤2log2

24(C+1)2H
pos
1

K +1 = 2 · 24(C + 1)2Hpos
1

K
= O

(
Hpos

1

K

)
log

1

δL′
≤ log

(
3log2

24(C+1)2H
pos
1

K +1

)
= log 3 ·

(
log2

24(C + 1)2Hpos
1

K
+ 1

)
= O

(
log

Hpos
1

K

)
βL′′ ≤2

1+log2
192(C+1)2

ω2∆2
0,1 ≤ 2 · 192(C + 1)2

ω2∆2
0,1

= O

(
1

∆2
0,1

)

log
1

δL′′
≤ log

(
3
1+log2

192(C+1)2

ω2∆2
0,1

)
= log 3

(
1 + log2

192(C + 1)2

ω2∆2
0,1

)
= O

(
log

1

∆2
0,1

)
We ignore constant C as it is a predetermined constant in the Algorithm 2.

By the Lemma B.1, B.8, we know the exploration period after phase max{κee, L′} will always output â ∈ [K], µâ >
ωµ1 + (1− ω)µ0, and the forced termination at line 8 never triggers. By the Lemma B.3, we know the exploitation period
will return “Qualified” after phase max{κet, L′′}, conditioned on the event µâk

> ωµ1 + (1 − ω)µ0. In summary, the
algorithm must terminate no late than the end of phase max{κee, κet, L′, L′′}. By the Lemma B.8 we can conclude

τ ee ≤O
(
Kβmax{κee,L′} log

4K

δmax{κee,L′}

)
+
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O

 log K
δmax{κee,κet,L′,L′′}

+ log log 1
∆2

0,1

∆2
0,1

+

K∑
a=2

log K
δmax{κee,κet,L′,L′′}

+ log log 1
max{∆2

1,a,∆
2
0,a}

max{∆2
1,a,∆

2
0,a}


≤O

(
Hpos

1 logHpos
1

)
+O

(
Kβκee log

4K

δκee

)
+O

(
KβL′ log

4K

δL′

)
+

O

(
Hpos

1 log
1

δκee

)
+O

(
Hpos

1 log
1

δκet

)
+O

(
Hpos

1 log
1

δL′

)
+O

(
Hpos

1 log
1

δL′′

)
≤O

(
Hpos

1 log
K

∆2
0,1

)
+O

(
Hpos

1 log
1

δκee

)
+O

(
Hpos

1 log
1

δκet

)
+O

(
Kβκee log

4K

δκee

)
.

Take expectation on both side, we have

Eβκee log
4K

δκee
≤

+∞∑
k=1

βk log
4K

δk
Pr(κee = k)

≤
+∞∑
k=1

π2δk−1

6
· βk log

4K

δk

=O(logK).

E log
1

δκee
≤

+∞∑
k=1

log
1

δκee
Pr(κee = k)

≤π2

6

+∞∑
k=1

δk−1 log
1

δκk

=O(1).

E log
1

δκet
≤

+∞∑
k=1

log
1

δκet
Pr(κet = k)

≤π2δ

6

+∞∑
k=1

1

αk−1
log

1

δκk

=O(1).

Thus, we can conclude Eτ ee ≤ O
(
Hpos

1 log K
∆2

0,1

)
.

The remaining work is to prove an upper bound for Eτ et. Recall we take βk = 2k, αk = 5k. It is not hard to see for any
integer N ∈ N, we have βN+1 log

4KαN+1

δ ≥ 2βN log 4KαN

δ and
∑N

n=1 βn log
4Kαn

δ ≤ βN+1 log
4KαN+1

δ . Thus, we can
conclude

τ et =

{κee,κet,L′′}∑
k=1

1000βk log
4Kαk

δ

≤2000βmax{κee,κet,L′′}+1 log
4Kαmax{κee,κet,L′′}+1

δ

≤O
(
βκee log

4Kακee

δ
+ βκet log

4Kακet

δ
+ βL′′ log

4KαL′′

δ

)
holds with certainty. From the definition, we know βL′′ , αL′′ ≤ O

(
1

∆2
0,1

)
. Thus, we can conclude

τ et ≤ O

(
βκee log

4Kακee

δ
+ βκet log

4Kακet

δ

)
+O

 log K
δ + log 1

∆2
0,1

∆2
0,1

 .
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Take Expectation on both side, we get

Eβκee log
4Kακee

δ
≤

+∞∑
k=1

βk log
4Kαk

δ
Pr(κee = k)

≤
+∞∑
k=1

π2δk−1

6
· βk log

4Kαk

δ

≤O(log
K

δ
).

Eβκet log
4Kακet

δ
≤

+∞∑
k=1

βk log
4Kαk

δ
Pr(κet = k)

≤
+∞∑
k=1

π2δ

6αk−1
· βk log

4Kαk

δ

≤O(logK).

In summary, we have Eτ et ≤ O

(
log K

δ +log 1

∆2
0,1

∆2
0,1

)
.

Combining the following upper bounds,

Eτ et ≤O

 log K
δ + log 1

∆2
0,1

∆2
0,1

 ,

Eτ ee ≤O

(
Hpos

1 log
K

∆2
0,1

)
,

we have proved the positive part of theorem.

The above completes the proof of inequality Eτ ≤ O
(

log 1
δ

∆2
0,1

+ (log K
∆2

0,1
) ·Hpos

1

)
, for the case ν ∈ Spos. The following is

going to prove another inequality Eτ ≤ O(Hneg
1 (log 1

δ + logHneg
1 )), ν ∈ Sneg in Theorem 5.3.

Proof of Theorem 5.3, negative case. Define L̃′ = ⌈log2

∑K
a=1

24

∆2
0,a

K ⌉, L̃′′ = min{k : δk < δ
3} = ⌈log3 3

δ ⌉. We split
τ = τ ee + τ et and derive an upper bound for Eτ ee and Eτ et separately.

By the Lemma B.9 and B.5, we know

τ ee ≤O

(
Kβmax{L̃′,κee} log

4K

δmax{L̃′,κee}

)
+O

 K∑
a=1

log K
δmax{L̃′,L̃′′,κee}

+ log log 1
∆2

0,a

∆2
0,a


≤O

(
KβL̃′ log

4K

δL̃′

)
+O

(
Kβκee log

4K

δκee

)
+O(Hneg

1 logHneg
1 )+

O

(
Hneg

1 (log
1

δL̃′
+ log

1

δL̃′′
+ log

1

δκee
)

)
.

Similar to the proof of positive part, we can take expectation on both side and it is not hard to see

O

(
KβL̃′ log

4K

δL̃′

)
=O

(
Hneg

1 logHneg
1

)
EKβκee log

4K

δκee
≤

+∞∑
k=1

π2δk−1

6
Kβk log

4K

δk
≤ O(K)
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O(Hneg
1 log

1

δL̃′
) ≤O

(
Hneg

1 logHneg
1

)
O(Hneg

1 log
1

δL̃′′
) ≤O

(
Hneg

1 log
1

δ

)
EHneg

1 log
1

δκee
≤

+∞∑
k=1

π2δk−1

6
Hneg

1 log
1

δk
≤ O(Hneg

1 ).

In summary, we can conclude Eτ ee ≤ O
(
Hneg

1 (log 1
δ +Hneg

1 )
)
.

For the upper bound of Eτ et, the idea is similar. From the Lemma B.9 and B.5, we know the exploration oracle would alway
output âk = None for phase index k ≥ max{κee, L̃′}, and we can conclude

τ et ≤
max{κee,L̃′}∑

k=1

1000βk log
4Kαk

δ

≤2000βmax{κee,L̃′}+1 log
4Kαmax{κee,L̃′}+1

δ

≤O
(
βκee+1 log

4Kακee+1

δ

)
+O

(
βL̃′+1 log

4KαL̃′+1

δ

)
.

Apply the same calculation as above, we can assert Eτ et ≤ O
(
log K

δ +
Hneg

1 logHneg
1

K

)
.

Combining the upper bounds, we get Eτ ≤ O
(
Hneg

1 (log 1
δ +Hneg

1 )
)
.

B.3. Supplement Lemmas

In this section, we illustrate more on the supplement lemmas of the main Theorems 5.2 and 5.3. The first lemma is about the
upper bound the smallest round index k, such that the Algorithm SEE does not receive âk = Not Complete, conditioned
on the concentration inequality.
Lemma B.1. Denote

T̃ pos
k :=

113(log 2Kαk

δ + log log 96
ω2∆2

0,1
)

ω2∆2
0,1

T̄ pos
k :=

113(C + 1)2(log 2K
δk

+ log log 96(C+1)2

∆2
0,1

)

∆2
0,1

+

K∑
a=2

113(C + 1)2(log K
δ + log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

)

max{∆2
1,a,∆

2
0,a}

T neg
k :=

K∑
a=1

113(log 2K
δk

+ log log 96
∆2

0,a
)

∆2
0,a

,

where ω ∈ (0, 1). Define

Lpos
ee =min

{
k :

T ee
k

2
≥ T̄ pos

k

}
,

Lpos
et =min

{
k : T et

k ≥ T̃ pos
k

}
,

Lneg =min

{
k :

T ee
k

2
≥ T neg

k

}
.

We have Lpos
ee ≤ ⌈log2

24(C+1)2Hpos
1

K ⌉, Lpos
et ≤ ⌈log2

192(C+1)2

ω2∆2
0,1
⌉, Lneg ≤ ⌈log2

∑K
a=1

24

∆2
0,a

K ⌉

Before the proof, we want to highlight a reminder:

Hpos
1 =

2

∆2
0,1

+

K∑
a=2

2

max{∆2
0,a,∆

2
1,a}

max{∆2
1,a,∆

2
0,a}≥

∆2
0,1
4

≤ 2

∆2
0,1

+
8(K − 1)

∆2
0,1

≤ 8K

∆2
0,1

.
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Thus, we have ⌈log2
24(C+1)2Hpos

1

K ⌉ ≤ ⌈log2
192(C+1)2

ω2∆2
0,1
⌉. In the following appendix, we will continue to use the notations in

Lemma B.1.

Proof of Lemma B.1. By the following calculation, we have

1000βk log
4Kαk

δ
≥

113(log 2K
δ + log log 96

ω2∆2
0,1

)

ω2∆2
0,1

⇐βk log
4Kαk

δ
≥

log 2K
δ + log log 96

ω2∆2
0,1

ω2∆2
0,1

⇐βk ≥
2

ω2∆2
0,1

, log
4Kαk

δ
≥ log log

96

ω2∆2
0,1

⇐2k ≥ 2

ω2∆2
0,1

, 5k ≥ log
96

ω2∆2
0,1

⇐k ≥ log2
96

ω2∆2
0,1

C>1⇐ k ≥ log2
192(C + 1)2

ω2∆2
0,1

,

Thus, we can conclude Lpos
et ≤ ⌈log2

192(C+1)2

ω2∆2
0,1
⌉.

500(C + 1)2Kβk log
4K

δk
≥

113(C + 1)2(log 2K
δk

+ log log 96(C+1)2

∆2
0,1

)

∆2
0,1

+

K∑
a=2

113(C + 1)2(log 2K
δk

+ log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

)

max{∆2
1,a,∆

2
0,a}

⇐Kβk log
4K

δk
≥

(log 2K
δk

+ log log 96(C+1)2

∆2
0,1

)

∆2
0,1

+

K∑
a=2

(log 2K
δk

+ log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

)

max{∆2
1,a,∆

2
0,a}

⇐Kβk log
4K

δk
≥ (log

2K

δk
+ log log(96(C + 1)2Hpos

1 ))Hpos
1

⇐βk ≥
2Hpos

1

K
,
log log(96(C + 1)2Hpos

1 )

log 4K
δk

≤ 1

⇐βk ≥
2Hpos

1

K
,
1

δk
≥ log(96(C + 1)2Hpos

1 )

4K

⇐2k ≥ 2Hpos
1

K
, 3k ≥ 24(C + 1)2Hpos

1

K

⇐k ≥ ⌈log2
24(C + 1)2Hpos

1

K
⌉,

Thus, we can conclude Lpos
ee ≤ ⌈log2

24(C+1)2Hpos
1

K ⌉.

Similarly, by the following calculation,

500(C + 1)2Kβk log
4K

δk
≥

K∑
a=1

113(log 2K
δk

+ log log 96
∆2

0,a
)

∆2
0,a

⇐Kβk ≥
log 2K

δk

log 4K
δk

K∑
a=1

1

∆2
0,a

+
1

log 4K
δk

K∑
a=1

log log 96
∆2

0,a

∆2
0,a

⇐βk ≥

∑K
a=1

2
∆2

0,a

K
,K log

4K

δk
≥ log log

96

∆2
0,a

,∀a ∈ [K]
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⇐2k ≥

∑K
a=1

2
∆2

0,a

K
, log

4K

δk
≥ log log

96

∆2
0,a

,∀a ∈ [K]

⇐2k ≥

∑K
a=1

2
∆2

0,a

K
,
4K

δk
≥ 96

∆2
0,a

,∀a ∈ [K]

⇐2k ≥

∑K
a=1

2
∆2

0,a

K
,K · 3k ≥

K∑
a=1

24

∆2
0,a

⇐k ≥ log2

∑K
a=1

24
∆2

0,a

K

Thus, we can conclude Lneg ≤ ⌈log2

∑K
a=1

24

∆2
0,a

K ⌉.

Lemma B.2 (τ must be finite). Apply Algorithm 2 to a 1-Identification instance ν, we have Pr(τ < +∞) = 1.

Proof pf Lemma B.2. Here we use the same notaion in Lemma B.1. Since βk = 2k, not hard to see T ee
k ≥ 2T ee

k−1. Thus
when k ≥ Lpos

ee and the algorithm call exploration algorithm 3, we have

T ee
k =

T ee
k

2
+

T ee
k

2

≥T ee
k−1 +

T ee
k

2
≥T ee

k−1 + T̄ pos
k

Since at the start of phase k, the |Hee|+ |Q| ≤ T ee
k−1, we can assert k ≥ Lpos

ee can fulfill the condition of T ≥
∑K

a=1 N
0
a +

113(C+1)2(log 2K
δ +log log

96(C+1)2

∆2
0,1

)

∆2
0,1

+
∑K

a=2

113(C+1)2(log 2K
δ +log log

96(C+1)2

max{∆2
1,a,∆2

0,a}
)

max{∆2
1,a,∆

2
0,a}

in Lemma B.4. Similarly, k ≥ Lpos
et

can also fulfill the condition T ≥
113(log 2Kα

δ +log log 96

ω2∆2
0,1

)

ω2∆2
0,1

in Lemma B.3. And k ≥ Lneg can fulfill the condition

T ≥
∑K

a=1 N
0
a +

∑K
a=1

113(C+1)2(log K
δ +log log

96(C+1)2

∆2
0,a

)

∆2
0,a

in Lemma B.5.

Recall the definition

κee =min

k ∈ N : ∀a ∈ [K],∀t ∈ N :

∣∣∣∣∣
∑t

s=1 X
ee
a,s

t
− µa

∣∣∣∣∣ ≤
√
2 · 2⌈log2 t⌉+ log 2K(⌈log2 t⌉+)2

δk

t


κet =min

k ∈ N : ∀a ∈ [K],∀t ∈ N :

∣∣∣∣∣
∑t

s=1 X
et
a,s

t
− µa

∣∣∣∣∣ ≤
√
2 · 2⌈log2 t⌉+ log 2Kαk(⌈log2 t⌉+)2

δ

t


• For positive case, by the Lemma B.3, B.8, B.1, we know the algorithm must terminate at the phase max{κee, κet, Lpos

et ⌉}.
Since the length of phase k is bounded by O(Kβk log

4αk

δkδ
) with certainty, we know Pr(τ < +∞) = Pr(κee =

+∞ or κet = +∞) = 0.

• For negative case, denote L′ = min{k : δk < δ
3}. By the Lemma B.9,B.1, we know the algorithm must terminate at

the phase max{L′, κee, Lneg}. Since the length of phase k is bounded by O(Kβk log
4αk

δkδ
) with certainty, we know

Pr(τ < +∞) = Pr(κee = +∞) = 0.

The following lemma states the conditions that can guarantee the output of exploitation period(Algorithm 4).
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Lemma B.3 (Correctness of Exploitation Period). Conditioned on the event

Eet =

{
∀a ∈ [K],∀t ∈ N,

∣∣∣∣∣
∑t

s=1 X
et
a,s

t
− µa

∣∣∣∣∣ < U(t,
δ

Kα
)

}
,

and â ∈ [K], µâ > ωµ1 + (1− ω)µ0. If T ≥
113(log 2Kα

δ +log log 96

ω2∆2
0,1

)

ω2∆2
0,1

, Algorithm 4 would output Qualified.

Proof of Lemma B.3. For arm â ∈ [K], µâ > ωµ1 + (1− ω)µ0 and t ∈ N, we have∑t
s=1 X

et
â,s

t
− U(t,

δ

Kα
) > µ0

Eet

⇐µâ − 2U(t,
δ

Kα
) > µ0

µâ>ωµ1+(1−ω)µ0⇐ 2U(t,
δ

Kα
) < ω(µ1 − µ0)

⇐2

√
4 log 2Kα log(2t)

δ

t
≤ ω∆0,1

Lemma D.2⇐ t ≥
112(log 2Kα

δ + log log 96
ω2∆2

0,1
)

ω2∆2
0,1

,

which implies the algorithm would return Qualified before the N et
â is no less than T .

After the discussion on the conditions of the Algorithm 4), the following two lemmas turn to ”good conditions” of the
Algorithm 3.

Lemma B.4 (Property of UCB Rule, for Positive Case). Consider pulling process controlled by Algorithm 3. Assume the
inputHee satisfies LCBa < µ0 holds for all a ∈ [K] at line 2. Apply the pulling process to a positive instance and further

assume T >
∑K

a=1 N
0
a +

113(C+1)2(log 2K
δ +log log

96(C+1)2

∆2
0,1

)

∆2
0,1

+
∑K

a=2

113(C+1)2(log 2K
δ +log log

96(C+1)2

max{∆2
1,a,∆2

0,a}
)

max{∆2
1,a,∆

2
0,a}

. We have

Conditioned on the event

Eee =

{
∀a ∈ [K],∀t ∈ N,

∣∣∣∣∣
∑t

s=1 X
ee
a,s

t
− µa

∣∣∣∣∣ < U

(
t,

δ

K

)}
,

at the end of the pulling procedure (line 17), we have

1. Na(Hee) ≤ max

{
N0

a ,
113(C+1)2(log 2K

δ +log log
96(C+1)2

max{∆2
0,a,∆2

1,a}
)

max{∆2
0,a,∆

2
1,a}

}
, for a ∈ [K].

2. â ∈ [K], µâ > ωµ1 + (1− ω)µ0, ω = C−1
C+3 .

Proof of Lemma B.4. For simplicity, denote T ′
a =

113(C+1)2(log 2K
δ +log log

96(C+1)2

∆2
1,a

)

∆2
1,a

, T ′′
a =

113(C+1)2(log 2K
δ +log log

96(C+1)2

∆2
0,a

)

∆2
0,a

. Not hard to see min{T ′
a , T ′′

a } =
113(C+1)2(log 2K

δ +log log
96(C+1)2

max{∆2
0,a,∆2

1,a}
)

max{∆2
0,a,∆

2
1,a}

.

Consider a ≥ 2. For pulling times t ∈ N, through the following calculation,∑t
s=1 X

ee
a,s

t
+ U(t,

δ

K
) < µ1

Eee

⇐µa + 2 · U(t,
δ

K
) < µ1
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⇐2

√
4 log 2K log(2t)

δ

t
≤ ∆1,a

Lemma D.2⇐ t >
112 log 2K

δ

∆2
1,a

+
64 log

(
log
(

96
∆2

1,a

))
∆2

1,a

,

we know UCBa(t) < µ1 < UCB1(t)⇐ Na(t) ≥
112 log 2K

δ

∆2
1,a

+
64 log

(
log

(
96

∆2
1,a

))
∆2

1,a
+ 1.

Similarly, consider a ∈ [K] such that µ0 < µa ≤ µ1. through the following calculation,∑t
s=1 X

ee
a,s

t
− C · U(t,

δ

K
) ≥ µ0

Eee

⇐µa − (C + 1) · U(t,
δ

K
) ≥ µ0

⇐(C + 1)

√
4 log 2K log(2t)

δ

t
≤ ∆0,a

Lemma D.2⇐ t >
28(C + 1)2 log 2K

δ

∆2
0,a

+
16(C + 1)2 log

(
log
(

24(C+1)2

∆2
0,a

))
∆2

0,a

we know that LCBa(t) > µ0 ⇐ Na(t) >
28(C+1)2 log 2K

δ

∆2
0,a

+
16(C+1)2 log

(
log

(
24(C+1)2

∆2
0,a

))
∆2

0,a
+ 1. Once LCBa ≥ µ0 happens,

the algorithm stops and take arm a as the output â.

We are ready to prove the first claim. According to the above discussion and the condition LCBa < µ0, we know N0
a < T ′′

a

holds for all a ∈ [K]. We prove the first claim through the discussion on three cases.

1. If N0
a ≤ T ′

a ≤ T ′′
a , the algorithm assures Na(Hee) ≤ T ′

a = max

{
N0

a ,
113(C+1)2(log 2K

δ +log log
96(C+1)2

max{∆2
0,a,∆2

1,a}
)

max{∆2
0,a,∆

2
1,a}

}
, as

UCBa < µ1 < UCB1 ⇐ Na(Hee) ≥ 112 log 2K
δ

∆2
1,a

+
64 log

(
log

(
96

∆2
1,a

))
∆2

1,a
+1 and arm a will never be the arm with highest

upper confidence bound before Na(Hee) is no less than T ′
a .

2. If T ′
a < N0

a ≤ T ′′
a , the algorithm never pulls arm a as its upper bound must below arm 1. In this case, Na(Hee) ≤

N0
a = max

{
N0

a ,
113(C+1)2(log 2K

δ +log log
96(C+1)2

max{∆2
0,a,∆2

1,a}
)

max{∆2
0,a,∆

2
1,a}

}
.

3. If If N0
a ≤ T ′′

a ≤ T ′
a , the algorithm assures Na(Hee) ≤ T ′′

a = max

{
N0

a ,
113(C+1)2(log 2K

δ +log log
96(C+1)2

max{∆2
0,a,∆2

1,a}
)

max{∆2
0,a,∆

2
1,a}

}
,

as the algorithm will output arm a before its pulling time is no less than T ′′
a .

By the first claim, we know

K∑
a=1

Na(Hee) ≤
K∑

a=1

max

N0
a ,

113(C + 1)2(log 2K
δ + log log 96(C+1)2

max{∆2
0,a,∆

2
1,a}

)

max{∆2
0,a,∆

2
1,a}


≤

K∑
a=1

N0
a +

K∑
a=1

113(C + 1)2(log 2K
δ + log log 96(C+1)2

max{∆2
0,a,∆

2
1,a}

)

max{∆2
0,a,∆

2
1,a}

≤T.
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Thus, the algorithm would not output Not Complete. From the good event Eee, we know the â ̸= None, since UCB1 is
always above µ0. We can conclude â ∈ [K]. We just need to prove µâ > ωµ1 + (1− ω)µ0.

Prove by contradiction. If â ∈ [K] and µâ < ωµ1 + (1− ω)µ0, we have

Aτ ee = â, â = arg max
1≤i≤K

µ̂i,Ni(τ ee−1) + U(Ni(τ
ee − 1),

δ

K
)

µ̂â,Nâ(τ ee) − C · U(Nâ(τ
ee),

δ

K
) > µ0

µ̂â,Nâ(τ ee−1) − C · U(Nâ(τ
ee − 1)) = µ̂â,Nâ(τ ee)−1 − C · U(Nâ(τ

ee)− 1,
δ

K
) < µ0.

As we take U(t, δ
K ) =

√
2·2max{⌈log2 t⌉,1} log

2K(⌈log2 t⌉)2
δ

t , we get

µ̂â,Nâ(τ ee) − CU(Nâ(τ
ee)) > µ0

⇔µ̂â,Nâ(τ ee) − C

√
2 · 2max{⌈log2 Nâ(τ ee)⌉,1} log 2K(⌈log2 Nâ(τ ee)⌉)2

δ

Nâ(τ)
> µ0

Eee

⇒µâ − (C − 1)

√
2 · 2max{⌈log2 Nâ(τ ee)⌉,1} log 2K(⌈log2 Nâ(τ ee)⌉)2

δ

Nâ(τ ee)
> µ0

⇒ωµ1 + (1− ω)µ0 − (C − 1)

√
2 · 2max{⌈log2 Nâ(τ ee)⌉,1} log 2K(⌈log2 Nâ(τ ee)⌉)2

δ

Nâ(τ ee)
> µ0

⇔ω(µ1 − µ0) > (C − 1)

√
2 · 2max{⌈log2 Nâ(τ ee)⌉,1} log 2K(⌈log2 Nâ(τ ee)⌉)2

δ

Nâ(τ ee)

⇔2ω(µ1 − µ0)

C − 1
>

2
√
2 · 2max{⌈log2 Nâ(τ ee)⌉,1} log 2K(⌈log2 Nâ(τ ee)⌉)2

δ

Nâ(τ ee)

On the other hands,

µ̂â,Nâ(τ ee−1) + U(Nâ(τ
ee − 1)) ≤ µ1

Eee

⇐µâ + 2U(Nâ(τ
ee − 1)) ≤ µ1

⇐ωµ1 + (1− ω)µ0 + 2U(Nâ(τ
ee − 1)) ≤ µ1

⇔
2
√

2 · 2max{⌈log2 Nâ(τ ee)−1⌉,1} log 2K(⌈log2 Nâ(τ ee)−1⌉)2
δ

Nâ(τ ee)− 1
≤ (1− ω)(µ1 − µ0)

⇔

√
2 · 2max{⌈log2 Nâ(τ ee)−1⌉,1} log 2K(⌈log2 Nâ(τ ee)−1⌉)2

δ

Nâ(τ ee)− 1
≤ (1− ω)(µ1 − µ0)

2
.

Notice that √
2 · 2max{⌈log2 Nâ(τ ee)−1⌉,1} log 2K(⌈log2 Nâ(τ ee)−1⌉)2

δ

Nâ(τ ee)− 1

≤ Nâ(τ
ee)

Nâ(τ ee)− 1

√
2 · 2max{⌈log2 Nâ(τ ee)⌉,1} log 2K(⌈log2 Nâ(τ ee)⌉)2

δ

Nâ(τ ee)

≤
2
√
2 · 2max{⌈log2 Nâ(τ ee)⌉,1} log 2K(⌈log2 Nâ(τ ee)⌉)2

δ

Nâ(τ ee)
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and by ω = C−1
C+3

(1− ω)

2
=

1− C−1
C+3

2
=

4

2(C + 3)
=

2ω

C − 1
,

we can conclude

µ̂â,Nâ(τ) − C · U(Nâ(τ
ee),

δ

K
) > µ0

⇒µ̂â,Nâ(τ ee−1) + U(Nâ(τ
ee − 1),

δ

K
) ≤ µ1

Eee

⇒µ̂â,Nâ(τ ee−1) + U(Nâ(τ
ee − 1)) < µ̂1,N1(τ ee−1) + U(N1(τ

ee − 1))

⇒Aτ ee ̸= â.

We have found a contradiction. And we can conclude µâ ≥ C−1
C+3µ1 +

4
C+3µ0, conditioned on the event Eee.

Lemma B.5 (Property of UCB Rule, for Negative Case). Consider pulling process controlled by Algorithm 3. Apply the

pulling process to a negative instance and further assume T >
∑K

a=1 N
0
a +

∑K
a=1

113(C+1)2(log K
δ +log log 1

∆2
0,a

)

∆2
0,a

.

Conditioned on the event

Eee =

{
∀a ∈ [K],∀t ∈ N,

∣∣∣∣∣
∑t

s=1 X
ee
a,s

t
− µa

∣∣∣∣∣ < U

(
t,

δ

K

)}
,

at the end of the pulling procedure (line 17), we have

1. Na(Hee) ≤ max

{
N0

a ,
113(log 2K

δ +log log 96

∆2
0,a

)

∆2
0,a

}
, for ∀a ∈ [K].

2. â ∈ None

Proof of Lemma B.5. For simplicity, denote Ta =
113(log 2K

δ +log log 96

∆2
0,a

)

∆2
0,a

.

Consider a ≥ 1. For pulling times t ∈ N, through the following calculation,∑t
s=1 X

ee
a,s

t
+ U(t,

δ

K
) < µ0

Eee

⇐µa + 2 · U(t,
δ

K
) < µ0

⇐2

√
4 log 2K log(2t)

δ

t
≤ ∆0,a

Lemma D.2⇐ t >
112(log 2K

δ + log log 96
∆2

0,a
)

∆2
0,a

,

we know UCBa(t) < µ0 ⇐ Na(t) ≥
112(log 2K

δ +log log 96

∆2
0,a

)

∆2
0,a

+ 1. If arm a is still the arm with highest upper confidence

bound while UCBa < µ0, the algorithm would stop and take â = None. Thus, arm a will never get pulled once UCBa < µ0

holds.

We are ready to prove the first claim, by analyzing the following two cases. For a ≥ 1,

1. If N0
a ≤ Ta, the algorithm assures Na(Hee) ≤ Ta = max{N0

a , Ta}, as the above discussion indicates.
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2. If N0
a > Ta, then the upper confidence bound of arm a is smaller than the µ0 at the start of the algorithm. This arm

will never get pull till the end of the algorithm. Thus, Na(Hee) = N0
a = max{N0

a , Ta}.

Then, we turn to the second claim. From the good event, we know LCBa < µa < µ0 holds for arm a ∈ [K]. That means
the algorithm will not output â ∈ [K]. In addition, from the first claim, we know

K∑
a=1

Na(Hee) ≤
K∑

a=1

max

N0
a ,

113(log 2K
δ + log log 96

∆2
0,a

)

∆2
0,a


≤

K∑
a=1

N0
a +

K∑
a=1

113(log 2K
δ + log log 96

∆2
0,a

)

∆2
0,a

≤T.

Then the algorithm must terminate before the round T . Since the upper confidence bounds of all arm a ∈ [K] are below µ0,
the algorithm will output â = None.

The following lemma shows the condition of Lemma B.4 can be fulfilled in phase k ≥ max
{
κee, ⌈log2

24(C+1)2Hpos
1

K ⌉
}
=:

L.

Lemma B.6. Apply Algorithm 2 to a positive 1-identification instance ν, for phase index k ≥
max

{
κee, ⌈log2

24(C+1)2Hpos
1

K ⌉
}
=: L, before running the exploration (at the Line 2 of Algorithm 3), we have

T ee
k ≥ |Hee|+ 113(C + 1)2

 (log 2K
δk

+ log log 96(C+1)2

∆2
0,1

)

∆2
0,1

+

K∑
a=2

(log K
δ + log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

)

max{∆2
1,a,∆

2
0,a}


and LCBa(Hee, δk) ≤ µ0 holds for all a ∈ [K].

Proof of Lemma B.6. By the Lemma B.1, we know k ≥ ⌈log2
24(C+1)2Hpos

1

K ⌉ implies

T ee
k

2
≥ 113(C + 1)2

 (log 2K
δk

+ log log 96(C+1)2

∆2
0,1

)

∆2
0,1

+

K∑
a=2

(log K
δ + log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

)

max{∆2
1,a,∆

2
0,a}

 .

Also, from the algorithm design, we know at the start of phase k, |Hee| ≤ T ee
k−1. Since we take βk = 2k, we have

T ee
k−1 ≤

T ee
k

2 .

Combining these two results, we have

T ee
k ≥ |Hee|+ 113(C + 1)2

 (log 2K
δk

+ log log 96(C+1)2

∆2
0,1

)

∆2
0,1

+

K∑
a=2

(log K
δ + log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

)

max{∆2
1,a,∆

2
0,a}

 .

The remaining work is to prove LCBa(Hee, δk) ≤ µ0 holds for all a ∈ [K], before the start of phase k. We complete this by
discussing the value of âk−1.

• If âk−1 = None, we have LCBa(Hee, δk) < LCBa(Hee, δk−1) < LCBa(Hee, δk−1) ≤ µ0, forall a ∈ [K].

• If âk−1 = Not Complete, we can also assert LCBa(Hee, δk−1) < µ0,∀a ∈ [K], or the algorithm would take
âk−1 ∈ [K]. Then we can further assert LCBa(Hee, δk) < LCBa(Hee, δk−1) < µ0.

• If âk−1 ∈ [K], then we can firstly assert LCBa(Hee, δk−1) < µ0,∀a ̸= âk−1. Or the algorithm would output other
arms instead of âk−1. Thus, we have LCBa(Hee, δk) < LCBa(Hee, δk−1) < µ0,∀a ̸= âk−1.
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Then, we turn to analyze âk−1. Before the execution of line 13, the following inequalities must hold

X +
∑N ee

âk−1
−1

s=1 Xâk−1,s

N ee
âk−1

− C · U
(
N ee

âk−1
,
δk−1

K

)
> µ0

∑N ee
âk−1

−1

s=1 Xâk−1,s

N ee
âk−1

− 1
− C · U

(
N ee

âk−1
− 1,

δk−1

K

)
≤ µ0

Since we put the last collected sample X into Q, we can assert µ̂âk−1
before the start of phase k must be∑Nee

âk−1
−1

s=1 Xâk−1,s

N ee
âk−1

−1 . Since U
(
N ee

âk−1
− 1, δk

K

)
> U

(
N ee

âk−1
− 1, δk−1

K

)
, we know before the start of phase k,

LCBâk−1
(Hee, δk) < µ0 must hold.

The following lemma shows the condition of Lemma B.5 can be fulfilled in phase k ≥ max

{
κee, ⌈log2

∑K
a=1

24

∆2
0,a

K ⌉

}
=: L.

Lemma B.7. Apply Algorithm 2 to a negative 1-identification instance ν, for phase index k ≥

max

{
κee, ⌈log2

∑K
a=1

24

∆2
0,a

K ⌉

}
=: L, before running the exploration (at the Line 2 of Algorithm 3), we have

T ee
k ≥ |Hee|+

K∑
a=1

114(log 2K
δk

+ log log 96
∆2

0,a
)

∆2
0,a

Proof of Lemma B.7. By the Lemma B.1, we know k ≥ ⌈log2

∑K
a=1

24

∆2
0,a

K ⌉ implies

T ee
k

2
≥

K∑
a=1

114(log 2K
δk

+ log log 96
∆2

0,a
)

∆2
0,a

.

Also, from the algorithm design, we know at the start of phase k, |Hee| ≤ T ee
k−1. Since we take βk = 2k, we have

T ee
k−1 ≤

T ee
k

2 .

Combining these two results, we have

T ee
k ≥ |Hee|+

K∑
a=1

114(log 2K
δk

+ log log 96
∆2

0,a
)

∆2
0,a

Given the above preparations, we are now ready to bound τ ee
k with certainty, for large enough phase index k. The following

two lemmas correspond to positive and negative instances separately. These two lemmas are also the final preparations for
two main theorems 5.2, 5.3.
Lemma B.8. Apply Algorithm 2 to a positive 1-identification instance ν, for phase index k ≥
max

{
κee, ⌈log2

24(C+1)2Hpos
1

K ⌉
}
=: L, we have

τ ee
k ≤1000(C + 1)2KβL−1 log

4K

δL−1
+

114(C + 1)2

 (log 2K
δk

+ log log 96(C+1)2

∆2
0,1

)

∆2
0,1

+

K∑
a=2

(log K
δ + log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

)

max{∆2
1,a,∆

2
0,a}


holds with certainty, and âk ∈ [K], µâk

≥ ωµ1 + (1− ω)µ0, where ω = C−1
C+3 .
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Reminder: τ ee
k is the total pulling times in all the exploration periods up to end of phase k.

Proof of Lemma B.8. It is not hard to see T ee
k

2 = 500(C + 1)2Kβk log
4K
δk
≥ T ee

k−1 hold for all k ≥ 2, as βk = 2k. By the
Lemma B.1, we also know

k ≥ ⌈log2
24(C + 1)2Hpos

1

K
⌉

⇒T ee
k

2
≥ 113(C + 1)2

 (log 2K
δk

+ log log 96(C+1)2

∆2
0,1

)

∆2
0,1

+

K∑
a=2

(log K
δ + log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

)

max{∆2
1,a,∆

2
0,a}

 .

Thus, we can conclude for k ≥ ⌈log2
24(C+1)2Hpos

1

K ⌉, we have

T ee
k =

T ee
k

2
+

T ee
k

2

≥T ee
k−1 + 113(C + 1)2

 (log 2K
δk

+ log log 96(C+1)2

∆2
0,1

)

∆2
0,1

+

K∑
a=2

(log 2K
δ + log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

)

max{∆2
1,a,∆

2
0,a}

 .

From the algorithm design, we know the total pulling times in the exploration period up to phase k − 1 is at most T ee
k−1. By

the Lemma B.6, we can validate the conditions in Lemma B.4 holds for k ≥ max
{
κee, ⌈log2

24(C+1)2Hpos
1

K ⌉
}

. Thus, we can

assert âk ∈ [K], µâk
≥ ωµ1 + (1− ω)µ0, ω = C−1

C+3 for k ≥ L. The remaining work is to prove the upper bound of τ ee
k .

In the following, we use induction to prove

Na(τ
ee
k ) ≤ max

Na(τ
ee
L−1), 113(C + 1)2

 log 2K
δk

+ log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

max{∆2
1,a,∆

2
0,a}


holds for all k ≥ L, a ∈ [K]. By the Lemma B.4, we know the above inequality holds for k = L,∀a ∈ [K]. Then if k holds,
for the case of k + 1, we firstly derive

Na(τ
ee
k+1) ≤ max

Na(τ
ee
k ), 113(C + 1)2

 log 2K
δk+1

+ log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

max{∆2
1,a,∆

2
0,a}

 .

The reason is similar to the proof in the Lemma B.4.

• If Na(τ
ee
k ) ≥ 113(C + 1)2

(
log 2K

δk+1
+log log

96(C+1)2

max{∆2
1,a,∆2

0,a}

max{∆2
1,a,∆

2
0,a}

)
, from the condition k ≥ κee, we know

∣∣∣∣∣
∑t

s=1 X
ee
a,s

t
− µa

∣∣∣∣∣ < U(t,
δk+1

K
)

holds for all t ∈ N, a ∈ [K]. Following the same discussion in Lemma B.4, the algorithm will never pull arm a due
to its upper confidence bound is below µ1, while the upper confidence bound of arm 1 is always above µ1. Thus,
Na(τ

ee
k+1) = Na(τ

ee
k ).

• If Na(τ
ee
k ) < 113(C + 1)2

(
log 2K

δk+1
+log log

96(C+1)2

max{∆2
1,a,∆2

0,a}

max{∆2
1,a,∆

2
0,a}

)
, we can still conclude

∣∣∣∣∣
∑t

s=1 X
ee
a,s

t
− µa

∣∣∣∣∣ < U(t,
δk+1

K
)
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from the condition k ≥ κee. Then arm a would be either being output or stopping pulling before Na(τ
ee
k+1) is no less

than 113(C + 1)2

(
log 2K

δk+1
+log log

96(C+1)2

max{∆2
1,a,∆2

0,a}

max{∆2
1,a,∆

2
0,a}

)
.

Use the induction, we can conclude

Na(τ
ee
k+1) ≤max

Na(τ
ee
k ), 113(C + 1)2

 log 2K
δk+1

+ log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

max{∆2
1,a,∆

2
0,a}


≤max

{
Na(τ

ee
L−1), 113(C + 1)2

 log 2K
δk

+ log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

max{∆2
1,a,∆

2
0,a}

 ,

113(C + 1)2

 log 2K
δk+1

+ log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

max{∆2
1,a,∆

2
0,a}

}

=max

{
Na(τ

ee
L−1), 113(C + 1)2

 log 2K
δk+1

+ log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

max{∆2
1,a,∆

2
0,a}

}

The induction is completed.

Then, for k ≥ L, we can conclude

τ ee
k

Lemma 4.2
≤ K +

K∑
a=1

Na(τ
ee
k )

≤K +

K∑
a=1

Na(τ
ee
L−1) +

K∑
a=1

113(C + 1)2

 log 2K
δk+1

+ log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

max{∆2
1,a,∆

2
0,a}


≤1000(C + 1)2KβL−1 log

4K

δL−1
+

114(C + 1)2

 (log 2K
δk

+ log log 96(C+1)2

∆2
0,1

)

∆2
0,1

+

K∑
a=2

(log K
δ + log log 96(C+1)2

max{∆2
1,a,∆

2
0,a}

)

max{∆2
1,a,∆

2
0,a}

 .

Lemma B.9. Apply Algorithm 2 to a negative 1-identification instance ν, for phase index k ≥

max

{
κee, ⌈log2

∑K
a=1

24

∆2
0,a

K ⌉

}
=: L, we have

τ ee
k ≤ 1000(C + 1)2KβL−1 log

4K

δL−1
+

K∑
a=1

114(log 2K
δk

+ log log 96
∆2

0,a
)

∆2
0,a

.

holds with certainty. And âk = None.

Proof of Lemma B.9. Similar to the argument in the proof of Lemma B.8, we can conclude for phase index k ≥

⌈log2

∑K
a=1

24

∆2
0,a

K ⌉, we have

T ee
k =

T ee
k

2
+

T ee
k

2
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≥T ee
k−1 +

K∑
a=1

113(log 2K
δk

+ log log 96
∆2

0,a
)

∆2
0,a

.

From the algorithm design, we know the total pulling times in the exploration period up to phase k − 1 is at most T ee
k−1.

By the Lemma B.5, we can validate the conditions of Lemma B.5 hold for k ≥

{
κee, ⌈log2

∑K
a=1

24

∆2
0,a

K ⌉

}
. Thus, we have

proved âk = None for k ≥

{
κee, ⌈log2

∑K
a=1

24

∆2
0,a

K ⌉

}
. The remaining work is to prove the upper bound of Na(τ

ee
k ).

In the following, we use induction to prove

Na(τ
ee
k ) ≤ max

Na(τ
ee
L−1),

113(log 2K
δk

+ log log 96
∆2

0,a
)

∆2
0,a


holds for all k ≥ L, a ∈ [K]. By the Lemma B.5, we know the above inequality holds for k = L,∀a ∈ [K]. Then if k holds,
for the case of k + 1, we can further derive

Na(τ
ee
k+1) ≤ max

Na(τ
ee
k ),

113(log 2K
δk+1

+ log log 96
∆2

0,a
)

∆2
0,a

 .

The reason is similar to the proof in the Lemma B.5.

• If Na(τ
ee
k ) ≥

113(log 2K
δk+1

+log log 96

∆2
0,a

)

∆2
0,a

, from the condition k ≥ κee, we know∣∣∣∣∣
∑t

s=1 X
ee
a,s

t
− µa

∣∣∣∣∣ < U(t,
δk+1

K
)

holds for all t ∈ N, a ∈ [K]. Following the same discussion in Lemma B.5, the algorithm will never pull arm a due to
its upper confidence bound is below µ0. If its upper confidence bound is the highest, the algorithm would output None.
Thus, Na(τ

ee
k+1) = Na(τ

ee
k ).

• If Na(τ
ee
k ) <

113(log 2K
δk+1

+log log 96

∆2
0,a

)

∆2
0,a

, we can still conclude∣∣∣∣∣
∑t

s=1 X
ee
a,s

t
− µa

∣∣∣∣∣ < U(t,
δk+1

K
)

from the condition k ≥ κee. Then arm a will never get pulled before Na(τ
ee
k+1) is no less than

113(log 2K
δk

+log log 96

∆2
0,a

)

∆2
0,a

,
as its upper confidence bound is already smaller than µ0 before that happens.

Use the induction, we can conclude

Na(τ
ee
k+1) ≤max

Na(τ
ee
k ), 1

113(log 2K
δk+1

+ log log 96
∆2

0,a
)

∆2
0,a


≤max

{
Na(τ

ee
L−1),

113(log 2K
δk

+ log log 96
∆2

0,a
)

∆2
0,a

,
113(log 2K

δk+1
+ log log 96

∆2
0,a

)

∆2
0,a

}

=max

{
Na(τ

ee
L−1),

113(log 2K
δk+1

+ log log 96
∆2

0,a
)

∆2
0,a

}
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The induction is completed.

Then, for k ≥ L, we can derive

τ ee
k

Lemma 4.2
≤ K +

K∑
a=1

Na(τ
ee
k )

≤K +

K∑
a=1

Na(τ
ee
L−1) +

K∑
a=1

113(log 2K
δk+1

+ log log 96
∆2

0,a
)

∆2
0,a

≤1000(C + 1)2KβL−1 log
4K

δL−1
+

114(log 2K
δk+1

+ log log 96
∆2

0,a
)

∆2
0,a

C. Lower Bound
C.1. Negative Case

Proof of Theorem 5.4. Following the section 2.1 in (Garivier & Kaufmann, 2016), define

Alt(ν) = {ν′ : i∗(ν′) ̸= None},

and the kl-divergence between two Gaussian distribution d(N(µa, 1), N(λa, 1)) =
(µa−λa)

2

2 , the kl-diverence between two
bernoulli distribution kl(δ, 1− δ) = δ log δ

1−δ + (1− δ) log 1−δ
δ .

Following the same step in the proof of Theorem 1, from (Garivier & Kaufmann, 2016), we can conclude

kl(δ, 1− δ) ≤ Eντ sup
w∈ΣK

inf
λ∈Alt(ν)

K∑
a=1

wa
(µa − λa)

2

2
.

By the example 1 in the (Degenne & Koolen, 2019), we can derive

1

supw∈ΣK
infλ∈Alt(ν)

∑K
a=1 wa

(µa−λa)2

2

=

K∑
a=1

2

∆2
0,a

,

which means Eντ ≥ kl(δ, 1− δ)
∑K

a=1
2

∆2
0,a

= Ω(Hneg
1 log 1

δ ).

C.2. Positive Case

In this section, we slightly adapt the conclusion in(Katz-Samuels & Jamieson, 2020) and (Kaufmann et al., 2016) to prove
theorem 5.5 and 5.6.

Proof of Theorem 5.5. For this instance ν, take {ai}Ki=1 as its permutation of the mean reward vector, such that the
mean reward of the ith arm is µai . Then, we consider an alternative instance ν′, whose mean reward of ith arm is

µ′
i =

{
µai µai ≤ µ0

µ0 −∆ µai > µ0

for some ∆ > 0. The answer set i∗(ν′) = {None}. Apply the Lemma 1 in (Kaufmann et al.,

2016), we get

∑
i:µi>µ0

(µi − µ0 +∆)2

2
EνNai

(τ) ≥ kl(δ, 1− δ),

where kl(δ, 1− δ) = δ log δ
1−δ + (1− δ) log 1−δ

δ .
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By the assumption, we have µ1 ≥ µ2 ≥ · · · ≥ µK , which implies (µi−µ0+∆)2

(µ1−µ0+∆)2 ≤ 1 holds for all i such that µi ≥ µ0. Thus,
we can conclude

Eντ ≥
∑

i:µi>µ0

EνNai
(τ)

≥
∑

i:µi>µ0

(µi − µ0 +∆)2

(µ1 − µ0 +∆)2
EνNai

(τ)

≥ 2kl(δ, 1− δ)

(µ1 − µ0 +∆)2
.

Since kl(δ, 1− δ) = Ω(log 1
δ ) and Eντ ≥ 2kl(δ,1−δ)

(µ1−µ0+∆)2 holds for all ∆ > 0, we can conclude Eν,algτ ≥ Ω(
log 1

δ

∆2
0,1

).

Proof of Theorem 5.6. The algorithm might take µ1 > µ0 > µ2 ≥ · · · ≥ µK as prior knowledge and solve the problem by
identifying 1 arm among 1 good arm. We can directly apply the Theorem 1 in (Katz-Samuels & Jamieson, 2020) to derive a
lower bound, which asserts we can find a positive instance ν whose mean reward vector is a permutation of vector {µa}Ka=1

and the threshold is µ0, such that

Eντ ≥
1

64

(
− 1

∆2
1,2

+

K∑
a=3

1

∆2
1,a

)
. (5)

By the Theorem 5.5, we can also conclude Eντ ≥ Ω(
log 1

δ

∆2
0,1

) ≥ Ω( 1
∆2

1,2
) by the assumption µ1 > µ0 > µ2 and δ < 1

16 .
Combining the result with (5), we get

Eντ ≥ Ω

(
K∑

a=2

1

∆2
1,a

)
= Ω(H1) .

C.3. Lower Bound for a Suboptimal Arm

Before proving Theorem 5.7, we need to firstly introduce a lemma, talking about a ”high probability lower bound” of the
optimal arm, if it is also the uniqe qualified arm.

Lemma C.1 (High Probability Lower Bound). Denote ν as a 1-dentification Gaussian problem instance with fixed variance 1.
Denote K, {µa}Ka=0 as the number of alternative arms and mean reward of all the arms in ν. If µ1 > µ0 > µ2 > · · · > µK ,
then for any δ ∈ (0, 1), and any δ-PAC algorithm, we have

Pr
ν
(N1(τ) ≥

log 1
δ

C(µ1 − µ0)2
) ≥ 1− δ − δ1−

1
4−

1
2C − δ

C
32 ,

where C can be any values greater than 1.

Proof of Lemma C.1. Define instance ν′ with mean rewards µ̃1, µ2, · · · , µK where µ̃1 < µ0. In other words, the only
difference between ν and ν′ is the mean reward of arm 1, while others are all the same. Since the algorithm is δ-PAC, we
know

Pr
ν
(output arm 1) >1− δ

Pr
ν′
(output none) >1− δ.

Apply the transportation equality, we get

δ > Pr
ν′
(output arm 1) = Eν1(output arm 1) exp

−N1(τ)∑
s=1

Z1,s


30
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where Z1,s is the realized KL divergence, Z1,s = log
exp(− (X1,s−µ1)2

2 )

exp(− (X1,s−µ̃1)2

2 )
=

(µ1−µ̃1)(2X1,s−µ1−µ̃1)
2 , X1,s ∼ N(µ1, 1). Or

we can directly assume Z1,s
i.i.d∼ N( (µ1−µ̃1)

2

2 , (µ1 − µ̃1)
2). Before moving on, we firstly prove a concentration result for

the sum
∑t

s=1 Z1,s. For any fixed number N , I , define ξN,I =
{
max1≤t≤N

∑t
s=1

(
Z1,s − (µ1−µ̃1)

2

2

)
< I
}

. We can

assert Pr
Z1,s

i.i.d∼ N(
(µ1−µ̃1)2

2 ,(µ1−µ̃1)2)
(ξN,I) ≥ 1−exp

(
− I2

2N(µ1−µ̃1)2

)
, by the following application of maximal inequality

(Theorem 3.10 in (Lattimore & Szepesvári, 2020)).

Pr
Z1,s

i.i.d∼ N(
(µ1−µ̃1)2

2 ,(µ1−µ̃1)2)

(
max

1≤t≤N

t∑
s=1

(
Z1,s −

(µ1 − µ̃1)
2

2

)
> I

)

= Pr
Z̃1,s

i.i.d∼ N(0,(µ1−µ̃1)2)

(
max

1≤t≤N

t∑
s=1

Z̃1,s > I

)
λ= I

N(µ1−µ̃1)2

= Pr
Z̃1,s

i.i.d∼ N(0,(µ1−µ̃1)2)

(
max

1≤t≤N

t∏
s=1

exp
(
λZ̃1,s

)
> exp(λI)

)

Maximal Inequality
≤

E
Z̃1,s

i.i.d∼ N(0,(µ1−µ̃1)2)

∏N
s=1 exp

(
λZ̃1,s

)
exp(λI)

=
exp

(
Nλ2(µ1−µ̃1)

2

2

)
exp(λI)

= exp

(
− I2

2N(µ1 − µ̃1)2

)
.

To apply the Maximal Inequality, we need to validate {
∏t

s=1 exp
(
λZ̃1,s

)
}+∞
t=1 is a submartingale, which is not hard. By

the Jensen Inequality, we have

E

[
t+1∏
s=1

exp
(
λZ̃1,s

)
|

t∏
s=1

exp
(
λZ̃1,s

)]

=E
[
exp

(
λZ̃1,t+1

)] t∏
s=1

exp
(
λZ̃1,s

)
≥ exp

(
E
[
λZ̃1,t+1

]) t∏
s=1

exp
(
λZ̃1,s

)
=

t∏
s=1

exp
(
λZ̃1,s

)
.

Adding the concentration term into the transportation equality, we get

δ > Pr
ν′
(output arm 1)

=Eν1(output arm 1) exp

−N1(τ)∑
s=1

Z1,s


≥Eν1(output arm 1)1(N1(τ) <

log 1
δ

C(µ1 − µ̃1)2
)1(ξ log 1

δ
C(µ1−µ̃1)2

,I
)

exp

N1(τ)∑
s=1

(
(µ1 − µ̃1)

2

2
− Z1,s

) exp

(
−N1(τ)

(µ1 − µ̃1)
2

2

)

≥ exp (−I) exp
(
−
log 1

δ

2C

)
Eν1(output arm 1)1(N1(τ) <

log 1
δ

C(µ1 − µ̃1)2
)1(ξ log 1

δ
C(µ1−µ̃1)2

,I
).

31



Near Optimal Non-asymptotic Sample Complexity of 1-Identification

The last inequality is equivalent to

exp(I) exp

(
log 1

δ

2C

)
δ ≥ Eν1(output arm 1)1(N1(τ) <

log 1
δ

C(µ1 − µ̃1)2
)1(ξ log 1

δ
C(µ1−µ̃1)2

,I
)

Pr(A∩B)≥Pr(A)−Pr(¬B)⇒ exp(I) exp

(
log 1

δ

2C

)
δ ≥

(
Pr
ν
(N1(τ) <

log 1
δ

C(µ1 − µ̃1)2
)− Pr

ν
(¬output arm 1)− Pr

ν1

(¬ξ log 1
δ

C(µ1−µ̃1)2
,I
)

)

⇔Pr
ν
(¬output arm 1) + exp(I) exp

(
log 1

δ

2C

)
δ + Pr

ν1

(¬ξ log 1
δ

C(µ1−µ̃1)2
,I
) ≥ Pr

ν
(N1(τ) <

log 1
δ

C(µ1 − µ̃1)2
)

⇒δ + exp(I) exp

(
log 1

δ

2C

)
δ + exp

(
− CI2

2 log 1
δ

)
≥ Pr

ν
(N1(τ) <

log 1
δ

C(µ1 − µ̃1)2
)

⇔Pr
ν
(N1(τ) ≥

log 1
δ

C(µ1 − µ̃1)2
) ≥ 1− δ − exp(I) exp

(
log 1

δ

2C

)
δ − exp

(
− CI2

2 log 1
δ

)
.

Take I = 1
4 log

1
δ , we get

Pr
ν
(N1(τ) ≥

log 1
δ

C(µ1 − µ̃1)2
) ≥ 1− δ − δ1−

1
4−

1
2C − δ

C
32 .

As the above inequality holds for any µ̃1 < µ0, we can take µ̃1 → µ0. Thus, Prν(N1(τ) ≥
log 1

δ

C(µ1−µ0)2
) ≥ 1 − δ −

δ1−
1
4−

1
2C − δ

C
32 . We complete the proof.

Then, we are ready to prove Theorem 5.7.

Proof of Theorem 5.7. Take M2 = 512 ∗ 3 = 1536, M1 = 8M2.

Let ∆̄0,1 to be small enough, such that

exp
(
−4
√
3− 2

)
2∆̄0,1

> sup
ν′∈Spos

∆0,a
∪Sneg

∆0,a

Eν′τ,∀a ≥ 2.

In the following, we take µ1 as any value in (µ0, µ0 +∆̄0,1], and take ∆0,1 = µ1−µ0. We are going to prove, for all a ≥ 2,

we have EνNa(τ) ≥
log 1

∆2
1,0

M1∆2
1,a

.

Prove by contradiction. If there exists an arm a ≥ 2, such that EνNa(τ) <
log 1

∆2
0,1

M1∆2
0,a

, define instance ν′a by taking the mean

reward of ith arm as


2µ0 − µ1 i = 1

2µ0 − µa i = a

µi i ̸= 1, a

for all arm a ∈ [K], a ≥ 2. In other words, we ”flip” the mean reward of arm 1

and a, while keeping others the same as the instance ν. From this definition, we know ν′a ∈ S
pos
∆0,a

, i∗(ν′a) = {a}.

By the Markov Inequality, we know

Pr
ν

Na(τ) <
log 1

∆2
0,1

M2∆2
0,a

 ≥ 1− M2

M1
.

Define τ̃ = min{τ,min{t : N1(t) ≥ 1
∆2

0,1
}}. Then we get N1(τ) ≥ 1

∆2
0,1
⇒ N1(τ̃) =

1
∆2

0,1
. According to the lemma C.1,

we have

Pr
ν

(
N1(τ) ≥

log 1
δ

8∆2
0,1

)
> 1− 3

√
δ.
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Through simple calculation, we can derive

Pr
ν

Na(τ̃) ≤
log 1

∆2
0,1

M2∆2
0,a

and N1(τ̃) =
1

∆2
0,1


=Pr

ν

Na(τ̃) ≤
log 1

∆2
0,1

M2∆2
0,a

, N1(τ) ≥
1

∆2
0,1


δ<min{ 1

e8
, 1
242

}
≥ Pr

ν

Na(τ) ≤
log 1

∆2
0,1

M2∆2
0,a

, N1(τ) ≥
log 1

δ

8∆2
0,1


≥Pr

ν

Na(τ) ≤
log 1

∆2
0,1

M2∆2
0,a

− Pr
ν

(
N1(τ) <

log 1
δ

8∆2
0,1

)

≥1− M2

M1
− 3
√
δ.

Denote G =

{
Na(τ̃) ≤

log 1

∆2
0,1

M2∆2
0,a

and N1(τ̃) =
1

∆2
0,1

}
as the event, we can apply the transportation equality in the Lemma

18 of (Kaufmann et al., 2016), we have

Pr
ν′
a

(G) = Eν1(G) exp

−N1(τ̃)∑
s=1

Z1,s −
Na(τ̃)∑
s=1

Za,s

 ,

where

Z1,s = log
exp(− (X1,s−µ1)

2

2 )

exp(− (X1,s+µ1−2µ0)2

2 )
=

(X1,s + µ1 − 2µ0)
2 − (X1,s − µ1)

2

2
=

(2X1,s − 2µ0)(2µ1 − 2µ0)

2
,

Za,s = log
exp(− (Xa,s−µa)

2

2 )

exp(− (Xa,s+µa−2µ0)2

2 )
=

(Xa,s + µa − 2µ0)
2 − (Xa,s − µa)

2

2
=

(2Xa,s − 2µ0)(2µa − 2µ0)

2
,

and X1,s ∼ N(µ1, 1), Xa,s ∼ N(µa, 1). In other words, we can directly assume Z1,s ∼ N(2∆2
0,1, 4∆

2
0,1) and Za,s ∼

N(2∆2
0,a, 4∆

2
0,a).

Let I1, Ia be two positive integers to be determined. Denote the concentration event of realized KL-divergence as

ξ1 =

{
max1≤t≤ 1

∆2
0,1

∑t
s=1

(
Z1,s − 2∆2

0,1

)
≤ I1

}
, ξa =

max
1≤t≤

log 1
∆2

0,1

M2∆2
0,a

∑t
s=1

(
Za,s − 2∆2

0,a

)
≤ Ia

. Similar to

the proof of Lemma C.1, we can derive a probability bound for both events ξ1, ξa. Notice that

Pr
Zs∼N(µ,σ2)

(
max
1≤t≤T

t∑
s=1

(Zs − µ) > I

)
λ= I

Tσ2

≤
EZs∼N(µ,σ2)

∏T
s=1 exp(λ(Zs − µ))

exp(λI)

=
exp(Tλ2σ2

2 )

exp(λI)

= exp(− I2

2Tσ2
),

holds for all positive T and I . The first inequality is guaranteed by the maximal inequality of submartingale (Theorem 3.10
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in (Lattimore & Szepesvári, 2020)). By the above inequality, we have

Pr
ν
(ξ1) ≥ 1− exp

− I21
2 · 1

∆2
0,1
· 4∆2

0,1

 = 1− exp

(
−I21

8

)

Pr
ν
(ξa) ≥ 1− exp

− I2a

2 ·
log 1

∆2
0,1

M2∆2
0,a
· 4∆2

0,a

 = 1− exp

− M2I
2
a

8 log 1
∆2

0,1


Plug in these inequalities to the transportation equality, we get

Pr
ν′
a

(G)

≥Eν1(G)1(ξ1)1(ξa) exp
(
−N1(τ̃) · 2∆2

0,1 −Na(τ̃) · 2∆2
0,a

)
exp

−N1(τ̃)∑
s=1

(
Z1,s − 2∆2

0,1

)
−

Na(τ̃)∑
s=1

(
Z2,s − 2∆2

0,a

)
≥Eν1(E)1(ξ1)1(ξa) exp

(
−N1(τ̃)2∆

2
0,1 −Na(τ̃)2∆

2
0,a

)
exp (−I1 − Ia)

≥Eν1(E)1(ξ1)1(ξa)

exp

− log 1
∆2

0,1

M2∆2
0,a

· 2∆2
0,a −

1

∆2
0,1

· 2∆2
0,1

 exp (−I1 − I2)

≥Eν1(E)1(ξ1)1(ξa) exp (−I1 − Ia) exp

−2 log 1
∆2

0,1

M2
− 2


≥ exp (−I1 − Ia) exp

−2 log 1
∆2

0,1

M2
− 2

(Pr
ν
(E)− Pr

ν
(¬ξ1)− Pr

ν
(¬ξa)

)

≥ exp (−I1 − Ia) exp

−2 log 1
∆2

0,1

M2
− 2


1− M2

M1
− 3
√
δ − exp

− M2I
2
a

8 log 1
∆2

0,1

− exp(−I21
8
)

 .

Take I2a = 1
16 log

1
∆2

0,1
, I1 = 4

√
3, 3
√
δ < 1

8 , M2 = 512 ∗ 3 = 1536, M1 = 8M2 we get

Pr
ν′
a

(E)

≥ exp

(
−1

4

√
log

1

∆2
0,1

− 4
√
3

)
exp

−2 log 1
∆2

0,1

M2
− 2


(
1− 1

8
− 1

8
− exp(−M2

512
)− exp(−3)

)
≥ exp

(
−4
√
3
)
exp

(
−( 2

M2
+

1

4
) log

1

∆2
0,1

− 2

)(
1− 1

8
− 1

8
− exp(−M2

512
)− exp(−3)

)

≥1

2
exp

(
−4
√
3
)
exp

(
−1

2
log

1

∆2
0,1

− 2

)
,
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further

Pr
ν′
a

(
N1(τ) ≥

1

∆2
0,1

)

≥Pr
ν

Na(τ̃) ≤
log 1

∆2
0,1

M2∆2
0,a

and N1(τ̃) =
1

∆2
0,1


≥1

2
exp

(
−4
√
3
)
exp

(
−1

2
log

1

∆2
0,1

− 2

)

=
1

2
exp

(
−4
√
3− 2

)
exp

(
− log

1

∆2
0,1

+
1

2
log

1

∆2
0,1

)

=
1

2
exp

(
−4
√
3− 2

)
exp

(
1

2
log

1

∆2
0,1

)
∆2

0,1.

By the Markov Inequality, we have

Eν′
a
N1(τ) ≥

1

2
exp

(
−4
√
3− 2

)
exp

(
1

2
log

1

∆2
0,1

)
=

exp
(
−4
√
3− 2

)
2∆0,1

.

From the construction of µ1, we know Eν′
a
τ ≥ exp(−4

√
3−2)

2∆0,1
> supν′∈Spos

∆0,a
∪Sneg

∆0,a

Eν′τ , contradicting to the fact that

ν′a ∈ S
pos
∆0,a

. We complete the proof.

D. Technical Inequality
D.1. Inequality about x and log log x

This section includes some mathematics inequalities for simplifying calculation.

Lemma D.1. For any b ≥ a ≥ 0,

• If b ≥ e2, we have x ≥ b+ 2a log log b⇒ x ≥ a log log(x) + b.

• If b, a ≥ e, we have e ≤ x ≤ b+ a log log b⇒ x < a log log(x) + b.

The second inequality also implies x ≥ a log log(x) + b⇒ x ≥ b+ a log log b.

Proof. We prove the first claim. Easy to see d(x−a log log x−b)
dx = 1 − a

x log x = x log x−a
x log x . Take x0 = b + 2a log log b,

then x0 log x0 > x0 log(e
2 + 2a log log e2) > x0 log e

2 = 2x0 > a. Thus x − a log log(x) − b increases in the interval
(x0,+∞). On the other hand, easy to check

x0 − a log log x0 − b

=b+ 2a log log b− a log log(b+ 2a log log b)− b

=2a log log b− a log log(b+ 2a log log b)

=a (2 log log b− log log(b+ 2a log log b))

=a
(
log(log b)2 − log log(b+ 2a log log b)

)
=a log

(log b)2

log(b+ 2a log log b)

≥a log (log b)2

log(b+ 2b log log b)
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=a log
(log b)2

log b+ log(1 + 2 log log b)
,

Notice that

(log b)2 − log b− log(1 + 2 log log b)

= log b(log b− 1)− log(1 + 2 log log b)

b≥e2

≥ log b− log(1 + 2 log log b)

≥ log b− 2 log log b

x>2 log x,∀x>0
> 0,

we can conclude x0 − a log log x0 − b > 0 holds for all x ≥ b+ 2a log log b.

Then we turn to prove the second claim. As d(x−a log log x−b)
dx = 1− a

x log x = x log x−a
x log x , we know there is at most 1 zero

point of x log x−a
x log x in the interval (e, b+ a log log b). Thus,

max
e≤x≤b+a log log b

x− a log log x− b = max{x− a log log x− b|x=e, x− a log log x− b|x=b+a log log b}.

Easy to see

e− a log log e− b = e− b < 0,

and

b+ a log log b− a log log(b+ a log log b)− b

=a log log b− a log log(b+ a log log b)

<a log log b− a log log(b)

=0.

That means max
e≤x≤b+a log log b

x− a log log x− b < 0. The second conclusion is done.

Lemma D.2. For any ∆ ∈ (0, 1],K ≥ 2, δ ∈ (0, 1
2 ], C ≥ 1, we can conclude

t >
28C2 log 2K

δ

∆2
+

16C2 log
(
log
(

24C2

∆2

))
∆2

⇒2t >
8C2 log 2K

δ + 8C2 log log2 e+ 16C2 log log 2t

∆2

⇔C

√
4 log 2K(log2 2t)2

δ

t
< ∆

Proof. By simple calculation, we can derive

t >
28C2 log 2K

δ

∆2
+

16C2 log
(
log
(

24C2

∆2

))
∆2

⇔2t >
56C2 log 2K

δ

∆2
+

32C2 log
(
log
(

24C2

∆2

))
∆2

⇔2t >
24C2 log 2K

δ

∆2
+

32C2 log
(
log
(

24C2

∆2

))
+ 32C2 log( 2Kδ )

∆2

log(x+y)≤log x+log y,∀x,y≥2⇒ 2t >
24C2 log 2K

δ

∆2
+

32C2 log
(
log
(

24C2

∆2

)
+ 2K

δ

)
∆2
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⇒2t >
24C2 log 2K

δ

∆2
+

32C2 log
(
log
(

24C2

∆2

)
+ log

(
log 2K

δ

))
∆2

⇔2t >
24C2 log 2K

δ

∆2
+

32C2 log log
(

24C2 log 2K
δ

∆2

)
∆2

Lemma D.1, as 24C2 log 2K
δ >e2

⇒ 2t >
24C2 log 2K

δ

∆2
+

16C2 log log (2t)

∆2

⇒2t >
8C2 log 2K

δ + 16C2 log log2 e+ 16C2 log log(2t)

∆2

⇔t >
4C2 log 2K

δ + 8C2 log log(2t)
log 2

∆2

⇔t >
4C2 log 2K

δ + 8C2 log(log2 2t)

∆2

⇔C

√
4 log 2K(log2 2t)2

δ

t
< ∆.

D.2. Probability Bound of Good Event

Lemma D.3 (Adapt Lemma 3 in (Jamieson et al., 2014)). Denote {Xi}+∞
i=1 as i.i.d σ2-subgaussian random variable with

true mean reward µ = 0. For any δ ∈ (0, 1), we have

Pr

(
∃t, |

t∑
s=1

Xs| ≥
√

2σ22⌈log2 t⌉+ log
2(log2 2

⌈log2 t⌉+)2

δ

)
<

π2

6
δ.

Or equivalently,

Pr

(
∃t, |

t∑
s=1

Xs| ≥
√

2σ22⌈log2 t⌉+ log
2(⌈log2 t⌉+)2

δ

)
<

π2

6
δ.

Lemma D.3 is fundamentally the same as the lemma 3 in (Jamieson et al., 2014). The only different part is the constant
outside the square root. But for simplicity and completeness, we rewrite part of proof and leave it here.

Proof of Lemma D.3. Define uk = 2k, k ≥ 1. Define x =
√

2σ2uk log
2(log2 uk)2

δ , St =
∑t

i=1 Xi and the event

Ek =

{
max

1≤t≤uk

St >

√
2σ2uk log

2(log2 uk)2

δ

}
∪

{
min

1≤t≤uk

St < −
√
2σ2uk log

2(log2 uk)2

δ

}
,

For λ > 0, notice that

E

[
exp(λ(

t∑
s=1

Xs))|X1, · · · , Xt−1

]

=exp(λ(

t−1∑
s=1

Xs))E exp(λXt)

≥ exp(λ(

t−1∑
s=1

Xs)) exp(EλXt)

= exp(λ(

t−1∑
s=1

Xs)).
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Take λ = x
ukσ2 , we can conclude {exp(λSt)} is a submartingale. Then,

Pr

(
max

1≤t≤uk

St ≥ x

)
=Pr

(
max

1≤t≤uk

exp(λSt) > exp (λx)

)
∗
≤E exp(λSuk

)

exp (λx)

≤
exp(ukλ

2σ2

2 )

exp (λx)
λ= x

ukσ2

= exp(− x2

2ukσ2
).

Step * is by the maximal inequality for the submartingale. Take x =
√

2σ2uk log
2(log2 uk)2

δ , we have

Pr

(
max

1≤t≤uk

St ≥
√
2σ2uk log

2(log2 uk)2

δ

)
≤ exp

(
− log

2(log2 uk)
2

δ

)
=

δ

2(log2 uk)2
=

δ

2k2

For the part of Pr (min1≤t≤uk
St < −x), the proof is similar. We can conclude Pr(Ek) ≤ δ

k2 and further Pr(∪+∞
k=1Ek) ≤

π2δ
6 .

Thus,

Pr

(
∃t, |

t∑
s=1

Xs| ≥
√
2σ2 max{2⌈log2 t⌉, 2} log 2(log2 max{2⌈log2 t⌉, 2})2

δ

)

≤Pr

∃k, max
1≤t′≤uk

|
t′∑

s=1

Xs| ≥
√

2σ2uk log
2(log2 uk)2

δ


≤Pr(∪+∞

k=1Ek) ≤
π2δ

6
.

Some Comments are as follows.

• We can similarly prove Pr

(
∃t, |

∑t
s=1 Xs| ≥

√
2σ22⌈log2 t⌉+ log 2π2(log2 2⌈log2 t⌉+ )2

6δ

)
< δ holds for all δ ∈ (0, 1).

• Since ⌈log2 t⌉+ ≤ 1 + log2 t, we have

π2δ

6
≥Pr

(
∃t, |

t∑
s=1

Xs| ≥
√

2σ22max{⌈log2 t⌉,1} log
2(log2 2

⌈log2 t⌉)2

δ

)

≥Pr

(
∃t, |

t∑
s=1

Xs| ≥
√
4σ2t log

2(log2 2t)
2

δ

)

E. Numerical Experiment
E.1. Settings of Numerical Experiments

The parameter setting of SEE is δk = 1
3k
, βk = 2k/4, αk = 5k, C = 1.01. In all numerical experiments, all the algorithms

in section 6 achieve 100% accuracy in identifying a correct answer of either a qualified arm in a positive instance or
outputting None in a negative instance.
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We took arm number K = 10, 20, 30, 40, 50, 100, 150, 200 and the tolerance level δ = 0.001, 0.0001. Fix µ0 = 0.5,∆ =
0.15, we set up 6 instances, by considering different number of arms whose mean rewards are above µ0. For an arm number
K, we define (1) AllWorse, whose mean reward vector is µ1 = µ2 = · · · = µK = 0.25; (2) Unique Qualified, whose
mean reward vector is µ1 = µ0 +∆, µ2 = µ3 = · · · = µK = µ0; (3) One Quarter Qualified, whose mean reward vector is
µ1 = µ2 = · · · = µ⌊K/4⌋ = µ0 +∆, µ⌊K/4⌋+1 = µ⌊K/4⌋+2 = · · · = µK = µ0; (4) Half Good, whose mean reward vector
is µ1 = µ2 = · · · = µ⌊K/2⌋ = µ0 + ∆, µ⌊K/2⌋+1 = µ⌊K/2⌋+2 = · · · = µK = µ0; (5) All Good, whose mean reward
vector is µ1 = µ2 = · · · = µK = µ0 +∆ (6) Linear, whose mean reward vector is µi = µ0 −∆+ 2(i−1)∆

K−1 , 1 ≤ i ≤ K.
For instance “AllWorse”, the set of correct answer is {None}, while for the other instances which are positive, the answer
set i∗(ν) contains at least one arm. In each experiment setting, we run 1000 independent trials and compute the empirical
average of the stopping times.

To avoid an infinite loop in a trial, we set a forced stopping threshold 108 in each instance. All the algorithms, including
SEE, HDoC, lilHDoC, LUCB G, adapted-TaS, adapted-MS, stop in all trials before the total pulling times reach 108.

HDoC and LUCB G’s performance on “All Worse” instances are very similar, leading to two nearly overlapping curves.
The radius of each error bar is 3 times the standard error of the empirical stopping times across 1000 repeated trials. The
error bars do not appear to be visible, as they are much smaller than the empirical stopping times.

When implementing the algorithm lilHDoC, its originally proposed length of warm-up stage is larger than the total pulling
times of some of the benchmark algorithms. To allow comparisons, in our numerical experiment, we only uniformly pull all
the arms 200 times for the algorithm lilHDoC.

E.2. Supplement Figure

Figure 2 compares the trend of empirical stopping times, when the proportion of qualified arms increases in positive
instances. For algorithms adapted-TaS and adapted-MS, the empirical stopping times increase as the proportion increases,
while for our proposed SEE, the trend is inverse.

E.3. Correctness of APGAI algorithm

Table 2. Number of Failure, APGAI, δ = 0.001

Instance Type \ K 10 20 30 40 50

AllWorse 0 0 0 0 0
Linear 0 0 4 2 1
Unique 373 449 462 520 549

OneQuarter 152 32 22 7 6

Table 3. Emprical Stopping times ± 3*Std, APGAI, δ = 0.001

Instance Type \ K 10 20 30 40 50

AllWorse 5099± 54 10703± 78 16524± 96 22450± 114 28501± 129
Linear 11800± 2757 12814± 5496 18145± 11685 11979± 8601 11819± 9723
Unique 201716± 22404 485772± 45444 749871± 68136 1096819± 91215 1454700± 112848

OneQuarter 90246± 17187 46501± 17532 46890± 22569 25511± 17547 23000± 19224

In compared to other benchmarks, APGAI’s numerical performance is significantly different, in the sense that the stopping
time it is either very small or very large, which makes its curve of stopping times either much below or much higher than all
the others. And sometimes it might get stuck in a non-stopping loop.

We tune some of the numeric experiment setting to see the non-stopping phenomenon more clearly. For APGAI, we set the
forced stopping threshold as 50000 ∗K, where K is the arm number. Once the total pulling times is no less than the forced
stopping threshold, we mark this experiment as a failure, and take the forced stopping threshold as the total pulling times
of APGAI. Table 2 records the number of failure for experiments K = 10, 20, 30, 40, 50 and instance type “All Worse”,
“Unique Qualified”, “One Quarter”, “Linear”. The tolerance level is δ = 0.001, with repeating times 1000. Except the
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Figure 2. Numerical Experiments on SEE and Benchmarks
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negative instance “All Worse”, failure frequently occurs in some of positive instances. In the “Unique Qualified” group, at
least 35% of experiments end up with “failure”. While in other groups, failure also occurs. In group “One Quarter”, the
number of failures decreases as arm number K increases, suggesting APGAI’s good performance relies more on the number
of qualified arms, instead of the fraction of qualified arms.

The huge number of failure experiment also affects the estimation of the Eν,APGAIτ . Table 3 records the confidence interval
for estimating Eν,APGAIτ , ignoring the decimal. In group “All Worse”, there aren’t any failure, and the empirical mean
outperforms all the other benchmarks. In group “Unique Qualified”, failure frequently occurs. Both cases result in a
relatively small standard error in the numeric experiment. While for the group “Linear” and “One Quarter”, the less
frequently occurrence of failure greatly increase the standard error of the empirical mean stopping times. In some cases,
3*Std is nearly the same as the empirical mean value. In addition, because of the existence of the forced stopping threshold,
the empirical mean we recorded is only a lower bound estimation for the true Eν,APGAIτ . Due to large standard error, we
cannot conclude whether the current repeating times is sufficient to approximate Eν,APGAIτ .

Given the time-consuming simulation for APGAI and its significantly different pattern, we do not apply APGAI to instances
with larger arm number. And we believe it is unsuitable to compare APGAI with other benchmarks, given the difficulties of
estimating Eν,APGAIτ .

41


