
Deep Reinforcement Learning Workshop at NeurIPS, 2022

EFFICIENT OFFLINE POLICY OPTIMIZATION
WITH A LEARNED MODEL

Zichen Liu†‡ Siyi Li† Wee Sun Lee‡ Shuicheng Yan† Zhongwen Xu†

†Sea AI Lab
‡National University of Singapore
{liuzc,lisy,yansc,xuzw}@sea.com
{zichen,leews}@comp.nus.edu.sg

ABSTRACT

MuZero Unplugged presents a promising approach for offline policy learning from
logged data. It conducts Monte-Carlo Tree Search (MCTS) with a learned model
and leverages Reanalyze algorithm to learn purely from offline data. For good
performance, MCTS requires accurate learned models and a large number of sim-
ulations, thus costing huge computing time. This paper investigates a few hy-
potheses where MuZero Unplugged may not work well under the offline RL set-
tings, including 1) learning with limited data coverage; 2) learning from offline
data of stochastic environments; 3) improperly parameterized models given the
offline data; 4) with a low compute budget. We propose to use a regularized one-
step look-ahead approach to tackle the above issues. Instead of planning with the
expensive MCTS, we use the learned model to construct an advantage estima-
tion based on a one-step rollout. Policy improvements are towards the direction
that maximizes the estimated advantage with regularization of the dataset. We
conduct extensive empirical studies with BSuite environments to verify the hy-
potheses and then run our algorithm on the RL Unplugged Atari benchmark. Ex-
perimental results show that our proposed approach achieves stable performance
even with an inaccurate learned model. On the large-scale Atari benchmark, the
proposed method outperforms MuZero Unplugged by 43%. Most significantly,
it uses only 5.6% wall-clock time (i.e., 1 hour) compared to MuZero Unplugged
(i.e., 17.8 hours) to achieve a 150% IQM normalized score with the same hard-
ware and software stacks. Our implementation is open-sourced and can be found
at https://github.com/sail-sg/rosmo.

1 INTRODUCTION

Offline Reinforcement Learning (offline RL) (Levine et al., 2020) is aimed at learning highly reward-
ing policies exclusively from collected static experiences, without requiring the agent’s interactions
with the environment that may be costly or even unsafe. It significantly enlarges the application
potential of reinforcement learning especially in domains like robotics and health care (Haarnoja
et al., 2018; Gottesman et al., 2019), but is very challenging. By only relying on static datasets for
value or policy learning, the agent in offline RL is prone to action-value over-estimation or improper
extrapolation at out-of-distribution (OOD) regions. Previous works (Kumar et al., 2020; Wang et al.,
2020; Siegel et al., 2020) address these issues by imposing specific value penalties or policy con-
straints, achieving encouraging results. Model-based reinforcement learning (MBRL) approaches
have demonstrated effectiveness in offline RL problems (Kidambi et al., 2020; Yu et al., 2020; Schrit-
twieser et al., 2021). By modeling dynamics and planning, MBRL learns as much as possible from
the data, and is generally more data-efficient than the model-free methods. We are especially inter-
ested in the state-of-the-art MBRL algorithm for offline RL, i.e., MuZero Unplugged (Schrittwieser
et al., 2021), which is a simple extension of its online RL predecessor MuZero (Schrittwieser et al.,
2020). MuZero Unplugged learns the dynamics and conducts Monte-Carlo Tree Search (MCTS)
(Coulom, 2006; Kocsis & Szepesvári, 2006) planning with the learned model to improve the value
and policy in a fully offline setting.

1

https://github.com/sail-sg/rosmo

Deep Reinforcement Learning Workshop at NeurIPS, 2022

In this work, we first scrutinize the MuZero Unplugged algorithm by empirically validating hy-
potheses about when and how the MuZero Unplugged algorithm could fail in offline RL settings.
The failures could also happen in online RL settings, but the intrinsic properties of offline RL mag-
nify the effects. MCTS requires an accurate learned model to produce improved learning targets.
However, in offline RL settings, learning an accurate model is inherently difficult especially when
the data coverage is low. MuZero Unplugged is also not suitable to plan action sequences in stochas-
tic environments. Moreover, MuZero Unplugged is a compute-intensive algorithm that leverages the
compute power of an NVIDIA V100 × One week for running each Atari game (Schrittwieser et al.,
2021). When trying to reduce the compute cost by limiting the search, MuZero Unplugged fails to
learn when the number of simulations in tree search is low. Last but not least, the implementation of
MuZero Unplugged is sophisticated and close-sourced, hampering its wide adoption in the research
community and practitioners.

Based on the hypotheses and desiderata of MBRL algorithms for offline RL, we design ROSMO, a
Regularized One-Step Model-based algorithm for Offline reinforcement learning. Instead of con-
ducting sophisticated planning like MCTS, ROSMO performs a simple yet effective one-step look-
ahead with the learned model to construct an improved target for policy learning and acting. To avoid
the policy being updated with the uncovered regions of the offline dataset, we impose a policy regu-
larization based on the dataset transitions. We confirm the effectiveness of ROSMO first on BSuite
environments by extensive experiments on the proposed hypotheses, demonstrating that ROSMO is
more robust to model inaccuracy, poor data coverage, and learning with data of stochastic environ-
ments. We then compare ROSMO with state-of-the-art methods such as MuZero Unplugged (Schrit-
twieser et al., 2021), Critic Regularized Regression (Wang et al., 2020), Conservative Q-Learning
(Kumar et al., 2020), and the vanilla Behavior Cloning baseline in both BSuite environments and
the large-scale RL Unplugged Atari benchmark (Gulcehre et al., 2020). In the Atari benchmark, the
ROSMO agent achieves a 194% IQM normalized score compared to 151% of MuZero Unplugged.
It achieves this within a fraction of time (i.e., 1 hour) compared to MuZero Unplugged (i.e., 17.8
hours), showing an improvement of above 17× in wall-clock time, with the same hardware and
software stacks. We conclude that a high-performing and easy-to-understand MBRL algorithm for
offline RL problems is feasible with low compute resources. Finally, the implementation of ROSMO
and all experiment details will be open-sourced upon acceptance.

2 BACKGROUND

2.1 NOTATION

The RL problem is typically formulated with Markov Decision Process (MDP), represented byM =
{S,A, P, r, γ, ρ}, with the state and action spaces denoted by S and A, the Markovian transition
dynamics P , the bounded reward function r, the discount factor γ and an initial state distribution ρ.
At any time step, the RL agent in some state s ∈ S interacts with the MDP by executing an action
a ∈ A according to a policy π(a|s), arrives at the next state s′ and obtains a reward r(s, a, s′) ∈ R.
The value function of a fixed policy and a starting state s0 = s ∼ ρ is defined as the expected
cumulative discounted rewards V π(s) = Eπ [

∑∞
t=0 γ

tr (st, at) | s0 = s]. An offline RL agent aims
to learn a policy π that maximizes Jπ(s) = V π(s) solely based on the static dataset D, which
contains the interaction trajectories {τi} of one or more behavior policies πβ withM. The learning
agent π cannot have further interaction with the environment to collect more experiences.

2.2 OFFLINE POLICY IMPROVEMENT VIA LATENT DYNAMICS MODEL

Model-based RL methods (Sutton, 1991; Deisenroth & Rasmussen, 2011) are promising to solve the
offline RL problem because they can effectively learn with more supervision signals from the limited
static datasets. Among them, MuZero learns and plans with the latent model to achieve strong results
in various domains (Schrittwieser et al., 2020). We next describe a general algorithmic framework
extended from MuZero for the offline RL settings, which we refer to as Latent Dynamics Model.

Given a trajectory τi = {o1, a1, r1, . . . , oTi
, aTi

, rTi
} ∈ D and at any time step t ∈ [1, Ti], we

encode the observations into a latent state via the representation function hθ: s0t = hθ (ot). We
could then unroll the learned model recurrently using the dynamics function gθ to obtain an imag-
ined next state in the latent space and an estimated reward: rk+1

t , sk+1
t = gθ

(
skt , at+k

)
, where

2

Deep Reinforcement Learning Workshop at NeurIPS, 2022

k ∈ [0,K] denotes the imagination depth (the number of steps we unroll using the learned model
gθ). Conditioned on the latent state the prediction function estimates the policy and value function:
πk
t , v

k
t = fθ

(
skt
)
. Note that we have two timescales here. The subscript denotes the time step t in a

trajectory, and the superscript denotes the unroll time step k with the learned model.

In the learning phase, the neural network parameters are updated via gradient descent over the loss
function as follows,

ℓt(θ) =

K∑
k=0

ℓr
(
rkt , r

env
t+k

)
+ ℓv

(
vkt , zt+k

)
+ ℓπ

(
πk
t , pt+k

)
+ ℓreg (θ) , (1)

where ℓr, ℓv, ℓπ are loss functions for reward, value and policy respectively, and ℓreg can be any
form of regularizer. The exact implementation for loss functions can be found in Appendix A.2.
renv
t+k is the reward target from the environment (i.e., dataset), zt+k, pt+k = I(g,f)θ′ (st+k) are the

value and policy targets output from an improvement operator I using dynamics and prediction
functions with target network parameters θ′ (Mnih et al., 2013). Note that the predicted next state
from the dynamics function is not supervised for reconstruction back to the input space. Instead,
the model is trained implicitly so that policy and value predictions at time-step t from imagined
states at depth k can match the improvement targets at real time-step t + k from the environment.
This is an instance of algorithms that apply the value equivalence principle (Grimm et al., 2020).
Improvement operators I can have various forms; for example, MuZero Unplugged (Schrittwieser
et al., 2021) applies Monte-Carlo Tree Search.

2.3 MONTE-CARLO TREE SEARCH FOR POLICY IMPROVEMENT

We briefly revisit Monte-Carlo Tree Search (MCTS) (Coulom, 2006; Kocsis & Szepesvári, 2006),
which can serve as an improvement operator to obtain value and policy targets. To compute the
targets for πk

t and vkt , we start from the root state s0t+k, and conduct MCTS simulations up to
a budget N . Each simulation traverses the search tree by selecting actions using the pUCT rule
(Rosin, 2011):

ak = argmax
a

[
Q(s, a) + πprior(s, a) ·

√∑
b n(s, b)

1 + n(s, a)
·
(
c1 + log

(∑
b n(s, b) + c2 + 1

c2

))]
,

(2)
where n(s, a) is the number of times the state-action pair has been visited during search, Q(s, a)
is the current estimate of the Q-value, πprior(s, a) is the probability of selecting action a in state
s using the prior policy, and c1, c2 are constants. When the search reaches a leaf node sl, it will
expand the tree by unrolling the learned model gθ with al and appending a new node with model
predictions rl+1

t , sl+1
t , πl+1

t , vl+1
t to the search tree. Then the estimate of bootstrapped discounted

return Gk =
∑l−1−k

τ=0 γτrk+1+τ + γl−kvl for k = l . . . 0 is backed up all the way to the root node,
updating Q and n statistics along the path. After exhausting the simulation budget, the policy target
pt+k is formed by the normalized visit counts at the root node, and the value target zt+k is the n-step
discounted return bootstrapped from the estimated value at the root node1:

pMCTS(a|st) =
n(s0t , a)

1/T∑
b n(s

0
t , b)

1/T
,

zMCTS(st) = γn
∑
a

(
n(s0t+n, a)∑
b n(s

0
t+n, b)

)
Q(s0t+n, a) +

t+n−1∑
t′=t

γt′−trenv
t′ .

(3)

3 METHODOLOGY

3.1 MOTIVATION

With well learned function estimators {hθ, fθ, gθ}, planning with MCTS (Section 2.3) in the latent
dynamics model (Section 2.2) has been shown to obtain strong policy and value improvements, and

1We re-index t := t+ k for an easier notation.

3

Deep Reinforcement Learning Workshop at NeurIPS, 2022

has been applied to offline RL (Schrittwieser et al., 2021) in MuZero Unplugged. However, the
prohibitive computational power required by the search is limiting its practicability. For example,
experiments on the Atari benchmark (Bellemare et al., 2013) could take an NVIDIA V100 × One
week to run a single game. Besides, in the offline RL settings, the state-action space coverage of
the dataset is inherently limited, and further environment exploration is not possible. Thus, learned
estimators may only be accurate in the safe regions covered by the dataset, and generalization outside
the safe regions may lead to extrapolation error (Fujimoto et al., 2019). Even worse, the MCTS
process unrolls the learned model recurrently with actions selected using Equation 2 (which depends
on the estimation of πprior), compounding the extrapolation errors along the search path.

𝑠!

𝑠!"#

𝑠!"$

𝑠!#
𝑠!$𝑠!%

…

…

𝑔!

𝜋!	, 𝑣! = 𝑓!

𝑠!

𝑠!"#

𝑠!"$

𝑠!#

…

…

𝑠!#

Figure 1: An illustration on the differences of Monte-Carlo Tree Search (left) and one-step look-ahead (right)
for policy improvement. With limited offline data coverage, the search entering regions beyond the observed
data may expand nodes on which fθ fails to provide accurate estimations, and gθ even leads to a worse region.
These errors are compounded along the path as the search gets deeper, leading to detrimental improvement
targets. One-step look-ahead is less likely to go outside the safe region. Illustrations are best viewed on screen.

Figure 1(left) illustrates when MCTS goes wrong as an improvement operator. Suppose we have
encoded the observations through hθ to get latent states st, st+1, st+2, . . . , which we refer to as
observed nodes, as shown in the figure. The dotted edges and nodes in the left figure describe a
simple MCTS search tree at node st, with simulation budget N = 7 and depth d = 3. We refer
to the states unrolled by the learned model, {skt }, as imagined nodes, with k = 1, 2, 3 denoting
the depth of search. The regions far from the observed nodes and beyond the shaded area are
considered unsafe regions, where a few or no data points were collected. Intuitively, policy and
value predictions on imagined nodes in unsafe regions are likely erroneous, and so are the reward
and next state imaginations. This makes the improvement targets obtained by Equation 3 unreliable.
Furthermore, we also argue that MuZero Unplugged lacks proper regularization that constrains the
policy from going too far away from the behavior policy to combat the distributional shift. In their
algorithm, ℓreg = c||θ||2 (in Equation 1) only imposes weight decay for learning stability.

Algorithm 1 ROSMO

Require: dataset D, initialized model parameters θ
1: while True do
2: Sample a batch of trajectory B ∈ D
3: zt ← compute value target (Equation 8) ▷
4: pt ← compute policy target (Equation 6) ▷
5: ℓreg ← apply regularization (Equation 11) ▷
6: ℓ← compute loss (Equation 1) on B
7: Update θ with gradient descent on ℓ
8: end while

Motivated by the analysis above,
the desiderata of a model-based of-
fline RL algorithm are: compute
efficiency, robustness to compound-
ing extrapolation errors, and pol-
icy constraint. To addresses these
desiderata, we design ROSMO, a
Regularized One-Step Model-based
algorithm for Offline reinforcement
learning based on value equivalence
principle. As illustrated in Fig-
ure 1(right), ROSMO performs one-
step look-ahead to seek the improvement targets from a learned model, which is more efficient
than MCTS and less affected by compounding errors. The overview of our complete algorithm is
described in Figure 1. The algorithm follows Section 2.2 to encode the observations, unrolls the
dynamics, makes predictions, and computes the loss. The blue triangles highlight our algorithmic
designs on learning targets and regularization loss. We will derive them in the following sections.

3.2 A SIMPLE AND EFFICIENT IMPROVEMENT OPERATOR

In the algorithmic framework we outlined in Section 2.2, the improvement operator I is used to
compute an improved policy and value target. Unfortunately, MuZero Unplugged uses the compute-

4

Deep Reinforcement Learning Workshop at NeurIPS, 2022

heavy and sophisticated MCTS to achieve this purpose, which is also prone to compounding ex-
trapolation errors. In particular, the policy update of MuZero Unplugged is done by minimizing the
cross entropy between the normalized visit counts and the parametric policy distribution:

ℓπMCTS = −
∑
a

(
n(s, a)1/T∑
b n(s, b)

1/T
log π(a|s)

)
, (4)

where the visit counts n at the root node s are summarized from the MCTS statistics.

We propose to learn the value equivalent model and use a more straightforward and much more
efficient one-step look-ahead method to provide policy improvement. Specifically, our policy up-
date is towards minimizing the cross entropy between a one-step (OS) improvement target and the
parametric policy distribution:

ℓπOS = −p⊺ logπ. (5)
The policy target p at state s is estimated as:

p(a|s) =
πprior (a|s) exp (advg (s, a))

Z(s)
, (6)

where πprior is the prior policy (often realized by the target network πθ′), advg (s, a) = qg (s, a) −
v (s) is an approximation of the action advantage from the learned model gθ, and the factor Z(s)
ensures the policy target p is a valid probability distribution. The state value v(s) = fθ,v(s) is from
the prediction function conditioned on the current state. The action value qg (s, a) is estimated by
unrolling the learned model one step into the future using dynamics function gθ to predict the reward
rg and next state s′g , and then estimate the value at the imagined next state:

rg, s
′
g = gθ(s, a),

qg (s, a) = rg + γfθ,v
(
s′g
)
.

(7)

Intuitively, our policy target from Equation 6 adjusts the prior policy such that actions with positive
advantages are favored, and those with negative advantages are discouraged.

Meanwhile, the value target z is the n-step return bootstrapped from the value estimation:

z (st) = γnvt+n +

t+n−1∑
t′=t

γt′−trt′ , (8)

where vt+n = fθ′,v (st+n) is computed using the target network θ′ and rt′ is from the dataset.
Compared to MuZero Unplugged, the value target is simpler, eliminating the dependency on the
searched value at the node n steps apart.

Sampled policy improvement. Computing the exact policy loss ℓp needs to simulate all actions to
obtain a full p(a|s) distribution, and then apply the cross entropy. It demands heavy computation
for environments with a large action space. We thus sample the policy improvement by computing
an estimate of ℓp on N ≤ |A| actions sampled from the prior policy, i.e., a(i) ∼ πprior(s):

ℓπOS ≈ −
1

N

N∑
i=1

[
exp

(
advg(s, a

(i))
)

Z(s)
log π(a(i)|s)

]
. (9)

The normalization factor Z(s) for the k-th sample out of N can be estimated (Hessel et al., 2021):

Z(k) (s) =
1 +

∑N
i̸=k exp

(
advg(s, a

(i))
)

N
. (10)

In this way, the policy update will not grow its computational cost along with the size of the action
space.

3.3 BEHAVIOR REGULARIZATION FOR POLICY CONSTRAINT

Although the proposed policy improvement in Section 3.2 alleviates compounding errors by only
taking a one-step look-ahead, it could still be problematic if this one step of model rollout leads

5

Deep Reinforcement Learning Workshop at NeurIPS, 2022

to an imagined state beyond the appropriate dataset extrapolation. Therefore, some form of policy
constraint is desired to encourage the learned policy to stay close to the behavior policy.

To this end, we extend the regularization loss to ℓreg(θ) = c||θ||2 +αℓreg
r,v,π(θ). The second term can

be any regularization applied to reward, value, or policy predictions and is jointly minimized with
other losses. While more sophisticated regularizers such as penalizing out-of-distribution actions’
reward predictions could be designed, we present a simple behavior regularization on top of the
policy π, leaving other possibilities for future research.

Our behavior regularization is similar to Siegel et al. (2020), but we do not learn an explicit behavior
policy. Instead, we apply an advantage filtered regression directly on π from the prediction function
output:

ℓreg
π (θ) = E(s,a)∼D [− log π(a|s) ·H(advg(s, a))] , (11)

where H(x) = 1x>0 is the Heaviside step function. We can interpret this regularization objective
as behavior cloning (maximizing the log probability) on a set of state-action pairs with high quality
(advantage filtering).

3.4 SUMMARY

Our method presented above unrolls the learned model for one step to look ahead for an improve-
ment direction and adjusts the current policy towards the improvement with behavior regularization.
As illustrated in Figure 1, compared with MuZero Unplugged, our method could stay within the
safe regions with higher probability and utilize the appropriate generalization to improve the policy.
Our policy update can also be interpreted as approximately solving a regularized policy optimization
problem, and the analysis can be found in Appendix B.

4 EXPERIMENT

In Section 3, we have analyzed the deficiencies of MuZero Unplugged and introduced ROSMO as
a simpler method to tackle the offline RL problem. In this section, we present empirical results
to demonstrate the effectiveness and efficiency of our proposed algorithm. We firstly focus on the
comparative analysis of ROSMO and MuZero Unplugged to justify our algorithm designs in Sec-
tion 4.1, and then we compare ROSMO with existing offline RL methods and ablate our method in
Section 4.2. Throughout this section we adopt the Interquartile Mean (IQM) metric (Agarwal et al.,
2021) on the normalized score2 to report the performance unless otherwise stated.

4.1 HYPOTHESIS VERIFICATION

To analyze the advantages of ROSMO over MuZero Unplugged, we put forward four hypotheses
for investigation (listed in bold) and verify them on the BSuite benchmark (Osband et al., 2019).
Similar to (Gulcehre et al., 2021), we use three environments from BSuite: catch, cartpole and
mountain car. However, we note that the released dataset by Gulcehre et al. (2021) is unsuitable
for training model-based agents since it only contains unordered transitions instead of trajectories.
Therefore, we generate an episodic dataset by recording experiences during the online agent training
and use it in our experiments (see Appendix E for data collection details).

(1) MuZero Unplugged fails to perform well in a low-data regime. With a low data budget, the
coverage of the state-action space shrinks as well as the safe regions (Figure 1). We hypothesize
that MuZero Unplugged fails to perform well in the low-data regime since the MCTS could easily
enter the unsafe regions and produce detrimental improvement targets. Figure 2(a) shows the IQM
normalized score obtained by agents trained on sub-sampled datasets of different fractions. We can
observe MuZero Unplugged degrades when the coverage becomes low and performs poorly with 1%
fraction. In comparison, ROSMO works remarkably better in a low-data regime and outperforms
MuZero Unplugged across all data coverage settings.

2Calculated as x = (score − scorerandom)/(scoreonline − scorerandom) per game. x = 1 means on par with the
online agent used for data collection; x = 1.5 indicates its performance is 1.5× of the data collection agent’s.

6

Deep Reinforcement Learning Workshop at NeurIPS, 2022

(a) (b) (c)

Figure 2: (a) IQM normalized score with different data coverage. (b)
IQM normalized score with different dynamics model capacities. (c) IQM
normalized score of MuZero Unplugged with different simulation budgets
(N) and search depths (d).

ϵ MZU ROSMO

0 0.980±0.060 1.0±0.0
0.1 0.984±0.054 1.0±0.0
0.3 0.772±0.253 0.900±0.237
0.5 0.404±0.422 0.916±0.139

Table 1: Comparison between
ROSMO and MuZero Un-
plugged on catch with different
noise levels (ϵ).

(2) ROSMO is more robust in learning from stochastic transitions than MuZero Unplugged.
To evaluate the robustness of MuZero Unplugged and ROSMO in learning with data from stochastic
environments, we inject noises during experience collection by replacing the agent’s action with
a random action for environment execution, with probability ϵ. With the dataset dynamics being
stochastic, MuZero Unplugged could fail to plan action sequences due to compounding errors. We
hypothesize that ROSMO performs more robustly than MuZero Unplugged since ROSMO only uses
a one-step look-ahead, thus has less compounding error. In Table 1, we compare the episode return
of the two algorithms with the controlled noise level. The result shows that ROSMO is much less
sensitive to the dataset noise and can learn robustly at different stochasticity levels.

(3) MuZero Unplugged suffers from dynamics mis-parameterization while ROSMO is less af-
fected. The parameterization of the dynamics model is crucial for model-based algorithms. It is
difficult to design a model with the expressive power that is appropriate for learning the dataset’s
MDP transition. The resulting under/over-fitting of the learned model may badly affect the per-
formance of the overall algorithm. We hypothesize that MuZero Unplugged is more sensitive to
the parameterization of dynamics than ROSMO. Figure 2(b) compares ROSMO with MuZero Un-
plugged for different dynamics model capacities trained on 10% data. Since we use a multi-layer
perceptron to model the dynamics function, the capacity is controlled by the number of hidden units.
We show that MuZero Unplugged works best when the number of hidden units is 1024, and its per-
formance degrades significantly with less model capacity, likely due to the under-fitting of smaller
networks. The effect of over-fitting is less obvious. In comparison, ROSMO performs stably with
different dynamics model capacities and consistently outperform MuZero Unplugged in all settings.

(4) MuZero Unplugged is sensitive to simulation budget and search depth. Prior works have
shown that the performance of MuZero agents declines with a decreasing simulation budget (Grill
et al., 2020), and it is insensitive to search depth (Hamrick et al., 2021). Both works consider online
RL settings, where new experience collection may correct prior wrong estimations. We hypothesize
that in offline RL settings, the performance of MuZero Unplugged is sensitive to both simulation
budget and search depth. In particular, a deeper search would compound extrapolation errors in
offline settings, leading to harmful improvement targets. Figure 2(c) demonstrates the IQM nor-
malized score of MuZero Unplugged with different simulation budgets and search depths. We can
observe MuZero Unplugged fails to learn when N is low, and it performs poorly when N is high
but with a deep search. This suggests that too low visit counts are not expressive, and too much
planning may harm the performance, matching the findings in the online settings (Grill et al., 2020;
Hamrick et al., 2021). Notably, limiting the search depth can ease the issue by a large amount,
serving as further strong empirical evidence to support our hypothesis that deep search compounds
errors, reinforcing our belief in the one-step look-ahead approach.

4.2 BENCHMARK RESULTS

After investigating what could go wrong with MuZero Unplugged and validating our hypotheses,
we compare our method with other offline RL baselines on the BSuite benchmark as well as the
larger-scale Atari benchmark with the RL Unplugged (Gulcehre et al., 2020) dataset.

Baselines. Behavior Cloning learns a maximum likelihood estimation of the policy mapping from
the state space to the action space based on the observed data, disregarding the reward signal. Thus
BC describes the average quality of the trajectories in the dataset and serves as a naive baseline.
Conservative Q-Learning (CQL) (Kumar et al., 2020) learns lower-bounded action values by incor-

7

Deep Reinforcement Learning Workshop at NeurIPS, 2022

porating loss penalties on the values of out-of-distribution actions. Critic Regularized Regression
(CRR) (Wang et al., 2020) approaches offline RL in a supervised learning paradigm and reweighs
the behavior cloning loss via an advantage estimation from learned action values. CQL and CRR are
representative offline RL algorithms with strong performance. MuZero Unplugged (MZU) (Schrit-
twieser et al., 2021) is a model-based method that utilizes MCTS to plan for learning as well as
acting, and exhibits state-of-the-art performance on the RL Unplugged benchmark. MOReL (Ki-
dambi et al., 2020) and MOPO (Yu et al., 2020) are another two model-based offline RL algorithms.
MOReL proposes to learn a pessimistic MDP and then learn a policy within the learned MDP;
MOPO models the dynamics uncertainty to penalize the reward of MDP and learns a policy on the
MDP. Both of them focus on state-based control tasks and are not trivial to transfer to the image-
based Atari tasks, hence are not compared here. Nevertheless, we do provide the details of our
implementation for MOReL (Kidambi et al., 2020) and COMBO (Yu et al., 2021) (which extends
MOPO (Yu et al., 2020)) and report the results in Appendix F.1.

Implementation. We use the same neural network architecture to implement all the algorithms and
the same hardware to run all the experiments for a fair comparison. We closely follow MuZero
Unplugged (Schrittwieser et al., 2021) to implement ROSMO and MuZero Unplugged, but use a
down-scaled version for Atari to trade off the experimentation cost. We use the exact policy loss
without sampling (Equation 5) for all ROSMO experiments in the main results and compare the
performance of sampling in the ablation. For CRR and CQL we adapt the official codes for our
experiments. For Atari we conduct experiments on a set of 12 Atari games due to limited computa-
tion resources3. We ensure they are representative and span the performance spectrum of MuZero
Unplugged for fair comparison. More implementation details can be found in Appendix D.2.

Method Catch MountainCar Cartpole

BC 0.66±0.02 −178.24±43.12 589.78±75.32

CQL 1.0±0.0 −124.77±30.95 416.48±245.75

CRR 1.0±0.0 −106.3±15.99 997.11±8.63

MZU 0.99±0.01 −107.27±3.84 890.64±173.10

ROSMO 1.0±0.0 −102.15±3.04 990.68±19.36

Table 2: BSuite benchmark results. Averaged
episode returns measured at the end of training
(200K steps) across 5 seeds.

0 100 200
Steps (in thousands)

0.0

0.5

1.0

1.5

2.0

IQ
M

 n
or

m
al

ize
d

sc
or

e

0 10 20
Time (in hours)

ROSMO
MZU
CRR
CQL
BC

Figure 3: Atari benchmark results. Aggregated IQM nor-
malized score of different algorithms in terms of (left)
sample efficiency and (right) wall-clock efficiency.

Main results. Table 2 shows the BSuite benchmark results of our algorithm and other baseline
methods. ROSMO achieves the highest episode returns on catch and mountain car with the lowest
standard deviation. For cartpole, CRR performs slightly better than ROSMO, but we still observe
ours outperforms the other baseline by a clear margin.

Figure 3(left) presents the learning curves with respect to the learner update steps, where it is clearly
shown that ROSMO outperforms all the baselines and achieves the best learning efficiency. In
terms of the final IQM normalized score, all offline RL algorithms outperform the behavior cloning
baseline, suggesting that the reward signal is greatly helpful when the dataset contains trajectories
with diverse quality. ROSMO obtains a 194% final IQM normalized score, outperforming MuZero
Unplugged (151%), Critic Regularized Regression (105%), and Conservative Q-Learning (83.5%).
Besides the highest final performance, we also note the ROSMO learns the most efficiently among
all compared methods.

Figure 3(right) compares the wall-clock efficiency of different algorithms given the same hard-
ware resources. Significantly, ROSMO uses only 5.6% wall-clock time compared to MuZero Un-
plugged to achieve a 150% IQM normalized score. With the lightweight one-step look-ahead design,
the model-based ROSMO consumes similar learning time as model-free methods, widening its ap-
plicability to both offline RL researches and real-world applications.

3Even with our slimmed implementation (Appendix D.2 for details), a full run of all compared methods on
the RL Unplugged benchmark (46 games) needs about 720 TPU-days for a single seed, which is approximately
equivalent to an NVIDIA V100 GPU running for 2 years.

8

Deep Reinforcement Learning Workshop at NeurIPS, 2022

(a) (b) (c) (d)

Figure 4: Learning curves of IQM normalized score on MsPacman. (a) Comparison of ROSMO and MuZero
Unplugged in low data regime. (b) Comparison of ROSMO, MuZero Unplugged and MZU-Q when limiting
the number of simulations (number of samples) to be N = 4. (c) Comparison of ROSMO and MuZero
Unplugged when the model is unrolled with different steps for learning. (d) Ablation of the one-step policy
improvement and the behavior regularization.

The results of individual games can be found in Appendix F.

Ablations. We present our ablation studies on data coverage, learning efficiency, model compound-
ing errors, and decoupled ROSMO. Following the common practice (Schrittwieser et al., 2020;
Hamrick et al., 2021), Ms. Pacman is chosen for the ablation studies.

(a) Figure 4(a) shows that ROSMO is able to outperform MuZero Unplugged in both 10% and
1% data regimes, replicating our hypothesis verification results on BSuite.

(b) To make MuZero Unplugged more compute-efficient and feasible, we could limit the number
of simulations. However, prior works have shown that MuZero’s policy target degenerates under low
visit count (Grill et al., 2020; Hamrick et al., 2020). Hence, we also implement the MZU-Q variant
which uses an MPO-style (Abdolmaleki et al., 2018) policy update, πMPO ∝ πθ · exp(QMCTS/τ),
for a comprehensive comparison. Here QMCTS is the Q-values at the root node of the search tree,
and τ is a temperature parameter set to be 0.1 following Hamrick et al. (2021). Figure 4(b) shows
that MZU fails to learn using 4 simulations, while MZU-Q can somewhat alleviate the issues. Our
sampled ROSMO performs well with a limited sampling budget.

(c) To alleviate the compounding errors (Janner et al., 2019), MuZero Unplugged unrolls the dy-
namics for multiple steps (5) and learns the policy, value, and reward predictions on the recurrently
imagined latent state to match the real trajectory’s improvement targets. It also involves compli-
cated heuristics such as scaling the gradients at each unroll step to make the learning more stable.
We ablate ROSMO and MuZero Unplugged using a single-step unroll for learning the model. Fig-
ure 4(c) shows that the performance of ROSMO is not sensitive to the number of unrolling (either 1
or 5), while MuZero Unplugged experiences a significant performance drop when only single-step
unrolling is applied.

(d) We ablate the effect of behavior regularization. We compare our full algorithm ROSMO with
two variants: OneStep - one-step policy improvement without regularization; Behavior - policy
learning via standalone behavior regularization. Interestingly, the Behavior variant recovers the
binary form of CRR (Wang et al., 2020), with an advantage estimated from the learned model.
Figure 4(d) demonstrates that compared to OneStep, Behavior learns more efficiently at the early
stage by mimicking the filtered behaviors of good quality, but is gradually saturated and surpassed
by OneStep, which employs a more informative one-step look-ahead improvement target. However,
OneStep alone without behavior regularization is not enough especially for low-data regime (see
Appendix F.3 for more results). The full algorithm ROSMO combines the advantages from both
parts to achieve the best learning results.

5 CONCLUSION

Starting from the analysis of MuZero Unplugged, we identified its deficiencies and hypothesized
when and how the algorithm could fail. We then propose our method, ROSMO, a regularized one-
step model-based algorithm for offline reinforcement learning. Compared to MuZero Unplugged,
the algorithmic advantages of ROSMO are threefold: (1) it is computationally efficient, (2) it is
robust to compounding extrapolation errors, and (3) it is appropriately regularized. The empirical
investigation verified our hypotheses and the benchmark results demonstrate that our proposed al-
gorithm can achieve state-of-the-art results with low experimentation cost. We hope our work will
serve as a powerful and reproducible agent and motivate further research in model-based offline
reinforcement learning.

9

Deep Reinforcement Learning Workshop at NeurIPS, 2022

6 ETHICS STATEMENT

This paper does not raise any ethical concerns. Our study does not involve human subjects. The
datasets we collected do not contain any sensitive information and will be released. There are no
potentially harmful insights or methodologies in this work.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experimental results, we include detailed pseudocode, imple-
mentation specifics, and the dataset collection procedure in the Appendix. More importantly, we
will open-source our codes as well as collected datasets for the research community to use, adapt
and improve on our method.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a posteriori policy optimisation. In ICLR, 2018.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. NeurIPS, 34:29304–29320,
2021.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning Envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo Tree Search. In Interna-
tional conference on computers and games, pp. 72–83. Springer, 2006.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472. Citeseer, 2011.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In ICML, pp. 2052–2062. PMLR, 2019.

Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David Sontag, Finale
Doshi-Velez, and Leo Anthony Celi. Guidelines for reinforcement learning in healthcare. Nature
medicine, 25(1):16–18, 2019.

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis
Antonoglou, and Remi Munos. Monte-Carlo Tree Search as regularized policy optimization.
In ICML, volume 119, pp. 3769–3778. PMLR, 2020.

Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value equivalence prin-
ciple for model-based reinforcement learning. NeurIPS, 33:5541–5552, 2020.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gomez Colmenarejo, Kon-
rad Zolna, Rishabh Agarwal, Josh Merel, Daniel J. Mankowitz, Cosmin Paduraru, Gabriel Dulac-
Arnold, Jerry Li, Mohammad Norouzi, Matthew Hoffman, Nicolas Heess, and Nando de Freitas.
RL unplugged: A collection of benchmarks for offline reinforcement learning. In NeurIPS, 2020.

10

http://github.com/google/jax
http://github.com/google/jax

Deep Reinforcement Learning Workshop at NeurIPS, 2022

Caglar Gulcehre, Sergio Gómez Colmenarejo, Ziyu Wang, Jakub Sygnowski, Thomas Paine, Konrad
Zolna, Yutian Chen, Matthew Hoffman, Razvan Pascanu, and Nando de Freitas. Regularized
behavior value estimation. arXiv preprint arXiv:2103.09575, 2021.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In ICLR, 2021.

Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Tobias Pfaff, Theophane Weber, Lars
Buesing, and Peter W. Battaglia. Combining q-learning and search with amortized value esti-
mates. In ICLR, 2020.

Jessica B Hamrick, Abram L. Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims Wither-
spoon, Thomas Anthony, Lars Holger Buesing, Petar Veličković, and Theophane Weber. On the
role of planning in model-based deep reinforcement learning. In ICLR, 2021.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theophane
Weber, David Silver, and Hado Van Hasselt. Muesli: Combining improvements in policy opti-
mization. In ICML, volume 139, pp. 4214–4226. PMLR, 2021.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. NeurIPS, 32, 2019.

Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In ICML, pp. 267–274, 2002.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL: Model-
based offline reinforcement learning. NeurIPS, 33:21810–21823, 2020.

Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In ECML, pp. 282–293.
Springer, 2006.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. NeurIPS, 33:1179–1191, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
ment learning. arXiv preprint arXiv:1908.03568, 2019.

Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden,
Gabriel Barth-Maron, Hado Van Hasselt, John Quan, Mel Večerı́k, et al. Observe and look further:
Achieving consistent performance on atari. arXiv preprint arXiv:1805.11593, 2018.

Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artifi-
cial Intelligence, 61(3):203–230, 2011.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model.
Nature, 588(7839):604–609, 2020.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. In NeurIPS, volume 34, pp. 27580–27591, 2021.

11

Deep Reinforcement Learning Workshop at NeurIPS, 2022

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, pp. 1889–1897. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning. 2020.

Cameron Voloshin, Hoang Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy policy
evaluation for reinforcement learning. In NeurIPS Track on Datasets and Benchmarks, volume 1,
2021.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. NeurIPS, 33:7768–7778, 2020.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. MOPO: Model-based offline policy optimization. NeruIPS, 33:14129–14142,
2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. In NeurIPS, volume 34, pp.
28954–28967, 2021.

12

Deep Reinforcement Learning Workshop at NeurIPS, 2022

A ALGORITHMIC DETAILS

A.1 PSEUDOCODE

We present the detailed learning procedure of ROSMO in Algorithm 2. For notational convenience,
we use a single slice of trajectory, but in practice we can take batches for parallel.

Algorithm 2 ROSMO Pseudocode

Require: dataset D, discount factor γ, initialized model parameters θ, target parameters θ′ = θ,
unroll step K, TD step n, behavior regularization strenth α, weight decay strength c, sampling
budget N (optional)

1: while True do
2: Sample a trajectory τi ∈ D with length Ti

3: Sample a random time step t ∈ [0, Ti −K − n− 1]
4: s0t ← hθ(ot) ▷ representation of root
5: rt, st,πt,vt ← UNROLL(θ, s0t , at,...,t+K−1)
6: pt, zt ← IMPROVE(θ′, ot,...,t+K+n, r

env
t,...,t+K+n)

7: ℓreg ← αBEHAVIORREGULARIZER(θ′,πt, ot,...,t+K , at,...,t+K) + c||θ||
8: renv ← directly get from τi, indexed at t+ 1, . . . , t+K
9: ℓr, ℓv, ℓp ← compute losses following Appendix A.2

10: Update θ with gradient descent on ℓr, ℓv, ℓp + ℓreg; update θ′ = θ with interval
11: end while

12: function UNROLL(θ, s0, a0,...,K−1)
13: initialize vector containers r, s,π,v, with r0 = 0, s0 = s0

14: for j = 0 . . .K − 1 do
15: πj ,vj ← fθ(s

j) ▷ prediction on root and the imaginary
16: rj+1, sj+1 ← gθ(s

j , aj) ▷ dynamics
17: end for
18: πK ,vK ← fθ(s

K)
19: return r, s,π,v
20: end function

21: function IMPROVE(θ′, o0,...,K+n, r
env
0,...,K+n)

22: initialize vector containers p, z for policy and value targets
23: s← hθ′(o0,...,K+n)
24: π,v← fθ′(s)
25: for j = 0 . . .K do
26: adv← ONESTEPLOOKAHEAD(θ′, sj ,vj)
27: pj ← π exp(adv)/Z
28: zj ← γnvn+j +

∑j+n−1
t′=j γt′−trenv

t′

29: end for
30: return p, z
31: end function

32: function ONESTEPLOOKAHEAD(θ′, s, v)
33: a← sample N or enumerate actions
34: r, s′ ← gθ′(s,a)
35: return r+ γfθ′,v(s

′)− v
36: end function

37: function BEHAVIORREGULARIZER(θ′,π, o0,...,K , a0,...,K)
38: s← hθ′(o0,...,K+1)
39: r, s′ ← gθ′(s, a0,...,K+1)
40: adv← r+ γfθ′,v(s

′)− fθ′,v(s)

41: return − 1
K+1

∑K
j=0 log(π

j)⊺1advj>0

42: end function

13

Deep Reinforcement Learning Workshop at NeurIPS, 2022

A.2 TRAINING

An illustration of the training procedure can be found in Figure 5(left). To optimize the network
weights, we apply gradient descent updates on θ over the loss defined in Equation 1. Specifically,
our loss functions for policy, value and reward predictions are:

ℓp(π,p) = −p⊺ logπ, (12)

ℓv(v, z′) = −ϕ(z′)⊺ logv, (13)

ℓr(r, u′) = −ϕ(u′)⊺ log r, (14)

where z′ = h(z), u′ = h(renv) are the value and reward targets scaled by the invertible transform
h(x) = sign(x)(

√
|x|+ 1 − 1 + ϵx), where ϵ = 0.001 (Pohlen et al., 2018). We then apply a

transformation ϕ to obtain the equivalent categorical representations of scalars, which then serve as
the targets of cross entropy loss of the scalars’ distribution predictions. For the policy prediction,
the loss is its cross entropy with the improved policy target.

In Algorithm 2 (line-9), we have vectorized inputs of length K + 1 for the loss computation, thus
for every element we apply the above loss functions and take the average.

We also follow MuZero (Schrittwieser et al., 2020) closely to scale the gradients at the start of
dynamics function. However, we do not use the prioritized replay for simplicity and do not apply
the normalization to the hidden states.

B ANALYSIS

We can interpret minimizing the policy loss in Equation 12 as conducting a regularized policy op-
timization. Suppose our goal is to maximize the expected improvement η(π) = Jπ − Jµ over the
behavior policy µ(a|s) = πβ(a|s), which can be expressed in terms of the advantage advµ(s, a)
with respect to µ (Kakade & Langford, 2002; Schulman et al., 2015):

η(π) = Es∼dπ(s)Ea∼π(a|s) [advµ(s, a)] , (15)

where dπ =
∑∞

t=0 γ
tP (st = s|π) is the unnormalized discounted distribution of state visitation

induced by policy π (Sutton & Barto, 2020). In practice, we follow Schulman et al. (2015) to
optimize an approximation η̂(π) = Es∼dµ(s)

Ea∼π(a|s) [advµ(s, a)], which provides a good estimate
of η(π) when π and µ are close (≤ ϵ) in terms of KL-divergence. Hence, we can use η̂ as the
surrogate objective and maximize it under a constraint, serving as a regularized policy optimization:

argmax
π

∫
s

dµ(s)

∫
a

π(a|s) [advµ(s, a)] dads

s.t.
∫
s

dµ(s)DKL(π(·|s)|µ(·|s))ds ≤ ϵ.

(16)

Using the Lagrangian of Equation 16, the optimal policy can be solved as:

π̄(a|s) = 1

Z(s)
µ(a|s) exp (advµ(s, a)/β) , (17)

where Z(s) is the partition function, and β is a Lagrange multiplier. The learning policy can be
improved via projecting π̄ back onto the manifold of parametric policies by minimizing their KL-
divergence:

argmin
π

Es∼D [DKL (π̄(·|s)||π(·|s))] , (18)

which is equivalent to minimizing a loss function over πθ:

ℓ(θ) = −π̄⊺ logπθ. (19)

Our one-step policy target in Equation 6 approximates π̄ with β fixed to 1 and πprior regularized
towards the behavior policy µ, yielding an approximate regularized policy improvement.

14

Deep Reinforcement Learning Workshop at NeurIPS, 2022

C MODEL-BASED OFFLINE REINFORCEMENT LEARNING

We discuss the related works in model-based offline reinforcement learning in this section. Model-
based reinforcement learning refers to the class of methods that learn the dynamics function
P (st+1|st) and optionally the reward function r(s, a, s′), which are usually utilized for planning.
Levine et al. (2020) has discussed several model-based offline RL algorithms in detail. The most
relevant works to ours include MOReL (Kidambi et al., 2020), MOPO (Yu et al., 2020), COMBO
(Yu et al., 2021) and MuZero Unplugged (Schrittwieser et al., 2021).

MOReL (Kidambi et al., 2020) proposes to learn an ensemble of dynamics models from the offline
dataset, and then utilize it to construct a pessimistic-MDP (P-MDP), with which a normal RL agent
can interact to collect experiences for learning. The construction of the P-MDP is based on the
unknown state-action detector (USAD), which is realized by computing the ensemble discrepancy.
If the discrepancy is larger than a threshold, then this state is treated as the absorbing state and taking
the action will be given a negative reward as the penalty. This would help constrain the policy not
entering the unsafe regions that is not covered by the dataset.

MOPO (Yu et al., 2020) takes a similar approach with MOReL by using uncertainty quantification
to construct a lower bound for policy performance. The main difference is that a soft reward penalty
is constructed by an estimate of the model’s error and the policy is then trained in the resulting
uncertainty-penalized MDP. COMBO (Yu et al., 2021) further extends MOPO by avoiding explicit
uncertainty quantification for incorporating conservatism. Instead, a critic function is learned using
both the offline dataset and the synthetic model rollouts, where the conservatism is achieved by
extending CQL to penalize the value function in model simulated state-action tuples that are not in
the support of the offline dataset.

MOReL, MOPO and COMBO have theoretically shown that the policy’s performance under the
learned model bounds its performance in the real MDP, and achieved promising empirical results
on state-based benchmarks such as D4RL (Fu et al., 2020). However, it is unclear how such algo-
rithmic frameworks can be transferred to image-based domains such as Atari in the RL Unplugged
benchmark (Gulcehre et al., 2020). Unlike state-based environments, learning the dynamics model
for image-based tasks is challenging, and using the ensemble of learned dynamics to help policy
learning is even compute expensive, leading such algorithms not suitable for complex tasks.

Unlike methods discussed above, the Latent Dynamics Model (Section 2.2) does not aim to learn
the environment dynamics explicitly and hence it does not require the reconstruction of the next
state’s observation, making it more practical for image-based tasks. Furthermore, instead of the
two-stage process of learning the MDP and planning with the learned MDP, the latent dynamics
model facilitates the end-to-end training for learning the model and using the model. Both MuZero
Unplugged (Schrittwieser et al., 2021) and ROSMO (ours) lie in this family of algorithms. MuZero
Unplugged relies on the Monte-Carlo Tree Search to plan with the learned model for proposing
learning targets, which we have scrutinized in this paper and shown several deficiencies of (Sec-
tion 3.1, Section 4.1). Motivated by the desiderata of model-based offline RL, including computa-
tional efficiency, robustness to compounding extrapolation errors and policy constraints, we devel-
oped ROSMO, which uses a one-step look-ahead for policy improvement and incorporates behavior
regularization for policy constraint. Our simpler algorithm is computationally efficient, and able
to outperform MuZero Unplugged as well as other offline RL methods (including model-free and
model-based4) on the standard offline Atari benchmark (Section 4.2).

D EXPERIMENTAL DETAILS

D.1 HARDWARE AND SOFTWARE

We use TPUv3-8 machines for all the experiments in Atari and use CPU servers with 60 cores for
BSuite experiments. Our code is implemented using JAX (Bradbury et al., 2018).

4Two-stage model-based methods are compared in the Appendix F.1

15

Deep Reinforcement Learning Workshop at NeurIPS, 2022

!! !" !# !!$% !&…

#! #!! …
ℎ!

"!

#! #!" #!%

…

$"#, &"#

'"" '"$ '"%

$"", &"" $"$, &"$ $"% , &"%

ℐ(",$)!" ∘ ℎ&"

("&",)"&" ("&$,)"&$ ("&$,)"&$

'$ '' '"&%*" *$
!! "!

#!

ℎ"

%"

&"

"!#$
'!#$
(!
)!

! "

#

ℎ"

*"

+"

,

)

!)ℎ" +"

! ℎ" ,*"

(a) (b)

(c) (d)

Figure 5: (Left) Illustration on the training procedure: root node unrolling, recurrently applying dynamics func-
tion, the model predictions and the improvement targets. (Right) Network architecture. (a) is for ROSMO and
MuZero Unplugged; (b) is for Behavior Cloning; (c) is for Critic Regularized Regression; (d) is for Conserva-
tive Q-Learning.

D.2 IMPLEMENTATION

D.2.1 NETWORK ARCHITECTURE

For both BSuite and Atari experiments, we use a network architecture based on the one used by
MuZero Unplugged. In visual domains such as Atari games, the ResNet v2 style pre-activation
residual blocks with layer normalization are used to model the representation, dynamics and pre-
diction functions, while fully connected layers are used for simpler environments such as BSuite
tasks.

We explain the network architecture for Atari in details. Figure 5(right) illustrates the network
architectures used for the implementation of different algorithms. The blocks in light blue are the
representation function (in the terminology of ROSMO or MuZero Unplugged), which encodes the
observation into a hidden state. The overall network size is downscaled compared to Schrittwieser
et al. (2021) due to the experimentation cost. For the stacked grayscale image input of size 84 ×
84× 4, we firstly downsample as follows (with kernel size 3× 3 for all convolutions):

• 1 convolution with stride 2 and 32 output channels.

• 1 residual block with 32 channels.

• 1 convolution with stride 2 and 64 output channels.

• 2 residual block with 64 channels.

• Average pooling with stride 2.

• 1 residual block with 64 channels.

• Average pooling with stride 2.

Then 6 residual blocks are used to complete the representation function. We use 2 residual blocks
for the dynamics function (blocks in yellow) as well as the prediction function (blocks in pink).
All residual blocks are with 64 hidden channels. All the network blocks are kept the same across
different algorithms to ensure similar neural network capacity for a fair comparison.

For ROSMO and MuZero Unplugged, the input of the dynamics function is the latent state tiled with
the one-hot encoded action vector. Two fully connected layers with 128 hidden units are used for the
reward, value and policy predictions. The output size for policy is the size of action space, while the
output size for reward and value is the number of bins (601) used for the categorical representation
described in Appendix A.2.

For Behavior Cloning, we directly concatenate the representation function with the prediction func-
tion to model the policy network (Figure 5(right-b)). For Critic Regularized Regression, the Q net-
work is similar to our dynamics function but without the next state prediction, and the policy network
is based on our prediction function (Figure 5(right-c)). We follow the official code5 for the choice
of hyperparameters, and we also employ the same categorical representation for Q value learning.

5https://github.com/deepmind/acme.

16

https://github.com/deepmind/acme

Deep Reinforcement Learning Workshop at NeurIPS, 2022

Parameter Value

Frames stacked 4
Sticky action True
Discount factor 0.9974

Batch size 512
Optimizer Adamw
Optimizer learning rate 7× 10−4

Optimizer weight decay 10−4

Learning rate decay rate 0.1
Max gradient norm 5
Target network update interval 200
Policy loss coefficient 1
Value loss coefficient 0.25
Unroll length 5
TD steps 5
Bin size 601

Table 3: Atari hyperparameters shared by ROSMO and MuZero Unplugged.

Parameter Value

Representation MLP [64, 64, 32]
Dynamics MLP [32, 256, 32]
Prediction MLP [32]
Discount factor 0.9974

Batch size 128
Optimizer Adamw
Optimizer learning rate 7× 10−4

Optimizer weight decay 10−4

Learning rate decay rate 0.1
Max gradient norm 5
Target network update interval 200
Policy loss coefficient 1
Value loss coefficient 0.25
Unroll length 5
TD steps 3
Bin size 20

Table 4: BSuite hyperparameters shared by ROSMO and MuZero Unplugged.

For Conservative Q-Learning, similarly, we follow the official code6 and their hyperparameters, but
with our network as illustrated in Figure 5(right-d).

D.2.2 EXPERIMENT SETTINGS

The hyperparameters shared by ROSMO and MuZero Unplugged for Atari environments is given in
Table 3, and that for BSuite environments is given in Table 4. In addition, the behavior regularization
strength (α) used in ROSMO is chosen to be 0.2. The simulation budget for MuZero Unplugged is
20 for Atari and 4 for BSuite, and the depth is not limited. We use the official library7 to implement
the MCTS used in MuZero Unplugged and its parameters follow the original settings (Schrittwieser
et al., 2020).

For all experiments in Atari we use 3 seeds, and we use 5 seeds for all BSuite experiments. The
comparison between ROSMO and MuZero Unplugged is made apple-to-apple by only replacing the
policy and value targets as well as the regularizer.

6https://github.com/aviralkumar2907/CQL.
7https://github.com/deepmind/mctx

17

https://github.com/aviralkumar2907/CQL
https://github.com/deepmind/mctx

Deep Reinforcement Learning Workshop at NeurIPS, 2022

E BSUITE DATASET

We follow the setup of Gulcehre et al. (2021) to generate episodic trajectory data by training DQN
agents for three tasks: cartpole, catch and mountain car. We also add stochastic noise to the origi-
nally deterministic environments by randomly replacing the agent action with a uniformly sampled
action with a probability of ϵ ∈ {0, 0.1, 0.3, 0.5}. We use envlogger8 to record complete episode
trajectories through the training process. More details of the episodic dataset are provided in Table 5.
We also record the score of a random policy and an online DQN agent on the three environments in
Table 6, which can be used to normalize the episode return for evaluation.

Environments Number of episodes Number of transitions Average episode return

cartpole (ϵ = 0.0) 1,000 630,262 629.71
cartpole (ϵ = 0.1) 1,000 779,491 779.01
cartpole (ϵ = 0.3) 1,000 787,350 786.86
cartpole (ϵ = 0.5) 1,000 527,528 526.75

catch (ϵ = 0.0) 2,000 18,000 0.71
catch (ϵ = 0.1) 2,000 18,000 0.60
catch (ϵ = 0.3) 2,000 18,000 0.25
catch (ϵ = 0.5) 2,000 18,000 -0.04

mountain car (ϵ = 0.0) 500 82,342 -164.68
mountain car (ϵ = 0.1) 500 147,116 -294.23
mountain car (ϵ = 0.3) 500 138,262 -276.52
mountain car (ϵ = 0.5) 500 167,688 -335.37

Table 5: BSuite episodic dataset details.

random agent online DQN agent

cartpole 64.83 1,001.00
catch -0.66 1.00
mountain car -1,000.00 -102.16

Table 6: Episode return of random and online agent on BSuite environments.

F ADDITIONAL EMPIRICAL RESULTS

F.1 BENCHMARK RESULTS FOR MODEL-BASED METHODS

In Section 4.2 we have compared ROSMO with Behavior Cloning, Conservative Q-Learning, Critic
Regularized Regression and MuZero Unplugged on the offline Atari benchmark. The comparison
was made apple-to-apple as we standardized the neural network architecture and the optimization
steps (Appendix D.2). However, for other model-based offline methods such as MOReL (Kidambi
et al., 2020) and COMBO (Yu et al., 2021), which adopt a two-staging training procedure where
they first learn the MDP and then plan with the learned MDP, comparing the learning curves as
in Figure 3 is less feasible. Moreover, MOReL and COMBO are not readily suitable for the Atari
benchmark we use (MOReL only focuses on state-based tasks and COMBO’s implementation and
dataset are not released). Therefore, we implemented MOReL and COMBO and compared them
with the other methods. For both of them, we have tuned the hyper-parameters to report the results
of the best configuration. In the following sections we introduce our implementation details and
report our experimental results.

F.1.1 DYNAMICS MODEL

Both MOReL and COMBO need to learn the dynamics model in the first stage. Since we are work-
ing with image-based tasks, we use the DreamerV2-style (Hafner et al., 2021) framework to learn

8https://github.com/deepmind/envlogger

18

https://github.com/deepmind/envlogger

Deep Reinforcement Learning Workshop at NeurIPS, 2022

the dynamics model. In particular, we only enable the world model learning in the DreamerV2, com-
posed of the Recurrent State-Space Model, and the image, reward and discount predictor. We adapt
the pydreamer9 code base and follow the default hyper-parameters to train until convergence. We
also trained an ensemble of dynamics models for uncertainty quantification.

F.1.2 MOREL

Given the trained ensemble of dynamics models {f1, f2, . . . }, MOReL constructs a pessimistic
MDP (P-MDP) by cross validating the collected trajectories in each learned model and comput-
ing the ensemble discrepancy as disc(s, a) = maxi,j ||fi(s, a) − fj(s, a)||. If disc(s, a) is larger
than a certain threshold, the state s is regarded as the terminal state and r(s, a) is assigned to a
small value as penalty. Since the MOReL framework is agnostic to the planner, we employ a PPO
(Schulman et al., 2017) agent adapted from an open-source implementation10 with strong online RL
performance to learn from the P-MDP.

F.1.3 COMBO

We refer to the implementation of a public repository OfflineRL11 to adapt COMBO for Atari
Games. We use the trained DreamerV2 to generate rollout data, where the dynamics model is
randomly chosen from the ensemble for each rollout procedure. The rollout length is set to 10. The
policy training part is very similar to CQL, where the only difference lies in that COMBO takes a
mix of offline dataset and rollout dataset as input. The ratio between model rollouts and offline data
is set to 0.5. The other hyperparameters just follow our CQL implementation.

F.1.4 RESULTS

Following the setting in our ablation study, we choose MsPacman as a representative game to train
both MOReL and COMBO with shared world models. We run the experiments with 3 different
random seeds and report the mean and standard deviation. Table 7 shows that among all the model-
based methods, ROSMO achieves the best result on MsPacman12.

MOReL COMBO MZU ROSMO

MsPacman 1476.478±413.012 1538.33±79.62 4539.048±546.786 5019.762±608.768

Table 7: Episode return on MsPacman of different model-based offline RL algorithms.

9https://github.com/jurgisp/pydreamer
10https://github.com/vwxyzjn/cleanrl
11https://github.com/polixir/OfflineRL
12Due to the time and resource constraints, we only conducted experiments on this game during the first two

weeks of the rebuttal period. The results on more games will be ready soon.

19

https://github.com/jurgisp/pydreamer
https://github.com/vwxyzjn/cleanrl
https://github.com/polixir/OfflineRL

Deep Reinforcement Learning Workshop at NeurIPS, 2022

F.2 LEARNING CURVES OF INDIVIDUAL ATARI GAMES

Figure 6 shows the learning curves in terms of IQM episode return for individual Atari games to
compare ROSMO with other baseline methods, as complementary results for Figure 3. Table 8
records the numerical results of the IQM episode return of individual Atari games.

0

50

100

150

IQ
M

 e
pi

so
de

 re
tu

rn

Amidar

0

200

400

600

800

Gravitar

20

10

0

10

20
Pong

0

10000

20000

30000

IQ
M

 e
pi

so
de

 re
tu

rn

Asterix

0

200

400

600

800

1000
Jamesbond

0

5000

10000

15000

Qbert

0

100

200

300

400

500

IQ
M

 e
pi

so
de

 re
tu

rn

Breakout

0

2000

4000

6000

MsPacman

0

5000

10000

15000

20000
Riverraid

0 50 100 150 200
Number of Steps (in thousands)

0

1000

2000

3000

4000

IQ
M

 e
pi

so
de

 re
tu

rn

Frostbite

0 50 100 150 200
Number of Steps (in thousands)

0

10000

20000

30000
Phoenix

0 50 100 150 200
Number of Steps (in thousands)

0

2000

4000

6000

Seaquest

ROSMO MZU CRR CQL BC

Figure 6: IQM episode return of different algorithms on individual Atari games.

BC CRR CQL MZU ROSMO

Amidar 30.381±8.5 22.143±9.143 51.286±18.821 76.452±31.107 38.405±9.501
Asterix 2633.333±392.857 6344.048±698.214 26890.476±8496.429 29061.905±3667.857 25740.476±3857.143
Breakout 85.143±14.19 218.952±40.571 418.238±27.571 390.119±4.357 440.905±5.774
Frostbite 586.19±145.357 2854.286±113.571 3337.381±544.643 4051.19±107.5 3996.19±223.006
Gravitar 400.0±26.786 345.238±50.0 52.381±26.786 792.857±108.929 753.571±64.821
Jamesbond 402.381±55.357 513.095±46.429 102.381±14.286 602.381±40.878 639.286±44.643
MsPacman 2733.333±237.143 3736.905±214.643 2141.667±386.429 4539.048±546.786 5019.762±608.768
Phoenix 5901.905±198.571 5954.286±581.429 3510.238±1066.429 6103.81±1722.143 21550.476±2689.643
Pong 14.976±1.571 19.095±0.571 18.762±0.595 18.452±1.107 20.452±0.357
Qbert 7497.619±2221.429 12618.452±326.786 13114.286±797.321 13121.429±933.929 15848.81±1049.107
Riverraid 9614.048±528.929 12279.762±280.357 14887.143±1163.214 15156.905±1965.714 19399.286±407.143
Seaquest 1087.143±169.286 3879.048±421.905 2237.619±150.714 6745.238±170.0 6642.857±87.857

Table 8: Numerical results of the IQM episode return of individual Atari games.

20

Deep Reinforcement Learning Workshop at NeurIPS, 2022

F.3 COMPARISON ON ROSMO AND ONESTEP

Figure 7 shows the training curves of ROSMO and the OneStep variant (removing the behaviour
regularization term defined in Equation 11). These results extend the ablation in Figure 4(d) with
longer training time and more games. The comparison shows that ROSMO is able to achieve faster
convergence, while resulting in similar or slightly better final performance. We further conducted
experiments with only 1% data to verify the effect of behavior regularization when the data coverage
is low. As shown in Figure 8, with limited data, ROSMO performs significantly better compared
to OneStep. We can also observe that both methods suffer from over-fitting when the training goes
longer due to limited sample size. To effectively handle this issue, we could resort to policy evalua-
tion to early stop the training and select the best trained policy. Ideally in offline RL we need to use
offline policy evaluation methods (Voloshin et al., 2021) for this purpose, which is unfortunately not
trivial for difficult tasks. We leave this for future research since it is beyond the scope of this paper.

0

10000

20000

30000

IQ
M

 e
pi

so
de

 re
tu

rn

Asterix

0
1000
2000
3000
4000
5000
6000

MsPacman

0

5000

10000

15000

Qbert

0 50 100 150 200
Number of Steps (in thousands)

0

100

200

300

400

500

IQ
M

 e
pi

so
de

 re
tu

rn

Breakout

0 50 100 150 200
Number of Steps (in thousands)

20

10

0

10

20
Pong

0 50 100 150 200
Number of Steps (in thousands)

0

2000

4000

6000

8000 Seaquest

ROSMO OneStep

Figure 7: IQM episode return of ROSMO and OneStep.

1000

2000

3000

IQ
M

 e
pi

so
de

 re
tu

rn

Asterix

500

1000

1500

2000

2500
MsPacman

0

2000

4000

6000

8000

10000
Qbert

0 20 40 60 80
Number of Steps (in thousands)

0

50

100

150

200

250

IQ
M

 e
pi

so
de

 re
tu

rn

Breakout

0 20 40 60 80
Number of Steps (in thousands)

20

10

0

10

Pong

0 20 40 60 80
Number of Steps (in thousands)

0

1000

2000

3000

Seaquest

ROSMO OneStep

Figure 8: IQM episode return of ROSMO and OneStep trained only with 1% data.

21

Deep Reinforcement Learning Workshop at NeurIPS, 2022

F.4 LEARNING CURVES FOR BSUITE EXPERIMENTS

Figure 9 and Figure 10 show the learning curves of individual settings in our BSuite analysis for
noisy data model capacity.

0 50 100 150 200
1.0

0.5

0.0

0.5

1.0
noise = 0.0

0 50 100 150 200

noise = 0.1

0 50 100 150 200

noise = 0.3

0 50 100 150 200

noise = 0.5

ROSMO MZU

Figure 9: Learning curves of ROSMO and MuZero Unplugged on noisy catch environment as complementary
results for Table 1.

0 100 200
0

200

400

600

800

1000
cartpole, capacity=1

0 100 200

cartpole, capacity=4

0 100 200

cartpole, capacity=16

0 100 200

cartpole, capacity=64

0 100 200

cartpole, capacity=256

0 100 200

cartpole, capacity=1024

0 100 200

cartpole, capacity=4096

ROSMO MZU

0 100 200
1.0

0.5

0.0

0.5

1.0
catch, capacity=1

0 100 200

catch, capacity=4

0 100 200

catch, capacity=16

0 100 200

catch, capacity=64

0 100 200

catch, capacity=256

0 100 200

catch, capacity=1024

0 100 200

catch, capacity=4096

ROSMO MZU

0 100 200
1000

800

600

400

200

mountain_car, capacity=1

0 100 200

mountain_car, capacity=4

0 100 200

mountain_car, capacity=16

0 100 200

mountain_car, capacity=64

0 100 200

mountain_car, capacity=256

0 100 200

mountain_car, capacity=1024

0 100 200

mountain_car, capacity=4096

ROSMO MZU

Figure 10: Learning curves of ROSMO and MuZero Unplugged on individual BSuite environment at different
dynamics capacity, as complementary results for Figure 2(b).

22

	Introduction
	Background
	Notation
	Offline Policy Improvement via Latent Dynamics Model
	Monte-Carlo Tree Search for Policy Improvement

	Methodology
	Motivation
	A Simple and Efficient Improvement Operator
	Behavior Regularization for Policy Constraint
	Summary

	Experiment
	Hypothesis Verification
	Benchmark Results

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Algorithmic Details
	Pseudocode
	Training

	Analysis
	Model-based Offline Reinforcement Learning
	Experimental Details
	Hardware and Software
	Implementation
	Network Architecture
	Experiment Settings

	BSuite Dataset
	Additional Empirical Results
	Benchmark Results for Model-based Methods
	Dynamics Model
	MOReL
	COMBO
	Results

	Learning Curves of Individual Atari Games
	Comparison on ROSMO and OneStep
	Learning Curves for BSuite Experiments

