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ABSTRACT

A mechanism of effective communication is integral to human existence. An es-
sential aspect of a functional communication scheme among a rational human
population involves an efficient, adaptive, and coherent apparatus to convey one’s
goal to others. Such an effective macro characteristic can emerge in a finite popu-
lation through adaptive learning via trial and error at the individual (micro) level,
with nearly consistent individual learning faculty and experience across the pop-
ulation. In this paper, we study and hypothesize pertinent aspects of glossoge-
netics, specifically primal human communication mechanisms, through compu-
tational modeling. In particular, we model the process as a language “guessing”
game within the fabric of a decentralized, multi-agent deep reinforcement learn-
ing setting, where the agents with local learning and neural cognitive faculties
interact through a series of dialogues. Our homogeneous agents seek to achieve
the principle of least effort and overcome the poverty of stimulus through efficient
concept selection, guided feedback and mirror learning. In our examinations, we
observe the emergence of successful and structured communication among static
and dynamic agent populations through guided, reinforced and continual learning.

1 INTRODUCTION

Effective communication via signals is the key to success in a cooperative world, where the goal is
to complete the desired tasks by efficiently coordinating among themselves. A functional communi-
cation language should be nearly unambiguous, efficient, easily acquirable (culturally transmitted),
and rooted in the environment. Language Chomsky (2006); Montague et al. (1970); de Saussure
(2011) is an autonomous, culturally transmitted, complex adaptive system realised through multi-
ple modalities—either vocal or gestures—that translate mental representations, which are internal
structures, to utterances that represent the surface structure. In cooperative AI and cognitive science,
language games Wittgenstein (1954); David (1969); Arrington (1954); Steels (1997; 2003); Wag-
ner et al. (2003) which was motivated by the picture theory of language Wittgenstein (1954) and
operant conditioning theory Skinner (1986) are empirical computational models developed to study
the origin, evolution, and acquisition of human languages. The game setting involves a bottom-up
simulation model which usually consists of multiple artificial agents (neural or statistical) equipped
with sufficient cognitive/inductive reasoning abilities and sometimes sensory-motor systems inter-
acting in a shared environment through vocal or non-vocal means and subsequently learning from
the outcomes of the interactions. The language structures that emerge in these settings never entirely
mirror human languages, since human languages are refined through millions of years of cultural
evolution. However, language games can provide deep insights into the emergence of various as-
pects of human language, such as syntactic structures, compositionality, word order, generalization,
brevity, stability, statistical regularity, complexity, coherence, and linguistic divergence.

With the recent advancement in the field of deep learning Mnih et al. (2013) with respect to compu-
tational tractability, one could observe rigorous applications of deep learning and deep reinforce-
ment learning involving multiple agents in language games Lazaridou & Baroni (2020); Dafoe
et al. (2020), especially Lewis signalling/referential/discrimination games Lazaridou et al. (2017);
Havrylov & Titov (2017), reconstruction games Kharitonov et al. (2020), navigation/action games
Kajić et al. (2020); Mordatch & Abbeel (2018) and visual communication games Qiu et al. (2022)
without customized tweaking. The central feature of all the existing work is that it belongs to the
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”Naming game” category, where the semantic aspect used to distinguish the topic from other con-
text elements is clear and free from ambiguity. A few of these focus on the emergence of coherent
communication protocols from scratch (tabula rasa) in a multi-deep-agent setup Sukhbaatar et al.
(2016); Foerster et al. (2016); Havrylov & Titov (2017); Lazaridou et al. (2017; 2018). A few others
target the pertinent linguistic universals of natural languages, such as the symbolic grounding Mor-
datch & Abbeel (2018); Kottur et al. (2017); Lin et al. (2021), compositionality Mordatch & Abbeel
(2018); Kottur et al. (2017); Li & Bowling (2019); Ren et al. (2020); Wang et al. (2016); Andreas
(2018), generalization Baroni (2020); Chaabouni et al. (2020), brevity regularity Rita et al. (2020);
Kharitonov et al. (2020), the cultural and architectural transmission Dagan et al. (2020); Ren et al.
(2020), language structures through ease-of-teaching pressure Li & Bowling (2019) and networked
communication Gupta et al. (2020). Some of the recent works also provide deeper analysis pertain-
ing to the nature and factors affecting the semiotic dynamics underlying the emergence of language
and language constructs. Kottur et al. (2017); Resnick et al. (2020); Tucker et al. (2022) delve into
the factors and constraints such as selectionist criteria, utility, informativeness, memory capacity,
and learning capabilities that contribute to the development of compositionality and Graesser et al.
(2019); Eccles et al. (2019); Gaya et al. (2016) analyze conditions, inductive biases and intrinsic
motivation required for the emergence of a coherent language. Another direction in which language
emergence is being evaluated is along the dimension of scale Chaabouni et al. (2022); Rita et al.
(2021), where the correlation between language characteristics and system complexity and popula-
tion dynamics is examined, while Lazaridou et al. (2020) incorporates pre-trained general language
models to develop task-specific language models. Choi et al. (2018) explores the obverter technique
Batali (1998) which explores emergent communication among pseudo-homogeneous agents, where
the speaker is assumed to be always true, while the listener calibrates its parameters to align itself
with the speaker. Chaabouni et al. (2019) studies the existence of inverse correlation of word length
and input frequency that exists in natural human language.
Our contribution: In this paper, we develop a decentralized, uncorrelated, multi-agent “Guessing
game’ with significant combinatorial complexity compared to the Naming games, primarily due to
the ambiguity in inferring the topic from the context, which, in turn, significantly hinders vocab-
ulary alignment and learning. Our unique approach includes the integration of an explicit agent
ontology to distinguish between referents and concepts, as well as the provision of tangible feed-
back, which differs from existing works that share feedback directly, mimicking “telepathy”. In
this unique guessing game framework, we investigate the emergence of certain coherent properties
of languages such as interchangeability, and compositionality. The interchangeability property of
languages enables the agents to act as either listener or speaker (contrary to dedicated roles in the
existing works), where they synchronise through mirror learning. This ensures continual learning,
which resembles human language acquisition. Additionally, we integrate the principle of least effort
which encourages agents to convey information in a way that minimizes cognitive effort. The goal
of the paper is to explore the dynamics of these components within the guessing game setup and to
analyze and hypothesize the emergent behaviors that arise from their interaction.

2 PROBLEM FORMULATION

In this paper, our objective is to enable the emergence of coherent symbolic structures among a popu-
lation of deep neural agents through decentralized learning and self-organization in guessing games.
Our setting consists of N deep neural agents populated on a graph world G = (V,E) which is em-
bedded on a bounded 2D plane (flat earth), where V is the set of vertices and E is the set of edges.
All the nodes are similar in shape. However, they possess two relevant features, location and color
which distinguish them from each other. The location is unique for a node, although they can have
the same color. Our agents are homogeneous in nature, where they can perform both comprehension
and reproduction of language. This property is referred to as homogeneity/interchangeability which
is one of the core properties of human language. Our language game (Figure 3) is as follows: At
each instant in the game, one agent is paired against another to initiate a semiotic cycle of dialogue
consisting of D conversations. In dialogue, one random agent takes the role of speaker, while the
other agent is the listener (step 1 in Figure 3). In a conversation, the speaker randomly selects a
topic node unknown to the listener and communicates it using a suitable conceptualization (using its
ontology) and utterance via a noise-free, discrete channel (steps 2 to 5 ). The listener attempts to
decipher the meaning of the temporal sequence of utterances by correctly identifying the topic node.
The interaction is subsequently rewarded according to the interpretation outcome which is shared
among the participants (steps 6 to 8 ). In case of failed communication, the speaker discloses the
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topic node to the listener (step 9 ). Learning occurs through the induction of hypotheses (the innate
linguistic structure that is characterized by neural networks) based on payoffs, and disclosures.

We formulate our setting using a multi-agent Markov game framework Littman (1994); Puterman
(2014) since we aim for the emergence of symbolic structures through interactions among agents
who possess the cognitive ability to extract and reinforce commonalities across multiple experiences.
Here, we assume that the agents only have a partial observation of the environment, which aligns
with real human scenarios where one can only be aware of his local surroundings and perceive the
world in a coarse form. The state of the environment at time step t is denoted by s(t) ∈ S, where S
is the set of all the environment states. We let o(t)i ∈ O be the partial observation of agent i, which
is characterized by the function fi : S 7→ O, where O is the set of all possible observations. At
time instant t, agent i chooses a random action a(t)i which is dependent on the current observation
according to a parameterized stochastic policy πθi(·|o

(t)
i ) which is a conditional probability mass

function over A conditioned on the observation o
(t)
i . For agent i, each state transition yields a

random reward r
(t)
i according to the function R : S × A × S 7→ R. The system evolution is

stochastic in nature and characterized by the probability transition function P : S ×A×S 7→ [0, 1],
where P(s, a, s′) = Pr(s(t+1) = s′|s(t) = s, a(t) = a) which is the conditional probability of next
state is s′ conditioned on the current state and action being s and a respectively. The collective goal
of the agent population is to collaboratively seek a policy πθ∗ = [πθ⋆1 , πθ⋆2 , . . . , πθ⋆N ] that maximizes
the globally averaged long-term return over the network based solely on local information, i.e.,

θ⋆i = argmax
θ∈Θ

Ji(θ), with Ji(θ) = Eπθ,µ

[
T−1∑
t=0

r(t)i

]
, (1)

where Eπθ,µ[·] is the expectation with respect to all T length trajectories generated using the stochas-
tic policy πθ with initial distribution µ and Θ ⊂ Rs is a compact and convex set.

3 DOMAIN ONTOLOGY

Figure 1: Agent Ontology

The ontology Guarino & Giaretta (1995); Mark et al. (2003) C of the agent is the concept space
through which an agent perceives the space. In this paper, C = H∪W∪B∪{⊥} which consists of a
finite collection of segments H, sectors W , colors B and the NULL concept ⊥. We let H̄ = H∪{⊥},
W̄ = W ∪ {⊥} and B̄ = B ∪ {⊥}. A segment is a strip of region in the 2D plane encompassed
by outer and inner concentric circles (Figure 1 (a)) centered at a certain point. A sector is defined
to be a part of a disc made of the arc of the disc centered at a certain point along with its two
radii extending to the boundary of the world. These are spatial deixis which are generally perceived
relative to the location of the central point. The segments and sectors provide a conceptualization of
space that is grounded in the sensory and physical interactions of the agents with the world and one
can relate it to the concepts of cardinal directions in the human discourse. Each node possesses the
intensive property of color and we assume that the agents possess the sensory mechanism to capture
the hue range of colors. Hence, we also consider colors as concepts. Roughly, C represents the
hierarchical deep structure of concepts (semantic entities) where one can be either specific (finer)
or general (coarser), or disjoint than the other. The concept space C is equipped with an operation
< ·, · >: C × C → C′, where C′ is the set of derived concepts, which are concepts which can be
derived from the basis concepts Andreas (2018); Montague et al. (1970). In our setting, the operation
<> is set intersection since our concept space consists of regions and colors. An illustration is
provided in Figure 1 (b). We also maintain a pre-defined encoder Γ : C → Z which maps the
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abstract basis concepts in C to discrete scalars. Given any topic node, the agent can conceptualize
the vertex in terms of the tuple<segment, sector,color> ∈ H̄×W̄×B̄ relative to the current
location of the agent. Here, we abuse the notation, as <> typically denotes a binary operation, and
in this case, it should be interpreted as <segment, <sector, color>>.

Complexity of Guessing Game: For a given vertex u ∈ V , we consider the function Cu : V →
2H̄×W̄×B̄ which maps vertices to their corresponding conceptualizations relative to the source vertex
u. For a given (source, topic) vertex pair (u, x), one can have more than one conceptualization
possible, i.e., Cu(x) ⊆ H̄ × W̄ × B̄. Hence our setting can be categorized as “guessing game”
(Section 1.3.2 of Steels (2012)). The complexity of the guessing game is substantially high due
to the inherent meaning ambiguity arising from the existence of more than one possible distinct
concept for a given unknown message. Meaning uncertainty arises because multiple concepts can
possibly be associated to a novel word and the listener cannot, with only one exposure, determine
which meaning is intended by the speaker. The available information for learning or understanding
is limited or insufficient for the listener to comprehend. This complicates the construction of a
shared vocabulary, as aligning meanings through communication becomes more challenging. This
is Quine’s “Gavagai” problem also referred to as Poverty of stimulus Quine (1960).
Assumption: In this paper, we assume that the ontology possessed by all the agents is identical
and they all conform to the same ontological framework to avoid inconsistent perspectives and thus
evade the Tower of Babel situation Iliadis (2019); Mark et al. (2003).

4 GROUNDED VOCABULARY LEARNING

The lexis (Ψ) of a language is a finite catalog of all q-letter words available a priori to an agent. A
vocabulary bidirectionally maps lexis (phonological entities) to meanings (semantic entities), where
one is able to evoke the other Ren et al. (2020). This symbolic association is referred to as the prop-
erty of groundedness. For a population of agents to successfully communicate, there should exist a
shared, coherent vocabulary among the population. This implies that the vocabulary possessed by
the agents should hold the same meaning for everyone to successfully communicate verbally among
themselves. Ideally, the mapping should be isomorphic. Apparently, in every realistic scenario, this
is not the case, which transpires into various language characteristics like homonyms and synonyms.
Initially, there is no ex-ante meaning associated with the words, and hence no coherence among the
agents exists and we aim to foster common grounding among agents incrementally, which is fully
shaped by past linguistic experience. This is referred to as the symbol grounding problem Steels
(2012). We achieve this through verbal interactions between them, where they extract and rein-
force similarities across multiple episodes incrementally through evidence of understanding which
can be either positive or negative. This trial and error based calibration process shapes, reshapes,
and enforces the mental mapping, where the phonological expressions become more efficient and
established through repeated use Bisk et al. (2020); Arrington (1954), and eventually drives the
system to a dissipative structure Prigogine (1987) which enables common ground for expressing
concepts. The speaker exhibits an inherent categorical bias, to structure messages in a specific or-
der (M(segment),M(sector),M(color)) reflecting the agent’s conceptualization process.
However, the listener module does not share this bias and instead treats each word as potentially
belonging to any category. This discrepancy in how the speaker and listener process information
makes it more challenging to establish a shared language, as the listener does not rely on the same
categorical ordering as the speaker.
Assumption: We assume that all the agents possess the same lexis.

5 POLICY ARCHITECTURE

The policy architecture of the agent is modeled using stochastic neural networks. Each agent con-
sists of two modules: speaking (concept-selection and utterance) and listening. All the modules are
implemented using RNN (recurrent neural networks) to allow for continuous and sequential com-
munication. Here θ, ψ, and ϕ represent the parameters of the utterance network, concept-selection
network, and listening network respectively. All the modules of listener and speaker have to synchro-
nize through trial and error for a successful communication language to emerge. In our setting, we
perform decentralized learning with decentralized execution Foerster et al. (2016). Our agents are
independent learners Tan (1993) and the channel between speaker and listener is non-differentiable,
which implies that the back-propagation of the listener does not transmit the gradient backward to
the speaker. In our 2D environment, there are N agents and M vertices. The state S of the game set
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consists of all relevant details that define the environment. The state of the environment at time t is
given by st =

[
x(1),...,(N), z(1),...,(N)

t ,q(1),...,(N),u(1),...,(N)
t

]⊤
∈ S, where x(i) ∈ R2 is the location

of the ith vertex in the world, z(i) ∈ {1, 2, . . . , N} is the current location of agent i, q(i) ∈ R is
the color of vertex i and u(i)

t is the utterance in the conversation involving agent i. The agent i
locally perceives the environment which characterizes the observation vector of the speaker agent

o(i)t
fi
=

[
z(i)t , g(i)t ,u(i)

t ,q(g(i)t ),DNN(d(1),...,(M) + ϵd,w(1),...,(M) + ϵw)
]⊤

, where ϵd ∼ N (0, 1) and

ϵw ∼ N (0, 1) are white Gaussian noises, g(i)
t ∈ {1, 2 . . .M} is the topic vertex, and d,w represent

the distance and the angle of vertices from the speaker’s current vertex respectively. Here DNN rep-
resents a deep neural network which embeds the graph relative to the source vertex. The interaction
pathway consists of multiple networks across the speaker and listener agents operating sequentially.
The concept-selection network πψ operates in a one-to-many mode, where the initial hidden vector
is obtained through a linear transformation of the observation vector ot, and the output is fed back
as input. This network outputs the conception-selection bit-vector bt which is then passed through a
differentiable channel to the speaking module πθ (many-many mode) along with the spatial descrip-
tion ct of the topic vertex as ct

⊙
bt, where

⊙
is co-ordinate-wise vector product. The network

utters the message mt which is transmitted to the listener through a non-differentiable (naive cate-
gorical sampling) noise-free channel. We use Gumbel-Softmax Jang et al. (2016); Maddison et al.
(2016) based sampling to enable differentiability of concept-selection to utterance channel allowing
gradients to flow through the sampling process. The listening module πϕ in the listener agent op-
erates in a many-to-many mode, which means it processes the words in the generated message mt

sequentially and generates a probability distribution πϕ(·|mt) over the entire concept space C. This
distribution represents the agent’s interpretation of the message in terms of different concepts within
the concept space. This distribution is further used to generate the listener interpretation c′t through
categorical sampling. The complete architecture of the agents is depicted in Figure 4.

6 PERFORMANCE MEASURE

The objective function of our language game consists of three components: Regularized communi-
cation feedback, description length loss, and mirror loss. Each component plays a specific role in
shaping the communication outcome and the characteristics of the emergent language.

6.1 REGULARIZED, GUIDED COMMUNICATION FEEDBACK

We consider the finite horizon cumulative reward with an entropy regularization term as given in
Equation (4). The regularizer offers a few advantages that are conducive to language games. First,
entropy regularization encourages exploration and helps prevent early convergence to sub-optimal
policies. Second, the resulting policies can serve as a good initialization for fine-tuning to a more
specific behavior. Third, the maximum entropy framework provides a better exploration mechanism
for seeking out the best mode in a multimodal reward landscape. In the language game, we follow a
stochastic, guided feedback mechanism. During a failed interaction, the speaker plausibly guides the
listener by pointing out the topic vertex to the listener with a probability λ ∈ [0, 1]. This implies that
the speaker may or may not provide effective guidance with a certain probability. The speaker and
listener subsequently reinforce with respect to the spatial concept c′t corresponding to the plausibly
communicated topic vertex. This implies that during the interaction between the speaker A and
listener B, the interpreted concept c′t is taken as

c′t ∼ λπϕB (·|mt) + (1− λ)δct , where λ ∈ [0, 1] and for E ⊆ Rk, δx(E) =

{
1 if x ∈ E,

0 otherwise.

Here δx is the Dirac measure at x which is a singular measure that places all its probability mass at
the single point x. In the case of effective guidance, a full reward is associated with the interaction.

6.2 PRINCIPLE OF LEAST EFFORT

According to the principle of least effort Zipf (2016); Cancho & Solé (2003), language evolves as
speakers of the language tend to simplify their speech in various ways to achieve a trade-off between
understanding and effort. When choosing how to express themselves in a language, speakers take
into account both their current and future communication requirements. This drives the speakers to
consider linguistic constructs that are effective in meeting their communication goals and efficient in
optimizing their labour. A similar hypothesis connecting the overarching fairness between cognitive
load and language exposition is the principle of the economy of thought Mach (1898). It suggests
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that the human mind, with its limited cognitive resources, seeks to represent the infinite complexities
of the world in a way that is efficient and economical. Hence, we believe that languages tend to
evolve in ways that promote the economy of least thought and linguistic effort, where the language
users communicate using messages that are relatively easy to produce and comprehend. Hence, in
the post-transient phase of language evolution, message length tends to decrease Futrell et al. (2015).

6.3 MIRROR NETWORKS

To enable interchangeability of the language, we consider mirror networks. A mirror neuron Di Pel-
legrino et al. (1992); Rizzolatti et al. (1996), strictly defined, is a type of neuron that is fired both
when the individual executes certain actions and when it observes a strictly or broadly congruent
set of actions. In our setting, we want the speaking, listening, and concept selection networks of
an agent to be consistent with each other so that the information gained through the comprehension
of the language is used for its reproduction and vice versa. Since our networks represent stochastic
policies, by consistency, we mean in the Bayesian probabilistic sense (posterior distribution of the
parameters conditioned on the message or concept). By ensuring consistency between these policies,
you’re seeking a coherent, bidirectional relationship between how the agent generates its responses
(speaking) and how it interprets and understands incoming information (listening). This implies that
the calibration pathway has to update and synchronize all the relevant networks in the direction of
consistency. Hence, we consider the following mirror loss:

E
[
α1DKL

(
πθA(·|m)

∥∥∥ πϕA(·|m)
)

︸ ︷︷ ︸
speaker congruence

+α2DKL
(
πϕB (·|c′)

∥∥∥ πθB (·|c′))︸ ︷︷ ︸
listener congruence

+ α3 DKL
(
πϕB (·|m)

∥∥∥ πψB (·|o))︸ ︷︷ ︸
concept selection congruence

]
, where DKL(p1∥p2) =

∑
x

log p1(x)
log p1(x)

log p2(x)

is the Kullback-Leibler divergence and α1...3 ≥ 0. The above loss quantifies the dissimilarity be-
tween the conditional probabilities of the mirror networks and the corresponding active networks.
Minimizing the mirror loss during calibration implies making the mirror networks as similar as
possible to the active networks resulting in bidirectional language use.

6.4 POVERTY OF STIMULUS

The poverty of stimulus appears in guided feedback scenarios, where the speaker reveals the topic
vertex g (which is the tangible component) to the listener at the end of a failed conversation. How-
ever, the conceptualization Cz(g) of the topic vertex g consists of more than one element, which
makes the novel message m of the conversation potentially ambiguous and uncertain. This uncer-
tainty poses a challenge for the listener. To address the meaning uncertainty inherent in the poverty
of stimulus situation due to insufficient information, the listener relies on contextual cues, where it
distributes the message m across all the possible conceptualizations Cz(g) of the topic vertex g with
respect to the source vertex z and assign different normalized weights or probabilities wb to each
interpretation b based on some predispositions (the factors could be prior knowledge and context):

log πϕB (c
′|m) =

∑
b∈Cz(g) wb log πϕB (b|m)∑

b∈Cz(g) wb
, where wb ≥ 0. (2)

Over time, as the listener gains more exposure to the word and its usage in various contexts, the
uncertainty decreases, and the listener becomes more adept at determining the intended meaning
based on the context of its usage.

6.5 OBJECTIVE FUNCTION

The performance measure J(θ, ψ, ϕ) of the language game is defined as follows: Let EI [·] be the
expectation induced by the r.v.s. m ∼ πθA(·|c), c′ ∼ πϕB (·|m), s ∼ µ, o = fA(s), o → c
and EIt [·] be the expectation induced by the r.v.s. mt ∼ πθA(·|ct), bt ∼ πψA(·|ot), c′t ∼ λ
πϕB (·|mt) + (1− λ)δct , st ∼ µ, ot = fA(st), ot → ct.

Then J(θ, ϕ, ψ) = κ1L1(θ, ϕ, ψ) + κ2L2(θ, ϕ, ψ) + κ3L3(θ, ϕ, ψ),where κ1, κ2, κ3 ≥ 0, (3)

L1(θ, ϕ, ψ) = EIt

[
T−1∑
t=0

rt + βH(πθA(·|ct)) + βH(πϕB (·|ot))

]
︸ ︷︷ ︸

Regularized cumulative reward

, β ≥ 0, (4)
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L2(θ, ϕ, ψ) = −EI
[
∥b∥22 + β′H(πψA(·|s))

]︸ ︷︷ ︸
Description length loss (Principle of least effort)

, β′ ≥ 0 (5)

L3(θ, ϕ, ψ) = EI

[
α1DKL

(
πθA(·|m)

∥∥∥ πϕA(·|m)
)
+ α2DKL

(
πϕB (·|c′)

∥∥∥ πθB (·|c′))+

α3DKL
(
πϕB (·|m)

∥∥∥ πψB (·|o))]
(Mirror loss), (6)

with H(π(·|s)) = −
∑
a π(a | s) log π(a | s) is the entropy regularizer, where H(π(·|s)) represents

the entropy of a policy π conditioned on state s. The entropy measures the uncertainty or randomness
associated with the actions chosen by that policy when in a particular state. Further, we obtain the
gradient of J as follows:

∇J(θ, ϕ, ψ) = κ1∇L1(θ, ϕ, ψ) + κ2∇L2(θ, ϕ, ψ) + κ3∇L3(θ, ϕ, ψ), where (7)

∇L1(θ, ϕ, ψ) = EI

[
(QI(s,m,b, c′)− β log πθA(m|c)− β log πϕB (c′|m)− β)(∇θA log πθA (m|c)

+∇ϕB log πϕB (c′|m))
]
, where QI(s,m, b, c

′) = EI

[
T−1∑
t=0

r(t)i |s,m, b, c′
]
. (8)

∇L2(θ, ϕ, ψ) = −EI
[
(−β′ log πψA(b|o)− β′)∇ψA log πψA(b|o)

]
− E s∼µ,

o=fA(s)

[
∇ψAEb∼πψA (·|o)

[
∥b∥22

]]
and

∇L3(θ, ϕ, ψ) = −E I,
c′→b′

[
− α1

P(c)
P(m)

∇ϕA log πϕA(c|m)− α2
P(m)

P(c′)
∇θB log πθB (m|c′)

− α3
P(b′)

P(o)
∇ψB log πψB (b′|o)

]
, (9)

Here, Equation (8) is obtained by appealing to soft policy gradient theorem Shi et al. (2019) and
multi-agent policy gradient theorem Zhang et al. (2018).

7 EXPERIMENTS & DISCUSSION

In all the experiments, model parameters are initialised with random values. The hyper-parameters
(step size, batch size, and regularization strength) are fine-tuned through iterative experimentation.
The feasible reward values for various scenarios are obtained through an exhaustive yet rational
search. We consider a 2D world consisting of a complete graph with 5 vertices whose positions
are randomly chosen. There are four agents in this world leading to a total of 12 unique speaker-
listener pairs which likely allows for a rich variety of interactions and communication scenarios.
Each dialogue consists of 100 conversations. The role switching (speaker to listener and vice versa)
occurs after every 500 iterations through random selection. We consider two-timescale networks
Chung et al. (2018) to obtain synchronized convergence, where the utterance network is calibrated
along a faster timescale compared to the concept selection network. In this approach, the concept
selection network can be considered to be pseudo-stationary, while the utterance network converges
with respect to the stationary values of the concept selection network and this cycle repeats itself
in the long run. To achieve this, we employ the vanilla stochastic gradient algorithm with learning
rates of the respective networks differing by order of magnitude. This can be formalized as follows:
Let {et} and {e′t} be the learning rates of the concept selection network and utterance network
respectively. Then {et} and {e′t} satisfy the following:

et, e
′
t ∈ (0, 1),

∑
t≥0

et =
∑
t≥0

e′t = ∞,
∑
t≥0

e2t + e′
2
t <∞, lim

t→∞

et
e′t

= 0. (10)

The concept space C consists of 4 sectors, 3 segments and 4 colors. The concept space C is illus-
trated in Figure 6. Since there are overlapping sectors (Sectors 1, 3, and 4) we have a poverty of
stimulus situation. The lexis size (|Ψ|) is 25. The speaking and listening module within the agent’s
architecture utilizes an LSTM cell. The observation vector ot by the speaker agent is transformed
into a feature vector (∈ R25) by passing it through a fully connected neural network. This feature
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vector forms the hidden input of the concept selection module (ψ) whose hidden size is also taken
as 25. The speaking and listening modules are implemented as a single-layer LSTM cell with a
hidden size 250. The LSTM networks output the sequence of words or concepts with a maximum
length of 3. In the Gumbel softmax of the the concept selection module, the temperature parameter
τ is taken as 0.5. Also, successful communication rewards both the agents with +100, while the
misinterpretation incurs a penalty of −50.

We hypothesize the following based on the observations emerging from our guessing game:

Hypothesis I: A measure of tangible guided feedback supplemented with reinforcement learning is
required for a shared language to emerge among a population through decentralized learning.
In our experiments, we observe that our decentralized guessing games are converging very often.
The vocabulary-concept mappings developed by the individual agents during the transient phase
are random which enables sufficient exploration to drive the evolution towards coherence in a fi-
nite number of dialogues. Coherence implies a more consistent and meaningful use of language,
where words and expressions convey clear, grounded and shared meanings. This is corroborated
by the convergence of loss functions and the maximization of average reward (average of the re-
wards of the conversations in a dialogue) as illustrated in Figures 13b and 16b. Positive rewards,
attributed to successful communication events, are considered rare. When such events occur, posi-
tive rewards are reinforced by policy gradient-based calibration operations. This is further boosted
by the guided feedback mechanism, where the listener uses the topic vertex information conveyed
by the speaker to calibrate his parameters to match the conceptualization of the topic vertex (pos-
sibly ambiguous) with the utterance. These mechanisms help reinforce successful communication
schemes. The success ratio is defined as the frequency of conversations in a dialogue, where the
listener is able to identify the topic vertex. The evolution of this success ratio is depicted in Figure
16a over the course of dialogues across the population. This signifies that all the dialogue interac-
tions in the conversation among the agent population are successful after a finite number of steps
which suggests that the participants are able to achieve their communication objectives (identifying
topic vertex) effectively through the medium of language, and this is independent of the nature of
the agent executing the role of listener and speaker. As the process unfolds, it becomes increas-
ingly apparent that all agents converge towards possessing highly similar vocabularies (Figure 2).
The convergence towards near-identical vocabularies likely stems from the agents’ interactions and
the need for effective communication. Through repeated interactions, agents gradually align their
linguistic representations, leading to a shared, grounded lexicon.

Hypothesis II: The locutors of a language exhibits an inclination towards minimizing cognitive ef-
fort, reflected in the emergent word order and Zipfian characteristic of the language.
The agents involved in the language game have demonstrated a remarkable ability to grasp the essen-
tial concepts required for effective communication through the application of the principle of least
effort. We observe that the order 101 which denotes <segment, ⊥, color>, is the emergent
word order, suggesting a common consensus among the agents that for every topic vertex, communi-
cating two concepts (segment, color) is adequate (Figure 14). The agents tend to communicate
in a way that minimizes cognitive effort. The language tend to adapt to be as efficient as possible,
with speakers and listeners preferring forms of expression that require the least amount of cognitive
resources. This adaptation is driven by the principle of least effort component of the learning dynam-
ics. To corroborate this claim further, we consider cases where the effect of principle of least effort
is reduced significantly (Figure 8). For this purpose, consider the scenarios where κ2, representing
the weight associated with loss L2 that quantifies the principle of least effort, takes on values of 1.1,
0.01, and 0.001 (with κ1 = 1 and κ3 = 1). For the case when κ2 = 1.1, we have minimal conceptu-
alization ( <segment, ⊥, color>), of the topic vertex, however for the remaining cases, i.e.,
κ2 ∈ {0.01, 0.001}, we have maximal conceptualization ( <segment, sector, color>), of
the topic vertex which signifies that the principle of least effort is fundamentally attributed to the
cognitive economy exhibited by the agents, with higher weights for principle of least effort leading
to simpler conceptualizations and lower values prompting more detailed ones. To understand the
nature of principle of least effort with respect to the complexity of the word, we consider a setting
with four agents having the same concept space as before, residing in a graph world of 50 vertices.
This world is notably complex, presenting a challenge for the agents to fully comprehend using their
predefined concepts. When it comes to conceptualizing the topic vertices, there is an intriguing
trend. About 60% of the agents prefer to describe vertices using a combination of segment, sec-
tor, and color. On the other hand, the remaining 40% opt for a simpler approach, using segment,
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Figure 2: Convergence of shared vocabularies among the population is depicted here. Each rectangle represents
the vocabulary of an agent, with each row (k, where 1 ≤ k ≤ 4) showing the evolution of agent k’s vocabulary.
It is notable that in the later stages of the process, all agents exhibit vocabularies that are nearly identical.

a placeholder for silence , and color. This diversity in conceptualization approaches highlights the
complexity of the world these agents are trying to understand. Despite their efforts to adapt and
communicate effectively, the intricate nature of the graph world poses a significant challenge for the
agents in establishing a shared understanding.

Hypothesis III The language reflects the complexity of the environment it describes.
Since the topic of conversation is a vertex that is conceptualized using sectors, segments, and col-
ors, a few sectors and segments rarely appear in the conversations due to the distribution of vertices
in the 2D world. They remain mostly dormant and hence no dominating words for these less-
discussed concepts emerge. Contrary to the dormant concepts are the active concepts which are
consistently used by the agents to express the topic vertices and hence are alive in the population.
This phenomenon suggests that certain concepts may become dominant in communication due to
their frequent usage, while others remain less prominent. The above bifurcation of the concept
space is highly sensitive to the nature of the graph world and the distribution bias of the source-
topic vertex pairs used during interactions. This is illustrated in Figure 16d, where we allude to
concepts 4, 5, 6 and 7 which are unused and concept 1, which sees minimal usage (≈ 1.0%). Since
each color appears once in the world, except for yellow (Γ(yellow) = 9) which occurs twice
and with the word order emerging as 101 (<segment, ⊥, color>), all the color concepts
are active with yellow being more salient in communication. A shared word for expressing si-
lence (NULL/⊥) emerges and it is the most popular word. The dynamics of the game settle down
to employing a single word to represent ⊥ concept irrespective of the position of ⊥ in the message,
a phenomenon vividly illustrated in Figure 16c. As the communication game evolves, a consensus
emerges among the agents to use a single word to represent the ⊥ concept. This transformation is ad-
ditionally accompanied by a noteworthy reduction in the probabilities associated with other words,
underscoring the agents’ adaptability and the efficiency of their evolving communication system.
There is a clear and consistent way of representing the absence of a specific concept in a message.
Since 101 (<segment, ⊥, color>) is the globally accepted word order in the population, a
⊥ concept is always present in every conversation which makes its word the most popular word.

Hypothesis IV: Mirror learning fosters continuity in learning, allowing participants to apply the
knowledge they acquired in a specific role while engaging in the mirrored role.
In our experiments, we observe near-complete synchronization of bidirectional mappings in the
agent population through mirror networks. During the interactions, the individual agents calibrate
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their corresponding mirror networks (listener network for the speaker and utterance network for the
listener) w.r.t. their corresponding active networks (utterance network for the speaker and listener
network for the listener) which ensures continuity during role switching. This is achieved by min-
imizing the mirror loss which decays to 0 as illustrated in Figure 13b. The continuity in learning
(comprehension and reproduction) is exemplified in Figure 16a, where one can observe the dips
in success-ratio (due to role switching) eventually vanish ensuring continuity. The term ”continual
learning” suggests that, over time, the system improves at maintaining smooth flow of commu-
nication as agents switch between speaker and listener roles, applying knowledge gained during
comprehension to reproduction and vice versa, leading to effective bidirectional language use.
7.1 EMERGENT LANGUAGE CHARACTERISTICS

Emergence of Compositionality: The economy of thought gradually transpires into composition-
ality in the emergent language since language encapsulates thought. Hence one could observe the
emergence of efficient communication strategies, where shorter phrases are preferred over longer
ones. In our setting, the language that emerged is two word compositional, where it follows a word
order which involves segment followed by color. More complex scenarios can also arise. To
illustrate compositionality more vividly, we consider a smaller graph with N = 3 vertices (Figure
10) and two homogeneous agents with the concept space as before (Figure 6). The outcomes are
depicted in Figures 10 and 11. Notably, no specific word order emerges in this scenario; instead, a
blend of word combinations dominates the discourse. It is noteworthy that, in this setup, the number
of available colors in the agents’ concept space is 4, which is more than the number of vertices. This
implies that the agents can communicate the topic vertices by just referring to the color alone. The
same holds true for sectors. However, the observed trend reveals that in the majority of conversations
(50%), the agents opt for the color alone (< ⊥, ⊥, color>), and in 14% of instances, it relies on
the sector alone (< segment,⊥,⊥ >). Interestingly, in (20%) of conversations, the agents prefer
a combination of segment and color (<segment, ⊥, color>). The above mixture (dominated by
an optimal concept selection) is a sub-optimal limiting behaviour with respect to concept selection
and this scenario arises due to the non-convex nature of the objective function operating over a de-
centralized setting, as shown by the convergence to sub-optimal values in Figure 10). However, the
success ratio (Figure 10) Despite this, the success ratio is nearly 100% (Figure 10), and all agents
have nearly identical vocabularies (Figure 12), indicating the emergence of an effective semi non-
compositional language with 65% of the conversations being non-compositional and 24% two-word
compositional. Similar sub-optimal behaviors can be expected in human scenarios. Nevertheless,
what stands out is that the agents employ one, sometimes two, and rarely three words or stay silent
during the dialogue, mirroring patterns observed in human interactions.

Adherence to Zipf’s Law: Zipf’s law is a linguistic phenomenon that describes the distribution of
word frequencies within a language. It states that the frequency of any word is inversely proportional
to its rank. In other words, the most common word occurs approximately twice as often as the second
most common word, three times as often as the third most common word, and so on. We see in the
Figure 15 (world setting from Figure 10), the occurrence of the word decreases exponentially for
the lower rank words in the language emerged among agents. This aligns with the characteristic
pattern described by Zipf’s law. To further understand this relationship, we studied the impact
of the principle of least effort on the Zipfian characteristic of emerged languages. Specifically,
we looked at scenarios where the weight (represented by κ2) associated with the loss function that
quantifies the principle of least effort varied (Figure 8). When κ2 had higher values (1.1 in one case),
the discrepancy between the observed word usage frequency and the expected Zipf distribution is
minimal. This indicates that the sensitivity of the Zipfian characteristic to the weight of the principle
of least effort. In other words, higher weights lead to word frequencies that more closely follow an
inverse relationship to their ranks, as predicted by Zipf’s law.

8 CONCLUSION
In this paper, we develop a computational language game framework to model the factors influenc-
ing language dynamics involving a finite number of homogeneous deep neural agents in a guessing
game setting. We integrate the following: explicit ontology, guided feedback mechanism to over-
come poverty of stimulus, mirror learning for interchangeability and factoring silence as a symbol.
From our observations, we conclude the following: “The emergence of a shared, grounded, struc-
tured, cognitively local optimal and Zipfian language among a population arising from ambiguous
interactions is attributed to diverse phenomena weaving together in the intricate tapestry of decen-
tralized, guided and reinforced learning”.
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A APPENDIX

A.1 DEFINITIONS

Emergent vocabulary: An emergent vocabulary M is a shared mapping (not necessarily bijective)
function between lexis Ψ and the concept space C, i.e., M : Ψ ↔ C collectively agreed upon by
all the agents in the population de Saussure (2011). Note that there are |C||Ψ| possible vocabularies
for all the agents to agree upon, which makes it unlikely for all agents to converge on the same
vocabulary without some mechanism for coordination and consensus.

Compositionality: A language is compositional Andreas (2018); Montague et al. (1970) if the
utterance of each derived concept is determined by the utterances of its basis concepts. Formally,
for the derived concept c =< g, h, q >, we have M(c) = M(g)M(h)M(q), with the implicit
operation of concatenation connecting them.

A.2 GUESSING GAME SETUP

Figure 3: Semiotic pathway illustration of the guessing game
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B POLICY ARCHITECTURE

Figure 4: Policy architecture of the semiotic pathway

Figure 5: Unfolded view of the respective LSTMs.Best viewed in color

B.1 REWARD FUNCTION

We follow a reward mechanism that balances exploration, cooperation, synchronization, accuracy,
and efficiency in communication. Agents are trained using a shared reward mechanism by which
they learn to cooperate by forming a shared language. To encourage agent exploration, we offer
partial and complete rewards, motivating the agent to try different approaches and adapt themselves
to make informed decisions during training. Both agents receive a partial reward if the listener
infers the right region where the topic vertex is located but fails to identify the topic vertex. This
acknowledges the successful transmission of relevant information without complete understanding.
A full reward is given if the listener can accurately and unambiguously infer the exact topic vertex
from the communicated information. This indicates a high level of successful communication and
concept selection. A penalty is given if communication fails in order to discourage the respective
concept-vocabulary mapping and to prevent incorrect or ineffective communication choices. The
balance between partial and complete rewards, along with the penalty for communication failure,
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encourages agents to refine their communication strategies over time.

rt =


ζ1 (∈ R), if gt = g′t,

ζ2 (∈ R ∧ ζ2 < ζ1), if Czt(gt) ∩ Czt(g′t) ̸= ∅,
ζ3 (ζ3 ≤ 0 ∧ ζ3 < ζ2), otherwise.

(11)

The concept-selection module of the speaker seeks to select the optional spatial description to refer
to the topic vertex by deactivating redundant concepts. The mechanism aims to ensure that the sen-
tence corresponding to the generated spatial description is of optimal length to convey the intended
meaning effectively. To support optimal word-order selection, we penalize the speaker for choosing
a sub-optimal sequence of concepts. In cases where a concept is de-activated, the agent chooses to
remain silent at that particular instant of the corresponding generated message. To enable this, the
utterance module chooses a “NULL” utterance C(⊥) to indicate silence. The concept of ⊥ utterance
is significant since we do not explicitly impose it a priori, rather it is learned through interactions. In
order to promote consistency and coherence in the use of the C(⊥) utterance across different word
categories in a sentence, we employ a strategy to positively reward r′ the speaker for the reuse of
the same word for the ⊥ irrespective of its temporal position in a sentence. This reward system
encourages the emergence of a common word for the ⊥ across different contexts, regardless of its
temporal position in the message ut.

r′t =
{
ζ ′1 (∈ R), if |{M(a)|a ∈ ut ∧ a = ⊥}| = 1,

ζ ′2 (ζ ′2 < ζ ′1), otherwise.
(12)

B.2 EXPERIMENTS AND FURTHER DISCUSSION

Figure 6: Concept space and the corresponding conceptualization of vertices
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Source Conceptualization
0 (3, 5) → {1, 2, 3}, (3,⊥) → {1, 2, 3}, (⊥, 5) → {1, 2, 3}, (2, 5) → {4}, (2,⊥) → {4}
2 (3, 7) → {0, 3, 4}, (3,⊥) → {0, 3, 4}, (⊥, 7) → {1, 3, 4, 0}, (3, 4) → {0, 3, 4},

(⊥, 4) → {1, 3, 4, 0}, (2, 7) → {1}, (2,⊥) → {1}, (2, 4) → {1}
1 (3, 4) → {0}, (3,⊥) → {0}, (⊥, 4) → {3, 4, 0}, (3, 7) → {0}, (⊥, 7) → {4, 0},

(2, 5) → {2}, (2,⊥) → {4, 2, 3}, (⊥, 5) → {2}, (2, 4) → {3, 4}, (2, 6) → {3},
(0, 6) → {3}, (2, 7) → {4}

3 (3, 7) → {0}, (3,⊥) → {2, 0}, (⊥, 7) → {0}, (3, 4) → {0}, (⊥, 4) → {0},
(2, 5) → {1, 4}, (2,⊥) → {1, 4}, (⊥, 5) → {2, 4, 1}, (3, 5) → {2}

4 (2, 7) → {0}, (2,⊥) → {3, 0, 1}, (⊥, 7) → {0}, (2, 4) → {0, 3}, (⊥, 4) → {0, 3},
(2, 5) → {1}, (⊥, 5) → {2, 1}, (3, 5) → {2}, (3,⊥) → {2}, (2, 6) → {3}, (0, 6) → {3}

Figure 7: The conceptualization of vertices with respect to each source vertex (referred to as source in the
table). The syntax followed in the table is as follows: For the source vertex v ∈ V (source column), the
conceptualization column contains (a, b) ∈ Γ(H)× Γ(W) → {u ∈ V |(a, b) ∈ Cv(u)}

Figure 8: Sensitivity of principle of least effort on the cognitive economy

Figure 9: In this setting, we have 4 agents with the same static concept space as before residing a graph world
with 50 vertices. Note that the world is too complex for the agents to perceive uniquely using their pre-defined
concept space. The conceptualization of the topic vertices seems to use as much concepts as possible (60%
preferring <segment, sector, color>, while 40% preferring <segment, ⊥, color>
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Figure 10: Success ratio for the setting with N = 3 vertices and 2 homogeneous agents and the same concept
space as in the previous setting

Figure 11: Emergence of concept selection pattern for the setting with N = 3 vertices and 2 homogeneous
agents with the same concept space as in the previous setting. The plot illustrates the frequency ratio of the
chosen concept selection during the dialogue utterances. The continuity in the trajectories indicates that the
distribution over the concept selection space remains consistent across the agents.

Figure 12: Success ratio for the setting with N = 3 vertices and 2 homogeneous agents and the same concept
space as before

B.2.1 EMERGENCE OF DOMINATING WORDS

From Figure 2, one can observe that for each active concept ({0, 1, 2, 3, 8, 9, 10, 11} from Figure
16d) there exists a dominating word (with probability one) except concept 11 (color red). In other
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(a) (b)

Figure 13: (a) First,second and third word accuracy: These metrics measure the frequency of interactions in
a dialogue where the listener correctly interprets the first, second, and third words of a sentence, respectively
across the population. (b) The evolution of the mirror loss and description length loss across the event popula-
tion with respect to time

Figure 14: Cognitive economy: Evolution of the common word order among the population of agents. Here
y-axis is the probability of choosing the specific word order. All the agents converge to a common word order
101 which represents <segment, ⊥, color>

Figure 15: The usage of a word reduces in accordance with their rank supporting the Zipf law.

words, for each active concept being discussed (except red), there is a specific word that is always
used when referring to that concept. Further exploring the emergent language, one can observe
certain intriguing patterns. For example, the concepts 9 (yellow) and 3 (segment 3) are repre-
sented by the same word 23 (See Figure 2). Since yellow is categorized as color and segment
3 is categorized as segment, the two concepts take different positions in the conceptualization, and
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] (a) (b)

(c) (d)

Figure 16: (a) Evolution of communication success ratio during dialogues over time (b) Trend of average
reward over interactions within a dialogue over time (c) Word usage across all the dialogues over time among
the agent population (d) Concept usage across all the dialogues over time among the agent population.

Figure 17: The plot illustrates how the language evolves and stabilizes in relation to the guidance feedback
weight parameter λ. For low values of λ, which represents a greater emphasis on feedback during the learning
process, we observe a convergence in the language’s structure and usage among the agents. This stabilization
indicates that a higher feedback weight facilitates more effective communication and understanding.

hence the presence of the same word at different positions of the message generates different con-
cepts making them unambiguous. Thus the word 23 is a homonym. A similar observation applies to
another homonym, word 16, which is associated with concepts 1 (segment 1) and 8 (blue). It
seems that for the red vertex, segment information is enough to deduce the vertex and hence color
red is not learnt. Hence one can observe (Figure 16c), the emergence of four dominating words
from the lexis (|Ψ| = 25) is mapped to the concept space (|C| = 12). The convergence towards
an unambiguous dominating word for each concept could be beneficial in fostering effective com-
munication, as it reduces ambiguity and promotes a shared understanding of the intended meanings
behind specific terms.

B.2.2 LANGUAGE EMERGENCE AT SCALE

The agent population is upscaled to observe the emergent behaviour among large populations. We
consider complex settings with the number of different agent pairs equal to 12, 30 and 42. The
emergence of a shared language among a larger population is cumbersome which requires a large
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(a) (b)

Figure 18: (a) Plot of success ratio with 30 pairs of agents and 5 vertices. (b) Plot of success ratio with 42
pairs of agents and 5 vertices

number of iterations. The underlying policy gradient algorithm develops coherence by reinforcing
successful interactions. However, in the case of more agent pairs the probability of propagation
of mappings involving successful interaction among the population is minimal. This behaviour is
illustrated in Figures 18. Hence at scale, language emergence among larger populations proves chal-
lenging, necessitating numerous iterations to propagate successful interactions and generate shared
understanding.
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