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Abstract

The architecture and information processing of convolutional neural networks was
originally heavily inspired by the biological visual system. In this work, we make
use of these similarities to create an in silico model of neurodegenerative diseases
affecting the visual system. We examine layer-wise internal representations and
accuracy levels of the model as it is subjected to synaptic decay and retraining
to investigate if it is possible to capture a biologically realistic profile of visual
cognitive decline. Therefore, we progressively decay and freeze model synapses in
a highly compressed model trained for object recognition. Between each iteration
of progressive model degradation, we retrain the remaining unaffected synapses on
subsets of initial training data to simulate continual neuroplasticity. The results of
this work show that even with high levels of synaptic decay and limited retraining
data, the model is able to regain internal representations similar to that of the
unaffected, healthy model. We also demonstrate that throughout a complete cycle
of model degradation, the early layers of the model retain high levels of centered
kernel alignment similarity, while later layers containing high-level information
are much more susceptible to deviate from the healthy model.

1 Introduction

Deep learning models were originally inspired by the hierarchical organization of the brain’s neural
circuits, where lower-level features are progressively combined to form higher-level abstractions
[1]. Convolutional neural networks (CNNs) have proven effective in computer vision tasks by using
local receptive fields, which resembles the organization of visual processing in the mammalian visual
cortex. The intersection of neuroscience and deep learning is a rapidly evolving field that seeks to
leverage insights from the brain’s structure and functioning to enhance the design and performance of
deep learning algorithms. However, in recent years research has begun to explore the reverse direction
of this relationship aiming to improve our understanding about the brain by using deep learning
models[2, 3, 4, 5]. Not only has deep learning been used to draw parallels to the healthy brain,
but also to simulate the cognitive deficits that accompany neurodegenerative diseases by imposing
axonal or neuronal injury to deep learning models [6, 7]. This study uses the established similarities
between CNNs and the biological visual system to simulate the progression of neurdegenerative
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disease, for example, Alzheimer’s disease (AD). In AD, one of the hallmark pathological features
is the abnormal accumulation of tau protein in the form of neurofibrillary tangles. These tangles
disrupt synaptic function, compromise synaptic plasticity, and contribute to cognitive decline. These
disruptions contribute to the cognitive deficits observed in individuals with AD, such as impaired
visual cognition, memory impairment, and executive function [8, 9, 10]. In this work, we simulate the
effects of the accumulation of tau in the visual cortex by progressively decaying an increasing number
of model synapses (weights) in conjunction with a biologically realistic retraining method (Fig.
1). The progressive weight decay is motivated by the synaptic degradation and impaired synaptic
transmission caused by neurofibrillary tangles [11, 12]. Furthermore, we simulate neuroplasticity by
retraining the model on small sets of original training data. Moreover, in this work, we examine the
internal representations the model learns during continual weight decay and retraining. We investigate
this by using centered kernel alignment (CKA) to investigate whether the model maintains similar
representations during injury and retraining.

Figure 1: Pipeline of degradation to the CNN. Grey lines represent synapses that have been decayed.
Only healthy, unaffected weights are subjected to retraining. All decayed weights remain frozen and
will continue to decay with each iteration of model degeneration.

2 Methods

2.1 Models and data

The model used to simulate the ‘healthy’ visual system is based on the VGG-19 architecture trained
on the CIFAR10 dataset [13, 14]. The initial train and test split used is 50,000/10,000 images,
respectively. Previous studies have indicated that VGG-19 models exhibit a significant degree
of over-parameterization, as evidenced by their ability to maintain high levels of accuracy even
after undergoing significant pruning [15, 16]. This is attributed to an excessive number of weights
(synapses) and neurons, leading to the learning of redundant pathways. In contrast, the brain, while
also displaying some features of over-parameterization, operates under more stringent constraints
such as energy consumption and physical space limitations [17, 18]. To account for potential spurious
outcomes resulting from over-parameterization rather than the plasticity of the model, we performed
experiments with a highly compressed version of a VGG19-like architecture. Therefore, compression
of the original VGG-19 architecture was performed using structured pruning techniques based on
graph dependencies as described by Li et al. and Fang et al. [19, 20]. More precisely, filters and their
corresponding weights were simultaneously eliminated based on their L1 norm until the model’s
inference speed, measured in floating-point operations per second (FLOPS), was enhanced by a
predefined margin. This regime led to a compressed model that only contained 8.54% of the original
number of parameters. Therefore, all experiments were conducted using this highly optimized, more
constrained version of VGG-19. This model has five convolutional blocks, each followed by a batch
normalization layer. The final layers of the model consist of four max-pooling layers and a softmax
activation with ten nodes corresponding to the ten classes in the dataset. Our model was pretrained
on ImageNet and fine-tuned on CIFAR10 for 100 epochs with a learning rate of 0.001, using a batch
size of 128, and a stochastic gradient descent optimizer with momentum 0.9.

2.2 Synaptic decay and retraining

To model tau accumulation, model synapses were decayed exponentially, as given in the following
equation as

∑N
i=1

1
N Tγi, where N is the number of iterations of injury that is applied to the model,

T is the total number of model synapses to be subjected to atrophy, and γ is the decay constant by
which weight values are multiplied by. In this study, T is the number of synapses in the convolutional
and linear layers of the model, and we performed experiments with N=10 and γ=0.5. These values
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were found to be representative of injury resolution while remaining computationally cost-effective.
Therefore, in the first iteration of injury 10% model synapses were decayed by a factor of 0.5. In
the second iteration of injury, an additional 10% of so-far unaffected model synapses were decayed
by a factor of 0.5, while the initially decayed weights were decayed by another factor of 0.5. This
process was repeated until all model weights given by T had been affected. After each iteration of
injury, the remaining healthy weights in the model were retrained, while decayed weights remained
frozen at the same value. This simulates the continual neuroplasticity of the brain, even when affected
by disease. We investigated using retraining sets of data containing 5000, 1000, and 100 images
randomly selected from the training set used for initial model training. In these subsets of data,
the images are not balanced by class as to more biologically represent the continual learning of
information processed by the biological visual cortex.

2.3 Centered kernel alignment

Centered kernel alignment (CKA) is an established method used to compare internal model repre-
sentations of deep neural networks [21]. Though similarities between representations of deep neural
networks have been measured in various ways, CKA is notably the most consistent and is one of the
only methods that has succeeded in finding correlation in representations between models that are
identical in architecture and training regimes but have different initialization seeds [22, 23, 24]. In this
study, we utilize CKA to analyze if the model re-establishes similar representations of information
as compared to the healthy model after being decayed and retrained. This provided insight and
quantification as to whether the model is able to make use of its cognitive reserve and plasticity
abilities to learn new pathways for the task of object recognition under increasing levels of injury.

3 Results

3.1 Accuracy

Figure 2: Model accuracy and standard devia-
tion as an increasing number of weights are
decayed, and the remaining ‘healthy’ weights
are retrained. Accuracy curves are shown for
the different subsets of retraining data. Each
subset is randomly sampled from training data
and is not balanced between classes. Average
accuracies are reported for 10 different cycles
of model degeneration.

The performance of our model was systematically
evaluated as it underwent ten iterations of synaptic
decay and retraining. This iterative process aimed to
investigate the impact of increasing synaptic decay
on the model’s accuracy and its ability to recover and
adapt during the subsequent retraining process with
different-sized subsets of retraining data. The initial,
compressed model achieved an accuracy of 93.3% on
the test dataset. After the first 10% of model synapses
were decayed, the model performance was reduced by
about 25% accuracy. Upon retraining, the three differ-
ent training regimes revealed differences in accuracy
improvements. When trained for one epoch with
5000 images, 1000 images, and 100 images, model
accuracies improved to 83.0% ± 1.87%, 76.6% ±
6.06%, and 70.8% ± 21.8%, respectively. The large
standard deviations in accuracy at high injury lev-
els can be attributed to extreme synaptic sparsity that
arises as most of the model is degenerated. If a salient
weight gets degenerated and frozen, the sparse mod-
els may not be able to recover accuracy even with
retraining. These findings seem biologically reason-
able in that less training data leads to less of a regain
of accuracy. However, even at high levels of injury
(i.e., 60% of synapses are decayed), we found that
one epoch of retraining with 1000 images led to a
drastic increase in performance from 15.0% ± 7.01% accuracy in its decayed state to 66.4% ± 6.12%
accuracy after retraining. These trends continue throughout the full cycle of degeneration, although
at injury levels of 70% and higher, the model with only 100 retraining images is unable to regain
accuracy levels above chance.
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3.2 Internal representations

While accuracy shows that the model is able to reorganize in terms of task performance, it does not
provide any information if the model is regaining the same internal representations as the healthy
model. Therefore, we investigated this aspect using CKA for each layer in the model as it went
through the cycle of degeneration. These findings for the model retrained on the subset of 1000
images at four different levels of injury are provided in Figure 3. Even at high levels of model
degeneration (i.e. 80% synapses have been decayed and frozen), the early layers in the model
retain high representational similarity to those of the healthy model. Contrarily, the later layer
representations appear to be more vulnerable to breaking down as injury is applied. When 60%
of model weights have been decayed and frozen, layers 22-48 only retain CKA similarity values
of 0.4 and below, as seen in the third panel of Figure 3C. However, even with only one epoch of
retraining, these CKA values of later layers recover decent levels (about 0.6) of representational
similarity. These patterns in results are consistent for all three retraining regimes, although more
similarity to the healthy model is regained with the larger retraining subset.

Figure 3: CKA matrices providing a layer-wise comparison of representations between the baseline
model and the model with the retraining subset of 1000 images at increasing levels of synaptic decay
and retraining. Row (A) shows CKA analysis between the healthy model and the decayed model.
Row (B) shows CKA analysis between the healthy model and the retrained model. Row (C) displays
the diagonal (1:1 layer comparison) CKA values for each injury level. Blue points denote the decayed
model’s layers, and orange points denote the layers after retraining.

4 Discussion

The results of this work show that, while weight decay led to initial reductions in accuracy, the
model exhibited a degree of resilience and adaptability during retraining, even with limited amounts
of unbalanced retraining data. These initial results raised the question if retraining results in the
formation of new pathways for achieving the objective function, even as an increasing number of
parameters are decayed and frozen. Alternatively, does retraining involve learning how to effectively
transmit information through these compromised synapses? Monitoring the indices of the highest
magnitude weights within various layers demonstrated that both scenarios appeared to be occurring.
More precisely, we found that the indices of maximal values weights changed, and therefore a new
pathway for information flow was utilized. However, we also observed occasionally that the index of
maximal weights did not change, but the values of the weights themselves did. Thus, it can be inferred
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that the model is learning new weight distributions to accomplish object recognition. Interestingly,
even while the internal structure of the model changes, the same representations are recovered each
time the model undergoes retraining. Therefore, internal representations seem not to rely as much
on model structure but on the training task. Additionally, we found that the similarity of earlier
layers remains largely unaffected even at higher levels of injury. This can be explained by locality
in earlier layers when compared to more compressed global information in deeper layers, where
representational similarity is essentially a function of model accuracy. It has been shown that the
accumulation of tau leads to degradation and eventual atrophy of synapses, which can build for years
before clinically presenting in cognitive decline [25]. It is assumed that the cognitive reserve and
plasticity in the brain allow for compensation of these decaying pathways [26]. The results of this
work show that CNNs can behave in similar ways by finding new pathways and scaling information
to retain object recognition performance. Thus, we present a biologically inspired in silico model
equipped with a realistic retraining step to represent continual learning as well as an increasing load
of decay that precedes full atrophy to represent tau accumulation and eventual atrophy.
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