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Abstract

Generative models in finance face the dual challenge of producing realistic data
while satisfying strict regulatory and economic objectives, a requirement that
standard tabular diffusion models cannot provide. To address this difficulty, we
introduce Constrained Tabular Diffusion for Finance (CTDF), a novel integra-
tion of sampling-time feasibility operations with mixed-type tabular diffusion in
financial applications. By incorporating a training-free feasibility operator into the
reverse-diffusion sampling loop, CTDF enforces hard constraints for applications
such as simulation, legal compliance, and extrapolation. Experiments on large-
scale financial datasets demonstrate zero constraint violations and improvement in
scarce data utility. CTDF establishes a robust method for generating trustworthy
and compliant synthetic data, enabling compliant generative modeling.

1 Introduction

High-quality synthetic data is essential for the modern financial ecosystem, from global payment
networks to digital banking and commerce platforms. Within this domain, synthetic data has become
a vital tool, however, the utility of this data is contingent upon two core requirements: it must
not only capture the complex statistical patterns of real-world distributions but also adhere to the
complex landscape of business logic, economic principles, and regulatory guardrails governing
financial operations. Failure to enforce these constraints invalidates model outputs, undermines
strategic decision-making, and exposes an institution to significant compliance and operational risk.
Conversely, the ability to generate data that is both statistically faithful and structurally sound allows
for discovery, enabling more nuanced simulations of market dynamics and deeper insights into the
drivers of business performance.

Recent advances in tabular generation have shifted toward diffusion probabilistic models, which yield
better mode coverage and sample fidelity. While these approaches provide mixed-type high-fidelity
data generation [1–4], their stochastic sampling remains unconstrained, unable to enforce adherence
to strict constraints. Additionally, existing approaches to controlling generative output often fall short
in the financial domain. Model conditioning, such as classifier-free guidance, can only influence
outputs without strictly enforcing them [5]. An alternative, post hoc correction, involves generating a
full batch of samples and then filtering out invalid ones or projecting them onto the feasible set in a
single final step. This approach is inefficient and distorts the learned distribution [6].

To address these problems, we introduce Constrained Tabular Diffusion for Finance (CTDF), a
training-free feasibility operator applied at every reverse-diffusion step. By projecting intermediate
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samples onto the feasible region throughout the denoising trajectory, CTDF ensures hard-constraint
compliance without post-hoc filtering. This per-step enforcement keeps synthetic data aligned with
the base model’s learned joint structure, preserving fidelity while achieving zero violations on
regulatory and business rules.

2 Related Work

Figure 1: CTDF enforces constraints via the feasibility
operation. At each step, unconstrained samples are
mapped onto the compliance region.

Diffusion models have emerged as the
state-of-the-art approach for tabular syn-
thesis, with methods such as TabDDPM
[3], STaSy [7], TabSyn [1], and TabDiff [2]
improving fidelity across mixed numerical
and categorical data. In finance, FinDiff in-
troduced domain-specific architectures but
still lacked mechanisms for strict constraint
enforcement. Previous work on guided dif-
fusion (classifier-based or classifier-free)
[8, 5] improves conditional alignment but
cannot guarantee feasibility. Projection-based approaches such as PDM [9] and NSD [10] enforce
constraints during sampling in continuous and symbolic domains. We build on these works with, to
our knowledge, the first study to implement and evaluate per-step hard constraint enforcement in
mixed-type tabular diffusion with a focus on financial datasets and compliance-driven constraints.

3 Methods

CTDF extends a pre-trained tabular diffusion model with a feasibility operator applied at every reverse-
diffusion step. Unlike post-hoc filtering, this operation ensures each intermediate state remains within
the feasible set, yielding samples that are both statistically faithful and strictly compliant without
retraining. This approach relies on diffusion’s inherent parallel denoising, modeling all columns
simultaneously, updating the current sample jointly at each step. For this implementation, we use
TabDiff [2] as the base diffusion model, however, CTDF can be extended to other tabular diffusion
architectures. Algorithm 1: Constrained Tabular Diffusion

Input: Base model µθ , feasible set C, steps T
Output: Constraint-compliant sample x0

Sample xnum
T ∼ N (0, I); xcat

T ← m
for t = T, . . . , 1 do

Compute unconstrained update x̃t−1

Apply feasibility operator: xt−1 ← FC(x̃t−1)

return x0

Feasibility Operator. Let C = {x | hi(x) =
0, gj(x) ≤ 0} define the valid region. After
each unconstrained update x̃t−1 from the base
model, CTDF applies

xt−1 ← FC(x̃t−1),

mapping samples back into C. Repeated projection keeps the trajectory feasible throughout generation.

Mixed-Type Mapping. Financial data combine numerical and categorical features. For numerics,
feasibility reduces to Euclidean projection onto an affine polytope: Fnum(x̂) = argminx∈Cnum ∥x−
x̂∥2. For categorical, CTDF redistributes probability mass by zeroing invalid categories and renormal-
izing, equivalent to minimizing KL divergence to the model’s logits. This hybrid mapping preserves
fidelity while eliminating violations.

Functional and Symbolic Constraints. Beyond separable rules, many financial constraints couple
features (e.g., price ≥ 1000 if property_type = Single Family). CTDF enforces such condi-
tions by computing constraint boundaries from input features at each step and projecting only the
dependent column, supporting both symbolic logic and neural surrogates.

Fidelity evaluations metrics are described in Appendix D.

4 Experimental Results

Before assessing constraint satisfaction, we first validate the fidelity of our underlying unconstrained
diffusion model against several established benchmarks for tabular data synthesis. Table 1 summa-
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Model Marginal Fidelity Correlations ML Similarity

Shape Sim. (Avg) ↑ Dist. Dist. (Avg) ↓ Trend Score ↑ Detection AUC→ 0.5

CTGAN [11] 0.86483 0.11454 0.79725 0.99999
TVAE [12] 0.84638 0.09050 0.83098 0.99985
FinDiff [4] 0.94472 0.02916 0.87369 0.98654
Tabsyn [1] 0.97646 0.02027 0.94595 0.79479
CTDF (TabDiff [2]) 0.98787 0.01116 0.95376 0.67860

Table 1: Fidelity Benchmarks on the Housing Market Dataset. Our unconstrained base model
(TabDiff) is compared against standard generative models.

Rule Real (%) CTDF (%)

Listings < 2 43.7 0.0
Price ≥ 100 35.2 0.0
Min nights ≤ 30 6.5 0.0
Reviews/mo ≥ 1.5 70.2 0.0
Availability ≤ 180 43.7 0.0
All rules 99.9 0.0

Statistic Real µ±σ CTDF µ±σ

Nightly price ($) 207±109 229±120
Availability 88±56 42±56
Reviews/mo 4.1±3.0 1.9±0.7
Listings/host 1.6±1.0 1.1±0.3

Figure 2: CTDF vs. real Airbnb listings. Left: Scatter plot comparing real NYC listings (red) to
CTDF synthetic listings for the Balanced Growth Fund (blue). Green dashed lines mark regulatory
thresholds. CTDF samples fall entirely in the compliant lower-right quadrant. Right: Constraint-
violation rates (top) and descriptive-statistic match (bottom).

rizes the performance across three key dimensions: marginal distribution fidelity, pairwise column
correlations, and machine learning utility. The results demonstrate TabDiff’s superior performance
in all metrics, capturing distributional shapes, pairwise trends, and overall statistical patterns. This
provides a high-quality, state-of-the-art starting point for our constrained generation framework.
Extended experimental results are in Appendix E.

4.1 Housing market

To evaluate CTDF’s ability to generate realistic, constraint-compliant tabular data, we use the Airbnb
Open Data from major U.S. cities, a large-scale real estate dataset with 450k property listings [13].
This domain is especially well-suited for our setting: listings must satisfy a growing number of local
housing regulations, platform-level business rules, and investment constraints.

Compliant Portfolio Simulation To showcase CTDF’s scenario-analysis capabilities, we construct
the Balanced Growth Fund (BGF), a synthetic portfolio of high-end, legally compliant, entire-home
rentals in New York City. For this scenario, we fix the categorical columns to room_type = Entire
home/apt, city = New York City, and impose several hard constraints. To ensure adherence
to New York’s housing regulations (Local Law 18 [14]), we enforce primary-residency rules by
requiring calculated_host_listings_count < 2 and an annual availability_365 ≤ 180.
To reflect an actively managed, non-corporate listing, reviews_per_month is constrained between
1.5 and 15. Finally, to align with the fund’s investment strategy targeting the upper-tier market, we
set a minimum price ≥ $100 and minimum_nights ≤ 30.

Consequently, CTDF enables the simulation of portfolios that are simultaneously realistic, compliant,
and strategically aligned, unlocking unprecedented precision for risk modeling and scenario planning
in finance. The resulting output of CTDF is shown in Fig. 2, where a comparison between the real
housing market and the synthetic sample illustrates the compliance of two vital constraints. This
experiment demonstrates how CTDF enables precise simulation of legally compliant and strategically
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targeted real estate portfolios, empowering financial institutions to model regulatory exposure, test
investment hypotheses, and design products in alignment with evolving market rules.

4.2 Loan Analysis

We now turn to the distinct domain of consumer credit to test CTDF in a core financial domain. We
use a comprehensive Lending Club dataset, which contains historical data for all peer-to-peer loans
issued between 2007 and 2020 [15]. Fidelity results are available in Appendix E.1.

AI-Driven Credit Risk for Small-Business Loans Modern credit risk models rely on large, bal-
anced datasets to train powerful machine learning scoring functions. For small-business lending,
severe class imbalance (< 1% of loans) and regulatory caps on DTI, INT_RATE, and REVOL_UTIL
create two AI challenges: (1) data scarcity in the high-risk tail, and (2) bias when unconstrained
sampling produces implausible loans. CTDF solves both by generating a large, compliant syn-
thetic SB portfolio, enabling AI models to learn robust patterns exactly where real data is weakest.
We enforce per-step feasibility operation on every CTDF sample DTI ≤ 0.43, INT_RATE ≤
25%, REVOL_UTIL ≤ 90%, purpose = small_business. These caps align with U.S. under-
writing rules and ensure that no training example violates regulatory or economic constraints. By
contrast, unconstrained TabDiff generates only 2% valid SB loans at the 25% rate cap, leaving AI
models starved of critical high-spread examples.

Regime AUC-PR ↑ F1-score ↑ R.@5% FPR ↑

CTDF–SB 0.2570(18) 0.0305(00) 0.3039(13)
Uncon–SB 0.1820(23) 0.0305(00) 0.2093(68)
Full-SB 0.1704(12) 0.0734(24) 0.2093(21)
Orig–SB 0.1403(05) 0.0329(06) 0.1643(31)
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Figure 3: Top: Cross-validated performance
metrics on the 2019–2020 Q1 small-business
test set. Bottom: Cross-validated ROC curves
with shaded ±1 std across folds.

We evaluate our method by comparing the perfor-
mance of a CatBoost early-default classifier trained
under four data regimes. The Orig-SB regime es-
tablishes a baseline using only the limited real small-
business loans (∼ 4k rows). The Unconstr-SB regime
tests naive data augmentation by adding syntheti-
cally generated but non-compliant loans (∼ 10k total
rows). The Full-SB regime trains the model on the
entire real loan dataset (∼ 350k rows) and tests its
performance on the SB segment. Finally, the CTDF-
SB regime demonstrates our approach, augmenting
the real SB loans with 500K regulatory-compliant
synthetic samples generated by CTDF. All models
are trained on pre-2018 data, validated on 2018, and
evaluated on 2019–2020Q1 SB loans only.

In the full-data regime, fewer than 1% of training
rows have INT_RATE ≥ 20%, so the model under-
fits the high-spread tail where defaults concentrate.
CTDF’s compliant augmentation supplies abundant,
realistic examples in this critical region, sharpening
the AI model’s boundary and reducing both bias and
variance in predicted default risk. Figure 3 demonstrates that CTDF-SB yields the best AI perfor-
mance on every metric, e.g. a +0.09 uplift in AUC-PR and a 27% relative increase in Recall@5%
FPR versus Full-SB. This demonstrates that constraint-aware synthetic data is not just compliance
insurance but AI-grade data augmentation, enabling financial models to learn from the rare, high-risk
patterns that matter most.

5 Conclusion

We introduce Constrained Tabular Diffusion for Finance (CTDF), a training-free framework that
integrates mapping-based feasibility operations into each sampling step of a mixed-type diffusion
model. CTDF enforces hard affine and logical constraints with zero violations while preserving
distributional fidelity and downstream utility. Our experiments on large-scale datasets serve as
illustrative case studies, showcasing CTDF’s strengths in scenario analysis, stress testing, and risk
modeling. More broadly, the ability to generate compliant synthetic data opens new avenues across
finance and beyond, laying the foundation for deploying constraint-aware generative modeling in
diverse financial applications.
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A Extended Related Works

Diffusion models have recently emerged as a dominant approach for tabular data synthesis. TabDDPM
introduced separate kernels for numerical and categorical features [3], while subsequent models such
as STaSy proposed self-paced curricula to enhance sample fidelity [7]. To improve efficiency, TabSyn
performed diffusion in a compressed latent space learned via a VAE encoder [1]. TabDiff further
addressed feature heterogeneity by employing feature-wise learnable noise schedules, enabling a
single continuous-time model to adapt to the distributional characteristics of each column [2]. In the
financial domain, state-of-the-art diffusion models have demonstrated growing promise. However,
their stochastic sampling procedures provide no guarantees of adherence to the stringent business
rules and regulatory requirements inherent to financial data. To mitigate this, FinDiff incorporated
domain-specific architectures and financial pretraining to improve synthesis quality on structured
financial datasets [4]. However, it still lacks mechanisms for enforcing strict constraints and cannot
guarantee regulatory compliance during sampling.

To ensure outputs follow specific attributes, recent work has focused on integrating guidance directly
into the diffusion process. Diffusion-based guidance methods steer samples toward desired attributes
by modifying the score. Classifier guidance augments the score with the gradient of a pretrained
classifier to bias generation toward a target class [8], while classifier-free guidance interpolates
between conditional and unconditional scores removing the need for an external classifier [5]. Such
guidance improves alignment with conditioning variables but does not provide hard, per-sample
feasibility guarantees. Other work handles this with the integration of constraint optimization within
the reverse diffusion process by recasting sampling as a constrained optimization problem. Projected
Diffusion Models (PDM) introduced this idea for continuous data, using a projection operator after
each denoising step to keep samples within a feasible set [9]. This projection-based approach was
generalized across data types with the Neurosymbolic Diffusion framework of NSD [10]. We build on
these works with, to our knowledge, the first study to implement and evaluate per-step hard constraint
enforcement in mixed-type tabular diffusion with a focus on financial datasets and compliance-driven
constraints.

B Preliminaries

Diffusion Models. Generative diffusion models [16–18] have revolutionized data synthesis, gener-
ating high-fidelity, state-of-the-art image and video samples [19, 20]. Diffusion models consist of a
forward Markov chain that gradually corrupts a clean sample x0 ∼ pdata to approach the noisy distri-
bution xT ∼N (0, I), followed by a learned reverse chain that reconstructs x0 from xT . Formally,
the forward process {xt}Tt=0 is determined by the kernel q(xt | xt−1) = N

(√
1− βt xt−1, βtI

)
,

where the variance schedule {βt} increases monotonically. The reverse process is guided by a
neural network sθ(xt, t) trained to predict the score, ∇xt

log pt(xt), where pt is the marginal data
distribution at time t. This score function defines a deterministic generative process via the probability
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flow ODE. To generate a sample, one solves this ODE backwards in time from t = T to t = 0,
typically with a numerical solver. A representative update step is:

xt−∆t = xt + g(t)sθ(xt, t)∆t

where g(t) is a function of the noise schedule. This procedure deterministically transforms a noise
vector xT into a data sample x0 that approximates the true data distribution pdata.

Discrete Diffusion Models. Although diffusion was initially developed for continuous data, recent
works extend this concept from continuous vectors to discrete token sequences [21, 22]. Each token
is a one-hot vector x∈{0, 1}V over a vocabulary of size V , where a sample is a length–L sequence
x0 = (x

(1)
0 , . . . ,x

(L)
0 ). The forward Markov chain replaces tokens with noise at a time-dependent

rate βt given by: q(xt | xt−1) = (1− βt)xt−1 + βt ν. Here, ν is either a uniform distribution [23]
or a dedicated [MASK] symbol [22]. The reverse process is modeled as

xt−∆ =

{
Cat (xt−∆; xt) , if xt ̸= ν

Cat
(
xt−∆;

β(t−∆) ν+(β(t)−β(t−∆)) sθ(xt,t)
β(t)

)
, if xt = ν

where the learned denoiser, sθ(xt, t) approximates the sample x0 and xt is the probability distribution
over V for each token in the sequence.

Mixed-Type Tabular Diffusion Models. Tabular data combines numerical x(num) ∈ RN and
categorical x(cat) ∈

∏C
k=1 ∆Kk

features. Purely continuous diffusion fails to capture categorical
structure, and purely discrete diffusion cannot represent real-valued geometry. Early tabular diffusion
approaches tackled this by running separate processes for each feature type [3, 24], or by first
embedding every row into a continuous latent space via a VAE and then diffusing there [1, 25],
bypassing the need to handle categorical noise kernels directly. More recent work (TABDIFF) [2]
models an entire table row xt as a trajectory of a continuous-time diffusion process and assigns to each
column j an independent, learnable noise schedule αj(t) ∈ [0, 1]. A shared Transformer encoder,
conditioned on the partially corrupted row xt and a time embedding τ(t), produces a time-aware
representation ht = fθ(xt, τ(t)). Two specialized heads then predict (i) Gaussian score estimates
for numerical features and (ii) categorical logits for discrete features. During generation, a reverse
step denoises the numerical features while categorical tokens are resampled from the predicted logits,
enabling a single model to reconstruct mixed-type tables jointly.

C Feasibility Operation for Mixed-Type Financial Data.

As financial data frequently contains both numerical and categorical features, the choice of the
distance metric D is critical and must be tailored to the mixed-data-type nature. The distance metric
is a sum of modality-specific distances:

D(x, x̂) = Dnum(x
num, x̂num) +Dcat(x

cat, x̂cat).

Numerical constraints in finance are typically affine, defining a convex polytope Cnum = {x ∈ RN |
Ax ≤ b}. The natural distance metric for real-valued vectors is the squared Euclidean distance,
Dnum(x, x̂) = ∥x− x̂∥2. The mapping is thus:

FCnum(x̂num) = argmin
x∈Cnum

∥x− x̂num∥2.

For categorical features, the diffusion model outputs a vector of logits for each column, which
gets interpreted as an unnormalized log-probability distribution over the possible categories. Let
p̂k = softmax(ẑk) be the predicted probability vector for the k-th categorical feature.

The appropriate distance metric for probability distributions is the Kullback-Leibler (KL) divergence.
The mapping finds a new distribution qk supported only on the valid categories Ωk that is closest to
the model’s prediction p̂k:

FCcat
k
(p̂k) = argmin

qk∈∆Kk
,supp(qk)⊆Ωk

KL(qk∥p̂k).

The solution to this KL operation has a simple and intuitive closed form: set the probabilities of all
invalid categories to zero and re-normalize the probabilities of the valid ones. This preserves the
relative likelihoods assigned by the model within the valid subset.
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D Fidelity Evaluation

We evaluate generated data fidelity using four metrics. Marginal distribution quality is measured
by average Shape Similarity; the average of Kolmogorov-Smirnov (KS) for continuous columns,
and Total Variation Distance (TVD) for categorical columns. Distributional Distance consists of
the average 1D-Wasserstein distance for continuous columns and Jensen-Shannon (JS) divergence
for categorical columns. Bivariate dependencies are assessed via the Trend Score, which compares
the pairwise Pearson’s column correlations between the real and synthetic datasets for continuous
columns and TVD for categorical columns. Finally, overall similarity is measured by the Detection
AUC, the ROC-AUC score of a CatBoost classifier [26], which is trained to distinguish real from
synthetic data, where 0.5 indicates perfect indistinguishability. The baseline benchmarks for all
models were performed using their default parameters and using the same 90/10 train-test split, where
the fidelity metrics were computed using the test split. All the experiments were performed using
NVIDIA A30 GPUs.

E Extended Experimental Results

E.1 Lending Data Fidelity

We further evaluate the Fidelity of TabDiff for the Lending club dataset in Table 2. We observe
improved marks in all fidelity sub-categories. This large-scale dataset, with nearly 3 million records,
provides a granular view of borrowers’ financial health, loan characteristics, and credit history.
After preprocessing, our working dataset features 41 columns, representing a complex mixed-type
environment. This includes 22 numerical features capturing both continuous and discrete values,
such as loan amount and interest rates, alongside 19 categorical attributes that detail loan status and
purpose.

Model Marginal Fidelity Correlations ML Similarity

Shape Sim. (Avg) ↑ Dist. Dist. (Avg) ↓ Trend Score ↑ Detection AUC→ 0.5

CTGAN [11] 0.84188 0.10975 0.80008 0.99997
TVAE [12] 0.79720 0.00867 0.87228 0.99845
FinDiff [4] 0.96711 0.00637 0.94790 0.93186
Tabsyn [1] 0.99402 0.01338 0.96397 0.86901
CTDF (TabDiff [2]) 0.99345 0.00002 0.96519 0.70553

Table 2: Quantitative Fidelity Benchmarks on the Lending Club Dataset. CTDF’s base model
(TabDiff) is compared against standard generative baselines. Arrows indicate the preferred direction
for model quality.

E.2 Equitable Pricing Auditing and Algorithmic Gentrification Correction Simulation

Metric Real Unconstrained CTDF

Shape ↑ – 0.988 0.983
Dist. Dist ↓ – 0.011 0.022
Trend ↑ – 0.948 0.946
Constraint Viol. (%) 42.64 42.34 0.0

Table 3: Constraint violation and fidelity results
for unconstrained generation and CTDF.

Housing price models can absorb and amplify
location effects tied to historical demographic pat-
terns, leading to systematic over- or under-pricing
across neighborhoods, referred to as algorithmic
gentrification. In this work, we use CTDF to
(i) measure these disparities and (ii) simulate
corrective policies inside a controlled generative
setting relevant to financial risk, revenue, and
fairness. We train a regression network fθ on
intrinsic listing attributes (amenities, size, host
/ review features), deliberately excluding latitude, longitude, neighbourhood_group, and
neighbourhood. Its prediction p̂IFP = fθ(x

intr) estimates a location-neutral (intrinsic) price. The
inequity score is e = p − p̂IFP, with e > 0 interpreted as an over-pricing premium and e < 0 as
discounted. Aggregating e over neighborhoods exposes systematic disparities.
An unconstrained TabDiff model is trained on the NYC subset over the full joint of intrinsic
attributes, neighborhood indicators, and observed price p. To simulate the removal of premiums, we
enforce the hard constraint e ≤ 0. During reverse diffusion, each denoising step applies a per-step
mapping on the price column, leaving all other attributes untouched. Samples already satisfying
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Real Synthetic Unconstrained CTDF

Figure 4: CTDF eliminates location-based price inequity in the NYC housing market. The inequity
score (red = overpriced, blue = underpriced) reflects the difference between a listing’s actual price
and a location-blind "fair" price. Left: The real market shows significant price inflation in certain
neighborhoods. Center: An unconstrained generative model learns and reproduces this geographical
bias. Right: By constraining generated prices to match fair prices, CTDF creates a synthetic dataset
purged of this bias, demonstrating its utility for algorithmic fairness and auditing.

e ≤ 0 pass through unchanged; only over-priced listings are mapped to their intrinsic surrogate. For
this application, both fθ and the constraint are restricted to listings with neighbourhood_group
= MANHATTAN; other NYC borough listings are excluded from fitting the surrogate and from
constrained sampling.

Metric Real Unconstrained CTDF

Shape ↑ – 0.99344 0.94231
Dist. Dist. ↓ – 0.01651 0.11876
Trend ↑ – 0.95996 0.92126
Viol. (%) 90.51 90.22 0.0

Figure 5: Top: Quantitative metrics (shape, dis-
tance, trend fidelity, and constraint violations).
Bottom: Distribution of the composite Credit Risk
Score. Lower values indicate safer borrowers.
Non-prime loans (grey) cluster above 0; prime
loans (blue) lie below; CTDF’s synthetic prime
loans (red outline) track the real prime profile.

Figure 4 (Real, Synthetic Unconstrained, CTDF)
shows that the unconstrained model faithfully
reproduces the spatial over-pricing pattern (pos-
itive tail in e and red neighborhoods), indicating
the disparity is learnable. Under CTDF, the posi-
tive tail is cleanly truncated while neighborhood
structure and variability remain. Table 3 con-
firms that constraint violations drop to 0% while
marginal, distributional, and dependency fidelity
metrics stay near the unconstrained baseline (a
small divergence increase reflects removal of
the premium tail). This yields a plausible coun-
terfactual “fair-price” synthetic market stripped
of location-driven markups. This simulation
demonstrates CTDF’s ability to offer a transpar-
ent mechanism to audit and then simulate alter-
native pricing regimes via systematic constraint
enforcement.

The fidelity benchmarks presented in Table 2
confirm that the underlying TabDiff model again
establishes a state-of-the-art performance.

E.3 Simulating
a Compliant Prime Lending Portfolio

In consumer lending, lenders must prove that
every product assignment is anchored in legiti-
mate, measurable credit risk factors and never in
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prohibited attributes under laws such as the Equal Credit Opportunity Act (ECOA) [27]. To illustrate
how a generative model can help satisfy a specific, policy-driven risk appetite, we tasked CTDF with
synthesizing a portfolio drawn exclusively from the highest credit-quality segment of the market,
a slice so small in the real data that traditional sampling is impractical for stress testing, capital
planning, or training specialized risk models.

CTDF enforces four hard constraints on every synthetic loan: (1) FICO_RANGE_LOW ≥ 720 to
guarantee prime-tier credit; (2) DTI ≤ 36 to cap leverage; (3) VERIFICATION_STATUS ∈ {Verified,
Source Verified} to reduce fraud risk; and (4) SUB_GRADE restricted to the A and B buckets. Only
10% of the original dataset meets all four rules simultaneously, yet CTDF generates 300k samples with
zero violations, demonstrating that the model can learn and obey complex, multi-column business
logic inside a narrowly defined risk band.

Feature (Mean) Real (All) Real (High DTI) Synth. Hyp.

Loan Amount ($) 15,611.26 17,727.61 17,502.75
Interest Rate (%) 13.00 15.00 13.00
DTI 19.79 52.05 41.05
FICO Score (Low) 702.86 706.76 705.58
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Figure 6: Top: Descriptive statistics Bottom:
Realistic extrapolation of the DTI/FICO rela-
tionship; real joint density (blue) and synthetic
constrained samples (red)

To gauge overall creditworthiness beyond the im-
posed boundaries, we construct a simple composite
credit risk score by standardizing each feature, then
summing the risk-increasing factors: interest rate,
credit inquiries in the past six months, revolving-
credit utilization, number of active bank-card lines,
total revolving accounts, number of trade lines
opened in the past 12 months, presence of a debt-
settlement flag, and shorter time since the last delin-
quency, while subtracting the risk-reducing factors:
annual income, percentage of accounts that have
never been delinquent, and length of employment.
Lower scores mark safer profiles. We then plot
the distribution of this composite score for three
sets: the broad non-prime population, the observed
prime slice that meets all four hard constraints in
the real data, and the synthetic prime loans pro-
duced by CTDF. Figure 5 displays these distri-
butions, showing how the synthetic prime curve
closely tracks the real prime histogram while re-
maining well-separated from the non-prime mass.

E.4 Hypothetical
Scenario Planning and Extrapolation

Financial models must often reason about scenarios
absent from historical data. Our analysis of the
Lending Club dataset revealed one such "data desert": no records for mortgage-holders with both
a high annual income (>$300k) and a high debt-to-income ratio (DTI > 40). To test if a generative
model could fill this gap, we used CTDF for extrapolating 100k synthetic loans under these exact
constraints.

The table results in Figure 6 reveal a sophisticated, non-obvious profile. While the synthetic borrowers
sought large loans similar to the real high-DTI segment, the model assigned a moderate 13% interest
rate instead of a punitive one. This indicates that CTDF learned a realistic economic trade-off:
the borrowers’ extreme income acts as a powerful risk mitigator, offsetting their high leverage and
qualifying them for more favorable terms.

By ensuring extrapolated scenarios are grounded in learned economic principles, even uncovering
non-naive trends. Hence, it builds the necessary trust for financial institutions to use synthetic data
for strategic decision-making.
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