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Abstract
The safety of autonomous vehicles (AV) has been a long-standing top concern,
stemming from the absence of rare and safety-critical scenarios in the long-tail
naturalistic driving distribution. To tackle this challenge, a surge of research
in scenario-based autonomous driving has emerged, with a focus on generating
high-risk driving scenarios and applying them to conduct safety-critical testing
of AV models. However, limited work has been explored on the reuse of these
extensive scenarios to iteratively improve AV models. Moreover, it remains in-
tractable and challenging to filter through gigantic scenario libraries collected
from other AV models with distinct behaviors, attempting to extract transfer-
able information for current AV improvement. Therefore, we develop a contin-
ual driving policy optimization framework featuring Closed-Loop Individualized
Curricula (CLIC), which we factorize into a set of standardized sub-modules
for flexible implementation choices: AV Evaluation, Scenario Selection, and AV
Training. CLIC frames AV Evaluation as a collision prediction task, where it
estimates the chance of AV failures in these scenarios at each iteration. Subse-
quently, by re-sampling from historical scenarios based on these failure probabili-
ties, CLIC tailors individualized curricula for downstream training, aligning them
with the evaluated capability of AV. Accordingly, CLIC not only maximizes the
utilization of the vast pre-collected scenario library for closed-loop driving pol-
icy optimization but also facilitates AV improvement by individualizing its train-
ing with more challenging cases out of those poorly organized scenarios. Ex-
perimental results clearly indicate that CLIC surpasses other curriculum-based
training strategies, showing substantial improvement in managing risky scenarios,
while still maintaining proficiency in handling simpler cases. Code is available at
https://github.com/YizhouXu-THU/CLIC.

1 Introduction
With remarkable advancements in deep learning (DL) and deep reinforcement learning (DRL), au-
tonomous driving has gained substantial interest from academia, industry, and the public. However,
the deployment of autonomous vehicles (AV) in the real world has been significantly impeded by
safety concerns. The primary crux sources from the distribution of naturalistic driving data (NDD),
which exhibits a long-tailed pattern [Zhang et al., 2023], leading to a severe data imbalance char-
acterized by a scarcity of safety-critical scenarios. Naturally, solely relying on NDD would require
training and testing AV for billions of miles [Kalra and Paddock, 2016] to ensure safety. Thereby,
a repertoire of studies has emphasized the need to generate safety-critical scenarios [Wang et al.,
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2021a; Ding et al., 2020; Feng et al., 2020c,a,b; Sun et al., 2021; Niu et al., 2021; Lee et al., 2020;
Rempe et al., 2022; Niu et al., 2023] to address the data imbalance issue. This has led to the
emergence of an exciting avenue coined as scenario-based autonomous driving [Nalic et al., 2020;
Li, 2020] that harbors several advantages against autonomous driving under naturalistic situations.
Logged scenarios offer substantial reproducibility and flexibility for re-organization, avoiding repet-
itive computations during replay and allowing re-sampling of valuable scenarios at will. These
advantageous properties hold great promise for accelerating the testing phase [Feng et al., 2023;
Zhao et al., 2016, 2017; Huang et al., 2017; Zhong et al., 2021; Fremont et al., 2020; Yang et al.,
2023] introduced with advanced re-sampling techniques over safety-critical scenarios.

However, limited research has explored the potential of utilizing the rich and diverse historical sce-
narios for closed-loop training of AV, rather than just for testing purposes. The main challenge is
twofold: (1) Scenario Transferability: Pre-collected scenarios can vary significantly across different
driving patterns, including those generated by overly timid and considerably aggressive AV models
or human drivers. AV models trained directly on such scenarios may not always yield improvement
due to the significant distribution inconsistency [Cao et al., 2021]. (2) Scenario Adaptation: Unlike
the fixed AV model used during the testing phase, closed-loop AV policy optimization inevitably
involves dynamical improvement of the iterated AV model. Moreover, driving scenarios are widely
acknowledged for their diversity in difficulty levels, so the AV model needs to be fed with carefully
selected scenarios that align with their capabilities at each iteration. This highlights the need to
offer individualized curricula comprising more challenging scenarios and less boring ones, tailored
to fulfill the requirements of efficient and effective training at current stage.

To tackle these challenges, we introduce a novel framework of Continual Driving Policy Optimiza-
tion with Closed-Loop Individualized Curricula (CLIC), which we divide into three standardized
sub-modules for flexible implementation choices: (1) AV Evaluation: At each iteration, we begin
by exposing the AV model to a subset of scenarios to assess the current AV capability. (2) Scenario
Selection: Next, we aim to estimate whether the AV model collides with others in each scenario.
To achieve this, we employ a discriminator network trained to predict collision probabilities based
on the assessed outcomes, which we term “difficulty predictor". Subsequently, we leverage the pre-
dicted labels indicating risk levels to reweight sampling within the scenario library. This provides AV
with individualized curricula that align with its current capability. (3) AV Training: The AV model
is then trained using the scenarios obtained through individualized re-sampling. Overall, CLIC
adheres to the principles of continual and curriculum learning by commencing training with sim-
pler samples and progressively introducing more challenging ones, achieving scenario transfer and
adaptation out of those diverse yet poorly organized historical scenario libraries for closed-loop AV
optimization. The algorithmic design also helps safeguard against catastrophic forgetting [Toneva et
al., 2018; Khetarpal et al., 2022] of AV model. Against several competing curriculum-based base-
lines, experimental results demonstrate that CLIC effectively optimizes AV models to handle more
challenging scenarios while minimizing any degradation in performance for easier cases.

2 Related Work
2.1 Scenario-Based Autonomous Driving
Scenario-based autonomous driving has recently become a popular paradigm for training and testing
autonomous driving models. Currently, the focus of research in this area mainly lies in scenario
generation and tesing AV model, particularly generating extreme scenarios which are rare in NDD
by training RL models to control background vehicle (BV). Adaptive Stress Testing [Koren et al.,
2018; Koren and Kochenderfer, 2019; Corso et al., 2019; Lee et al., 2020] adopts Monte Carlo tree
search and DRL to generate extreme scenarios. Feng et al. [Feng et al., 2020c,a,b; Sun et al., 2021]
propose a unified framework for adaptive testing scenario library generation. Bayesian optimization
and DRL are employed in different cases. AdvSim [Wang et al., 2021a] and KING [Hanselmann et
al., 2022] use a constructed adversarial cost function to explore and generate safety-critical scenarios.
(Re)2H2O [Niu et al., 2023] efficiently generates varied adversarial scenarios by combining NDD
with simulation data through hybrid offline-and-online RL.

The scenarios generated from the above methods can be stored by saving the state information
of all vehicles at each time step as a static scenario library, which is stable and easy to reproduce.
However, according to our research, there is currently a lack of work that utilizes existing large-scale
static scenario libraries for training AV models, thus failing to establish an industrial closed-loop of
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scenario generation, AV training and testing. Our goal is to complete the missing step in this closed
loop, achieving an integrated approach to train and test scenario-based AV models.

2.2 Continual Driving Policy Optimization
Curriculum learning (CL) [Bengio et al., 2009] is a training strategy involving reweighting the train-
ing data and designing a series of tasks or examples in increasing difficulty order. By gradually
exposing the model to more challenging instances, CL enables a smoother learning process and
better generalization performance, prevent the model from becoming trapped in local optima. In
addition to its original definition [Bengio et al., 2009], CL has been extended to a series of similar
or expanded algorithms, such as self-paced learning (SPL) [Kumar et al., 2010; Jiang et al., 2015;
Ren et al., 2018; Klink et al., 2020] and teacher-guided learning [Matiisen et al., 2019; Portelas et
al., 2020; Schraner, 2022; Shenfeld et al., 2023]. These approaches have found wide applications
in both DL [Graves et al., 2017; Jiang et al., 2018; Hacohen and Weinshall, 2019; Kim and Choi,
2018] and RL [Florensa et al., 2017, 2018; Klink et al., 2021; Cai et al., 2023] domains. In addition,
Prioritized Experience Replay (PER) [Schaul et al., 2015] is another method in RL that involves
data reweighting. Instead of reweighting each training data, it focuses on reweighting individual
transitions, assigning higher priority to transitions that are deemed more important or informative
for learning.

The application of CL in AV training is currently not very common, and most of them align with
predefined CL [Wang et al., 2021b], and distinguish curricula by discrete factors such as weather
and road topology structure [Ozturk et al., 2021], providing future BV trajectories of different
lengths [Khaitan and Dolan, 2022], changing the target driving distance [Agarwal et al., 2021] and
the quantity of BV [Anzalone et al., 2021, 2022]. In addition, [Qiao et al., 2018] utilize the value
function V from RL to measure the learning potential of different tasks, and divide tasks based on
the distance range from the starting point to the intersection. Most of the aforementioned works
define the curriculum as discrete stages and predefine when to switch between them, which often
fall short in terms of automaticity, adaptability and flexibility; and usually train the model with ran-
dom traffic flow. Although [Khaitan and Dolan, 2022] also employs scenario-based training, it is
not applicable to our large-scale scenario library with varying levels of difficulty.

To overcome the aforementioned limitations and better adapt to our objectives and the existing sce-
nario library, we employ the definition of Data-level Generalized CL [Wang et al., 2021b]: Cur-
riculum learning refers to the reweighting of the target training set distribution in T training steps.
We aim to assign different weights to each scenario in the scenario library automatically, and then
perform weighted sampling to obtain training scenarios as individualized curriculum. By continually
updating these weights, we can achieve changes in the difficulty distribution of the static scenario
library, thus enabling continual optimization of driving policy.

3 Methodology
3.1 Problem Formulation
3.1.1 Scenario Formulation
Our scenarios are based on driving straight on the highway and assume that within our area of
interest, there is only one AV (V (0)) and N BVs (V (1), . . . , V (N)). For each vehicle at moment t,
we use its lateral and longitudinal position (x, y), concatenated with its velocity v and heading angle
θ as the state vector, and the changes in AV’s velocity and heading angle between two moments as the
action vector: s(i)t = [x

(i)
t , y

(i)
t , v

(i)
t , θ

(i)
t ], a

(0)
t = [∆v

(0)
t ,∆θ

(0)
t ]. In this way, the complete state

and action vectors are st = [s
(0)
t , s

(1)
t , . . . , s

(N)
t ]T,at = [a

(0)
t ]T, while sBV

t = [s
(1)
t , . . . , s

(N)
t ]T

only represents the state of all BVs.

A scenario d is defined as a finite sequence of traffic scenes consisting of successiveH frames, where
each frame contains the state of all BVs, and the initial state of all traffic participants (including the
AV and all BVs) is given at the initial time:

d = [s0, s
BV
1 , . . . , sBV

H ] (1)

It should be emphasized that this definition of scenarios is AV-agnostic, getting rid of the influence
of other AV models with distinct behaviors used to collect those scenarios. Therefore, they can be
reapplied to different AV models for training.
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Due to the limited precision of the decision modeling at the trajectory level in the SUMO simula-
tor [Behrisch et al., 2011] we use, we choose to manually calculate the kinematic state transitions of
AV as follows, while the state transition of BVs is directly provided by the recorded scenario data:

x
(0)
t+∆t = x

(0)
t + v

(0)
t · cos θ

(0)
t ·∆t

y
(0)
t+∆t = y

(0)
t + v

(0)
t · sin θ

(0)
t ·∆t

v
(0)
t+∆t = v

(0)
t +∆v

(0)
t

θ
(0)
t+∆t = θ

(0)
t +∆θ

(0)
t

(2)

3.1.2 Training AV with RL
Consider the development in a traffic environment as a Markov Decision Process (MDP) defined by
a tuple (S,A,R, P, ρ, γ), where P , ρ and γ are the transition probability, initial state distribution
and discount factor. S and A are state space and action space as outlined above. Reward function
rt = r(st,at) ∈ R are defined as

r = racc + rvel + ryaw + rlane (3)

which includes the following items, and the coefficient values for each item can be found in Table 1:

• Accident: Instruct AV to avoid accidents, including collisions with BV and driving off roads:

racc = −ρacc · I{AV has an accident} (4)

where I represents the indicative function, and ρacc is the corresponding coefficients.

• Velocity: Encourage AV to drive faster within the allowed velocity range [0, vmax]:

rvel = ρvel ·
v
(0)
t − vmax/2
vmax/2

(5)

where v(0)t is the current velocity of AV, and ρvel is the corresponding coefficients.

• Heading direction: Instruct AV to drive smoothly and drive aligned with a line:

ryaw = −ρyaw · |θ| (6)

where θ is the heading angle of AV, and ρyaw is the corresponding coefficients.

• Lane selection: Encourage AV to drive on the “best” lane, where the distance between AV and the
nearest BV in front of AV on the same lane is the maximum:

rlane = ρlane · I{AV on the best lane} (7)

where ρlane is the corresponding coefficients.

Although our scenario library is static, the transition distribution used for training varies as the AV
policy changes, because the AV state information is not included in the scenario library but is instead
populated through online rollouts to align with the current AV policy. Thus, we choose the online
RL algorithm Soft Actor-Critic (SAC) [Haarnoja et al., 2018b,a] to solve the MDP problem. The
objective function of SAC includes an entropy termH of the AV policy distribution:

Jπ(ϕ) =

H∑
t=0

Es0∈ρ,at∼πϕ(·|st),st+1∼P (·|st,at)[γ
tr(st,at) + αH(πϕ(·|st))] (8)

where πϕ is the AV policy parameterized by ϕ, and α is the temperature hyperparameter in the
algorithm. This enables the exploration of more possible actions while maximizing the expected
reward discounted by γ, which enhances the robustness of the model and is also more consistent
with the application patterns in real-world traffic scenarios.
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3.2 Algorithmic Framework
We refine our approach into a universal modular framework (Algorithm 1), and provide our specific
definitions for each module based on this.

In our universal algorithmic framework, each module is undefined and expandable, which allows us
to focus on the relationships between modules and the flow of data, while ignoring the implemen-
tation details of each module. It also facilitates the adoption of different specific implementations
within our framework in order to propose new methods.

Algorithm 1: Universal Algorithmic Framework
1: Initialize: AV policy πϕ(a|s)
2: Input: static scenario library D
3: for each iteration do
4: info← EVALUATEAV(πϕ(a|s),D)
5: dtrain ← SELECTSCENARIO(D,info)
6: πϕ(a|s)← TRAINAV(πϕ(a|s), dtrain)
7: end for

Our universal algorithmic framework consists of three main stages: AV Evaluation, Scenario Selec-
tion, and AV Training. In the AV Evaluation stage, we evaluate the current AV model to obtain an
estimate of the current capabilities of the AV model, denoted as info in Algorithm 1. The info
here can take any form of evaluation information, depending on how the evaluation process and its
corresponding output are defined. In the Scenario Selection stage, training scenarios are selected
from the scenario library based on a certain criterion, in order to explore the boundaries of the AV
model’s capabilities and achieve the maximum improvement in AV performance. In the AV Train-
ing stage, any RL algorithm can be used to improve the AV policy in the training scenarios. These
three stages are executed sequentially and stop after several iterations.

3.3 Algorithmic Implementation
3.3.1 AV Evaluation
In this stage, we aim to evaluate the capabilities of the current AV model πϕ(a|s) using a subset
of scenarios deval from the scenario library. Considering that the time cost of this stage should not
be too high and the unbiasedness of the scenario distribution should be maintained, we randomly
samplem scenarios from the scenario libraryD with a total ofM scenarios, and sequentially rollout
them in the environment to interact with the current AV model. Then we return the results of the
interaction, which are a set of labels lgt. Detailed algorithmic steps are shown in Algorithm 2.

Algorithm 2: EVALUATEAV
1: Initialize: evaluation scenario number m
2: Input: current AV policy πϕ(a|s), scenario library D
3: deval ← SAMPLE(D,m)
4: for d(i) in deval do
5: s← d

(i)
s0 ; done← False

6: while not done do
7: a← argmaxa πϕ(a|s)
8: s′, r,done← STEP(a); s← s′

9: end while
10: l

(i)
gt ← I{AV colides with BV}

11: end for
12: return lgt

3.3.2 Scenario Selection
In order to continually optimize driving policy and enhance the ability of AV to handle extreme sce-
narios, it is important to focus training on more challenging scenarios while including a small num-
ber of less difficult scenarios to prevent forgetting. Thus, associating the difficulty of each scenario
with its sampling weight is an intuitive approach. However, currently there is no perfect benchmark
to assess scenario difficulty, meanwhile scenario difficulty is also an individualized metric. Thus
we make use of the results from each evaluation stage as the information for the current AV model.
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We treat the scenarios used for evaluation deval and their collision labels lgt as the ground truth, and
then employ a supervised learning approach to train a difficulty predictor model pψ(d|ϕ), where d
can be any scenario that meets the definition in Equation 1. We utilize a three-layer feedforward
neural network [Goodfellow et al., 2016] parameterized by ψ as the difficulty predictor pψ(·|ϕ), and
flatten the entire scenario data d into a one-dimensional vector as the input of the predictor. Binary
cross-entropy loss (BCELoss) is used as the loss function:

Lpred(ψ) = −Ed(i)∼deval
[
l
(i)
gt · log(l

(i)
pred) + (1− l(i)gt ) · log(1− l

(i)
pred)

]
(9)

where l(i)pred = pψ(d
(i)|ϕ) is the predicted label value of the i-th scenario d(i). The number of

training epochs is determined through experiments to ensure that the predictor neither underfits nor
overfits the training data. The predictor is then applied to the entire scenario library D to obtain the
predicted label values lall for each scenario. These predicted label values are then used as weights
for weighted sampling, resulting in a batch of training scenarios dtrain. Specifically, the probability
of sampling the i-th scenario d(i) is:

P (d(i) ∈ dtrain) =
l
(i)
all∑M
i=1 l

(i)
all

=
pψ(d

(i)|ϕ)∑M
i=1 pψ(d

(i)|ϕ)
(10)

Algorithm 2 and Algorithm 3 together form the process of individualized curriculum design.

Algorithm 3: SELECTSCENARIO

1: Initialize: difficulty predictor pψ(·|ϕ), learning rate α, training scenario number n
2: Input: scenario library D, evaluation scenarios deval, labels of evaluation scenarios lgt
3: for each epoch do
4: lpred ← pψ(deval|ϕ)
5: ψ ← ψ − α∇ψLpred(ψ) ▷ Equation 9
6: end for
7: lall ← pψ(D|ϕ)
8: dtrain ← WEIGHTEDSAMPLE(D, n, lall) ▷ Equation 10
9: return dtrain

3.3.3 AV Training
In this stage, we employ online RL algorithm SAC to train the AV model. At each epoch, we first
shuffle the order of the training scenarios and then rollout each scenario one by one, updating the
parameters of the AV model based on SAC.

Scenario Generation II. Scenario Selection III. AV TrainingI. AV Evaluation

Scenario 
Library

AV modelAV model

Predictor

crash
label=1

no crash
label=0

other AV modelother AV model
BV

new AV modelnew AV model

AV modelAV model

µ(a|s)

{d(i)}

πϕ(a|s)

deval

D

deval

lgt

pψ(·|ϕ)
dtrain

πϕ′ (a|s)

πϕ(a|s)

Figure 1: Overall Algorithmic Architecture

By incorporating the specific implementation of the aforementioned module into the universal algo-
rithmic framework, we obtain an overall architecture illustrated in Figure 1, which includes the three
modules mentioned above. The scenario generation stage for other AV model µ(a|s) on the left of
the figure has already been extensively studied and is therefore outside the scope of this algorithm.
In each training iteration, a batch of scenarios deval is randomly sampled from the static scenario
library D to evaluate the current AV model. These scenarios are rolled out in the environment and
interacts with AV to obtain collision labels lgt. These scenarios and labels are then used to train
the difficulty predictor pψ(·|ϕ), which, after training, predicts labels for all scenarios in D. These
predicted labels lall are used as weights to perform weighted sampling on all scenarios, resulting in
the training scenarios dtrain. Finally, the AV model πϕ(a|s) is trained using an online RL algorithm
on these training scenarios, completing a full training iteration.
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4 Experiments
We provide evidence for the superiority of CLIC in training AV models by addressing the following
questions:

• Can CLIC train safer AV models than other baselines? (Sec. 4.2.1)

• Is CLIC strengthening the AV model while increasing the difficulty of training scenarios selected
by the predictor throughout the training process? (Sec. 4.2.2)

• Can CLIC select training scenarios specifically tailored to the defects of a particular vehicle?
(Sec. 4.2.3)

• How does CLIC reweight the data distribution of the scenario library according to AV capability?
(Sec. 4.2.4)

4.1 Experiment Settings
4.1.1 Dataset
All traffic scenarios used in our experiments are generated by (Re)2H2O [Niu et al., 2023]. Refer to
Appendix A for more details and visualization results about the dataset.

4.1.2 Baselines
We select five baselines for comparison:

• SAC w/ rand: Simply sample a batch of training scenarios randomly from the scenario library.

• SAC w/ rand+fail: In each training iteration, half of the training scenarios are randomly sampled
from the scenario library, while another half consists of scenarios that failed in the corresponding
AV Evaluation stage.

• SAC w/ fail: All training scenarios are chosen from those that fail in AV Evaluation stage.

• PER: Apply PER [Schaul et al., 2015] into RL based on SAC w/ rand.

• PCL: Following the idea of predefined curriculum learning (PCL) [Wang et al., 2021b], we divide
the training process into four phases of the curriculum based on the number of BV (1∼4). The
training set for each phase adds scenarios with a higher number of BV based on the previous
phase.

4.1.3 Evaluation Metrics
To evaluate the capabilities and training effectiveness of the AV model in extreme scenarios, we
employed the following metrics1:

• SR (%): Success rate, referring to the success rate of the AV model in all scenarios after the final
iteration of training. It reflects the overall safety performance of the AV model in various extreme
scenarios.

• Confusion Matrix: To distinguish between the difficulty levels of different scenarios and to high-
light the effectiveness of the AV model in high-difficulty scenarios, we also borrow the concept of
confusion matrix in supervised learning: we define the label of successful scenarios as 0, and that
of failed scenarios as 1. The test results before training are treated as ground truth, while those
after training are treated as predicted values. Specifically, we compute the following two metrics:

– FNR (%) = FN
TP+FN , which represents the proportion of successful scenarios after training

that are failed before.

– TNR (%) = TN
TN+FP , which represents the proportion of successful scenarios after training

that are successful before.

• CPS (s−1) and CPM (m−1): As defined in [Niu et al., 2023], CPS is Average Collision Frequency
Per Second and CPM is Average Collision Frequency Per Meter, calculated as following:

CPS =
Ncol
Ttotal

, CPM =
Ncol
Dtotal

(11)

1We expect higher values for SR, FNR and TNR, and lower values for CPS and CPM.
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Figure 2: Comparison of various metrics for CLIC and baselines.

where Ncol is the collision number of AV, Ttotal and Dtotal are the total testing time and the total
driving distance traveled by AV along the road direction.

4.2 Experimental Results
4.2.1 Comparison Experiment
We conduct tests on all scenarios in the scenario library to compare different baselines on the afore-
mentioned metrics, and present the results from 5 random seeds as shown in Figure 2. CLIC out-
performs all baselines in all metrics, achieving the highest SR, FNR, TNR and the lowest CPS and
CPM. This indicates that our training method not only enables the AV model to learn more challeng-
ing scenarios it couldn’t handle before but also minimizes the risk of forgetting previously learned
scenarios to the utmost. Although SAC w/ fail focuses on training failure scenarios and achieves
relatively good results on FNR, it is also easy to forget simple scenarios, leading to a little bad
performance on TNR. Furthermore, SAC w/ rand and PER perform the worst, further illustrating
the importance of a well-designed curriculum compared to blindly training on randomly sampled
scenarios from the scenario library. We also included the SR, CPS, and CPM of the AV model with
random initialization before training in the figure. It can be observed that even for an untrained
AV model, its SR is already quite high (62%). Therefore, using random sampling of scenarios for
training like SAC w/ rand and PER would inevitably lead to inefficient training, wasting time on
scenarios that the AV model does not require training on.

4.2.2 Matrix Experiment
In addition to testing the performance change of the AV model before and after training, we also aim
to verify the changes in the capabilities of the AV model and the difficulty of scenarios selected by the
predictor throughout the training process. Therefore, we conduct the following matrix experiments:
we save the AV model and predictor model at each training iteration, and sequentially use each
predictor to select scenarios and test them with each AV model. This process yield a T × T matrix
of SR, where T represents the total number of training iterations. For instance, the element “AV
iteration = 3, predictor iteration = 4” represents the testing SR of the AV model trained after three
iterations when tested on the scenarios selected by the predictor in the fourth iteration. As shown in
Figure 3, the experimental results demonstrate the following characteristics:

• The AV models with a higher number of training iterations achieved higher SR among the scenar-
ios selected by each specific predictor, indicating that the capability of the AV model is indeed
continually increasing.

• For each specific AV model, there is a decreasing trend in SR among the scenarios selected by
subsequent predictors, indicating that the difficulty of the scenarios selected by the predictor is
indeed increasing.

• For the AV model in the first training iteration, it exhibits a higher SR on scenarios selected by
some of subsequent predictors. This is primarily due to the lower capability of the AV model at this
stage, rendering the difficulty level of predictions by the predictors insignificant. This observation
further emphasizes the importance of individualized curriculum design in CLIC.

4.2.3 Analyses on Individualization
To demonstrate that CLIC can indeed generate individualized curricula that identify specific defects
in AV model and select more targeted training scenarios accordingly, we intentionally disable a
trained AV model to get less aware of BVs on the left front side. We then let this disabled AV
go through CLIC pipeline and compare the selected scenarios with the ones selected for the AV
model without defects. We analyze the distribution of distances between the AV and the BVs on
its left front side in these scenarios illustrated in Figure 4. As expected, these BVs are positioned
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Figure 3: Results of the matrix experiment.
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Figure 5: (a) Changes of partial individual scenario labels before and after training.
(b)(c) Label distribution before and after training.

closer to the AV, increasing the risk of collisions. Furthermore, CLIC selected a significantly higher
proportion (27.87%) of scenarios for AVs with defect where BVs are positioned on the left front
side, surpassing the selected proportion (17.19%) of the AV model with no defect by a substantial
margin. These clearly echo our intuition of providing individualized curricula that target specific
defects in training AV model.

4.2.4 Analyses on Scenario Reweighting
To showcase the changes in the distribution of scenario weights before and after training, we tracked
the changes in predicted label values for individual scenarios before and after training. These
changes are presented as a scatter plot (Figure 5(a)). The scenarios in the figure are concentrated in
two regions: first, scenarios with initially small label values tend to be concentrated around 0 after
training; second, scenarios with label values close to 1 before training show varying degrees of de-
crease in label values after training. Additionally, the majority of scenarios fall below the diagonal
line y = x, indicating that these scenarios indeed become simpler for the AV model after training.
This observation further confirms the conclusion drawn in 4.2.2.

Moreover, to further illustrate the overall scenario reweighting, we also plot histograms of the label
distributions obtained through random sampling and weighted sampling before and after training, as
shown in Figure 5(b)(c). It can be observed that before training, the predicted labels are concentrated
at both ends of the interval, while the rest of the distribution appears relatively uniform. However,
with weighted sampling, the labels are concentrated near 1, indicating the selection of harder sce-
narios for the current AV model. After training, as the AV model becomes sufficiently powerful,
the predicted labels near 1 significantly decrease, and more labels concentrate near 0. Nonetheless,
in order to select relatively hard training scenarios, weighted sampling still acquires a considerable
number of scenarios with larger labels. To provide a more intuitive demonstration of the weighted
sampling, we also plot the ratio curve of the normalized frequencies corresponding to the two sam-
pling methods. As expected, the ratio curve maintains a proportional relationship for each sampling
instance.
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5 Conclusion and Future Work
In this paper, we develop a scenario-based continual driving policy optimization framework with
Closed-Loop Individualized Curricula (CLIC) technique, composed of three sub-modules for flexi-
ble implementation choices: AV Evaluation, Scenario Selection and AV Training. CLIC approaches
AV Evaluation as a difficulty prediction task by training a discriminator on AV collision labels to
estimate the potential failure probability of AV within corresponding scenarios. With the prediction
results from the discriminator, CLIC reweights scenarios to select individualized curricula for AV
training that incorporate less easy cases with more challenging ones according to current AV capa-
bility. To summarize, CLIC not only fully exploits the vast historical scenario library for closed-loop
AV training rather than just for AV testing, but also facilitates AV improvement by individualizing
its training on more helpful scenarios that match its current capability out of the diverse yet poorly
organized library. Through extensive experimental analyses, CLIC outperforms other competing
curriculum-based baselines, especially in handling safety-critical scenarios, while minimizing the
degradation of performance in regular scenarios. For future work, we are interested in exploring sce-
nario libraries with more complex road topologies and other types of traffic participants, as well as
investigating theoretical guarantees for AV improvement within these individualized curricula. We
also believe that CLIC is not only applicable to the field of autonomous driving policy optimization,
but also a general method for complex tasks and continual learning in robotics.
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Appendix

A Dataset Analysis and Visualization
All of the scenario data we use is generated by (Re)2H2O [Niu et al., 2023] and saved in the form of
static vectors after preprocessing according to the definition in Section 3.1.1, making it convenient
to flexibly load into the data stream for reproduction when needed. This scenario library records
65494 extreme scenarios (excluding scenarios where BVs collided with each other already) formed
when 1∼4 BVs attempted to attack AV on a 3-lane straight highway with a length of about 200m,
with a sampling interval of ∆t = 0.04s. Among them, 53040 scenarios showed successful collisions
between BV and AV, with a collision rate of 81.0%. Figure 6 shows an illustrated example of the
scenarios where one BV collides with AV.

Figure 6: An illustrated example of the scenarios.

During scenario generation, certain limitations were imposed on the actions of BVs to meet com-
mon vehicle dynamics constraints. The acceleration of BVs is limited to [−7.84, 5.88](m/s2) (i.e.
[−0.8g, 0.6g]), while the angular velocity is limited to [−π/3, π/3](rad/s). In addition, the maxi-
mum velocity limit on the road is 40m/s and negative velocity (i.e. reversing) is not allowed.

In order to better illustrate some of the features of the scenario library, we have calculated the
distribution of the following features and visualized them: the yaw, velocity and acceleration of
BVs, the distance between BVs, the initial distance between BVs and AV, and the initial position of
BV relative to AV. Figure 7 ∼ 9 show these features respectively.
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Figure 7: The yaw, velocity and acceleration distribution of all BVs.
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Figure 9: The initial position of partial BV relative to AV.

From the above feature distribution statistics, it can be seen that although the scenario library con-
tains a large number of scenarios where AV accidents occur during generation, there are also many
scenarios where BVs’ driving behavior patterns are quite conventional, and the BVs are relatively
sparse. Therefore, it is highly likely that these scenarios overfitted the AV model at the time of
generation and are not applicable to other AV models, resulting in high SR in our testing experi-
ment. In addition, these feature distributions also reflect the diversity of the scenario library data,
making them more suitable for our algorithmic framework that utilizes closed-loop feedback for
individualized training scenario selection.

B Implementation Details
Due to the fact that neural networks must have fixed dimensional inputs, but the different number of
BVs and timesteps in the scenarios can result in inconsistent input dimensions, we have to initialize
the neural network by obtaining the maximum possible input dimension in advance, and fill in
the remaining dimensions with zeros when the input dimension is insufficient. In this way, the
actual input dimension of the predictor is 6 × (1 + 4 × 100) = 2406 (Each vehicle’s data at each
moment contains 6 dimensions, including timestep t, vehicle ID, x(i)t , y(i)t , v(i)t , θ(i)t ; all scenario
data contain up to 4 BVs, with a maximum timestep of 100; 1 represents the AV information at the
initial moment), while the actual input state space dimension of the AV model is 4 × (1 + 4) = 20

(The state of each vehicle includes 4 dimensions: x(i)t , y(i)t , v(i)t , θ(i)t , with a total of 1 AV and
no more than 4 BVs). On the other hand, the object of action space is only the AV itself, so its
dimension is determined to be 2 (∆v(i)t , ∆θ(i)t ) according to Section 3.1.1.

Table 1 lists the values of the coefficients corresponding to each reward function item, which have
been adjusted through certain experiments.

Table 1: Coefficients of the reward function
Coefficient Description Value

ρacc Coefficient of the accident reward items 40
ρvel Coefficient of the velocity reward items 0.8
ρyaw Coefficient of the yaw reward items 6/π
ρlane Coefficient of the lane reward items 2.0

The network structure and hyperparameters of our algorithm are listed in Table 2. Except for the tem-
perature parameter α = 0.1 which is adjusted through experiments, most of these hyperparameters
are based on empirical values.

All of our experiments are conducted on a Linux server equipped with an 8-core Intel(R) Xeon(R)
CPU E5-2620 v4 and 3 NVIDIA Geforce GTX 1080Ti chips. Under the above experimental setup,
the entire closed-loop training process takes about 6 hours, with the AV training stage in Section 3.3.3
accounting for an average of over 83.0% of the time. This indicates that our individualized curricu-
lum generation process does not bring significant time costs and computational burden.

C Additional Experiment Results
C.1 Additional Ablations, Baselines and Metrics
In addition to the baselines mentioned in Section 4.1.2, our experiment also includes the following
experimental settings for comparison:
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Table 2: Hyperparameters

Hyperparameter Description Value

Evaluate size Number of scenarios tested in AV Evaluation stage 4096
Train size Number of scenarios trained in AV Training stage 128
Layer number Number of hidden layers in each network (all) 3
Hidden size Number of hidden units in each hidden layer 256
Batch size Number of examples in each batch when training the predictor 128
Learning rate The step size in network gradient descent (all) 10−4

Optimizer The optimizer used in gradient descent (all) Adam
Nonlinearity Nonlinear activation functions in networks ReLU
Nonlinearity
(predictor output) Nonlinear activation function in the output layer of the predictor Softmax

Nonlinearity
(policy output) Nonlinear activation function in the output layer of the policy net tanh

Iterations T The number of iterations of the entire closed-loop algorithm 10
Epochs The number of training epochs when training the predictor 20
Episodes The number of training episodes on each scenario 10
Temperature
parameter α Entropy regularization coefficient in SAC objective function 0.1

Buffer size The maximum capacity of the replay buffer in SAC 106

Discount factor γ The future reward discount factor in RL 0.99
Target smoothing
coefficient τ Update coefficient for target network parameter soft update 0.01

• alpha_0.2 and alpha_0.15: In Section B, we set the temperature parameter α as 0.1, and in fact,
we also try α = 0.15 and α = 0.2 for the experiment and compare the results. The larger the
value of α, the more inclined the model is to explore policy diversity.

• auto_alpha: As shown in [Haarnoja et al., 2018b], the temperature parameter α can also be
designed with a loss function and automatically adjusted by gradient decent:

J(α) = Eat∼πt [−α log πt(at|st)− αH̄]
α← α− λ∇̂αJ(α)

(12)

where H̄ is the target entropy, and λ is the learning rate. Here H̄ is set as 0, and λ remains
consistent with others, i.e. 10−4.

• dropout: Add dropout process during predictor training to prevent overfitting, and set the dropout
probability as 0.2.

• batch_1:1: In order to prevent the imbalance of positive and negative examples during the pre-
dictor training process from leading to poor training results, the number of positive and negative
examples in each batch is ensured to be 1:1 by copying examples with the fewer labels.

• order: The algorithm settings are basically the same as CLIC, but when selecting training scenar-
ios, they are not weighted sampled based on the predicted difficulty labels. Instead, the scenarios
are sorted in order according to their labels, and then all scenarios are divided into intervals ac-
cording to the order. From each interval we randomly sample one scenario to form the training
scenarios.

• PCL_label: In addition to using the number of BV as a difficulty classification basis for PCL,
the initial predicted difficulty labels can also be divided into different intervals for PCL, called
PCL_label, and correspondingly, the baseline PCL in Section 4.1.2 is called PCL_bv_num in
Table 3. Here, all scenarios are divided into 5 curriculum stages at intervals of 0.2 (The range of
label is [0, 1]), with 2 iterations of training for each stage.

In addition to the safety performance metrics mentioned in Section 4.1.3, we also considered more
metrics including efficiency and comfort:
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• vel (m/s): The average velocity of AV tested in all scenarios.

• succ_vel (m/s): The average velocity of AV tested in successful scenarios, reflecting the efficiency
performance of AV while ensuring safety.

• acc (m/s2): The average acceleration of AV tested in all scenarios.

• jerk (m/s3): The average derivative of acceleration over time of AV tested in all scenarios.

• ang_vel (rad/s): The average angular velocity of AV tested in all scenarios.

• lat_acc (m/s2): The average lateral acceration of AV tested in all scenarios.

Among them, the first two metrics reflect the efficiency of AV and are expected to be larger, while
the last four metrics reflect the comfort of AV and are expected to be smaller.

C.2 Complete Results of Comparative Experiments
Adding the above experimental conditions or baselines and metrics, the complete results of the
comparative experiments are shown in Table 3.

The experimental results indicate that the CLIC method (including fine-tuning α) has achieved the
best performance in various safety and efficiency related metrics. When α = 0.15, the efficiency of
AV is the highest, and when α = 0.2, AV performs quite well in terms of comfort. In addition, thanks
to the velocity reward item in our reward function, the AV models trained by various methods have
made gratifying progress in efficiency compared to untrained AV model. However, improvements in
the training process of the predictor are not reflected in the final results, and the loss function of the
predictor itself also dose not significantly decrease further after these improvements. The method of
selecting training scenarios in order of difficulty labels is indeed not as good as weighted sampling.
Furthermore, as mentioned in Section 4.2.1, PCL has not fully utilized the powerful advantages of
curriculum learning, as its predefined curriculum settings completely ignore the ability feedback of
the current AV model, thus lacking adaptability.

It is also worth mentioning that although the untrained AV model has shown seemingly good SR,
they have exposed their practical shortcomings in CPS and CPM, more than twice as high as CLIC.
Through comfort-related metrics, it can also be seen that the untrained AV model is difficult to take
action to avoid accidents and only engages in trivial driving in a naïve manner. This also reflects the
importance of individualized curricula, otherwise these once challenging scenarios would lose their
transferability and the value of reuse even in such a naïve model.

D Qualitative Results
Through SUMO GUI, we visualize some experimental results and obtain these qualitative results to
support our conclusion.

D.1 Comparative Experiment

Figure 10: The performance of different AV models in two scenarios. From top to bottom, they are:
untrained, trained by SAC w/ rand (no curriculum), and trained by CLIC. Only the AV model
trained by CLIC can successfully handle these two scenarios and avoid accidents.
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D.2 Matrix Experiment

Figure 11: A result in the matrix experiment with fixed predictor iteration = 5. According to
the predicted labels of the fixed predictor, weighted sampling is performed to obtain the same test
scenario. In the left image, AV iteration = 1, and the AV has experienced an accident; In the right
image, AV iteration = 10, and the AV has successfully passed the test.

Figure 12: A result in the matrix experiment with fixed AV iteration = 5. In the left image, predictor
iteration = 1, and the selected scenario is relatively simple, where AV successfully passed the test;
In the right image, predictor iteration = 10, the selected scenario is quite difficult, where the AV
experienced an accident.

D.3 Analyses on Individualization

Figure 13: An individualized scenario selection result in Section 4.2.3. On the left is one scenario
selected for normal AV models, and on the right is one scenario selected for AV models with left
front perception defects. It can be observed that in the scenario on the right, the BV in left front of
the AV is significantly closer and more aggressive.
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