
TRANSIC: Sim-to-Real Policy Transfer
by Learning from Online Correction

Yunfan Jiang1, Chen Wang1, Ruohan Zhang1,2, Jiajun Wu1,2, Li Fei-Fei1,2
1Department of Computer Science 2Institute for Human-Centered AI (HAI)

Stanford University

(a) Simulation Policy (b) Direct Deployment

(c) Human-in-the-Loop Correction (d) Successful Transfer with Learned Residual Policy

Fig. 1: TRANSIC for sim-to-real transfer in contact-rich robotic manipulation tasks. a) and b) Naı̈vely deploying policies
trained in simulation usually fails due to various sim-to-real gaps. Here, the robot attempts to first align the light bulb with
the base and then insert and screw the light bulb into the base. c) A human operator monitors robot behaviors, intervenes, and
provides online correction through teleoperation when necessary. Human data are collected to train a residual policy to tackle
various sim-to-real gaps in a holistic manner. d) The simulation policy and residual policy are integrated together during test
time to achieve successful sim-to-real transfer for contact-rich tasks, such as screwing a light bulb into the base.

Abstract—Learning in simulation and transferring the learned
policy to the real world has the potential to enable general-
ist robots. The key challenge of this approach is to address
simulation-to-reality (sim-to-real) gaps. Previous methods often
require domain-specific knowledge a priori. We argue that a
straightforward way to obtain such knowledge is by asking
humans to observe and assist robot policy execution in the real
world. The robots can then learn from humans to close various
sim-to-real gaps. We propose TRANSIC, a data-driven approach
to enable successful sim-to-real transfer based on a human-in-the-
loop framework. TRANSIC allows humans to augment simulation
policies to overcome various unmodeled sim-to-real gaps holisti-
cally through intervention and online correction. Residual policies
can be learned from human corrections and integrated with
simulation policies for autonomous execution. We show that our
approach can achieve successful sim-to-real transfer in complex
and contact-rich manipulation tasks such as furniture assembly.
Through synergistic integration of policies learned in simulation
and from humans, TRANSIC is effective as a holistic approach to
addressing various, often coexisting sim-to-real gaps. It displays

attractive properties such as scaling with human effort. Videos
and code are available at transic-robot.github.io.

I. INTRODUCTION

Learning in simulation is a potential approach to the real-
ization of generalist robots capable of solving sophisticated
decision-making tasks [1, 2]. Learning to solve these tasks
requires a large amount of training data [3–5]. Providing
unlimited training supervision through state-of-the-art simu-
lation [6–10] could alleviate the burden of collecting data
in the real world with physical robots [11, 12]. Therefore,
it is crucial to seamlessly transfer and deploy robot control
policies acquired in simulation, usually through reinforcement
learning (RL), to real-world hardware. Successful demon-
strations of this simulation-to-reality (sim-to-real) approach
have been shown in dexterous in-hand manipulation [13–17],
locomotion [18–27], and quadrotor flight [28, 29].

https://transic-robot.github.io/

Nevertheless, replicating similar success in manipulation
tasks with robotic arms remains surprisingly challenging, with
only a few cases in simple non-prehensile manipulation [30–
33], industry assembly under restricted settings [34–38], and
peg swinging [39]. The difficulty mainly stems from the
unavoidable sim-to-real gaps [40], including but not limited to
perception gap [41–43], embodiment mismatch [18, 44, 45],
controller inaccuracy [46–48], and dynamics realism [49].
Traditionally, researchers tackle them through system iden-
tification [18, 30, 50, 51], domain randomization [13, 52–
54], real-world adaptation [55, 56], and simulator augmen-
tation [57–59]. Many of these approaches require explicit,
domain-specific knowledge and expertise in tasks or simula-
tors. Although for a particular simulation-reality pair, there
may exist specific inductive biases that can be hand-crafted
post hoc to close the sim-to-real gap [18], this knowledge
is often not available a priori. Identifying its effects on task
completion is also intractable.

We argue that a straightforward and feasible way for humans
to obtain such knowledge is to observe and assist policy
execution in the real world. If humans can assist the robot to
successfully accomplish the tasks in the real world, sim-to-real
gaps are effectively addressed. This naturally leads to a gener-
ally applicable paradigm that can cover different priors across
simulations and realities—human-in-the-loop learning [60–62]
and shared-autonomy [63, 64].

Our key insight is that the human-in-the-loop framework
is promising for addressing the sim-to-real gaps as a whole,
in which humans directly assist the physical robots during
policy execution by providing online correction signals. The
knowledge required to close sim-to-real gaps can be learned
from human signals. We present TRANSIC (transferring poli-
cies sim-to-real by learning from online correction, Fig. 1), a
data-driven approach to enable the successful transfer of robot
manipulation policies trained with RL in simulation to the real
world. In TRANSIC, once the base robot policies are acquired
from simulation training, they are deployed to real robots
where human operators monitor the execution. When the robot
makes mistakes or gets stuck, humans interrupt and assist
robot policies through teleoperation. Such human intervention
data are collected to train a residual policy, after which the
base policy and the residual policy are combined to solve
contact-rich manipulation tasks. Unlike previous approaches
that heavily rely on domain knowledge, since humans can
successfully assist the robot trained in silico to complete
real-world tasks, sim-to-real gaps are implicitly handled and
addressed by humans in a domain-agnostic manner.

To summarize, our key contribution is a novel, holistic
human-in-the-loop method called TRANSIC to tackle sim-to-
real policy transfer for manipulation tasks. Through extensive
evaluation, we show that our method leads to more effective
sim-to-real transfer compared to traditional methods [50, 52]
and requires less real-robot data compared to the preva-
lent imitation learning and offline RL algorithms [65–68].
We demonstrate that successful sim-to-real transfer of short-
horizon skills can solve long-horizon, contact-rich manipu-

lation tasks, such as furniture assembly. Videos and code are
available at transic-robot.github.io.

II. TRANSIC: SIM-TO-REAL POLICY TRANSFER BY
LEARNING FROM ONLINE CORRECTION

An overview of TRANSIC is shown in Fig. 2. This section
starts with a brief preliminary review, followed by a descrip-
tion of simulation training. We then introduce residual policies
learned from human intervention and online correction and
present an integrated framework for deployment during testing.
Lastly, we provide implementation details.

A. Preliminaries

We formulate a robot manipulation task as an infinite-
horizon discrete-time Partially Observable Markov Decision
Process (POMDP) M := (S,O,A, T , R, γ, ρ0), where S is
the state space, O is the observation space, and A is the
action space. At time step t, a robot observes ot ∈ O,
executes an action at, and receives a scalar reward rt from
the reward function R(st, at). The environment progresses to
the next state following the transition function T (st+1|st, at).
The robot learns a parameterized policy πθ (·|o) to maximize
the expected discounted return J := Eτ∼pπθ

[
∑∞
t=0 γ

trt] over
induced trajectory distribution τ := (s0, o0, a0, r0, ...) ∼ pπθ

,
where s0 ∼ ρ0 is sampled from the initial state distribution
and γ ∈ [0, 1) is a discount factor. We consider simulation
and real environments as two different POMDPs. We adopt an
intervention-based learning framework [65, 66] where a human
operator can intervene and take control during the execution
of the robot policy. Extended preliminaries can be found in
Appendix Sec. E.

B. Learning Base Policies in Simulation with RL

a) Policy Learning with 3D Representation: Object ge-
ometry matters for contact-rich manipulation. For example, a
robot should ideally insert a light bulb into the lamp base with
the thread facing down. To retain such 3D information and
facilitate sim-to-real transfer, we propose to use point cloud
as the main visual modality. Typical RGB observation used in
visuomotor policy training [69] suffers from several drawbacks
that hinder successful transfer, such as vulnerability to differ-
ent camera poses [70] and discrepancies between synthetic
and real images [42]. Well-calibrated point cloud observation
can bypass these issues and has been successfully demon-
strated [14, 71]. During the simulation RL training phase,
we synthesize point cloud observations for higher throughput.
Concretely, given the synthetic point cloud of the m-th object
P(m) ∈ RK×3, we transform it into the global frame through
P

(m)
g = P(m)

(
R(m)

)⊺
+

(
p(m)

)⊺
. Here, R(m) ∈ R3×3 and

p(m) ∈ R3×1 denote the object’s orientation and translation
in the global frame. Further, the point cloud representation of
a scene S with M objects is aggregated as PS =

⋃M
m=1 P

(m)
g

and subsequently used as policy input.

https://transic-robot.github.io/

Joint Position

Controller

Teacher Policy

(Trained with RL)

Operational Space

Controller

Student

Policy

Proprioception Privileged

Object Poses

Proprioception

Synthetic Point Cloud

Action Space

Distillation

(a) Simulation Policy Training through Action Space Distillation

Base Policy

Human Operator

Residual Policy Training

Integrated

Deployment

Correction Dataset

Correct

or not?

Successful Transfer

Base Policy

Residual Policy

Human-in-the-Loop

Data Collection

(b) Residual Policy Learning from Human Correction

Fig. 2: TRANSIC method overview. a) Base policies are first trained in simulation through action space distillation with
demonstrations generated by RL teacher policies. Base policies take point cloud as input to reduce perception gap. b) The
acquired base policies are first deployed with a human operator monitoring the execution. The human intervenes and corrects
through teleoperation when necessary. Such correction data are collected to learn residual policies. Finally, both residual policies
and base policies are integrated during test time to achieve a successful transfer.

b) Action Space Distillation: A suitable action
abstraction is critical for efficient learning [46, 47] as
well as sim-to-real transfer [48]. A high-level controller such
as the operational space controller (OSC) [72] facilitates RL
exploration [46] but may hinder sim-to-real transfer because
it requires accurate modeling of robot parameters, such as
joint friction, mass, and inertia [73]; on the other hand, a
low-level action space such as the joint position ensures
consistent deployment in simulation and real hardware, but
renders trial-and-error RL impractical. We draw inspiration
from the teacher-student framework [15, 74–76] and propose
to first train the teacher policy πteacher through RL with
OSC and then distill successful trajectories into the student
policy πstudent with joint position control. Specifically,
we roll out πteacher and record the robot’s joint position
at every simulated time interval δt to construct a dataset
Dteacher = {τ (n)}Nn=1. We then relabel actions from the
end-effector’s poses to joint positions. Such a relabeled
dataset is ready to train student policies through behavior
cloning. We name this approach as action space distillation
and find it crucial to overcome the sim-to-real controller
gap. Furthermore, teacher policies directly receive privileged
observations for ease of learning, while student policies
learn on synthetic point-cloud inputs to match real-world
measurements. The student policy parameterized by θ,
πstudentθ , is trained by minimizing the loss function:

Lstudent =− EDteacher

[
log πstudentθ

]
+ βEDpcd

[
∥ϕ(Preal)− ϕ(Psim)∥2

]
,

(1)

where ϕ(·) denotes the point cloud encoder of πstudentθ

and Dpcd = {(Preal,Psim)(i)}Ni=1 is a separate dataset that
contains N pairs of matched point clouds in simulation and
reality for regularization purpose. Further justifications of this
distillation phase can be found in Appendix Sec. D-A.

C. Learning Residual Policies from Online Correction

a) Human-in-the-Loop Data Collection: Once the
student policy is obtained from simulation, it is used directly
as the base policy πB to bootstrap the data collection. Naı̈vely
deploying the base policy on real robots usually results in
inferior performance and unsafe motion due to various sim-
to-real gaps. In TRANSIC, the base policy is instead deployed
in a way that is fully synchronized with the human operator.
Concretely, at time step t, once aBt ∼ πB is deployed, the
execution is paused, and a human operator needs to decide
whether intervention is necessary, indicated as 1Ht . Interven-
tion is not necessary for most task execution when the robot
is approaching objects of interest. However, when the robot
tends to behave abnormally, the human operator intervenes and
takes full control through teleoperation to correct robot errors.
In these cases, the robot’s pre- and post-intervention states, as
well as intervention indicator 1Ht , are collected to construct
the online correction dataset DH ← DH ∪

(
1Ht ,q

pre
t ,qpostt

)
.

This procedure is illustrated in Appendix Algorithm 1.

b) Human Correction as Residual Policies: Properly
modeling human correction can be challenging. This is
because humans usually solve tasks not purely based on
current observation, hence the non-Markovian decision
process [67]. Therefore, directly fine-tuning the base policy
πB on human correction dataset DH leads to large motions
and even model collapse (Sec. III). Inspired by prior work on
learning residuals to compensate for unknown dynamics and
noisy observations [78–80], we propose to incorporate human
correction behaviors with residual policies. Concretely, at the
time of intervention, a residual policy πRψ parameterized by ψ
learns to predict human intervention as the difference between
post- and pre-intervention robot states: aR = qpost ⊖ qpre,
where ⊖ denotes generalized subtraction. For continuous

(a) Stabilize (b) Reach and Grasp

(c) Insert (d) Screw

Fig. 3: Four tasks benchmarked in this work. They are fundamental skills required to assemble a square table from
FurnitureBench [77]. The task definition can be found in Appendix Sec. C-A.

variables such as joint position, it computes the numerical
difference; for binary variables such as opening and closing
the gripper, it computes exclusive nor. The residual policy is
then trained to maximize the likelihood of human correction:
Lresidual = −EDH

[
log πRψ (a

R|·)
]
.

D. An Integrated Deployment Framework

In practice, we find that learning a gating function to control
whether to apply residual actions or not leads to smoother
and more human-like behaviors. We call this learned gated
residual policy and conceptually compare against previous
methods in Appendix Sec. D-C. Denote the gating function as
gψ(·). It can be trained through classification on the correction
dataset DH and shares the same feature encoder with the
residual policy πR. The policy effectively being deployed to
autonomously complete tasks is an integration of base policy
πB and residual policy πR, gated by g: πdeployed = πB⊕gπR.
A joint position controller is used during deployment.

E. Implementation Details

We use the Isaac Gym [9] simulator. Proximal policy
optimization (PPO) [81] is used to train teacher policies from
scratch with task-specific reward functions and curricula. Stu-
dent policies are parameterized as Gaussian Mixture Models
(GMMs) [67]. See Appendix Sec. A for more details. During
human-in-the-loop data collection, we use a 3Dconnexion
SpaceMouse as the teleoperation interface. Residual policies
use state-of-the-art point cloud encoders [82–84] and GMM as
the action head. More training hyperparameters are provided
in Appendix Sec. B-D.

III. EXPERIMENTS

We answer the following research questions through exper-
iments.
Q1: Does TRANSIC lead to better transfer performance while

requiring less real-world data?
Q2: How effectively can TRANSIC address different types of

sim-to-real gaps?

Q3: How does TRANSIC scale with human effort?
Q4: Does TRANSIC exhibit intriguing properties, such as

generalization to unseen objects, policy robustness, abil-
ity to solve long-horizon tasks, and other emergent
behaviors?

A. Tasks, Baselines, and Evaluation Protocol

As shown in Fig. 3, we consider complex contact-rich
manipulation tasks (Stabilize, Reach and Grasp, Insert, and
Screw) that require high precision in FurnitureBench [77].
These tasks are challenging and ideal for testing sim-to-real
transfer, since perception, embodiment, controller, and dynam-
ics gaps all need to be addressed. We collect 20, 100, 90, and
17 real-robot trajectories with human correction, respectively.
These amount to 62, 434, 489, and 58 corrections for each
task. See Appendix Sec. B-A for the detailed system setup.
We compare with three groups of baselines. 1) Traditional
sim-to-real methods: It includes domain randomization and
data augmentation [52] (“DR. & Data Aug.”), real-world
fine-tuning through BC (“BC Fine-Tune”) and implicit Q-
learning [68] (“IQL Fine-Tune”). To estimate the performance
lower bound, we also include “Direct Transfer” without any
data augmentation or real-world fine-tuning. 2) Interactive
imitation learning (IL): It includes HG-Dagger [65] and
IWR [66]. 3) Learning from real-robot data only: It includes
BC [85], BC-RNN [67], and IQL [68] that are trained on real-
robot demonstrations only. All evaluations are conducted on
the real robot and consist of 20 trials starting with different
objects and robot poses. See Appendix Sec. C for details.

B. Results

a) TRANSIC is effective for sim-to-real transfer and
requires significantly less real-world data (Q1): As shown
in Fig. 4 and Table A.XI, TRANSIC achieves the best
performance on average and in all four tasks with significant
margins. What are the reasons for successful transfer? We
observe that adding real-world human correction data does not

Transic Traditional Sim-to-Real Interactive IL Real Data Only
0

20

40

60

80

S
u

cc
es

s
R

at
e

(%
)

Direct Transfer

DR. & Data Aug.

BC Fine-Tune

IQL Fine-Tune

HG-Dagger

IWR

BC

BC-RNN

IQL

Fig. 4: Average success rates over four benchmarked tasks. See Table A.XI for numerical results.

guarantee improvement. For example, among traditional sim-
to-real methods, the best baseline BC Fine-Tune outperforms
DR. & Data Aug. by 7%, but IQL Fine-Tune leads to worse
performance. In contrast, TRANSIC effectively uses human
correction data, which boosts average performance by 1.24×.
Not only does it achieve the best transfer performance, but
it also improves simulation policies the most among various
sim-to-real approaches.

Furthermore, TRANSIC outperforms interactive IL meth-
ods, including HG-Dagger and IWR, by 0.75× on average.
Although both of them weigh the intervention data higher
during training, we find that they tend to erase the original
policy and lead to catastrophic forgetting. In contrast, by
incorporating human correction with a separate residual policy
and integrating both base and residual policies through gating,
TRANSIC combines the best properties of both policies during
deployment. It relies on the simulation policy for robust
execution most of the time; when the base policy is likely
to fail, it automatically applies the residual policy to prevent
failures and correct mistakes.

Finally, TRANSIC only requires dozens of real-robot cor-
rections to achieve superior performance. However, methods
such as BC-RNN and IQL trained on such a limited number
of trajectories suffer from overfitting and model collapse.
TRANSIC achieves 3.6× better performance than them. This
result highlights the importance of first training in simulation
and then leveraging sim-to-real transfer for robot learning
practitioners.

In summary, we show that in sim-to-real transfer, a good
base policy learned from the simulation can be combined
with limited real-world data to achieve success. However,
effectively utilizing human correction data to address the sim-
to-real gap is challenging, especially when we want to prevent
catastrophic forgetting of the base policy.

b) TRANSIC is effective in addressing different sim-
to-real gaps (Q2): We shed light on its ability to close
each individual sim-to-real gap by creating five different
simulation-reality pairs. For each of them, we intentionally
create large gaps between the simulation and the real world.
These gaps are applied to real-world settings, including

perception error, underactuated controller, embodiment
mismatch, dynamics difference, and object asset mismatch.
Note that these are artificial settings for a controlled study.
See Appendix Sec. C-C for detailed setups.

As shown in Fig. 5, TRANSIC achieves an average success
rate of 77% across five different simulation-reality pairs with
deliberately exacerbated sim-to-real gaps. This indicates its
remarkable ability to close these individual gaps. In contrast,
the best baseline method, IWR, only achieves an average
success rate of 18%. We attribute this effectiveness in address-
ing different sim-to-real gaps to the residual policy design.
Zeng et al. [80] echos our finding that residual learning is an
effective tool to compensate for domain factors that cannot
be explicitly modeled. Furthermore, training with data specif-
ically collected from a particular setting generally increases
TRANSIC’s performance. However, this is not the case for
IWR, where fine-tuning on new data can even lead to worse
performance. These results show that TRANSIC is better not
only in addressing multiple sim-to-real gaps as a whole but
also in handling individual gaps of a very different nature.

c) TRANSIC scales with human effort (Q3): We
demonstrate that TRANSIC scales better with human data than
the best baseline, IWR, as shown in Fig. 6a and Table A.XII.
If we increase the dataset size from 25% to 75% of the full
size, TRANSIC improves on average by 42%. In contrast,
IWR only achieves a 23% relative improvement. Additionally,
for tasks other than Insert, IWR performance plateaus at
an early stage and even starts to decrease as more human
data becomes available. We hypothesize that IWR suffers
from catastrophic forgetting and struggles to properly model
the behavioral modes of humans and trained robots. On the
other hand, TRANSIC bypasses these issues by learning gated
residual policies only from human correction.

d) Intriguing properties and emergent behaviors of
TRANSIC (Q4): As shown in Fig. 6b, TRANSIC can achieve
an average success rate of 75% when zero-shot evaluated on
assembling a lamp. However, IWR can only succeed once
every three attempts. This evidence suggests that TRANSIC
is not overfitting to a particular object; instead, it has learned
reusable skills for category-level object generalization.

Perception

Embodiment

Dynamics

Controller

Asset

20

40

60

80

TRANSIC

IWR

TRANSIC Zero-Shot

IWR Zero-Shot

Fig. 5: Robustness to different sim-to-real gaps. Numbers
are averaged success rates (%). Polar bars represent perfor-
mances after training with data collected specifically to address
a particular gap. Dashed lines are zero-shot performances.
Shaded circles show average performances.

Further, with the ablation results shown in Table I, TRANSIC
exhibits intriguing properties including effective gating,
policy robustness against reduced cameras and suboptimal
correction data, and consistency in learned visual features.
See Appendix Sec. C-E for detailed setups and discussions.
Qualitatively, TRANSIC shows several representative behaviors
that resemble humans. For instance, they include error
recovery, unsticking, safety-aware actions, and failure
prevention, as shown in Fig. A.13. Finally, we demonstrate
that successful sim-to-real transfer of individual skills can be
effectively chained together to enable long-horizon contact-
rich manipulation (Fig. 7). Statistics about task horizon can be
found in Appendix Table A.XVI. See supplementary videos for
a robot assembling a square table and a lamp using TRANSIC.

IV. RELATED WORK

a) Robot Learning via Sim-to-Real Transfer: Physics-
based simulations have become a driving force for developing
robotic skills [6–10]. However, the domain gap between
the simulators and reality is not negligible [40]. Successful
sim-to-real transfer includes locomotion [18–27], dexterous
in-hand manipulation [13–17], and simple non-prehensile ma-
nipulation [30–39]. In this work, we tackle more challenging
sim-to-real transfer for complex whole-arm manipulation tasks
and successfully demonstrate that our approach can solve
sophisticated contact-rich tasks. More importantly, it requires
significantly fewer real-robot data compared to the behavior
cloning approach [67]. This makes solutions based on simu-
lators and sim-to-real transfer more appealing to roboticists.

b) Sim-to-Real Gaps in Manipulation Tasks: The
sim-to-real gaps can be coarsely categorized as follows: a)
perception gap [41–43], where synthetic sensory observations
differ from those measured in the real world; b) embodiment

0 25 50 75 100
Correction Dataset Size (%)

30

50

70

90

S
u

cc
es

s
R

at
e

(%
)

TRANSIC

IWR

(a)

Square Table
(Seen)

Lamp
(Unseen)

0

20

40

60

80

S
u

cc
es

s
R

at
e

(%
)

TRANSIC IWR

(b)

Fig. 6: a) Scalability with human correction data. Per-task
results are shown in Table A.XII. b) Generalization to unseen
objects from a new category. Success rates are averaged over
tasks Reach and Grasp and Screw.

TABLE I: Ablation study results. Numbers are success rates.

Average Stabilize Reach
and Grasp Insert Screw

Original 81% 100% 95% 45% 85%
w/ Human Gating 82% 100% 95% 50% 85%
Reduced Cameras 80% 95% 90% 40% 95%
Noisy Correction 76% 85% 80% 45% 95%

w/o Regularization 55% 85% 55% 20% 60%

mismatch [18, 44, 45], where the robot models used in
simulation do not match the real-world hardware precisely;
c) controller inaccuracy [46–48], meaning that the results
of deploying the same commands differ in simulation and
real hardware; and d) poor physical realism [49], where
physical interactions such as contact and collision are poorly
simulated [86]. Traditional methods to address them include
system identification [18, 30, 50, 51], domain randomiza-
tion [13, 52–54], real-world adaptation [55], and simulator
augmentation [57–59]. However, system identification is
mostly engineered on a case-by-case basis. Domain random-
ization suffers from the inability to identify and randomize
all physical parameters. Methods with real-world adaptation,
usually through meta-learning [87], incur potential safety
concerns during the adaptation phase. In contrast, our method
leverages human intervention data to implicitly overcome the
gap in a domain-agnostic way, leading to a safer deployment.

c) Human-in-The-Loop Robot Learning: Human-in-the-
loop machine learning is a prevalent framework to inject
human knowledge into autonomous systems [61, 88, 89]. The
recent trend focuses on continually improving robots’ capabil-
ity with human feedback [90] and autonomously generating
corrective intervention data [91]. Our work further extends
this trend by showing that sim-to-real gaps can be effectively
eliminated by using human intervention and correction
signals. In shared autonomy, robots and humans share the
control authority to achieve a common goal [63, 64, 92–94].
This control paradigm has been largely studied in assistive
robotics and human-robot collaboration [95–97]. In this work,
we provide a novel perspective by employing it in the sim-
to-real transfer of robot control policies and demonstrating

(a) Assemble a lamp (160 seconds in 1× speed).

(b) Assemble a square table (550 seconds in 1× speed).

Fig. 7: a) The robot assembles a lamp. b) The robot assembles a square table from FurnitureBench [77]. See videos on
transic-robot.github.io.

its importance in attaining effective transfer.
An extended literature review can be found in Appendix

Sec. F.

V. LIMITATIONS

TRANSIC still has several limitations. 1) Current tasks are
limited to the single-arm tabletop scenario. However, with
the recent development of teleoperation interfaces for more
complicated robots [98–102], TRANSIC can also potentially be
applied to these settings. 2) Human operators still manually
decide when to intervene during correction data collection.

This effort might be reduced by leveraging automatic fail-
ure detection techniques [103, 104]. 3) TRANSIC requires
simulation policies with reasonable performance in the first
place, which is challenging to learn by itself. Nevertheless,
TRANSIC is compatible with recent advances in synthesizing
manipulation data in simulation [105, 106].

VI. CONCLUSION

In this work, we present TRANSIC, a human-in-the-loop
method for sim-to-real transfer in contact-rich manipulation
tasks. We show that combining a strong base policy from

https://transic-robot.github.io/

simulation with limited real-world data can be effective.
However, utilizing human correction data without causing
catastrophic forgetting of the base policy is challenging.
TRANSIC overcomes this by learning a gated residual policy
from a small amount of human correction data. We show that
TRANSIC effectively addresses various sim-to-real gaps, both
collectively and individually, and scales with human effort.

REFERENCES

[1] H. Choi, C. Crump, C. Duriez, A. Elmquist, G. Hager,
D. Han, F. Hearl, J. Hodgins, A. Jain, F. Leve,
C. Li, F. Meier, D. Negrut, L. Righetti, A. Rodriguez,
J. Tan, and J. Trinkle, “On the use of simulation
in robotics: Opportunities, challenges, and suggestions
for moving forward,” Proceedings of the National
Academy of Sciences, vol. 118, no. 1, p. e1907856118,
2021. [Online]. Available: https://www.pnas.org/doi/
abs/10.1073/pnas.1907856118

[2] C. K. Liu and D. Negrut, “The role of physics-
based simulators in robotics,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 4,
no. 1, pp. 35–58, 2021. [Online]. Available: https:
//doi.org/10.1146/annurev-control-072220-093055

[3] P. Abbeel and A. Y. Ng, “Apprenticeship learning
via inverse reinforcement learning,” in Proceedings of
the Twenty-First International Conference on Machine
Learning, ser. ICML ’04. New York, NY, USA:
Association for Computing Machinery, 2004, p. 1.
[Online]. Available: https://doi.org/10.1145/1015330.
1015430

[4] H. D. III, J. Langford, and D. Marcu, “Search-based
structured prediction,” arXiv preprint arXiv: Arxiv-
0907.0786, 2009.

[5] S. Yang, O. Nachum, Y. Du, J. Wei, P. Abbeel,
and D. Schuurmans, “Foundation models for decision
making: Problems, methods, and opportunities,” arXiv
preprint arXiv: Arxiv-2303.04129, 2023.

[6] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics
engine for model-based control,” 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033, 2012.

[7] E. Coumans and Y. Bai, “Pybullet, a python module
for physics simulation for games, robotics and machine
learning,” http://pybullet.org, 2016–2021.

[8] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n,
A. Joshi, S. Nasiriany, and Y. Zhu, “robosuite: A
modular simulation framework and benchmark for robot
learning,” arXiv preprint arXiv: Arxiv-2009.12293,
2020.

[9] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu,
K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. All-
shire, A. Handa, and G. State, “Isaac gym: High perfor-
mance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv: Arxiv-2108.10470, 2021.

[10] C. Li, C. Gokmen, G. Levine, R. Martı́n-Martı́n,
S. Srivastava, C. Wang, J. Wong, R. Zhang,

M. Lingelbach, J. Sun, M. Anvari, M. Hwang,
M. Sharma, A. Aydin, D. Bansal, S. Hunter, K.-Y.
Kim, A. Lou, C. R. Matthews, I. Villa-Renteria, J. H.
Tang, C. Tang, F. Xia, S. Savarese, H. Gweon, K. Liu,
J. Wu, and L. Fei-Fei, “BEHAVIOR-1k: A benchmark
for embodied AI with 1,000 everyday activities
and realistic simulation,” in 6th Annual Conference
on Robot Learning, 2022. [Online]. Available:
https://openreview.net/forum?id= 8DoIe8G3t

[11] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis,
C. Finn, K. Gopalakrishnan, K. Hausman, A. Her-
zog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson,
S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov,
Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla,
D. Manjunath, I. Mordatch, O. Nachum, C. Parada,
J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao,
M. Ryoo, G. Salazar, P. Sanketi, K. Sayed, J. Singh,
S. Sontakke, A. Stone, C. Tan, H. Tran, V. Vanhoucke,
S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu,
T. Yu, and B. Zitkovich, “Rt-1: Robotics transformer
for real-world control at scale,” arXiv preprint arXiv:
Arxiv-2212.06817, 2022.

[12] K. Bousmalis, G. Vezzani, D. Rao, C. Devin, A. X. Lee,
M. Bauza, T. Davchev, Y. Zhou, A. Gupta, A. Raju,
A. Laurens, C. Fantacci, V. Dalibard, M. Zambelli,
M. Martins, R. Pevceviciute, M. Blokzijl, M. De-
nil, N. Batchelor, T. Lampe, E. Parisotto, K. Żołna,
S. Reed, S. G. Colmenarejo, J. Scholz, A. Abdolmaleki,
O. Groth, J.-B. Regli, O. Sushkov, T. Rothörl, J. E.
Chen, Y. Aytar, D. Barker, J. Ortiz, M. Riedmiller,
J. T. Springenberg, R. Hadsell, F. Nori, and N. Heess,
“Robocat: A self-improving generalist agent for robotic
manipulation,” arXiv preprint arXiv: Arxiv-2306.11706,
2023.

[13] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej,
M. Litwin, B. McGrew, A. Petron, A. Paino, M. Plap-
pert, G. Powell, R. Ribas, J. Schneider, N. Tezak,
J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba,
and L. Zhang, “Solving rubik’s cube with a robot hand,”
arXiv preprint arXiv: Arxiv-1910.07113, 2019.

[14] T. Chen, M. Tippur, S. Wu, V. Kumar,
E. Adelson, and P. Agrawal, “Visual dexterity:
In-hand reorientation of novel and complex object
shapes,” Science Robotics, vol. 8, no. 84,
p. eadc9244, 2023. [Online]. Available: https:
//www.science.org/doi/abs/10.1126/scirobotics.adc9244

[15] Y. Chen, C. Wang, L. Fei-Fei, and C. K. Liu, “Se-
quential dexterity: Chaining dexterous policies for long-
horizon manipulation,” arXiv preprint arXiv: Arxiv-
2309.00987, 2023.

[16] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik, “In-
hand object rotation via rapid motor adaptation,” arXiv
preprint arXiv: Arxiv-2210.04887, 2022.

[17] H. Qi, B. Yi, S. Suresh, M. Lambeta, Y. Ma, R. Ca-
landra, and J. Malik, “General in-hand object rotation
with vision and touch,” arXiv preprint arXiv: Arxiv-

https://www.pnas.org/doi/abs/10.1073/pnas.1907856118
https://www.pnas.org/doi/abs/10.1073/pnas.1907856118
https://doi.org/10.1146/annurev-control-072220-093055
https://doi.org/10.1146/annurev-control-072220-093055
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1015330.1015430
http://pybullet.org
https://openreview.net/forum?id=_8DoIe8G3t
https://www.science.org/doi/abs/10.1126/scirobotics.adc9244
https://www.science.org/doi/abs/10.1126/scirobotics.adc9244

2309.09979, 2023.
[18] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai,

D. Hafner, S. Bohez, and V. Vanhoucke, “Sim-to-real:
Learning agile locomotion for quadruped robots,” arXiv
preprint arXiv: Arxiv-1804.10332, 2018.

[19] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA:
rapid motor adaptation for legged robots,” in Robotics:
Science and Systems XVII, Virtual Event, July 12-
16, 2021, D. A. Shell, M. Toussaint, and M. A.
Hsieh, Eds., 2021. [Online]. Available: https://doi.org/
10.15607/RSS.2021.XVII.011

[20] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger,
C. Finn, and H. Zhao, “Robot parkour learning,” arXiv
preprint arXiv: Arxiv-2309.05665, 2023.

[21] R. Yang, G. Yang, and X. Wang, “Neural volumetric
memory for visual locomotion control,” arXiv preprint
arXiv: Arxiv-2304.01201, 2023.

[22] H. Benbrahim and J. A. Franklin, “Biped dynamic
walking using reinforcement learning,” Robotics
and Autonomous Systems, vol. 22, no. 3, pp.
283–302, 1997, robot Learning: The New Wave.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0921889097000432

[23] G. A. Castillo, B. Weng, W. Zhang, and A. Hereid,
“Reinforcement learning-based cascade motion policy
design for robust 3d bipedal locomotion,” IEEE Access,
vol. 10, pp. 20 135–20 148, 2022.

[24] L. Krishna, G. A. Castillo, U. A. Mishra, A. Hereid, and
S. Kolathaya, “Linear policies are sufficient to realize
robust bipedal walking on challenging terrains,” arXiv
preprint arXiv: Arxiv-2109.12665, 2021.

[25] J. Siekmann, K. Green, J. Warila, A. Fern, and
J. Hurst, “Blind bipedal stair traversal via sim-to-real
reinforcement learning,” arXiv preprint arXiv: Arxiv-
2105.08328, 2021.

[26] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik,
and K. Sreenath, “Real-world humanoid locomotion
with reinforcement learning,” arXiv preprint arXiv:
Arxiv-2303.03381, 2023.

[27] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,
and K. Sreenath, “Reinforcement learning for versatile,
dynamic, and robust bipedal locomotion control,” arXiv
preprint arXiv: Arxiv-2401.16889, 2024.

[28] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller,
V. Koltun, and D. Scaramuzza, “Champion-level
drone racing using deep reinforcement learning,”
Nature, 2023. [Online]. Available: https://doi.org/10.
1038/s41586-023-06419-4

[29] Y. Song, A. Romero, M. Müller, V. Koltun, and
D. Scaramuzza, “Reaching the limit in autonomous
racing: Optimal control versus reinforcement learning,”
Science Robotics, vol. 8, no. 82, p. eadg1462, 2023.
[Online]. Available: https://www.science.org/doi/abs/10.
1126/scirobotics.adg1462

[30] V. Lim, H. Huang, L. Y. Chen, J. Wang, J. Ichnowski,
D. Seita, M. Laskey, and K. Goldberg, “Planar robot

casting with real2sim2real self-supervised learning,”
arXiv preprint arXiv: Arxiv-2111.04814, 2021.

[31] W. Zhou and D. Held, “Learning to grasp the
ungraspable with emergent extrinsic dexterity,” in
Conference on Robot Learning, CoRL 2022, 14-
18 December 2022, Auckland, New Zealand, ser.
Proceedings of Machine Learning Research, K. Liu,
D. Kulic, and J. Ichnowski, Eds., vol. 205.
PMLR, 2022, pp. 150–160. [Online]. Available:
https://proceedings.mlr.press/v205/zhou23a.html

[32] M. Kim, J. Han, J. Kim, and B. Kim, “Pre- and
post-contact policy decomposition for non-prehensile
manipulation with zero-shot sim-to-real transfer,” arXiv
preprint arXiv: Arxiv-2309.02754, 2023.

[33] X. Zhang, S. Jain, B. Huang, M. Tomizuka, and
D. Romeres, “Learning generalizable pivoting skills,”
in IEEE International Conference on Robotics and
Automation, ICRA 2023, London, UK, May 29 - June 2,
2023. IEEE, 2023, pp. 5865–5871. [Online]. Available:
https://doi.org/10.1109/ICRA48891.2023.10161271

[34] S. Kozlovsky, E. Newman, and M. Zacksenhouse, “Re-
inforcement learning of impedance policies for peg-
in-hole tasks: Role of asymmetric matrices,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp.
10 898–10 905, 2022.

[35] D. Son, H. Yang, and D. Lee, “Sim-to-real transfer of
bolting tasks with tight tolerance,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), 2020, pp. 9056–9063.

[36] B. Tang, M. A. Lin, I. Akinola, A. Handa, G. S.
Sukhatme, F. Ramos, D. Fox, and Y. S. Narang,
“Industreal: Transferring contact-rich assembly tasks
from simulation to reality,” in Robotics: Science
and Systems XIX, Daegu, Republic of Korea, July
10-14, 2023, K. E. Bekris, K. Hauser, S. L.
Herbert, and J. Yu, Eds., 2023. [Online]. Available:
https://doi.org/10.15607/RSS.2023.XIX.039

[37] X. Zhang, C. Wang, L. Sun, Z. Wu, X. Zhu,
and M. Tomizuka, “Efficient sim-to-real transfer of
contact-rich manipulation skills with online admittance
residual learning,” in 7th Annual Conference on
Robot Learning, 2023. [Online]. Available: https:
//openreview.net/forum?id=gFXVysXh48K

[38] X. Zhang, M. Tomizuka, and H. Li, “Bridging the sim-
to-real gap with dynamic compliance tuning for indus-
trial insertion,” arXiv preprint arXiv: Arxiv-2311.07499,
2023.

[39] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin,
J. Issac, N. Ratliff, and D. Fox, “Closing the sim-
to-real loop: Adapting simulation randomization with
real world experience,” arXiv preprint arXiv: Arxiv-
1810.05687, 2018.

[40] N. Jakobi, P. Husbands, and I. Harvey, “Noise and
the reality gap: The use of simulation in evolutionary
robotics,” in Advances in Artificial Life, F. Morán,
A. Moreno, J. J. Merelo, and P. Chacón, Eds. Berlin,

https://doi.org/10.15607/RSS.2021.XVII.011
https://doi.org/10.15607/RSS.2021.XVII.011
https://www.sciencedirect.com/science/article/pii/S0921889097000432
https://www.sciencedirect.com/science/article/pii/S0921889097000432
https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.1038/s41586-023-06419-4
https://www.science.org/doi/abs/10.1126/scirobotics.adg1462
https://www.science.org/doi/abs/10.1126/scirobotics.adg1462
https://proceedings.mlr.press/v205/zhou23a.html
https://doi.org/10.1109/ICRA48891.2023.10161271
https://doi.org/10.15607/RSS.2023.XIX.039
https://openreview.net/forum?id=gFXVysXh48K
https://openreview.net/forum?id=gFXVysXh48K

Heidelberg: Springer Berlin Heidelberg, 1995, pp. 704–
720.

[41] E. Tzeng, C. Devin, J. Hoffman, C. Finn,
X. Peng, S. Levine, K. Saenko, and T. Darrell,
“Towards adapting deep visuomotor representations
from simulated to real environments,” ArXiv,
vol. abs/1511.07111, 2015. [Online]. Available:
https://api.semanticscholar.org/CorpusID:1541419

[42] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kel-
cey, M. Kalakrishnan, L. Downs, J. Ibarz, P. Pastor,
K. Konolige, S. Levine, and V. Vanhoucke, “Using
simulation and domain adaptation to improve efficiency
of deep robotic grasping,” arXiv preprint arXiv: Arxiv-
1709.07857, 2017.

[43] D. Ho, K. Rao, Z. Xu, E. Jang, M. Khansari,
and Y. Bai, “Retinagan: An object-aware approach
to sim-to-real transfer,” arXiv preprint arXiv: Arxiv-
2011.03148, 2020.

[44] S. Koos, J.-B. Mouret, and S. Doncieux, “Crossing
the reality gap in evolutionary robotics by promoting
transferable controllers,” in Proceedings of the 12th
Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO ’10. New York, NY,
USA: Association for Computing Machinery, 2010, p.
119–126. [Online]. Available: https://doi.org/10.1145/
1830483.1830505

[45] Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de
Panne, “Feedback control for cassie with deep re-
inforcement learning,” arXiv preprint arXiv: Arxiv-
1803.05580, 2018.

[46] R. Martı́n-Martı́n, M. A. Lee, R. Gardner, S. Savarese,
J. Bohg, and A. Garg, “Variable impedance control in
end-effector space: An action space for reinforcement
learning in contact-rich tasks,” arXiv preprint arXiv:
Arxiv-1906.08880, 2019.

[47] J. Wong, V. Makoviychuk, A. Anandkumar, and Y. Zhu,
“Oscar: Data-driven operational space control for adap-
tive and robust robot manipulation,” arXiv preprint
arXiv: Arxiv-2110.00704, 2021.

[48] E. Aljalbout, F. Frank, M. Karl, and P. van der Smagt,
“On the role of the action space in robot manipulation
learning and sim-to-real transfer,” arXiv preprint arXiv:
Arxiv-2312.03673, 2023.

[49] Y. S. Narang, K. Storey, I. Akinola, M. Macklin,
P. Reist, L. Wawrzyniak, Y. Guo, Á. Moravánszky,
G. State, M. Lu, A. Handa, and D. Fox, “Factory:
Fast contact for robotic assembly,” in Robotics:
Science and Systems XVIII, New York City, NY,
USA, June 27 - July 1, 2022, K. Hauser, D. A.
Shell, and S. Huang, Eds., 2022. [Online]. Available:
https://doi.org/10.15607/RSS.2022.XVIII.035

[50] L. Ljung, System Identification. Boston, MA:
Birkhäuser Boston, 1998, pp. 163–173. [Online]. Avail-
able: https://doi.org/10.1007/978-1-4612-1768-8 11

[51] P. Chang and T. Padir, “Sim2real2sim: Bridging the
gap between simulation and real-world in flexible object

manipulation,” arXiv preprint arXiv: Arxiv-2002.02538,
2020.

[52] X. B. Peng, M. Andrychowicz, W. Zaremba, and
P. Abbeel, “Sim-to-real transfer of robotic control with
dynamics randomization,” arXiv preprint arXiv: Arxiv-
1710.06537, 2017.

[53] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko,
R. Singh, J. Liu, D. Makoviichuk, K. V. Wyk,
A. Zhurkevich, B. Sundaralingam, and Y. S. Narang,
“Dextreme: Transfer of agile in-hand manipulation
from simulation to reality,” in IEEE International
Conference on Robotics and Automation, ICRA 2023,
London, UK, May 29 - June 2, 2023. IEEE,
2023, pp. 5977–5984. [Online]. Available: https:
//doi.org/10.1109/ICRA48891.2023.10160216

[54] J. Wang, Y. Qin, K. Kuang, Y. Korkmaz, A. Guru-
moorthy, H. Su, and X. Wang, “Cyberdemo: Aug-
menting simulated human demonstration for real-world
dexterous manipulation,” arXiv preprint arXiv: Arxiv-
2402.14795, 2024.

[55] G. Schoettler, A. Nair, J. A. Ojea, S. Levine, and
E. Solowjow, “Meta-reinforcement learning for robotic
industrial insertion tasks,” arXiv preprint arXiv: Arxiv-
2004.14404, 2020.

[56] Y. Zhang, L. Ke, A. Deshpande, A. Gupta, and S. Srini-
vasa, “Cherry-Picking with Reinforcement Learning,” in
Proceedings of Robotics: Science and Systems, Daegu,
Republic of Korea, July 2023.

[57] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin,
J. Issac, N. D. Ratliff, and D. Fox, “Closing the sim-
to-real loop: Adapting simulation randomization with
real world experience,” in International Conference
on Robotics and Automation, ICRA 2019, Montreal,
QC, Canada, May 20-24, 2019. IEEE, 2019,
pp. 8973–8979. [Online]. Available: https://doi.org/10.
1109/ICRA.2019.8793789

[58] J. P. Hanna and P. Stone, “Grounded action transfor-
mation for robot learning in simulation,” in Proceed-
ings of the Thirty-First AAAI Conference on Artificial
Intelligence, ser. AAAI’17. AAAI Press, 2017, p.
4931–4932.

[59] E. Heiden, D. Millard, E. Coumans, and G. S.
Sukhatme, “Augmenting differentiable simulators with
neural networks to close the sim2real gap,” arXiv
preprint arXiv: Arxiv-2007.06045, 2020.

[60] C. A. Cruz and T. Igarashi, “A survey on interactive
reinforcement learning: Design principles and open
challenges,” arXiv preprint arXiv: Arxiv-2105.12949,
2021.

[61] Y. Cui, P. Koppol, H. Admoni, S. Niekum,
R. Simmons, A. Steinfeld, and T. Fitzgerald,
“Understanding the relationship between interactions
and outcomes in human-in-the-loop machine learning,”
in Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21, Z.-
H. Zhou, Ed. International Joint Conferences

https://api.semanticscholar.org/CorpusID:1541419
https://doi.org/10.1145/1830483.1830505
https://doi.org/10.1145/1830483.1830505
https://doi.org/10.15607/RSS.2022.XVIII.035
https://doi.org/10.1007/978-1-4612-1768-8_11
https://doi.org/10.1109/ICRA48891.2023.10160216
https://doi.org/10.1109/ICRA48891.2023.10160216
https://doi.org/10.1109/ICRA.2019.8793789
https://doi.org/10.1109/ICRA.2019.8793789

on Artificial Intelligence Organization, 8 2021,
pp. 4382–4391, survey Track. [Online]. Available:
https://doi.org/10.24963/ijcai.2021/599

[62] R. Zhang, F. Torabi, L. Guan, D. H. Ballard, and
P. Stone, “Leveraging human guidance for deep rein-
forcement learning tasks,” arXiv preprint arXiv: Arxiv-
1909.09906, 2019.

[63] S. Javdani, S. S. Srinivasa, and J. A. Bagnell, “Shared
autonomy via hindsight optimization,” arXiv preprint
arXiv: Arxiv-1503.07619, 2015.

[64] S. Reddy, A. D. Dragan, and S. Levine, “Shared auton-
omy via deep reinforcement learning,” arXiv preprint
arXiv: Arxiv-1802.01744, 2018.

[65] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J.
Kochenderfer, “Hg-dagger: Interactive imitation learn-
ing with human experts,” arXiv preprint arXiv: Arxiv-
1810.02890, 2018.

[66] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, Y. Zhu, L. Fei-
Fei, and S. Savarese, “Human-in-the-loop imitation
learning using remote teleoperation,” arXiv preprint
arXiv: Arxiv-2012.06733, 2020.

[67] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang,
R. Kulkarni, L. Fei-Fei, S. Savarese, Y. Zhu, and
R. Martı́n-Martı́n, “What matters in learning from of-
fline human demonstrations for robot manipulation,”
arXiv preprint arXiv: Arxiv-2108.03298, 2021.

[68] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforce-
ment learning with implicit q-learning,” arXiv preprint
arXiv: Arxiv-2110.06169, 2021.

[69] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi,
S. Tunyasuvunakool, J. Kramár, R. Hadsell, N. de Fre-
itas, and N. Heess, “Reinforcement and imitation learn-
ing for diverse visuomotor skills,” arXiv preprint arXiv:
Arxiv-1802.09564, 2018.

[70] A. Xie, L. Lee, T. Xiao, and C. Finn, “Decomposing
the generalization gap in imitation learning for visual
robotic manipulation,” arXiv preprint arXiv: Arxiv-
2307.03659, 2023.

[71] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang, “Dex-
point: Generalizable point cloud reinforcement learning
for sim-to-real dexterous manipulation,” arXiv preprint
arXiv: Arxiv-2211.09423, 2022.

[72] O. Khatib, “A unified approach for motion and force
control of robot manipulators: The operational space
formulation,” IEEE Journal on Robotics and Automa-
tion, vol. 3, no. 1, pp. 43–53, 1987.

[73] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and
S. Schaal, “Operational space control: A theoretical
and empirical comparison,” The International Journal
of Robotics Research, vol. 27, no. 6, pp. 737–
757, 2008. [Online]. Available: https://doi.org/10.1177/
0278364908091463

[74] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre,
G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih,
K. Kavukcuoglu, and R. Hadsell, “Policy distillation,”
arXiv preprint arXiv: Arxiv-1511.06295, 2015.

[75] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson,
and P. Agrawal, “Visual dexterity: In-hand dexterous
manipulation from depth,” arXiv preprint arXiv: Arxiv-
2211.11744, 2022.

[76] T. Chen, J. Xu, and P. Agrawal, “A system for
general in-hand object re-orientation,” in Conference
on Robot Learning, 8-11 November 2021, London,
UK, ser. Proceedings of Machine Learning Research,
A. Faust, D. Hsu, and G. Neumann, Eds., vol.
164. PMLR, 2021, pp. 297–307. [Online]. Available:
https://proceedings.mlr.press/v164/chen22a.html

[77] M. Heo, Y. Lee, D. Lee, and J. J. Lim, “Furniturebench:
Reproducible real-world benchmark for long-horizon
complex manipulation,” in Robotics: Science and
Systems XIX, Daegu, Republic of Korea, July 10-
14, 2023, K. E. Bekris, K. Hauser, S. L. Herbert,
and J. Yu, Eds., 2023. [Online]. Available: https:
//doi.org/10.15607/RSS.2023.XIX.041

[78] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar,
M. Loskyll, J. A. Ojea, E. Solowjow, and S. Levine,
“Residual reinforcement learning for robot control,”
arXiv preprint arXiv: Arxiv-1812.03201, 2018.

[79] T. Silver, K. Allen, J. Tenenbaum, and L. Kaelbling,
“Residual policy learning,” arXiv preprint arXiv: Arxiv-
1812.06298, 2018.

[80] A. Zeng, S. Song, J. Lee, A. Rodriguez, and
T. Funkhouser, “Tossingbot: Learning to throw arbitrary
objects with residual physics,” arXiv preprint arXiv:
Arxiv-1903.11239, 2019.

[81] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv: Arxiv-1707.06347, 2017.

[82] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet:
Deep learning on point sets for 3d classification and
segmentation,” arXiv preprint arXiv: Arxiv-1612.00593,
2016.

[83] A. Jaegle, F. Gimeno, A. Brock, A. Zisserman,
O. Vinyals, and J. Carreira, “Perceiver: General per-
ception with iterative attention,” arXiv preprint arXiv:
Arxiv-2103.03206, 2021.

[84] J. Lee, Y. Lee, J. Kim, A. R. Kosiorek, S. Choi,
and Y. W. Teh, “Set transformer: A framework for
attention-based permutation-invariant neural networks,”
arXiv preprint arXiv: Arxiv-1810.00825, 2018.

[85] D. A. Pomerleau, “Alvinn: An autonomous land
vehicle in a neural network,” in Advances in Neural
Information Processing Systems, D. Touretzky, Ed.,
vol. 1. Morgan-Kaufmann, 1988. [Online]. Available:
https://proceedings.neurips.cc/paper files/paper/1988/
file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf

[86] P. C. Horak and J. C. Trinkle, “On the similarities and
differences among contact models in robot simulation,”
IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp. 493–499, 2019.

[87] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic
meta-learning for fast adaptation of deep networks,”

https://doi.org/10.24963/ijcai.2021/599
https://doi.org/10.1177/0278364908091463
https://doi.org/10.1177/0278364908091463
https://proceedings.mlr.press/v164/chen22a.html
https://doi.org/10.15607/RSS.2023.XIX.041
https://doi.org/10.15607/RSS.2023.XIX.041
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf

arXiv preprint arXiv: Arxiv-1703.03400, 2017.
[88] J. A. Fails and D. R. Olsen, “Interactive machine

learning,” in Proceedings of the 8th International
Conference on Intelligent User Interfaces, ser. IUI
’03. New York, NY, USA: Association for Computing
Machinery, 2003, p. 39–45. [Online]. Available:
https://doi.org/10.1145/604045.604056

[89] S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza,
“Power to the people: The role of humans in interactive
machine learning,” AI Magazine, vol. 35, no. 4, pp. 105–
120, Dec. 2014. [Online]. Available: https://ojs.aaai.
org/aimagazine/index.php/aimagazine/article/view/2513

[90] H. Liu, S. Nasiriany, L. Zhang, Z. Bao, and Y. Zhu,
“Robot learning on the job: Human-in-the-loop auton-
omy and learning during deployment,” arXiv preprint
arXiv: Arxiv-2211.08416, 2022.

[91] R. Hoque, A. Mandlekar, C. R. Garrett, K. Goldberg,
and D. Fox, “Interventional data generation for robust
and data-efficient robot imitation learning,” in First
Workshop on Out-of-Distribution Generalization in
Robotics at CoRL 2023, 2023. [Online]. Available:
https://openreview.net/forum?id=ckFRoOaA3n

[92] J. Crandall and M. Goodrich, “Characterizing efficiency
of human robot interaction: a case study of shared-
control teleoperation,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, vol. 2, 2002,
pp. 1290–1295 vol.2.

[93] A. D. Dragan and S. S. Srinivasa, “A policy-blending
formalism for shared control,” The International
Journal of Robotics Research, vol. 32, no. 7, pp.
790–805, 2013. [Online]. Available: https://doi.org/10.
1177/0278364913490324

[94] D. Gopinath, S. Jain, and B. D. Argall, “Human-in-
the-loop optimization of shared autonomy in assis-
tive robotics,” IEEE Robotics and Automation Letters,
vol. 2, no. 1, pp. 247–254, 2017.

[95] A. D. Dragan and S. S. Srinivasa, Formalizing assistive
teleoperation. MIT Press, July, 2012, vol. 376.

[96] H. J. Jeon, D. P. Losey, and D. Sadigh, “Shared auton-
omy with learned latent actions,” arXiv preprint arXiv:
Arxiv-2005.03210, 2020.

[97] Y. Cui, S. Karamcheti, R. Palleti, N. Shivakumar,
P. Liang, and D. Sadigh, “”no, to the right” – online lan-
guage corrections for robotic manipulation via shared
autonomy,” arXiv preprint arXiv: Arxiv-2301.02555,
2023.

[98] P. Wu, Y. Shentu, Z. Yi, X. Lin, and P. Abbeel, “Gello:
A general, low-cost, and intuitive teleoperation frame-
work for robot manipulators,” arXiv preprint arXiv:
Arxiv-2309.13037, 2023.

[99] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and
C. K. Liu, “Dexcap: Scalable and portable mocap data
collection system for dexterous manipulation,” arXiv
preprint arXiv: Arxiv-2403.07788, 2024.

[100] Z. Fu, T. Z. Zhao, and C. Finn, “Mobile aloha:
Learning bimanual mobile manipulation with low-cost

whole-body teleoperation,” arXiv preprint arXiv: Arxiv-
2401.02117, 2024.

[101] S. Dass, W. Ai, Y. Jiang, S. Singh, J. Hu, R. Zhang,
P. Stone, B. Abbatematteo, and R. Martı́n-Martı́n, “Tele-
moma: A modular and versatile teleoperation system
for mobile manipulation,” arXiv preprint arXiv: Arxiv-
2403.07869, 2024.

[102] T. He, Z. Luo, W. Xiao, C. Zhang, K. Kitani, C. Liu,
and G. Shi, “Learning human-to-humanoid real-time
whole-body teleoperation,” arXiv preprint arXiv: Arxiv-
2403.04436, 2024.

[103] H. Liu, S. Dass, R. Martı́n-Martı́n, and Y. Zhu, “Model-
based runtime monitoring with interactive imitation
learning,” arXiv preprint arXiv: Arxiv-2310.17552,
2023.

[104] Z. Liu, A. Bahety, and S. Song, “Reflect: Summarizing
robot experiences for failure explanation and correc-
tion,” arXiv preprint arXiv: Arxiv-2306.15724, 2023.

[105] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola,
Y. Narang, L. Fan, Y. Zhu, and D. Fox, “Mimicgen: A
data generation system for scalable robot learning using
human demonstrations,” arXiv preprint arXiv: Arxiv-
2310.17596, 2023.

[106] L. Ankile, A. Simeonov, I. Shenfeld, and P. Agrawal,
“Juicer: Data-efficient imitation learning for robotic as-
sembly,” arXiv preprint arXiv: Arxiv-2404.03729, 2024.

[107] M. N. Mistry and L. Righetti, “Operational
space control of constrained and underactuated
systems,” in Robotics: Science and Systems, 2011.
[Online]. Available: https://api.semanticscholar.org/
CorpusID:10392712

[108] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast
and accurate deep network learning by exponen-
tial linear units (elus),” arXiv preprint arXiv: Arxiv-
1511.07289, 2015.

[109] D. Makoviichuk and V. Makoviychuk, “rl-games: A
high-performance framework for reinforcement learn-
ing,” https://github.com/Denys88/rl games, May 2021.

[110] J. Schulman, P. Moritz, S. Levine, M. Jordan, and
P. Abbeel, “High-dimensional continuous control us-
ing generalized advantage estimation,” arXiv preprint
arXiv: Arxiv-1506.02438, 2015.

[111] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” arXiv preprint arXiv: Arxiv-
1412.6980, 2014.

[112] S. Hochreiter and J. Schmidhuber, “Long short-
term memory,” Neural Comput., vol. 9, no. 8, p.
1735–1780, nov 1997. [Online]. Available: https:
//doi.org/10.1162/neco.1997.9.8.1735

[113] D. Hendrycks and K. Gimpel, “Gaussian error linear
units (gelus),” arXiv preprint arXiv: Arxiv-1606.08415,
2016.

[114] Y. Zhu, A. Joshi, P. Stone, and Y. Zhu, “Viola: Imi-
tation learning for vision-based manipulation with ob-
ject proposal priors,” 6th Annual Conference on Robot
Learning, 2022.

https://doi.org/10.1145/604045.604056
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2513
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2513
https://openreview.net/forum?id=ckFRoOaA3n
https://doi.org/10.1177/0278364913490324
https://doi.org/10.1177/0278364913490324
https://api.semanticscholar.org/CorpusID:10392712
https://api.semanticscholar.org/CorpusID:10392712
https://github.com/Denys88/rl_games
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

[115] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++:
Deep hierarchical feature learning on point sets in a
metric space,” arXiv preprint arXiv: Arxiv-1706.02413,
2017.

[116] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradi-
ent descent with warm restarts,” arXiv preprint arXiv:
Arxiv-1608.03983, 2016.

[117] A. Fishman, A. Murali, C. Eppner, B. Peele,
B. Boots, and D. Fox, “Motion policy networks,”
in Conference on Robot Learning, CoRL 2022,
14-18 December 2022, Auckland, New Zealand,
ser. Proceedings of Machine Learning Research,
K. Liu, D. Kulic, and J. Ichnowski, Eds., vol.
205. PMLR, 2022, pp. 967–977. [Online]. Available:
https://proceedings.mlr.press/v205/fishman23a.html

[118] R. Hoque, A. Balakrishna, E. Novoseller, A. Wilcox,
D. S. Brown, and K. Goldberg, “Thriftydagger: Budget-
aware novelty and risk gating for interactive imita-
tion learning,” arXiv preprint arXiv: Arxiv-2109.08273,
2021.

[119] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau,
B. Burchfiel, and S. Song, “Diffusion policy:
Visuomotor policy learning via action diffusion,” in
Robotics: Science and Systems XIX, Daegu, Republic of
Korea, July 10-14, 2023, K. E. Bekris, K. Hauser, S. L.
Herbert, and J. Yu, Eds., 2023. [Online]. Available:
https://doi.org/10.15607/RSS.2023.XIX.026

[120] A. Abdolmaleki, J. T. Springenberg, Y. Tassa,
R. Munos, N. Heess, and M. Riedmiller, “Maximum
a posteriori policy optimisation,” arXiv preprint arXiv:
Arxiv-1806.06920, 2018.

[121] R. Tedrake and the Drake Development Team, “Drake:
Model-based design and verification for robotics,”
2019. [Online]. Available: https://drake.mit.edu

[122] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu,
H. Jiang, Y. Yuan, H. Wang, L. Yi, A. X. Chang, L. J.
Guibas, and H. Su, “Sapien: A simulated part-based
interactive environment,” arXiv preprint arXiv: Arxiv-
2003.08515, 2020.

[123] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller,
J. L. Yuan, P. P. Tehrani, R. Singh, Y. Guo, H. Mazhar,
A. Mandlekar, B. Babich, G. State, M. Hutter, and
A. Garg, “Orbit: A unified simulation framework for
interactive robot learning environments,” arXiv preprint
arXiv: Arxiv-2301.04195, 2023.

[124] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien,
M. Attarian, T. Armstrong, I. Krasin, D. Duong,
A. Wahid, V. Sindhwani, and J. Lee, “Transporter
networks: Rearranging the visual world for robotic
manipulation,” arXiv preprint arXiv: Arxiv-2010.14406,
2020.

[125] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What
and where pathways for robotic manipulation,” arXiv
preprint arXiv: Arxiv-2109.12098, 2021.

[126] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou,
Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu, and

L. Fan, “Vima: General robot manipulation with
multimodal prompts,” arXiv preprint arXiv: Arxiv-
2210.03094, 2022.

[127] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor:
A multi-task transformer for robotic manipulation,”
arXiv preprint arXiv: Arxiv-2209.05451, 2022.

[128] D. Batra, A. X. Chang, S. Chernova, A. J. Davison,
J. Deng, V. Koltun, S. Levine, J. Malik, I. Mordatch,
R. Mottaghi, M. Savva, and H. Su, “Rearrangement: A
challenge for embodied ai,” arXiv preprint arXiv: Arxiv-
2011.01975, 2020.

[129] J. Gu, D. S. Chaplot, H. Su, and J. Malik, “Multi-skill
mobile manipulation for object rearrangement,” arXiv
preprint arXiv: Arxiv-2209.02778, 2022.

[130] S. Yenamandra, A. Ramachandran, K. Yadav, A. Wang,
M. Khanna, T. Gervet, T.-Y. Yang, V. Jain, A. W.
Clegg, J. Turner, Z. Kira, M. Savva, A. Chang, D. S.
Chaplot, D. Batra, R. Mottaghi, Y. Bisk, and C. Paxton,
“Homerobot: Open-vocabulary mobile manipulation,”
arXiv preprint arXiv: Arxiv-2306.11565, 2023.

[131] K. Ehsani, T. Gupta, R. Hendrix, J. Salvador, L. Weihs,
K.-H. Zeng, K. P. Singh, Y. Kim, W. Han, A. Herrasti,
R. Krishna, D. Schwenk, E. VanderBilt, and A. Kem-
bhavi, “Imitating shortest paths in simulation enables
effective navigation and manipulation in the real world,”
arXiv preprint arXiv: Arxiv-2312.02976, 2023.

[132] Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel,
“Learning to manipulate deformable objects with-
out demonstrations,” arXiv preprint arXiv: Arxiv-
1910.13439, 2019.

[133] H. Ha and S. Song, “Flingbot: The unreasonable effec-
tiveness of dynamic manipulation for cloth unfolding,”
arXiv preprint arXiv: Arxiv-2105.03655, 2021.

[134] D. Seita, Y. Wang, S. J. Shetty, E. Y. Li, Z. Erickson,
and D. Held, “Toolflownet: Robotic manipulation with
tools via predicting tool flow from point clouds,” arXiv
preprint arXiv: Arxiv-2211.09006, 2022.

[135] X. Lin, Z. Huang, Y. Li, J. B. Tenenbaum, D. Held,
and C. Gan, “Diffskill: Skill abstraction from differen-
tiable physics for deformable object manipulations with
tools,” arXiv preprint arXiv: Arxiv-2203.17275, 2022.

[136] Y. Ji, Z. Li, Y. Sun, X. B. Peng, S. Levine, G. Berseth,
and K. Sreenath, “Hierarchical reinforcement learning
for precise soccer shooting skills using a quadrupedal
robot,” arXiv preprint arXiv: Arxiv-2208.01160, 2022.

[137] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bas-
tani, D. Jayaraman, Y. Zhu, L. Fan, and A. Anandku-
mar, “Eureka: Human-level reward design via coding
large language models,” arXiv preprint arXiv: Arxiv-
2310.12931, 2023.

[138] A. Boeing and T. Bräunl, “Leveraging multiple simula-
tors for crossing the reality gap,” in 2012 12th Interna-
tional Conference on Control Automation Robotics &
Vision (ICARCV), 2012, pp. 1113–1119.

[139] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso,
V. Tsounis, V. Koltun, and M. Hutter, “Learning

https://proceedings.mlr.press/v205/fishman23a.html
https://doi.org/10.15607/RSS.2023.XIX.026
https://drake.mit.edu

agile and dynamic motor skills for legged robots,”
Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.
[Online]. Available: https://www.science.org/doi/abs/10.
1126/scirobotics.aau5872

[140] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M.
Agogino, A. Tamar, and P. Abbeel, “Reinforcement
learning on variable impedance controller for
high-precision robotic assembly,” in International
Conference on Robotics and Automation, ICRA
2019, Montreal, QC, Canada, May 20-24, 2019.
IEEE, 2019, pp. 3080–3087. [Online]. Available:
https://doi.org/10.1109/ICRA.2019.8793506

[141] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims, “The
k-armed dueling bandits problem,” Journal of Computer
and System Sciences, vol. 78, no. 5, pp. 1538–
1556, 2012, jCSS Special Issue: Cloud Computing
2011. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0022000012000281

[142] A. Jain, B. Wojcik, T. Joachims, and A. Saxena, “Learn-
ing trajectory preferences for manipulators via iterative
improvement,” arXiv preprint arXiv: Arxiv-1306.6294,
2013.

[143] P. Christiano, J. Leike, T. B. Brown, M. Martic,
S. Legg, and D. Amodei, “Deep reinforcement learning
from human preferences,” arXiv preprint arXiv: Arxiv-
1706.03741, 2017.

[144] E. Bıyık, D. P. Losey, M. Palan, N. C. Landolfi,
G. Shevchuk, and D. Sadigh, “Learning reward func-
tions from diverse sources of human feedback: Op-
timally integrating demonstrations and preferences,”
arXiv preprint arXiv: Arxiv-2006.14091, 2020.

[145] K. Lee, L. Smith, and P. Abbeel, “Pebble: Feedback-
efficient interactive reinforcement learning via relabel-
ing experience and unsupervised pre-training,” arXiv
preprint arXiv: Arxiv-2106.05091, 2021.

[146] X. Wang, K. Lee, K. Hakhamaneshi, P. Abbeel, and
M. Laskin, “Skill preferences: Learning to extract and
execute robotic skills from human feedback,” arXiv
preprint arXiv: Arxiv-2108.05382, 2021.

[147] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wain-
wright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller,
M. Simens, A. Askell, P. Welinder, P. Christiano,
J. Leike, and R. Lowe, “Training language models
to follow instructions with human feedback,” arXiv
preprint arXiv: Arxiv-2203.02155, 2022.

[148] V. Myers, E. Bıyık, and D. Sadigh, “Active reward
learning from online preferences,” arXiv preprint arXiv:
Arxiv-2302.13507, 2023.

[149] R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D.
Manning, and C. Finn, “Direct preference optimization:
Your language model is secretly a reward model,” arXiv
preprint arXiv: Arxiv-2305.18290, 2023.

[150] J. Hejna, R. Rafailov, H. Sikchi, C. Finn, S. Niekum,
W. B. Knox, and D. Sadigh, “Contrastive preference
learning: Learning from human feedback without rl,”

arXiv preprint arXiv: Arxiv-2310.13639, 2023.
[151] W. B. Knox and P. Stone, “Reinforcement learning from

human reward: Discounting in episodic tasks,” in 2012
IEEE RO-MAN: The 21st IEEE International Sympo-
sium on Robot and Human Interactive Communication,
2012, pp. 878–885.

[152] B. D. Argall, E. L. Sauser, and A. G. Billard, “Tactile
guidance for policy refinement and reuse,” in 2010
IEEE 9th International Conference on Development and
Learning, 2010, pp. 7–12.

[153] T. Fitzgerald, E. Short, A. Goel, and A. Thomaz,
“Human-guided trajectory adaptation for tool transfer,”
in Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems, ser.
AAMAS ’19. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems, 2019,
p. 1350–1358.

[154] A. V. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D.
Dragan, “Learning robot objectives from physical
human interaction,” in Conference on Robot Learning,
2017. [Online]. Available: https://api.semanticscholar.
org/CorpusID:28406224

[155] A. Najar, O. Sigaud, and M. Chetouani, “Interactively
shaping robot behaviour with unlabeled human instruc-
tions,” arXiv preprint arXiv: Arxiv-1902.01670, 2019.

[156] N. Wilde, E. Bıyık, D. Sadigh, and S. L. Smith,
“Learning reward functions from scale feedback,” arXiv
preprint arXiv: Arxiv-2110.00284, 2021.

[157] J. Zhang and K. Cho, “Query-efficient imitation learn-
ing for end-to-end autonomous driving,” arXiv preprint
arXiv: Arxiv-1605.06450, 2016.

[158] W. Saunders, G. Sastry, A. Stuhlmueller, and O. Evans,
“Trial without error: Towards safe reinforcement learn-
ing via human intervention,” arXiv preprint arXiv:
Arxiv-1707.05173, 2017.

[159] Z. Wang, X. Xiao, B. Liu, G. Warnell, and P. Stone,
“Appli: Adaptive planner parameter learning from in-
terventions,” arXiv preprint arXiv: Arxiv-2011.00400,
2020.

[160] C. Celemin and J. R. del Solar, “An interactive
framework for learning continuous actions policies
based on corrective feedback,” Journal of Intelligent
& Robotic Systems, vol. 95, pp. 77–97, 2018.
[Online]. Available: http://link.springer.com/article/10.
1007/s10846-018-0839-z/fulltext.html

[161] Z. Peng, W. Mo, C. Duan, Q. Li, and B. Zhou,
“Learning from active human involvement through
proxy value propagation,” in Thirty-seventh Conference
on Neural Information Processing Systems, 2023.
[Online]. Available: https://openreview.net/forum?id=
q8SukwaEBy

[162] C. Celemin, R. Pérez-Dattari, E. Chisari, G. Franzese,
L. de Souza Rosa, R. Prakash, Z. Ajanović, M. Ferraz,
A. Valada, and J. Kober, “Interactive imitation learning
in robotics: A survey,” arXiv preprint arXiv: Arxiv-
2211.00600, 2022.

https://www.science.org/doi/abs/10.1126/scirobotics.aau5872
https://www.science.org/doi/abs/10.1126/scirobotics.aau5872
https://doi.org/10.1109/ICRA.2019.8793506
https://www.sciencedirect.com/science/article/pii/S0022000012000281
https://www.sciencedirect.com/science/article/pii/S0022000012000281
https://api.semanticscholar.org/CorpusID:28406224
https://api.semanticscholar.org/CorpusID:28406224
http://link.springer.com/article/10.1007/s10846-018-0839-z/fulltext.html
http://link.springer.com/article/10.1007/s10846-018-0839-z/fulltext.html
https://openreview.net/forum?id=q8SukwaEBy
https://openreview.net/forum?id=q8SukwaEBy

APPENDIX A
SIMULATION TRAINING DETAILS

In this section, we provide details about simulation training,
including the used simulator backend, task designs, reinforce-
ment learning (RL) training of teacher policy, and student
policy distillation.

A. The Simulator

We use Isaac Gym Preview 4 [9] as the simulator backend.
NVIDIA PhysX1 is used as the physics engine to provide
realistic and precise simulation. Simulation settings are listed
in Table A.I. The robot model is from Franka ROS package2.
We borrow furniture models from FurnitureBench [77] to
create various tasks that require complex and contact-rich
manipulation.

TABLE A.I: Simulation settings.

Hyperparameter Value

Simulation Frequency 60 Hz
Control Frequency 60 Hz

Num Substeps 2
Num Position Iterations 8
Num Velocity Iterations 1

B. Task Implementations

We implement four tasks based on the furniture model
square_table: Stabilize, Reach and Grasp, Insert, and
Screw. An overview of simulated tasks is shown in Fig A.1. We
elaborate on their initial conditions, success criteria, reward
functions, and other necessary information.

1) Stabilize: In this task, the robot needs to push the
square tabletop to the right corner of the wall such that it
is supported and remains stable in following assembly steps.
The robot is initialized such that its gripper locates at a
neutral position. The tabletop is initialized at the coordinate
(0.54, 0.00) relative to the robot base. We then randomly
translate it with displacements drawn from U(−0.015, 0.015)
along x and y directions (the distance unit is meter hereafter).
We also apply random Z rotation with values drawn from
U(−15°, 15°). Four table legs are initialized in the scene. The
task is successful only when the following three conditions
are met:

1) The square tabletop contacts the front and right walls;
2) The square tabletop is within a pre-defined region;
3) No table leg is in the pre-defined region.

We use the following reward function:

rt = wsuccess1success − wq̇∥q̇t∥ − waction∥at∥, (A.1)

where wsuccess is the success reward, 1success indicates the
success according to aforementioned conditions, wq̇ penalizes
large joint velocities, q̇t is the joint velocity, waction penalizes
large action commands, and at represents the action command

1https://developer.nvidia.com/physx-sdk
2https://github.com/frankaemika/franka ros

at time step t. We set wsuccess = 10, wq̇ = 10−5, and
waction = 10−5. The episode length is 100. One episode
terminates upon success or timeout.

2) Reach and Grasp: In this task, the robot needs to reach
and grasp a table leg that is randomly spawned in the valid
workspace region. The task is successful once the robot grasps
the table leg and lifts it for a certain height. The object’s
irregular shape limits certain grasping poses. For example, the
end-effector needs to be near orthogonal to the table leg in the
xy plane and far away from the screw thread. Therefore, we
design a curriculum over the object geometry to warm up the
RL learning. It gradually adjusts the object geometry from a
cube, to a cuboid, and finally the table leg. In all curriculum
stages, the reward function is

rt = wdistanced+ wlifted1lifted + wsuccess1success. (A.2)

Here, wdistance is the weight for distance reward, wlifted is
the reward for the leg being lifted, and wsuccess is the success
weight. d is the distance to the table leg and is calculated as

d = 1− tanh

(
10

4
(deef + dleft finger

+ dright finger + dorthogonal)

)
,

(A.3)

where deef is the distance between the end-effector and the
table leg, dleft finger is the distance between the left gripper
tip to the table leg, dright finger is the distance between
the right gripper tip to the table leg, and dorthogonal is the
difference between the current and the orthogonal grasping
orientations. We set wdistance = 0.1, wlifted = 1.0, and
wsuccess = 200.0. The episode length is 50. One episode
terminates upon success or timeout.

3) Insert: In this task, the robot needs to insert a pre-
grasped table leg into the far right assembly hole of the
tabletop, while the tabletop is already stabilized. The tabletop
is initialized at the coordinate (0.53, 0.05) relative to the
robot base. We then randomly translate it with displace-
ments sampled from U(−0.02, 0.02) along x and y directions.
We also apply random Z rotation with values drawn from
U(−45°, 45°). We further randomize the robot’s pose by
adding noises sampled from U(−0.25, 0.25) to joint positions.
The task is successful when the table leg remains vertical
and is close to the correct assembly position within a small
threshold. We design curricula over the randomization strength
to facilitate the learning. The following reward function is
used:

rt = wdistanced+ wsuccess1success, (A.4)

where wdistance is the weight for distance-based reward, d
is the distance between the table leg and target assembly
position, wsuccess is the success weight, and 1success indicates
task success. The distance d consists of an Euclidean distance
dposition and an orientation distance dvertical to encourage the
robot to keep the table leg vertical.

d = 1− tanh

(
10

2
(dposition + dvertical)

)
(A.5)

https://developer.nvidia.com/physx-sdk
https://github.com/frankaemika/franka_ros

(a) Stabilize (b) Reach and Grasp

(c) Insert (d) Screw

Fig. A.1: Visualization of simulated tasks.

We set wdistance = 1.0 and wsuccess = 100.0. The episode
length is 100. One episode terminates upon success or timeout.

4) Screw: In this task, the robot is initialized such that
its end-effector is close to an inserted table leg. It needs to
screw the table leg clockwise into the tabletop. We design
curricula over the action space: at the early stage, the robot
only controls the end-effector’s orientation; at the latter stage,
it gradually takes full control. We slightly randomize object
and robot poses during initialization. The reward function is

rt = (1− 1failure) (wscrewdscrew + wsuccess1success)

− wdeviationddeviation.
(A.6)

Here, 1failure indicates the task failure, wscrew is the screwing
reward weight, dscrew measures the screwed angle, wsuccess
is the success weight, and 1success indicates the task success.
The task is considered as successful when the leg has been
screwed 180° into the tabletop. It is considered as failed when
the table leg tilts more than 10° from the vertical pose. We set
wscrew = 0.1, wsuccess = 100.0, and wdeviation = 10−2. The
episode length is 200. One episode terminates upon success,
failure, or timeout.

C. Teacher Policy Training

1) Model Details:

a) Observation Space: Besides proprioceptive observa-
tions, teacher policies also receive privileged observations to
facilitate the learning. They include objects’ states (poses and
velocities), end-effector’s velocity, contact forces, gripper left
and right fingers’ positions, gripper center position, and joint
velocities. Full observations are summarized in Table A.II.

TABLE A.II: The observation space for teacher policies.

Name Dimension Name Dimension

Proprioceptive Privileged

Joint Position 7 Objects States Nobjects× 13
Cosine Joint Position 7 End-Effector Velocity 6

Sine Joint Position 7 Contact Forces Nobjects× 3

End-Effector Position 3 Left and Right
Fingers’ Positions 6

End-Effector Rotation 4 Gripper Center Position 3
Gripper Width 1 Joint Velocity 7

b) Controller and Action Space: An operational space
controller (OSC) [72] is used in teacher policy training to
improve sample efficiency. We follow Mistry and Righetti
[107] to add nullspace control torques to prevent large changes
in joint configuration. The action space is thus the change of
end-effector’s pose. We further add a binary action to control
gripper’s opening and closing. Formally, it can be expressed
as Ateacher = (δx, δy, δz, δr, δp, δy,1gripper), where
(δx, δy, δz) ∈ R3 is the translation change, (δr, δp, δy) ∈ R3

is the rotation change, and 1gripper ∈ {0, 1} is the gripper
action.

c) Model Architecture: We use feed-forward policies
in RL training. It consists of MLP encoders to encode
proprioceptive and privileged vector observations, and
unimodal Gaussian distributions as the action head. Model
hyperparameters are listed in Table A.III.

TABLE A.III: Model hyperparameters for RL teacher
policies.

Hyperparameter Value Hyperparameter Value

Obs. Encoder Hidden Depth 1 Obs. Encoder Activation ReLU
Obs. Encoder Hidden Dim 256 Action Head Hidden Layers [256, 128, 64]
Obs. Encoder Output Dim 256 Action Head Activation ELU [108]

2) Domain Randomization: We apply domain randomiza-
tion during RL training to learn more robust teacher policies.
Parameters are summarized in Table A.IV.

TABLE A.IV: Domain randomization used in RL training.

Parameter Type Distribution

Robot

Mass Scaling U(0.5, 1.5)
Friction Scaling U(0.7, 1.3)

Joint Lower Limit Scaling logU(1.00, 1.01)
Joint Upper Limit Scaling logU(1.00, 1.01)

Joint Stiffness Scaling logU(1.00, 1.01)
Joint Damping Scaling logU(1.00, 1.01)

Simulation

Gravity Additive U(0.0, 0.4)

Objects

Mass Scaling U(0.5, 1.5)
Friction Scaling U(0.5, 1.5)

Rolling Friction Scaling U(0.5, 1.5)
Torsion Friction Scaling U(0.5, 1.5)

Restitution Additive U(0.0, 1.0)
Compliance Additive U(0.0, 1.0)

3) RL Training Details: We use the model-free RL al-
gorithm Proximal Policy Optimization (PPO) [81] to learn
teacher policies. Hyperparameters are listed in Table A.V. We
customize the framework from Makoviichuk and Makoviy-
chuk [109] to use as our training framework.

TABLE A.V: Hyperparameters used in PPO training.

Hyperparameter Value Hyperparameter Value

Learning Rate 5×10-4 Critic Weight 4
Discount Factor 0.99 GAE [110] λ 0.95
Entropy Weight 0 PPO ϵ 0.2

Optimizer Adam [111] Horizon 32

D. Student Policy Distillation
1) Data Generation: We use trained teacher policies as

oracles to generate data for student policies training. Con-
cretely, we roll out each teacher policy to generate 10, 000
successful trajectories for each task. We exclude trajectories
that are shorter than 20 steps.

2) Observation Space: Student policies receive observa-
tions that can be obtained in the real world. They are
point-cloud and proprioceptive observations. We synthesize
point clouds from objects’ 6D poses to improve the training
throughput. Concretely, given the groundtruth point cloud of
the m-th object P(m) ∈ RK×3, we transform it into the
global frame through P

(m)
g = P(m)

(
R(m)

)⊺
+

(
p(m)

)⊺
.

Here R(m) ∈ R3×3 and p(m) ∈ R3×1 denote the object’s
orientation and translation in the global frame. Further, the
point-cloud representation of a scene S with M objects is
aggregated as PS =

⋃M
m=1 P

(m)
g . For the robot, we only

include point clouds for its two fingers and ignore other
parts. To facilitate policies to differentiate gripper fingers from
the scene, we extend the coordinate dimension to include
a semantic label ∈ {0, 1} that indicates gripper fingers or
not. This information can be obtained on real robots through
forward kinematics. A full point cloud is then downsampled
to 768 points. Table A.VI lists the observation space.

TABLE A.VI: The observation space for student policies.

Name Dimension

Point Cloud 768 × 4

Proprioceptive

Joint Position 7
Cosine Joint Position 7
Sine Joint Position 7

End-Effector Position 3
End-Effector Rotation 4

Gripper Width 1

3) Action Space Distillation: To reduce the controller sim-
to-real gap before transfer, we train student policies to output
in the configuration space. To achieve that, we relabel actions â
in trajectories generated by teacher policies from end-effector’s
delta poses to absolute joint positions. This is equivalent to set
ât = qt+1 for all time steps. Therefore, the action space for
student policies is Astudent = (q,1gripper), where q ∈ R7 is
the joint position within the valid range. In simulation, student
policies’ actions are deployed with a joint position controller.

4) Model Architecture: We use feed-forward policies for
tasks Reach and Grasp and Insert and recurrent policies
for tasks Stabilize and Screw as we find they achieve the
best distillation results. PointNets [82] are used to encode
point clouds. Recall that each point in the point cloud also
contains a semantic label indicating the gripper or not. We
concatenate point coordinates with these semantic labels’ vec-
tor embeddings before passing into the PointNet encoder. We
use Gaussian Mixture Models (GMM) [67] as the action head.
Detailed model hyperparameters are listed in Table A.VII.

5) Data Augmentation: We apply strong data augmenta-
tion during distillation. For point-cloud observations, random
translation and random jitter are independently applied with
a probability Ppcd aug = 0.4. We also add Gaussian noises
to proprioceptive observations. Augmentation parameters are
listed in Table A.VIII.

TABLE A.VII: Model hyperparameters for student policies.

Hyperparameter Value Hyperparameter Value

Point Cloud RNN

PointNet Hidden Dim 256 RNN Type LSTM [112]
PointNet Hidden Depth 2 RNN Num Layers 2
PointNet Output Dim 256 RNN Hidden Dim 512
PointNet Activation GELU [113] RNN Horizon 5

Gripper Semantic Embd Dim 128 GMM Action Head

Feature Fusion Hidden Dim 128

MLP Hidden Dim 512 Hidden Depth 3
MLP Hidden Depth 1 Num Modes 5

MLP Activation ReLU Activation ReLU

TABLE A.VIII: Data augmentation used in distillation.

Hyperparameter Value

Point Cloud

Augmentation Probability 0.4
Random Translation Distribution U(−0.04, 0.04)

Random Jittering Ratio 0.1
Random Jittering Distribution N (0, 0.01)

Random Jittering Low -0.015
Random Jittering High 0.015

Proprioception

Prop. Noise Distribution N (0, 0.1)
Prop. Noise Low -0.3
Prop. Noise High 0.3

6) Training Details: To regularize point-cloud features, we
separately collect a dataset containing 59 pairs of matched
point clouds in simulation and reality. One pair from them
is visualized in Fig A.2. Student policies are trained by
minimizing Eq. 1, where we set β = 10−3. We use the
Adam optimizer [111] with a learning rate of 10−4 during
training. We periodically roll out student policies in simulation
for 1, 000 episodes. We then select the checkpoint that corre-
sponds to the highest success rate to use as the base policy in
the real-world learning stage.

APPENDIX B
REAL-WORLD LEARNING DETAILS

In this section, we provide details about real-world learning,
including the hardware setup, human-in-the-loop data collec-
tion, and residual policy training.

A. Hardware Setup

As shown in Fig. A.3, our system consists of a Franka
Emika 3 robot mounted on the tabletop. We use four fixed
cameras and one wrist camera for point cloud reconstruction.
They are three RealSense D435 and two RealSense D415.
There is also a 3d-printed three-sided wall glued on top of
the table to provide external support. We use a joint position
controller from the Deoxys library [114] to control our robot
at 1000 Hz.

B. Obtaining Point Clouds from Multi-View Cameras

We use multi-view cameras for point cloud reconstruction to
avoid occlusions. Specifically, we first calibrate all cameras to

Fig. A.2: Visualization of paired point clouds in simulation
(red) and reality (blue).

obtain their poses in the robot base frame. We then transform
captured point clouds in camera frames to the robot base frame
and concatenate them together. We further perform cropping
based on coordinates and remove statistical and radius outliers.
To identify points belonging to the gripper so that we can
add gripper semantic labels (Sec. A-D2), we compute poses
for two gripper fingers through forward kinematics. We then
remove measured points corresponding to gripper fingers
through K-nearest neighbor, given fingers’ poses and synthetic
point clouds. Subsequently, we add semantic labels to points
belonging to the scene and synthetic gripper’s point clouds.
Finally, we uniformly down-sample without replacement. We
opt to not use farthest point sampling [115] due to its slow
speed. One example is shown in Fig. A.4.

C. Human-in-the-Loop Data Collection

This data collection procedure is illustrated in Algorithm 1.
As shown in Fig. A.5, we use a 3Dconnexion SpaceMouse as
the teleoperation device. We design a specific UI (Fig. A.6) to
facilitate the synchronized data collection. Here, the human
operator will be asked to intervene or not. The operator
answers through keyboard. If the operator does not intervene,
the base policy’s next action will be deployed. If the operator
decides to intervene, the SpaceMouse is then activated to
teleoperate the robot. After the correction, the operator can
exit the intervention mode by pressing one button on the
SpaceMouse. We use this system and interface to collect 20,
100, 90, and 17 trajectories with correction for tasks Stabilize,
Reach and Grasp, Insert, and Screw, respectively. We use
90% of them as training data and the remaining as held-
out validation sets. We visualize the cumulative distribution
function of human correction in Fig. A.7.

D. Residual Policy Training

1) Model Architecture: The residual policy takes the same
observations as the base policy (Table A.VI). Furthermore,

Left
Cameras

Right
Cameras

Wrist

Camera

Fixed
Wall

Fig. A.3: System setup. Our system consists of a Franka Emika 3 robot mounted on the tabletop, four fixed cameras and one
wrist camera (positioned at the rear side of the end-effector) for point cloud reconstruction, and a 3d-printed three-sided wall
glued onto tabletop to provide external support.

to effectively predict residual actions, it is also conditioned
on base policy’s outputs. Its action head outputs eight-dim
vectors, while the first seven dimensions correspond to residual
joint positions and the last dimension determines whether to
negate base policy’s gripper action or not. Besides, a separate
intervention head predicts whether the residual action should
be applied or not (learned gated residual policy, Sec. II-D).

For tasks Stabilize and Insert, we use a PointNet [82] as the
point-cloud encoder. For tasks Reach and Grasp and Screw, we
use a Perceiver [83, 84] as the point-cloud encoder. Residual
policies are instantiated as feed-forward policies in all tasks.
We use GMM as the action head and a simple two-way
classifier as the intervention head. Model hyperparameters are
summarized in Table A.IX.

2) Training Details: To train the learned gated residual
policy, we first only learn the feature encoder and the action
head. We then freeze the entire model and only learn the
intervention head. We opt for this two-stage training since
we find that training both action and intervention heads at the
same time will result in sub-optimal residual action prediction.
We follow the best practice for policy training, including using
learning rate warm-up and cosine annealing [116]. Training
hyperparameters are listed in Table A.X.

APPENDIX C
EXPERIMENT SETTINGS AND EVALUATION DETAILS

In this section, we provide details about our experiment
settings and evaluation protocols.

A. Task Definition

As shown in Fig. 3, we quantitatively benchmark four tasks.
They are fundamental skills required to assemble a square
table from FurnitureBench [77]. We randomize objects’ initial
poses during evaluation.

• Stabilize: The robot pushes the square tabletop to the right
corner of the wall such that it remains stable in following
assembly steps.

• Reach and Grasp: The robot reaches and grasps the
table leg. It needs to properly adjust the end effector’s
orientation to avoid infeasible grasping poses.

• Insert: The robot inserts the pre-grasped table leg to the
far right assembly hole of the tabletop.

• Screw: The robot’s end-effector is initialized close to an
inserted table leg and it screws the table leg clockwise
into the tabletop.

B. Main Experiments

We evaluate all methods on four tasks for 20 trials. Each
trail starts with different objects and robot poses. We make our

Fig. A.4: Visualization of real-world point-cloud observa-
tions. We obtain them by 1) cropping point clouds fused from
multi-view cameras based on coordinates, 2) removing sta-
tistical and radius outliers, 3) removing points corresponding
to gripper fingers and replacing with synthetic point clouds
through forward kinematics, 4) uniformly sampling without
replacement, and 5) appending semantic labels to indicate
gripper fingers (red) and the scene (blue).

SpaceMouse

Fig. A.5: Real workspace setup for human-in-the-loop data
collection. The human operator provides online correction
through a 3Dconnexion SpaceMouse while monitoring the
robot’s execution.

best efforts to ensure the same initial settings when evaluating
different methods. Specifically, we take pictures for these 20
different initial configurations and refer to them when resetting
a new trial. See Figs. A.15, A.16, A.17, A.18 for initial
configurations of tasks Stabilize, Reach and Grasp, Insert, and
Screw, respectively. We follow Liu et al. [90] to label reward
for IQL. Full numerical results are provided in Table A.XI.

C. Experiments with Different Sim-to-Real Gaps

1) Experiment Setup: We explain how different sim-to-real
gaps are created.

a) Perception Error: This is done by applying random
jitter to 25% points from point clouds, which corresponds to

Algorithm 1: Human Intervention and Online Correc-
tion Data Collection

input : Base policy πB , human policy πH ,
real-world environment E

output : Human correction dataset DH
initialize: DH ← ∅

o← E .reset()
while not E .terminated do

▷ deploy the base policy for one step

aB ← aB ∼ πB(o)
onext ← E .deploy(aB)
▷ human decides intervention or not

1H ← πH .intervene(o, onext)
if 1H then

qpre ← E .robot state
▷ deploy human correction

aH ← aH ∼ πH(o, onext)
onext ← E .deploy(aH)
qpost ← E .robot state
▷ update dataset

DH ← DH ∪
(
qpre,qpost,1H , o

)
end
▷ update observation for the next step

o← onext
end

TABLE A.IX: Model hyperparameters for residual policies.

Hyperparameter Value Hyperparameter Value

PointNet Feature Fusion

PointNet Hidden Dim 256 MLP Hidden Dim 512
PointNet Hidden Depth 2 MLP Hidden Depth 1
PointNet Output Dim 256 MLP Activation ReLU

PointNet Activation GELU GMM Action Head

Gripper Semantic Embd Dim 128 Hidden Dim 128

Perceiver Hidden Depth 3

Perceiver Hidden Dim 256 Num Modes 5
Perceiver Number of Heads 8 Activation ReLU

Perceiver Number of Queries 8 Intervention Head

Gripper Semantic Embd Dim 128 Hidden Dim 128

Base Policy Action Conditioning Hidden Depth 3

Base Policy Gripper Action Embd Dim 64 Activation ReLU

adding noise in observation space O. We test this sim-to-real
gap on the task Reach and Grasp. As visualized in Fig. A.8,
with probability P = 0.6, we apply random jitter to 25%
points from the point-cloud observation. The jittering noise is
sampled independently from the distribution N (0, 0.03). We
clip the noise to be within the ± 0.03 range.

b) Underactuated Controller: This is done by making
the joint position controller less accurate, which corresponds
to mismatched action space A. We test this gap on the task
Insert. We emulate an underactuated controller through early
stopping. Concretely, at every time a new joint position

(...)
system: need human intervention? (y/n)
user: n
(deploying the next action)
system: need human intervention? (y/n)
user: y
(correction through teleopeartion)
system: exiting human intervention...
(...)

Fig. A.6: The UI for synchronized human-in-the-loop data
collection.

0 50 100

Task Progress (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of
P
co
rr
ec
ti
on

Stabilize

Reach and Grasp

Insert

Screw

Fig. A.7: Cumulative distribution function (CDF) of hu-
man correction. Shaded regions represent standard deviation.
Human correction happens at different times across tasks. This
fact necessitates TRANSIC’s learned gating mechanism.

goal qgoal is set, we record the distance to the goal in
configuration space dq = ∥q − qgoal∥ and sample a factor
Γ ∼ U(0.80, 0.95). The controller will stop reaching the
desired goal once it achieves Γ progress, i.e., stop early when
∥q− qgoal∥ ≤ (1− Γ)dq. Fig. A.9 visualizes the effect.

c) Embodiment Mismatch: This is done by changing the
robot gripper to be shorter length as demonstrated in Fig. A.10,
which corresponds to discrepancy in state space S and transi-
tion function T . We test this gap on the task Screw. We notice
that the 9 cm length difference incurs a significant gap.

d) Dynamics Difference: This is done by changing
object surfaces and increasing friction, which corresponds
to different transition function T . We test this gap on the
task Stabilize. Concretely, we attach friction tapes to the
square tabletop’s surface to increase friction, hence change
the dynamics (Fig. A.11).

e) Object Assert Mismatch: As shown in Fig. A.12, this
is done by replacing the table leg with a light bulb, which
corresponds to change in emitting function Ω. We test this
gap on the task Reach and Grasp.

2) Evaluation: We conduct 20 trails with different initial
configurations. Initial conditions for first four experiments are
the same as main experiments (Figs. A.15, A.16, A.17, A.18).
Fig. A.19 shows initial configurations for the experiment

TABLE A.X: Hyperparameters used in residual policy
training.

Hyperparameter Value

Learning Rate 10−4

Weight Decay 0
Learning Rate Warm Up Steps 1, 000

Learning Rate Cosine Decay Steps 100, 000
Minimal Learning Rate 10−6

Optimizer Adam

(a) (b)

Fig. A.8: Visualization of introduced perception error. a)
The original point-cloud observation. b) The erroneous point-
cloud observation with random jitter.

Object Asset Mismatch.

D. Data Scalability Experiments

In Table A.XII, we show quantitative results for scalability
with human correction dataset size on four tasks.

E. Ablation Studies

1) Effects of Different Gating Mechanisms: We introduce
the learned gated residual policy in Sec. II-D where the gating
mechanism controls when to apply residual actions. To assess
the quality of learned gating, we compare its performance
with an actual human operator performing gating. Results are
shown in Table I (row “w/ Human Gating”). It is evident
that the learned gating mechanism only incurs negligible
performance drops compared to human gating. This suggests
that TRANSIC can reliably operate in a fully autonomous
setting once the gating mechanism is learned.

2) Policy Robustness: We investigate the policy robustness
against 1) point cloud observations with inferior quality by
removing two cameras, and 2) suboptimal correction data
with noise injection. We remove two cameras and only keep
three. Note that this is the same number of cameras as in
FurnitureBench [77]. For tasks other than Insert, we keep
the wrist camera, the right front camera, and the left rear
camera. For the task Insert, we keep two front cameras and
the left rear camera. We simulate suboptimal correction data
by injecting noise into residual actions aR. This noise is of
large magnitude, which follows the normal distribution with
zero mean and standard deviation corresponding to 5% of the
largest residual action in the dataset. Results are shown in

TABLE A.XI: Success rates per tasks. TRANSIC outperforms all baseline methods in all four tasks.

Tasks TRANSIC
Direct

Transfer
DR. & Data

Aug. [52]
BC

Fine-Tune
IQL

Fine-Tune HG-Dagger [65] IWR [66] BC [85] BC-RNN [67] IQL [68]

Stabilize 100% 10% 35% 55% 0% 65% 65% 40% 40% 5%
Reach and Grasp 95% 35% 60% 35% 0% 30% 40% 25% 0% 5%

Insert 45% 0% 15% 15% 25% 35% 40% 10% 5% 0%
Screw 85% 0% 35% 50% 65% 40% 40% 15% 25% 0%

−0.2 0.0 0.2
End-Effector X Position (m)

−0.2

0.0

0.2

E
n

d
-E

ff
ec

to
r

Y
P

os
it

io
n

(m
)

Reference Normal Controller Underactuated Controller

0

18

36

T
ra

je
ct

or
y

T
im

e
S

te
p

Fig. A.9: Visualization of the trajectory realized by an
underactuated controller. The plot displays the end-effector’s
position in the XY plane. It shows a reference circular move-
ment, a trajectory tracked by the normal controller, and a
trajectory tracked by the underactuated controller.

14 cm

5 cm

Fig. A.10: Two different gripper fingers used to create
embodiment mismatch. Policies are trained with the longer
finger and tested on the shorter finger.

(a) (b)

Fig. A.11: Two square tabletops used to create dynamics
difference. a) The original surface is smooth. b) We attach
friction tapes to change the dynamics.

(a) (b)

Fig. A.12: Two objects used to create asset mismatch. a)
Policies are trained with the table leg. b) We test policies with
an unseen light bulb.

Table I (rows “Reduced Cameras” and “Noisy Correction”).
We highlight that TRANSIC is robust to partial point cloud
inputs caused by the reduced number of cameras. We attribute
this to the heavy point cloud downsampling employed during
training. Fishman et al. [117] echos our finding that policies
trained with downsampled synthetic point cloud inputs can
generalize to partial point cloud observations obtained in the
real world without the need for shape completion. Meanwhile,
when the correction data used to learn residual policies are

TABLE A.XII: Quantitative results for scalability with
human correction dataset size on four tasks.

Method Correction Dataset Size (%)
0 25 50 75 100

Stabilize

TRANSIC 35% 80% 80% 100% 100%
IWR [66] 70% 75% 80% 65%

Reach and Grasp

TRANSIC 60% 65% 80% 90% 95%
IWR [66] 60% 65% 40% 40%

Insert

TRANSIC 5% 20% 35% 40% 45%
IWR [66] 5% 15% 30% 40%

Screw

TRANSIC 35% 50% 65% 75% 85%
IWR [66] 20% 40% 40% 40%

suboptimal, TRANSIC only shows a relative decrease of 6% in
the average success rate. We attribute this to the advantage of
our integrated deployment—when the residual policy behaves
suboptimally, the base policy could still compensate for the
error in subsequent steps.

3) Consistency in Learned Visual Features: To learn con-
sistent visual features between the simulation and reality,
we propose to regularize the point cloud encoder during the
distillation stage. As shown in Table I (row “w/o Regulariza-
tion”), the performance significantly decreases without such
regularization, especially for tasks that require fine-grained
visual features. Without it, simulation policies would overfit
to synthetic point cloud observations and hence are not ideal
for sim-to-real transfer.

F. Qualitative Analysis and Emergent Behaviors

We examine the distribution of the collected human cor-
rection dataset. During the human-in-the-loop data collection,
the probability of intervening and correcting is reasonably
low (Pcorrection ≈ 0.20). This is consistent with our intuition
that, with a good base policy, interventions are not necessary
for most of the time. However, they become critical when
the robot tends to behave abnormally due to unaddressed
sim-to-real gaps. Moreover, as highlighted in Fig. A.7, in-
terventions happen at different times across tasks. This fact
renders heuristics-based methods [118] for deciding when to
intervene difficult, and further necessitates our learned residual
policy. Several representative behaviors learned by TRANSIC
are demonstrated in Fig. A.13.

APPENDIX D
ADDITIONAL EXPERIMENT RESULTS AND DISCUSSIONS

A. Empirical Justifications for Action Space Distillation

Reasons for the proposed action space distillation are
twofold.

The first is mainly because an OSC is hard to sim-to-real
transfer, while a joint position controller can be seamlessly

transferred. As suggested in Nakanishi et al. [73], an OSC
requires accurate modeling of robot parameters, such as the
task-space inertia matrix and gravity compensation. System
identification helps but is insufficient. Furthermore, it is often
the case that given the same joint torque, the end-effector
moves differently in simulation and the real world. Because
an OSC uses a task-space error to compute joint torques, this
will lead to large joint position deviation.

The second is for better training efficiency. As shown in
Fig. A.14, it is almost impossible to directly train RL with
point cloud inputs and joint position action space. Even after
7-day training, RL still shows no sign of improvement. In
contrast, TRANSIC takes around 3 days to train on NVIDIA
GeForce RTX 3090 GPUs. Therefore, the distillation is im-
portant to make the training feasible.

B. Distilling Simulation Base Policy with Diffusion Policy

We experiment with learning simulation base policies
(Sec. II-B) with the Diffusion Policy [119]. Concretely, when
performing action space distillation to learn student poli-
cies, we replace the Gaussian Mixture Model (GMM) action
head with the Diffusion Policy. Proper data augmentation
(Table A.VIII) is also applied to robustify learned policies.
Hyperparameters are provided in Table A.XIII.

TABLE A.XIII: Diffusion Policy hyperparameters.

Hyperparameter Value Hyperparameter Value

Architecture UNet To 2
UNet Hidden Dims [64, 128] Ta 8
UNet Kernel Size 5 Tp 16

UNet GroupNorm Num Groups 8 Num Denoising Steps (Train) 100
Diffusion Step Embd Dim 128 Num Denoising Steps (Eval) 16

The comparison between GMMs on the real robot is
shown in Table. A.XIV. We highlight two findings. First, the
significant domain difference between simulation and reality
generally exists regardless of different policy modeling meth-
ods. Second, since the Diffusion Policy plans and executes
a future trajectory, it is more vulnerable to simulation-to-
reality gaps due to planning inaccuracy and the consequent
compounding error. Only executing the first action from the
planned trajectory and re-planning at every step may help, but
the inference latency renders the real-time execution infeasible.

TABLE A.XIV: The real-robot performance difference
between GMM and Diffusion Policy. The policy error caused
by simulation-to-reality gaps will be amplified by the Diffusion
Policy because it plans and executes a future trajectory.

Average Stablize Reach
and Grasp Insert Screw

GMM 33.7% 35% 60% 5% 35%
Diffusion Policy 22.5% 35% 50% 5% 0%

C. Gating Mechanism Conceptual Comparison

Recall several design choices in the proposed gating mech-
anism: 1) takes inputs of unstructured sensory observations

(a) Error Recovery (b) Unsticking

(c) Safety-aware Actions (d) Failure Prevention

Fig. A.13: Emergent behaviors learned by TRANSIC. a) Error recovery. Left: The robot tries to insert the table leg but the
direction is wrong; Right: TRANSIC raises the end effector and moves to the correct insertion position. b) Unsticking. Left:
The robot hovers for a while and never reaches the light bulb; Right: TRANSIC helps the robot get unstuck and move to the
bulb. c) Safety-aware actions. Left: When pushing the tabletop, the gripper is too low and bends. This might damage the
robot; Right: TRANSIC compensates for the command that causes the end effector to move too low. d) Failure prevention.
Left: The light bulb will fall and break after gripper opening; Right: TRANSIC adjusts the bulb to a stable pose to prevent
failure.

(point cloud); 2) conditioned on base policy’s outputs for
effective prediction; 3) the intervention classifier shares the
same feature encoder with the residual policy; and 4) the entire
pipeline is learned end-to-end. We contrast against several
mechanisms from the literature.

D. Long-Horizon Tasks Statistics

We show statistics about task length from Furni-
tureBench [77] in Table A.XVI.

(a) Stabilize (b) Reach and Grasp

(c) Insert (d) Screw

Fig. A.14: Learning curves for RL with point-cloud observations and joint position actions.

TABLE A.XV: Gating mechanism conceptual comparison.

How to decide
apply gating or not Input Condition on

base policy’s outputs
Shared

feature encoder

Ours End-to-end learned Point cloud
and proprioception Yes Yes

Residual Policy Learning [79] No gating Low-dimensional state No No
Residual RL [78] No gating Low-dimensional state No No

ThriftyDAgger [118] Thresholded based
on neural network ensemble Low-dimensional state No No

Runtime Monitoring [103] End-to-end learned RGB and proprioception No Yes

TABLE A.XVI: Statistics about long-horizon tasks from
FurnitureBench [77].

Number of Steps Average Human Demo Length

Lamp 594 2 Minutes
Square Table 1689 6 Minutes

APPENDIX E
EXTENDED PRELIMINARIES

A. Problem Formulation

We formulate a robot manipulation task as an infinite-
horizon discrete-time Partially Observable Markov Decision
Process (POMDP) M := (S,O,Ω,A, T , R, γ, ρ0), where S
is the state space, O is the observation space, and A is the
action space. At time step t, a robot observes ot ∈ O emitted
from observation function Ω (ot|st, at−1) : S × A → O,
executes an action at, and receives a scalar reward rt from
the reward function R(st, at) : S × A → R. The environ-
ment proceeds to the next state governed by the transition
function T (st+1|st, at) : S × A → S. The robot learns a
parameterized policy πθ (·|o) : O → ∆A to maximize the
expected discounted return J := Eτ∼pπθ

[
∑∞
t=0 γ

trt] over
induced trajectory distribution τ := (s0, o0, a0, r0, ...) ∼ pπθ

,
where s0 ∼ ρ0 is sampled from the initial state distribution.
Additionally, γ ∈ [0, 1) is a discount factor. In this work,
we model simulation and real environments as two different
POMDPs.

B. Intervention-Based Policy Learning

We adopt an intervention-based learning framework [65, 66,
90] where a human operator can intervene and take control
during the execution of the robot base policy πB . Denote
the human policy as πH , the following combined policy is
deployed during data collection:

πdeployed = 1HπH +
(
1− 1H

)
πB , (A.7)

where 1H is a binary function indicating human interventions.
Introducing a trajectory distribution q(τ) that consists of two
observation-action distributions generated by the robot ρB and
human operator ρH , the original RL objective leads to the
maximization of a variational lower bound on logarithmic
return [66, 120]:

J (θ, q) = Eq(τ) [logR(τ) + log pπθ
− log q(τ)] , (A.8)

where pπθ
is the induced trajectory distribution. While the

human operator optimizes Eq. A.8 through intervention and
correction, the robot learner maximizes it through

θ = argmax
θ∈Θ

E(o,a)∼q(τ) [log πθ(a|o)] . (A.9)

Various intervention-based policy learning methods have been
derived by weighting observation-action pairs in Eq. A.9
differently. For example, HG-Dagger [65] completely ignores
robot data DB and only trains on human data DH that
contain intervention samples. This is equivalent to q(τ) ∝ ρH .
Intervention Weighted Regression (IWR) [66] balances the
data distribution by emphasizing human intervention: q(τ) ∝
αρH + ρB with α = |DB |/|DH |. Non-intervention-based
methods such as traditional behavior cloning (BC) [85] only
learn on DH with full human demonstrations instead of
intervention. This effectively sets q(τ) ∝ ρH .

APPENDIX F
EXTENDED RELATED WORK

a) Robot Learning via Sim-to-Real Transfer: Physics-
based simulations [6–10, 49, 121–123] have become a driving
force [1, 2] for developing robotic skills in tabletop manip-
ulation [124–127], mobile manipulation [128–131], fluid and
deformable object manipulation [132–135], dexterous in-hand
manipulation [13–17], locomotion with various robot morphol-
ogy [18–26, 136], object tossing [80], acrobatic flight [28, 29],
etc. However, the domain gap between the simulators and the
reality is not negligible [10]. Successful sim-to-real transfer
includes locomotion [18–27], in-hand re-orientation for dexter-
ous hands where objects are initially placed near the robot [13–
17], and non-prehensile manipulation limited to simple
tasks [30–39]. In this work, we tackle more challenging sim-
to-real transfer for complex manipulation tasks and success-
fully demonstrate that our approach can solve sophisticated
contact-rich manipulation tasks. More importantly, it requires
significantly fewer real-robot data compared to the prevalent
imitation learning and offline RL approaches [67, 68, 85].
This makes solutions that are based on simulators and
sim-to-real transfer more appealing to roboticists.

b) Sim-to-Real Gaps in Manipulation Tasks: Despite
the complex manipulation skills recently learned with RL in
simulation [137], directly deploying learned control policies
to physical robots often fails. The sim-to-real gaps [10, 40, 44,
138] that contribute to this performance discrepancy can be
coarsely categorized as follows: a) perception gap [18, 41–43],
where synthetic sensory observations differ from those mea-
sured in the real world; b) embodiment mismatch [18, 44, 45],
where the robot models used in simulation do not match the
real-world hardware precisely; c) controller inaccuracy [46–
48], meaning that the results of deploying the same high-level
commands (such as in configuration space [139] and task
space [140]) differ in simulation and real hardware; and d)
poor physical realism [49], where physical interactions such
as contact and collision are poorly simulated [86].

Although these gaps may not be fully bridged, traditional
methods to address them include system identification [18,
30, 50, 51], domain randomization [13, 52–54], real-world
adaptation [55], and simulator augmentation [57–59]. How-
ever, system identification is mostly engineered on a case-by-
case basis. Domain randomization suffers from the inability
to identify and randomize all physical parameters. Methods
with real-world adaptation, usually through meta-learning [87],
incur potential safety concerns during the adaptation phase.
Most of these approaches also rely on explicit and domain-
specific knowledge about tasks and the simulator a priori. For
instance, to perform system identification for closing the em-
bodiment gap for a quadruped, Tan et al. [18] disassembles the
physical robot and carefully calibrates parameters including
size, mass, and inertia. Kim et al. [32] reports that collaborative
robots, such as the commonly used Franka Emika robot, have
intricate joint friction that is hard to identify and randomized
in typical physics simulators. To make a simulator more akin

to the real world, Chebotar et al. [39] deploys trained virtual
robots multiple times to refine the distributions of simulation
parameters. This procedure not only introduces a significant
real-world sampling effort, but also incurs potential safety
concerns due to deploying suboptimal policies. In contrast,
our method leverages human intervention data to implicitly
overcome the transferring problem in a domain-agnostic way
and also leads to safer deployment.

c) Human-in-The-Loop Robot Learning: Human-in-the-
loop machine learning is a prevalent framework to inject
human knowledge into autonomous systems [61, 88, 89].
Various forms of human feedback exist [62], ranging
from passive judgement, such as preference [141–150] and
evaluation [151–156], to active involvement, including inter-
vention [157–159] and correction [160, 161]. They are widely
adopted in solutions for sequential decision-making tasks.
For instance, interactive imitation learning [65, 66, 90, 162]
leverages human intervention and correction to help naı̈ve
imitators address data mismatch and compounding error. In the
context of RL, reward functions can be derived to better align
agent behaviors with human preferences [144, 147, 148, 151].
Noticeably, recent trend focuses on continually improving
robots’ capability by iteratively updating and deploying
policies with human feedback [90], combining active human
involvement with RL [161], and autonomously generating
corrective intervention data [91]. Our work further extends
this trend by showing that sim-to-real gaps can be effectively
eliminated by using human intervention and correction signals.

In shared autonomy, robots and humans share the control
authority to achieve a common goal [63, 64, 92–94]. This
control paradigm has been largely studied in assistive robotics
and human-robot collaboration [95–97]. In this work, we pro-
vide a novel perspective by employing it in sim-to-real transfer
of robot control policies and demonstrating its importance in
attaining effective transfer.

Fig. A.15: Initial settings for evaluating the task Stabilize.

Fig. A.16: Initial settings for evaluating the task Reach and Grasp.

Fig. A.17: Initial settings for evaluating the task Insert.

Fig. A.18: Initial settings for evaluating the task Screw.

Fig. A.19: Initial settings for the experiment Object Asset Mismatch.

	Introduction
	Transic: Sim-to-Real Policy Transfer by Learning from Online Correction
	Preliminaries
	Learning Base Policies in Simulation with RL
	Learning Residual Policies from Online Correction
	An Integrated Deployment Framework
	Implementation Details

	Experiments
	Tasks, Baselines, and Evaluation Protocol
	Results

	Related Work
	Limitations
	Conclusion
	Appendix A: Simulation Training Details
	The Simulator
	Task Implementations
	Stabilize
	Reach and Grasp
	Insert
	Screw

	Teacher Policy Training
	Model Details
	Domain Randomization
	RL Training Details

	Student Policy Distillation
	Data Generation
	Observation Space
	Action Space Distillation
	Model Architecture
	Data Augmentation
	Training Details

	Appendix B: Real-World Learning Details
	Hardware Setup
	Obtaining Point Clouds from Multi-View Cameras
	Human-in-the-Loop Data Collection
	Residual Policy Training
	Model Architecture
	Training Details

	Appendix C: Experiment Settings and Evaluation Details
	Task Definition
	Main Experiments
	Experiments with Different Sim-to-Real Gaps
	Experiment Setup
	Evaluation

	Data Scalability Experiments
	Ablation Studies
	Effects of Different Gating Mechanisms
	Policy Robustness
	Consistency in Learned Visual Features

	Qualitative Analysis and Emergent Behaviors

	Appendix D: Additional Experiment Results and Discussions
	Empirical Justifications for Action Space Distillation
	Distilling Simulation Base Policy with Diffusion Policy
	Gating Mechanism Conceptual Comparison
	Long-Horizon Tasks Statistics

	Appendix E: Extended Preliminaries
	Problem Formulation
	Intervention-Based Policy Learning

	Appendix F: Extended Related Work

