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Abstract

Multiple Instance Learning (MIL) is widely used for Whole Slide Image classifica-
tion in computational pathology, yet existing approaches suffer from a represen-
tation bottleneck where diverse patch-level features are compressed into a single
slide-level embedding. We propose Divide-and-Distill (D&D), which clusters
the feature space into coherent regions, trains expert models on each cluster, and
distills their knowledge into a unified model. Experiments demonstrate that D&D
consistently improves six state-of-the-art MIL methods in both accuracy and AUC
while maintaining single-model inference efficiency.

1 Introduction

Whole-slide images (WSIs) are digital scans of histology slides with gigapixel size and multi-
resolution structure [van der Laak et al., 2021]]. Their large size makes direct neural network training
infeasible, requiring preprocessing such as background removal and tiling into fixed-size patches
[van der Laak et al.;|2021]]. Due to high annotation costs, WSIs are typically analyzed using Multiple
Instance Learning (MIL), where each slide is treated as a “bag” of unlabeled patch instances [van der
Laak et al.;|2021]]. In binary classification, a bag is positive if at least one instance is positive.

Attention-based models like ABMIL [llse et al.,[2018]] and CLAM [Lu et al., 2021]] improved upon
early pooling strategies by weighting patches based on relevance. Recent advances include dual-
stream networks [Li et al., 2021]], transformer-based approaches [[Shao et al.,|2021]], and structured
state-space formulations [Fillioux et al.| 2023]]. Despite progress, MIL methods face performance
plateaus due to representational bottlenecks [Wagqgas et al., [2024], where aggregation compresses
diverse instance-level features into a single slide-level representation.

To address these challenges, we propose Divide-and-Distill (D&D), a framework that partitions the
feature space into representation-coherent regions, trains localized expert models on each cluster, and
distills this knowledge into a unified global model without increasing inference cost.

2 Methodology

Given a WSI for subject j, we denote X/ = {xJ,x2,...} as the set of resulting patches, where
each patch xJ represents a small region of the WSI. A feature extractor f(-) compresses each patch
into a representative embedding: z/ = f(xJ,), yielding the set of embeddings Z/ = {z},z},...}.
The patch-level embeddings Z7 are aggregated using a pooling function g(-) into a WSI-level
representation z,; = g(Z7), which is used to predict the slide label Y7 = sof tmax(z¥,). However,
this aggregation step acts as a representation bottleneck: a single vector must summarize thousands
of heterogeneous tissue regions, inevitably discarding discriminative local information.
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Figure 1: Overview of the proposed D&D framework: train base model, cluster slide embeddings,
train cluster-specific experts, distill into unified model.

2.1 Divide-and-Distill (D&D) Framework

To mitigate this bottleneck, we propose Divide-and-Distill (D&D), a method-agnostic framework
composed of four stages, which are summarized in Figure[I]and analyzed below.

* Stage 1: Global base training. A baseline MIL model gy, (+) is trained on all WSIs

using a standard cross-entropy objective function [Hertz et al.,[1991]], producing slide-level
embeddings zy; that capture global context.

 Stage 2: Feature-space partitioning. The resulting slide representations are clustered into
C coherent groups by applying a clustering function ¢(-) (e.g., k-means).

» Stage 3: Expert specialization. Each cluster defines a subset of WSIs D, = {(Z7,Y7) |

gb(z{;\,SI) = ¢}, and an expert MIL model gexpert,c(-) is trained on each subset ¢ to capture
localized tissue patterns and reduce intra-cluster variation.

* Stage 4: Knowledge distillation. Knowledge distillation [Hinton et al.,[2013] is leveraged to
combine the global context captured by the base model with the fine-grained, cluster-specific
knowledge of expert models, producing a single model ggisin (). The objective comprises
three components: (1) supervised cross-entropy with ground truth, (2) KL divergence from
the base model’s predictions, and (3) averaged KL divergence from the C' expert models:

c
o Aexpert . .
L = Lck + Avase Dk (Yoase || Yaistn) + excper > Dt (Vespert,e| Vaisan)-
c=1
This encourages gqisin to retain global discriminative patterns while leveraging cluster-
specific expertise from all specialists. We set Apase = 1 and Aeyxpere = 1 for simplicity.

2.2 Information Theory Perspective

We denote 7 (+;+) as mutual information. In MIL, aggregation computes a slide-level representa-
tion zy,g; = g(Z7). By the data-processing inequality, we obtain (Z7; Yj ) < I(zdyg; Y7) We
define the information-compression 1oss Leomp = Z(Z7;Y7) — I(z3y; Y7), which grows in abso-
lute terms when the slide-level representation is overly compressive relative to the heterogeneous
patch information. The decomposition in Stage 2 of the D&D reduces the effective complexity of

each subproblem. For cluster ¢, the local compression loss LGy = Z(Z4;YJ) — T((2lyg)e; Y)
satisfies Z(Z7;YJ) < Z(Z7;Y7) by the subset property, allowing each expert to achieve better local
approximations. In Stage 3, each expert focuses on a specific region of the feature space, allowing
for specialized pattern recognition without the full complexity of the global problem. The local
compression loss for each expert satisfies chzl |D,| - Eéf,r)np < |D| - Leomp, where |D.| and |D|
represent the sizes of cluster ¢ and the full dataset, respectively. In Stage 4, the distilled model
approximates the combined information from all sources and hence the mutual information is defined
as I(ZJ; Yj)distill ~ maX(I(Z]; YJ )basev UCC=1I(Zﬁ; }/c] )expert,c)~
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CAMELYON-16 TCGA-NSCLC BRACS

Method
ACC AUC ACC AUC  ACC AUC
Mean ool 721 60.1 80.0 90.0 253 59.9
+D&D 713108 604103 825125 919119 3601107 622123
Max Pool 814 804 81.1 90.8 356 712
- +D&D 798116 829125 827116 914106 380124 732120
v
= : 783 77.0 818 90.3 356 70.9
z ABMIL lse et al.|[2018] +D&D 829146 821151 842124 919116 437181 748139
& 83.7 789 80.4 88.9 333 66.8
TransMIL Shao etal. 2021} e 837100 802113 812108 902113 356123 703135
- : 80.6 84.3 823 90.9 379 732
SAMIL [Fillioux etal.)2023] - nen 783 03 829,14 835112 91.6107 402123 746114
: 76.0 785 81.0 89.8 414 739
MambaMIL [Yang etal [2024]  , hep 775415 842457 8201111 914116 425111 788149
Mean Pool 70.5 64.7 86.5 944 333 65.9
+D&D 7367131 1541107 815110 952108 379146 673114
Max Pool 953 974 86.1 94.0 356 712
+D&D 969116 983100 884123 952112 425169 726114
= , 96.9 99.7 878 944 402 782
z
5 : — +D&D 969100 99.4 103 2114 961117 46.0158 9127
ABMIL llse et al. |[2018] 96.9 99.4 89.2 96.1 46.0 80.9
: 96.9 97.8 86.3 93.0 333 69.7
TransMIL{Shao etal. [[2021] - pep 953 16 987100 872100 951121 414181 764167
- : 89.1 97.2 87.1 95.2 414 75.0
SAMIL Fillioux et al. [2023} hep o46155 992120 884113 963111 483169 789139
96.9 99.3 86.6 943 402 736

MambaMIL Yang et al. [2024] , fyepy 969100 996105 877111 953110 425123 782746

Table 1: Performance comparison between baseline MIL methods and their D&D-enhanced
variants. D&D improves performance across six MIL methods on three WSI datasets. Upward (1)
and downward () arrows denote performance changes; color intensity reflects the magnitude of
variation (green: improvement, gray: minor change, red: decrease).

3 Experiments

We evaluate D&D on three publicly available WSI datasets: (1) CAMELYON-16 [Ehteshami Bejnordi
et al.l 2017]], (2) TCGA-NSCLC [The Cancer Genome Atlas Research Network, [2019]], and (3)
BRACS [Brancati et al.|[2022]]. WSIs are processed using the CLAM [Lu et al., 2021]] framework to
extract 256 x 256 patches at 10x magnification. For feature extraction, we use either ResNet-50 |He
et al.| [2015]] pre-trained on ImageNet Deng et al.|[2009] or the UNI foundation model (Chen et al.
[2024]. We consider six representative MIL baselines: Mean Pooling, Max Pooling, ABMIL lIse et al.
[2018]], TransMIL [Shao et al.|[2021]], S4MIL [Fillioux et al.|[2023]], and MambaMIL |Yang et al.|[2024].
Base and expert models are trained with SGD (Ir=1 x 10~%, weight decay=1 x 10~°, dropout=0.25)
for 200 epochs, embeddings are clustered into C' = 3 groups using constrained k-means Bradley
et al. [2000], and the distilled model is trained with Adam for 300 epochs. We report overall accuracy
(ACC) and macro-averaged area under the ROC curve (AUC). Table [T shows the performance of
baseline models and their D&D-augmented counterparts across all datasets and feature extractors.
Improvements are positive across all datasets and metrics, with the largest gains observed on the
BRACS dataset.

4 Discussion & Conclusion

To conclude, we propose D&D, a method-agnostic framework that leverages expert clustering and
knowledge distillation to enhance the representation learning capacity of existing MIL methods, whilst
maintaining inference efficiency. By leveraging expert model clustering and knowledge distillation,
D&D overcomes limitations of existing MIL approaches. While D&D introduces additional training
overhead during the expert learning phase, the framework remains lightweight and preserves single-
model inference efficiency.
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Potential Negative Societal Impact

While the proposed Divide-and-Distill (D&D) framework aims to improve computational pathology
models, potential risks arise from biased or overconfident deployment in clinical workflows. As
our evaluation relies on publicly available WSI datasets, the models may inherit demographic or
acquisition biases that limit generalization across institutions or patient populations. Overreliance on
automated predictions without human oversight could lead to diagnostic errors or unfair outcomes. To
mitigate these risks, human-in-the-loop review, external validation on diverse cohorts, and adherence
to regulatory and ethical standards are essential prior to clinical adoption.
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