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Abstract

Multiple Instance Learning (MIL) is widely used for Whole Slide Image classifica-1

tion in computational pathology, yet existing approaches suffer from a represen-2

tation bottleneck where diverse patch-level features are compressed into a single3

slide-level embedding. We propose Divide-and-Distill (D&D), which clusters4

the feature space into coherent regions, trains expert models on each cluster, and5

distills their knowledge into a unified model. Experiments demonstrate that D&D6

consistently improves six state-of-the-art MIL methods in both accuracy and AUC7

while maintaining single-model inference efficiency.8

1 Introduction9

Whole-slide images (WSIs) are digital scans of histology slides with gigapixel size and multi-10

resolution structure [van der Laak et al., 2021]. Their large size makes direct neural network training11

infeasible, requiring preprocessing such as background removal and tiling into fixed-size patches12

[van der Laak et al., 2021]. Due to high annotation costs, WSIs are typically analyzed using Multiple13

Instance Learning (MIL), where each slide is treated as a “bag” of unlabeled patch instances [van der14

Laak et al., 2021]. In binary classification, a bag is positive if at least one instance is positive.15

Attention-based models like ABMIL [Ilse et al., 2018] and CLAM [Lu et al., 2021] improved upon16

early pooling strategies by weighting patches based on relevance. Recent advances include dual-17

stream networks [Li et al., 2021], transformer-based approaches [Shao et al., 2021], and structured18

state-space formulations [Fillioux et al., 2023]. Despite progress, MIL methods face performance19

plateaus due to representational bottlenecks [Waqas et al., 2024], where aggregation compresses20

diverse instance-level features into a single slide-level representation.21

To address these challenges, we propose Divide-and-Distill (D&D), a framework that partitions the22

feature space into representation-coherent regions, trains localized expert models on each cluster, and23

distills this knowledge into a unified global model without increasing inference cost.24

2 Methodology25

Given a WSI for subject j, we denote Xj = {xj
1,x

j
2, . . .} as the set of resulting patches, where26

each patch xj
n represents a small region of the WSI. A feature extractor f(·) compresses each patch27

into a representative embedding: zjn = f(xj
n), yielding the set of embeddings Zj = {zj1, z

j
2, . . .}.28

The patch-level embeddings Zj are aggregated using a pooling function g(·) into a WSI-level29

representation zjWSI = g(Zj), which is used to predict the slide label Ŷ j = softmax(zjWSI). However,30

this aggregation step acts as a representation bottleneck: a single vector must summarize thousands31

of heterogeneous tissue regions, inevitably discarding discriminative local information.32
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Figure 1: Overview of the proposed D&D framework: train base model, cluster slide embeddings,
train cluster-specific experts, distill into unified model.

2.1 Divide-and-Distill (D&D) Framework33

To mitigate this bottleneck, we propose Divide-and-Distill (D&D), a method-agnostic framework34

composed of four stages, which are summarized in Figure 1 and analyzed below.35

• Stage 1: Global base training. A baseline MIL model gbase(·) is trained on all WSIs36

using a standard cross-entropy objective function [Hertz et al., 1991], producing slide-level37

embeddings zjWSI that capture global context.38

• Stage 2: Feature-space partitioning. The resulting slide representations are clustered into39

C coherent groups by applying a clustering function ϕ(·) (e.g., k-means).40

• Stage 3: Expert specialization. Each cluster defines a subset of WSIs Dc = {(Zj , Y j) |41

ϕ(zjWSI) = c}, and an expert MIL model gexpert,c(·) is trained on each subset c to capture42

localized tissue patterns and reduce intra-cluster variation.43

• Stage 4: Knowledge distillation. Knowledge distillation [Hinton et al., 2015] is leveraged to44

combine the global context captured by the base model with the fine-grained, cluster-specific45

knowledge of expert models, producing a single model gdistill(·). The objective comprises46

three components: (1) supervised cross-entropy with ground truth, (2) KL divergence from47

the base model’s predictions, and (3) averaged KL divergence from the C expert models:48

L = LCE + λbaseDKL(Ŷbase∥Ŷdistill) +
λexpert

C

C∑
c=1

DKL(Ŷexpert,c∥Ŷdistill).

This encourages gdistill to retain global discriminative patterns while leveraging cluster-49

specific expertise from all specialists. We set λbase = 1 and λexpert = 1 for simplicity.50

2.2 Information Theory Perspective51

We denote I(·; ·) as mutual information. In MIL, aggregation computes a slide-level representa-52

tion zjWSI = g(Zj). By the data-processing inequality, we obtain I(Zj ;Y j) ≤ I(zjWSI;Y
j) We53

define the information-compression loss Lcomp = I(Zj ;Y j)− I(zjWSI;Y
j), which grows in abso-54

lute terms when the slide-level representation is overly compressive relative to the heterogeneous55

patch information. The decomposition in Stage 2 of the D&D reduces the effective complexity of56

each subproblem. For cluster c, the local compression loss L(c)
comp = I(Zj

c;Y
j
c ) − I((zjWSI)c;Y

j
c )57

satisfies I(Zj
c;Y

j
c ) < I(Zj ;Y j) by the subset property, allowing each expert to achieve better local58

approximations. In Stage 3, each expert focuses on a specific region of the feature space, allowing59

for specialized pattern recognition without the full complexity of the global problem. The local60

compression loss for each expert satisfies
∑C

c=1 |Dc| · L(c)
comp < |D| · Lcomp, where |Dc| and |D|61

represent the sizes of cluster c and the full dataset, respectively. In Stage 4, the distilled model62

approximates the combined information from all sources and hence the mutual information is defined63

as I(Zj ;Y j)distill ≈ max(I(Zj ;Y j)base,∪C
c=1I(Zj

c;Y
j
c )expert,c).64
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Method CAMELYON-16 TCGA-NSCLC BRACS

ACC AUC ACC AUC ACC AUC

R
es

N
et

-5
0

Mean Pool 72.1 60.1 80.0 90.0 25.3 59.9
+ D&D 71.3 ↓0.8 60.4 ↑0.3 82.5 ↑2.5 91.9 ↑1.9 36.0 ↑10.7 62.2 ↑2.3

Max Pool 81.4 80.4 81.1 90.8 35.6 71.2
+ D&D 79.8 ↓1.6 82.9 ↑2.5 82.7 ↑1.6 91.4 ↑0.6 38.0 ↑2.4 73.2 ↑2.0

ABMIL Ilse et al. [2018] 78.3 77.0 81.8 90.3 35.6 70.9
+ D&D 82.9 ↑4.6 82.1 ↑5.1 84.2 ↑2.4 91.9 ↑1.6 43.7 ↑8.1 74.8 ↑3.9

TransMIL Shao et al. [2021] 83.7 78.9 80.4 88.9 33.3 66.8
+ D&D 83.7 ↑0.0 80.2 ↑1.3 81.2 ↑0.8 90.2 ↑1.3 35.6 ↑2.3 70.3 ↑3.5

S4MIL Fillioux et al. [2023] 80.6 84.3 82.3 90.9 37.9 73.2
+ D&D 78.3 ↓2.3 82.9 ↓1.4 83.5 ↑1.2 91.6 ↑0.7 40.2 ↑2.3 74.6 ↑1.4

MambaMIL Yang et al. [2024] 76.0 78.5 81.0 89.8 41.4 73.9
+ D&D 77.5 ↑1.5 84.2 ↑5.7 82.1 ↑1.1 91.4 ↑1.6 42.5 ↑1.1 78.8 ↑4.9

U
N

I

Mean Pool 70.5 64.7 86.5 94.4 33.3 65.9
+ D&D 73.6 ↑3.1 75.4 ↑10.7 87.5 ↑1.0 95.2 ↑0.8 37.9 ↑4.6 67.3 ↑1.4

Max Pool 95.3 97.4 86.1 94.0 35.6 71.2
+ D&D 96.9 ↑1.6 98.3 ↑0.9 88.4 ↑2.3 95.2 ↑1.2 42.5 ↑6.9 72.6 ↑1.4

ABMIL Ilse et al. [2018] 96.9 99.7 87.8 94.4 40.2 78.2
+ D&D 96.9 ↑0.0 99.4 ↓0.3 89.2 ↑1.4 96.1 ↑1.7 46.0 ↑5.8 80.9 ↑2.7

TransMIL Shao et al. [2021] 96.9 97.8 86.3 93.0 33.3 69.7
+ D&D 95.3 ↓1.6 98.7 ↑0.9 87.2 ↑0.9 95.1 ↑2.1 41.4 ↑8.1 76.4 ↑6.7

S4MIL Fillioux et al. [2023] 89.1 97.2 87.1 95.2 41.4 75.0
+ D&D 94.6 ↑5.5 99.2 ↑2.0 88.4 ↑1.3 96.3 ↑1.1 48.3 ↑6.9 78.9 ↑3.9

MambaMIL Yang et al. [2024] 96.9 99.3 86.6 94.3 40.2 73.6
+ D&D 96.9 ↑0.0 99.6 ↑0.3 87.7 ↑1.1 95.3 ↑1.0 42.5 ↑2.3 78.2 ↑4.6

Table 1: Performance comparison between baseline MIL methods and their D&D-enhanced
variants. D&D improves performance across six MIL methods on three WSI datasets. Upward (↑)
and downward (↓) arrows denote performance changes; color intensity reflects the magnitude of
variation (green: improvement, gray: minor change, red: decrease).

3 Experiments65

We evaluate D&D on three publicly available WSI datasets: (1) CAMELYON-16 [Ehteshami Bejnordi66

et al., 2017], (2) TCGA-NSCLC [The Cancer Genome Atlas Research Network, 2019], and (3)67

BRACS [Brancati et al., 2022]. WSIs are processed using the CLAM [Lu et al., 2021] framework to68

extract 256× 256 patches at 10× magnification. For feature extraction, we use either ResNet-50 He69

et al. [2015] pre-trained on ImageNet Deng et al. [2009] or the UNI foundation model Chen et al.70

[2024]. We consider six representative MIL baselines: Mean Pooling, Max Pooling, ABMIL Ilse et al.71

[2018], TransMIL Shao et al. [2021], S4MIL Fillioux et al. [2023], and MambaMIL Yang et al. [2024].72

Base and expert models are trained with SGD (lr=1× 10−4, weight decay=1× 10−5, dropout=0.25)73

for 200 epochs, embeddings are clustered into C = 3 groups using constrained k-means Bradley74

et al. [2000], and the distilled model is trained with Adam for 300 epochs. We report overall accuracy75

(ACC) and macro-averaged area under the ROC curve (AUC). Table 1 shows the performance of76

baseline models and their D&D-augmented counterparts across all datasets and feature extractors.77

Improvements are positive across all datasets and metrics, with the largest gains observed on the78

BRACS dataset.79

4 Discussion & Conclusion80

To conclude, we propose D&D, a method-agnostic framework that leverages expert clustering and81

knowledge distillation to enhance the representation learning capacity of existing MIL methods, whilst82

maintaining inference efficiency. By leveraging expert model clustering and knowledge distillation,83

D&D overcomes limitations of existing MIL approaches. While D&D introduces additional training84

overhead during the expert learning phase, the framework remains lightweight and preserves single-85

model inference efficiency.86
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Potential Negative Societal Impact87

While the proposed Divide-and-Distill (D&D) framework aims to improve computational pathology88

models, potential risks arise from biased or overconfident deployment in clinical workflows. As89

our evaluation relies on publicly available WSI datasets, the models may inherit demographic or90

acquisition biases that limit generalization across institutions or patient populations. Overreliance on91

automated predictions without human oversight could lead to diagnostic errors or unfair outcomes. To92

mitigate these risks, human-in-the-loop review, external validation on diverse cohorts, and adherence93

to regulatory and ethical standards are essential prior to clinical adoption.94
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