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ABSTRACT

Understanding the training dynamics of deep neural networks is challenging due to
their high-dimensional nature and intricate loss landscapes. Recent studies have
revealed that, along the training trajectory, the gradient approximately aligns with
a low-rank top eigenspace of the training loss Hessian, referred to as the dominant
subspace. Given this alignment, this paper explores whether neural networks
can be trained within the dominant subspace, which, if feasible, could lead to
more efficient training methods. Our primary observation is that when the SGD
update is projected onto the dominant subspace, the training loss does not decrease
further. This suggests that the observed alignment between the gradient and the
dominant subspace is spurious. Surprisingly, projecting out the dominant subspace
proves to be just as effective as the original update, despite removing the majority
of the original update component. We observe similar behavior across practical
setups, including the large learning rate regime (also known as Edge of Stability),
Sharpness-Aware Minimization, momentum, and adaptive optimizers. We discuss
the main causes and implications of this spurious alignment, shedding light on the
dynamics of neural network training.
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Figure 1: The summary of our main results in Section 3 (training loss in log-scale). For neural
network training, Gur-Ari et al. (2018) observe that gradients approximately align with the dominant
subspace, spanned by the dominant eigenvectors of the training loss Hessian. To see whether such
phenomenon lets us train neural networks within the dominant subspace, we implement Dom-SGD,
where each SGD update is projected onto the dominant subspace. Surprisingly, training stops after
this modification, suggesting that the dominant subspace is not where the learning happens. In
contrast, Bulk-SGD, where we project each SGD updates onto the bulk subspace orthogonal to
the dominant subspace, is just as effective as the original update, despite removing the majority of
original updates. Experimental details are provided in Appendix B.

1 INTRODUCTION

Understanding the optimization of deep neural networks presents a complex challenge, given their
high-dimensional nature and the intricate characteristics of their training loss landscapes. Over the
last decade, an abundance of studies has investigated the landscape of training loss L : Rp → R (Li
et al., 2018b; He et al., 2019). In this work, we are interested in the following noteworthy phenomena:

• Hessian is approximately low-rank. Extensive research (Sagun et al., 2016; 2017; Ghor-
bani et al., 2019; Papyan, 2019; 2020) has revealed that for k-class classification problems,
the loss Hessian∇2L exhibits a “low-rank” structure, characterized by k dominant eigenval-
ues significantly larger than the others. See Figure 2 for details.
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Figure 2: Low-rank structure of the Hessian. The plot shows the top eigenvalues of the loss Hessian
during SGD training. The blue curves represent the top-k eigenvalues, which are significantly larger
than the next top-k eigenvalues, shown in orange. Here, k corresponds the number of classes in the
classification task (k = 10 for MNIST-5k, CIFAR10-5k, and k = 2 for SST2-1k).
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Figure 3: Alignment of gradients with dominant subspaces. The plot illustrates χk(∇L(θt))
during SGD training, where k is the number of classes for the classification task (see Definition 2).
The orange dashed lines represent the exponential moving average (EMA) of χk(∇L(θt)). After a
few early steps, χk(∇L(θt)) reaches and stays near 1, indicating the alignment between gradients
and dominant subspaces.

• Gradients approximately align with the low-rank eigenspace. Gur-Ari et al. (2018)
demonstrated that during SGD training, gradients tend to align closely with the low-
dimensional subspace spanned by the dominant eigenvectors of the loss Hessian. See
Figure 3 for details.

We provide a more extensive background on these phenomena in Appendix A. The eigenspace of the
top-k eigenvalues of ∇2L(θ), referred to as the dominant subspace at θ, is the main focus of this
work. Motivated by Gur-Ari et al. (2018), we ask:

Q. Can deep neural networks be trained within the dominant subspace? (Q1)

This question carries significant practical implications, potentially leading to more efficient training
methods for neural networks. Furthermore, it offers insights into why deep learning optimization
may not suffer from the curse of dimensionality despite operating in high-dimensional spaces.

1.1 SUMMARY OF MAIN RESULTS

In this paper, we rigorously examine the question (Q1) through systematic experiments. Quite
surprisingly, our results reveal that the answer to the question is negative, as summarized below.

• In Section 3, we demonstrate that the observed alignment is “spurious” in the sense that the
aligned component of the gradient is not beneficial for training, even though it constitutes the
majority of the gradient. Specifically, we run a critical experiment where we modify SGD by
projecting each update onto the dominant subspace; we call this Dom-SGD. Unexpectedly,
Dom-SGD does not further decrease the training loss. Next, we consider Bulk-SGD which
projects each update onto the bulk subspace, i.e., the orthogonal complement of the dominant
subspace. Despite the fact that the major component of each update is removed, this time
the training remains as effective as the original update (see Figure 1).

• In Section 4, we identify that the spurious alignment between the gradient and the dominant
subspace is caused by the stochastic noise inherent to SGD in the gradient flow (GF)
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regime, by showing that alignment disappears when using full-batch GD (see Figure 4
and Figure 5). Additionally, we present a simple quadratic model which also captures the
observed phenomena, providing insights into the role of stochastic noise in the spurious
alignment (see Figure 6 and Figure 7).

• In Section 5, we extend our observations to two other practical settings: (1) GD in the
Edge of Stability (EoS) regime (Cohen et al., 2021), and (2) Sharpness-Aware Minimization
(SAM) (Foret et al., 2021). For both of the settings, we again observe that each update
approximately aligns with the dominant subspace, yet the aligned component of each update
does not contribute to the loss decrement (see Figure 9 and Figure 10). For GD in the EoS
regime, the alignment is due to the self-stabilization mechanism (Damian et al., 2023), in
contrast to SGD in the GF regime where stochastic noise is the cause of the alignment.

• In Section 6, we again observe that for momentum and adaptive optimizers, e.g. Adam, if
we project the update vector onto the dominant subspace, the training loss fails to decrease.
Moreover, we demonstrate that momentum and adaptive methods amplify the bulk subspace
component of each update, partially explaining their success in neural network training (see
Table 1 and Figure 11).

2 STARTING POINT: GRADIENT ALIGNS WITH THE DOMINANT SUBSPACE

In this section, we set the stage for our main results by reviewing the main observation of Gur-Ari
et al. (2018). To that end, we first introduce some notations to ease our discussion.

Notations. Let [n] denote the set {1, 2, . . . , n}. For the Hessian to be well-defined, let L : Rp → R
be a twice-differentiable training loss. For θ ∈ Rp, let λ1(θ), λ2(θ), . . . , λp(θ) denote the eigenvalues
of the loss Hessian∇2L(θ) ∈ Rp×p in descending order, and let u1(θ), u2(θ), . . . , up(θ) denote the
corresponding eigenvectors. Given these notations, we begin with the most important concept for our
discussion, namely, the dominant subspace.
Definition 1 (Dominant subspace). The top-k dominant subspace at θ is denoted by

Sk(θ) := span{ui(θ) : i ∈ [k]} ,
and its orthogonal complement by S⊥k (θ), referred to as the bulk subspace. Unless specified otherwise,
the default choice for k is the number of classes for the classification task.
Definition 2 (Dominant subspace projection). The projection matrix onto the dominant subspace
Sk(θ) is denoted by

Pk(θ) :=

k∑
i=1

ui(θ)ui(θ)
⊤ ∈ Rp×p ,

and the projection matrix onto S⊥k (θ) by P⊥
k (θ) := I − Pk(θ). For a given vector v ∈ Rp, we can

decompose the vector into v = Pk(θ)v + P⊥
k (θ)v. We say Pk(θ)v is the dominant component of v,

and P⊥
k (θ)v is the bulk component of v. We denote the fraction of v in the dominant subspace by

χk(v; θ) := ∥Pk(θ)v∥2/∥v∥2 ,
with χk(v; θ) = 0 if ∥v∥2 = 0. A vector v ∈ Rp is said to (approximately) align with the dominant
subspace Sk(θ) if χk(v; θ) is close to 1, and align with S⊥k (θ) if χk(v; θ) is close to 0.

When clear from context, we use shorthand notation such as λi := λi(θ), ui := ui(θ),∇L := ∇L(θ),
Sk := Sk(θ), S⊥k := S⊥k (θ), Pk := Pk(θ), P⊥

k := P⊥
k (θ), and χk(v) := χk(v; θ).

Using our notations, the striking observation of Gur-Ari et al. (2018) can be formalized as follows.
Phenomenon 1. Gradient approximately aligns with the dominant subspace along SGD tra-
jectories. Consider the SGD trajectory {θt} with a constant learning rate. After a few initial steps,
χk(∇L(θt)) quickly reaches and remains near 1.

In Figure 3, we confirm the main results of Gur-Ari et al. (2018) for various settings. Notice that
χk(∇L(θt)) reaches 1 after a few early steps, indicating that the gradient ∇L(θt) approximately
aligns with the dominant subspace Sk(θt). Given this alignment, it seems that the training can be
done within the dominant subspace, which leads to the previously introduced question (Q1). In the
next section, we conduct a set of experiments to investigate (Q1).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 NEURAL NETWORKS CANNOT BE TRAINED WITHIN DOMINANT SUBSPACES

In this section, we present the first main observation of this paper regarding question (Q1). We start
with a preliminary analysis using the local quadratic approximation of the neural network landscape.

3.1 WHAT DO WE EXPECT BASED ON QUADRATIC TAYLOR APPROXIMATION?

To analyze the convergence of gradient-based optimization algorithms, a common approach is to use
the local quadratic Taylor approximation (see, e.g., (Ghadimi & Lan, 2013)). The “descent lemma”
characterizes the one-step progress of the optimizer L(θt+1) − L(θt) using this approximation,
assuming the training loss L is smooth. Based on the local quadratic Taylor approximation, we have:

L(θt+1)− L(θt) ≈ ⟨∇L(θt), θt+1 − θt⟩︸ ︷︷ ︸
=:gradient correlation

+
1

2
(θt+1 − θt)

⊤∇2L(θt)(θt+1 − θt) . (1)

Let us denote the first term on the RHS by the gradient correlation term and the second term by the
second-order error term. Since the SGD updates are defined as

θt+1 ← θt − ηgt

for the stochastic gradient gt at θt, the gradient correlation term is negative in expectation:

E[gradient correlation] = E[⟨∇L(θt),−ηgt⟩] = −η ∥∇L(θt)∥2 < 0 . (2)
For the experiments in Figures 1a and 1b, we use small learning rates to ensure SGD closely follow
the continuous-time gradient flow so that the training loss decreases nearly monotonically, suggesting
that the negative gradient correlation dominates the second-order error term in these cases.

Hence, if the quadratic Taylor approximation was accurate enough, based on the above analysis and
Phenomenon 1, it is expected that one can decrease the training loss based on updates lying in the
dominant subspace, as hypothesized in the question (Q1).

To directly test this hypothesis, we design the following critical experiment.

Our critical experiment: In the same settings as before, whenever Phenomenon 1 occurs, consider
the following updates where each update of SGD is projected onto the dominant subspace:

θt+1 ← θt − ηPk(θt)gt . (Dom-SGD)

By Phenomenon 1, Dom-SGD has an approximately same gradient correlation as SGD given in (2):

E[gradient correlation] = E[⟨∇L(θt),−ηPk(θt)gt⟩] ≈ −η ∥∇L(θt)∥2 .

Therefore, based on the local quadratic Taylor approximation, Dom-SGD should be able to success-
fully train neural networks whenever Phenomenon 1 occurs. Is it really the case?

3.2 THE “SPURIOUS” ALIGNMENT WITH THE DOMINANT SUBSPACE

In the same settings as before, we first train neural networks with SGD up until we observe Phe-
nomenon 1. Specifically, we track the exponential moving average (EMA) of χk(∇L(θt)) values
(EMA factor set to 0.9), and switch from SGD to Dom-SGD whenever the EMA value exceeds 0.95.
Note that we recompute the dominant subspace at every step when running Dom-SGD.

For various settings, we plot the training loss of Dom-SGD in Figure 1, comparing it with SGD under
the same initialization. We employ a constant learning rate and mean squared error (MSE) loss for
classification (Hui & Belkin, 2021; Cohen et al., 2021). Additional experiments, including those
using cross-entropy loss and training standard architectures, are provided in Appendix C.

Consistently, we observe that Dom-SGD fails to further decrease the training loss, unlike standard
SGD. Actually, we observe that Dom-SGD even slowly increases the loss in long run. This suggests
that the dominant component of the stochastic gradient gt is in fact not beneficial for training, despite
constituting the majority of gt. We refer to the alignment between the gradient and the dominant
subspace in this scenario as “spurious,” because, based on the local quadratic Taylor approximation in
Section 3.1, we expect that projecting the update vector onto the dominant subspace should decrease
the loss similarly to the original update if the update vector is aligned with the dominant subspace.

4
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Remark 1 (This is not the end-of-training phenomenon). Here, we note that the switching happens
when training accuracy reaches around 53% for CNN on CIFAR10-5k, and 69% for Transformer on
SST2-1k. This indicates that the observed phenomenon is not confined to the SGD dynamics near the
manifold of local minimizers, which is the basis of many recent theoretical analyses (see, e.g., (Arora
et al., 2022; Li et al., 2022; Lyu et al., 2022; Wen et al., 2023; Ahn et al., 2024b)).

3.3 BULK SUBSPACE IS WHERE THE LEARNING HAPPENS

To further strengthen our main observation, we conduct another set of experiments, wherein we
switch from SGD to the following update scheme:

θt+1 ← θt − ηP⊥
k (θt)gt . (Bulk-SGD)

Essentially, Bulk-SGD discards the majority of the stochastic gradient gt by removing its dominant
component. Consequently, it seems less likely that the remaining bulk component of stochastic
gradient would lead to successful training.

Surprisingly, as shown in Figure 1, Bulk-SGD is as effective as SGD in decreasing the training
loss. This further highlights that it is indeed a small fraction of gradient that aligns with the bulk
subspace that contributes to training loss decrease.

One can summarize our observation thus far as follows.
Phenomenon 2. Although the gradient approximately aligns with the dominant subspace at each
step, the training loss does not decrease within the dominant subspace, suggesting a “spurious”
alignment. Surprisingly, with Bulk-SGD, where each update is projected onto bulk subspaces, the
training remains as effective as the original update. This emphasizes the importance of a small
component of the update that aligns with the bulk subspace.

Based on our preliminary analysis in Section 3.1, Phenomenon 2 appears quite counterintuitive and
unexpected. The next section focuses on explaining how this counterintuitive phenomenon occurs. In
particular, the seemingly contradictory conclusion from Section 3.1 will be revisited in Section 4.3.

4 WHAT CAUSES THE SPURIOUS ALIGNMENT WITH DOMINANT SUBSPACES?
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Figure 4: χk(∇L(θt)) when
switching from SGD to GD
at step 20000 while training
MLP on MNIST-5k.
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Figure 5: χk(∇L(θt)) when
switching from GD to SGD.

In this section, we aim to explain the spurious alignment discussed in
Phenomenon 2. To that end, we first distinguish between two differ-
ent regimes of SGD dynamics, because the underlying mechanism
of the alignment are different.
Definition 3. We say (S)GD is in the GF regime when the sharpness
is below the maximum stable sharpness (MSS),1 where it closely
follows the gradient flow. In the GF regime, the sharpness typically
increases (progressive sharpening), and the loss decrease is stable.
Conversely, (S)GD is in the EoS regime when the sharpness is close
to MSS. In the EoS regime, the sharpness oscillates around MSS,
and the loss decrease is spiky and unstable (Cohen et al., 2021).

In this section, we focus on SGD in the GF regime and present
the mechanism of how gradients align with the dominant subspace.
The scenario of the EoS regime will be discussed in Section 5.1.
For SGD in the GF regime, the spurious alignment is closely tied
to the landscape of the training loss near SGD trajectories. Impor-
tantly, SGD introduces inherent randomness into its trajectories. We
investigate how this stochastic noise affects the phenomenon.

4.1 STOCHASTIC NOISE OF SGD IS THE MAIN CAUSE

We examine the role of stochastic noise by contrasting the behavior
of SGD with (full-batch) GD, isolating the effect of stochastic noise.

1MSS is 2/η for GD (Cohen et al., 2021), and smaller for SGD (Wu et al., 2018).

5
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First, we demonstrate the crucial role of stochastic noise in the alignment by switching from SGD to
GD when Phenomenon 1 is observed. Strikingly, as shown in Figure 4, the alignment disappears as
soon as we switch to GD. More specifically, χk(∇L(θt)) quickly becomes 0 as soon as the switch
occurs. This sharp transition indicates that the stochastic noise must play a crucial role.

In Section D.1, when training neural networks with GD (from scratch) in the GF regime, we
observe no alignment between gradients and dominant subspaces, in contrast to SGD. In this
case, χk(∇L(θt)) quickly reaches and remains near 0, indicating alignment of gradients with
bulk subspaces. Remarkably, despite differences in gradient alignment (GD: χk(∇L) ≈ 0, SGD:
χk(∇L) ≈ 1), GD and SGD trajectories closely track each other (see Section D.2). This suggests
that the presence of small stochastic noise results in a drastically different behavior in the alignment.

In Figure 5, we switch our optimizer from GD to SGD, complementary to the experiment in Figure 4.
This time we observe that the alignment sharply appears, i.e., χk(∇L(θt)) quickly becomes 1, as soon
as the switch occurs. Note that SGD is still in the GF regime as sharpness stably increases, rather than
oscillating. This highlights that the gradient alignment during SGD is not due to self-stabilization
effect (Damian et al., 2023) in the EoS regime. To sum up, one can summarize our findings as follows.
Phenomenon 3 (The spurious alignment is due to stochastic noise). In the GF reigme, the
alignment between the gradient and the dominant subspace quickly disappears when switching the
optimizer from SGD to GD. Moreover, the alignment quickly reappears when switching GD back to
SGD. Hence, the spurious alignment is mainly due to the stochastic noise of SGD.

To further demonstrate that noise is the primary driver of gradient alignment for SGD, we conduct
experiments using Noisy Gradient Descent (NGD) and SGD with varying batch sizes in Section D.4.
We implement NGD by injecting Gaussian noise after each GD update iteration. We observe that
either increasing the noise scale or decreasing the batch size lead to the increased gradient alignment.
This observation further demonstrates that noise is the main cause of the spurious alignment for SGD.

Given this observation, one might question how the presence of small stochastic noise leads to a
drastically different alignment. We investigate this in the next subsection using a simple model.

4.2 UNDERSTANDING THE ROLE OF STOCHASTIC NOISE VIA A TOY QUADRATIC MODEL

Figure 6: GD and SGD
trajectories when training a
2-dimensional ill-conditioned
toy quadratic model.
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Figure 7: χ1(∇L(θt)) during
GD and SGD for Figure 6.

Towards understanding Phenomena 1–3, this section introduces a
simple example that recovers all the phenomena.

Given the typical ill-conditioned nature of neural network train-
ing, we consider a 2-dimensional ill-conditioned quadratic loss,
L(x, y) = 1

2 (1000x
2 + y2), where θ = (x, y) ∈ R2. We define

ℓ1(x, y) = L(x, y) + 100xy and ℓ2(x, y) = L(x, y) − 100xy, re-
sulting in L(x, y) = 1

2 (ℓ1(x, y) + ℓ2(x, y)).

We conduct GD with learning rate η as

θGD
t+1 ← θGD

t − η∇L(θGD
t ) ,

and SGD using random sampling with the same learning rate η as

θSGD
t+1 ← θSGD

t − η∇ℓk(θSGD
t ) , where k ∼ Unif({1, 2}) .

In Figure 6, we visualize the optimization trajectories of GD and
SGD with an initialization θGD

0 = θSGD
0 = (1, 1) and a learning

rate η = 10−4. The Hessian of the quadratic loss remains con-
stant during training, with eigenvalues λ1 = 1000 and λ2 = 1,
and corresponding eigenvectors e1 = (1, 0) and e2 = (0, 1).
We compute the fraction of gradient in the dominant subspace as
χ1(∇L(θ)) := |⟨∇L(θ),e1⟩|

∥∇L(θ)∥2
, as shown in Figure 7.

Notably, this simple quadratic model recovers all the observed
phenomena (Phenomena 1–3). In both GD and SGD trajectories,
xt quickly converges to 0 due to the sharper direction along e1
(λ1 ≫ λ2). Subsequently, both trajectories remain close to the y-
axis throughout the remaining of the training. However, in GD, χ1(∇L(θGD

t )) quickly approaches

6
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and remains near 0 (Phenomenon 3), while in SGD, χ1(∇L(θSGD
t )) stays close to 1 (Phenomenon 1).

Notice that if we run Dom-SGD, the updates will be done only in the x direction, hence training stops
after switching to Dom-SGD (Phenomenon 2). We provide results on NGD in Appendix D.6.

The discrepancy in alignment between GD and SGD arises from the ill-conditioned nature of the
loss landscape, where the small stochastic noise of SGD in the x direction induces a large gradient
component along the x direction. For example, if the SGD iterate is at θ = (0.01, 0.5), a slight
departure from the y-axis, the gradient alignment χ1(∇L) is approximately 0.999.

4.3 REVISITING OUR PRELIMINARY ANALYSIS (SECTION 3.1)

At this point, some readers might wonder how we reconcile the results with our preliminary analysis
(Section 3.1). Based on our investigations so far, we propose one plausible explanation that the
training loss landscape is locally “ill-conditioned-valley”-like. This landscape has two key features
causing the spurious alignment:

• The landscape is locally valley-shaped, where it is steep along the dominant subspace and
flat along the bulk subspace. In particular, the curvature along the dominant subspace is
much larger than that along the bulk subspace.

• The bottom of the valley is connected along the bulk subspace. Moreover, there is a direction
within the bulk subspace along which the bottom of the valley descends.

Bulk Subspace

D
om

in
an

t

Figure 8: Illustration demonstrating how
spurious alignment can occur with an
ill-conditioned-valley-like training loss.
Dom-SGD iterates (depicted with dots)
fail to progress along the bulk subspace
where the training loss decreases.

To aid readers’ understanding, we provide a simple illustra-
tion of an ill-conditioned-valley-like landscape in Figure 8.
With these features, Phenomena 1–3 can indeed occur:

• Due to stochastic noise, the SGD iterates slightly
deviate from the bottom of the valley. Subse-
quently, the high curvature along the dominant
subspace causes gradients to align with this sub-
space, i.e., the iterates exhibit Phenomenon 1.

• However, Dom-SGD fails to further decrease the
training loss, as observed in Phenomenon 2, since
it fails to follow the true progress direction along
the bulk subspace.

• Moreover, without stochastic noise, the iterates
quickly approach the bottom of the valley, where
the alignment disappears, as described in Phenomenon 3.

In Section D.5, we measure the distance of the weights from the step where we switch from SGD to
Dom-SGD and Bulk-SGD for the experiments in Figure 1. We observe that weights do not move far
from the switching step for Dom-SGD, in contrast to SGD and Bulk-SGD. Furthermore, Dom-GD
shows near-zero movement, suggesting it gets stuck at the bottom of the valley, consistent with our
proposed explanation based on an ill-conditioned-valley-like landscape.

Given our results for SGD thus far, one natural question is whether these phenomena are also observed
for other practical optimization algorithms.

5 EDGE OF STABILITY AND SHARPNESS-AWARE MINIMIZATION

In this section, we extend our investigations to two other practical settings: (1) (S)GD in the Edge of
Stability (EoS) regime (Cohen et al., 2021), and (2) Sharpness-Aware Minimization (SAM) (Foret
et al., 2021). We show that the same phenomena are observed for the two settings: the update
direction aligns with the dominant subspace, but the alignment is again spurious.

5.1 EDGE OF STABILITY

Recent empirical studies (Jastrzębski et al., 2020; Cohen et al., 2021) have observed that when training
neural networks using full-batch GD with large learning rates η, the sharpness λ1 increases until it
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Figure 9: Gradients approximately align with dominant subspaces in the EoS regime. Training
MLP on MNIST-5k with GD using a large learning rate η = 0.1. (a) The plot shows the top-10
eigenvalues in blue and the next top-10 eigenvalues in orange. After a few steps, GD enters the EoS
regime, where the sharpness stabilizes near 2/η. (b) As the sharpness reaches 2/η, χ10(∇L(θt))
shoots up and remains near 1. (c) We switch the optimizer from GD to Dom-GD and Bulk-GD at
step 2500. Dom-GD fails to further decrease the training loss, in contrast to GD and Bulk-GD.

reaches the stability threshold, or the maximum stable sharpness (MSS), 2/η, and saturates around
the threshold (see Figure 9a). Cohen et al. (2021) call this phenomenon as the Edge of Stability.

In Figure 9b, we observe that gradients closely align with dominant subspaces in the EoS regime.
This phenomenon stands in contrast with GD in the GF regime (Phenomenon 3), where χk(∇L(θt))
remains near 0 (see Section D.1 for details).
Remark 2. We highlight that the mechanisms behind gradient alignment differ between SGD in the
GF regime and GD in the EoS regime. For SGD in the GF regime, where sharpness stably increases,
alignment is due to the stochastic noise and the ill-conditioned loss landscape. In contrast, for GD in
the EoS regime, where sharpness oscillates around MSS, alignment arises from a self-stabilization
mechanism (Damian et al., 2023), which illustrates that GD oscillates within the dominant subspace.

Given that the gradient approximately aligns with the dominant subspace, we run experiments
analogous to Section 3. Specifically, we train neural networks using GD with a large learning rate η
until it reaches the EoS regime. We then switch GD to the following update schemes:

θt+1 ← θt − ηPk(θt)∇L(θt) , (Dom-GD)

θt+1 ← θt − ηP⊥
k (θt)∇L(θt) . (Bulk-GD)

As shown in Figure 9c, we observe that Dom-GD fails to further decrease the training loss, unlike
GD. Moreover, Bulk-GD is as effective as GD in decreasing the training loss, despite only a small
fraction of updates aligning with the bulk subspace.

We provide additional experiments on GD and SGD in the EoS regime in Appendix E. Notably, for
SGD in the EoS regime, both stochastic noise and self-stabilization effect affect training dynamics,
leading to gradient alignment with dominant subspace, while Dom-SGD still fails to decrease the loss.

5.2 SHARPNESS-AWARE MINIMIZATION

Sharpness-Aware Minimization (SAM) (Foret et al., 2021) is a gradient-based optimization method
designed to find flat minima. SAM has gained significant attention for its success in practice,
especially in improving the generalization performance of deep learning models. For concreteness,
we focus on the full-batch version of SAM applied to GD as the base optimizer. This leads to the
following update equation:

θt+1 ← θt − η∇L
(
θt + ρ

∇L(θt)
∥∇L(θt)∥2

)
,

where η is the learning rate and ρ represents the perturbation radius.

A recent study (Long & Bartlett, 2024) highlights that SAM also operates in its own Edge of Stability
regime, wherein the sharpness λ1(θt) saturates near SAM’s stability threshold (see Figure 10a). This
threshold, denoted as the SAM-edge, is defined as:

∥∇L(θt)∥2
2ρ

(√
1 +

8

η ∥∇L(θt)∥2
− 1

)
. (SAM-edge)
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Figure 10: SAM updates approximately lie in dominant subspaces. Training MLP on MNIST-5k
with SAM using a learning rate η = 0.01 and a perturbation radius ρ = 0.1. (a) The plot shows
the top-10 eigenvalues in blue and the next top-10 eigenvalues in orange. After a few steps, SAM
operates in the EoS regime, where the sharpness stabilizes near the SAM-edge. (b) As the sharpness
reaches the SAM-edge, χ10(θt+1 − θt) shoots up and remains near 1. (c) We switch the optimizer
from SAM to Dom-SAM and Bulk-SAM at step 5000. Dom-SAM fails to further decrease the
training loss, in contrast to SAM and Bulk-SAM.

Note that GD’s stability threshold 2/η remains constant during training, while SAM-edge is a
decreasing function of the norm of the gradient, so it tends to decrease during training.

As shown in Figure 10b, we observe that update vectors of SAM approximately align with dominant
subspaces when sharpness saturates near the SAM-edge, similar to GD in the EoS regime. Next, we
conduct experiments akin to Section 3: we train neural networks using SAM until the alignment
occurs. Then, we switch SAM to the following schemes:

θt+1 ← θt − ηPk(θt)∇L
(
θt + ρ

∇L(θt)
∥∇L(θt)∥2

)
, (Dom-SAM)

θt+1 ← θt − ηP⊥
k (θt)∇L

(
θt + ρ

∇L(θt)
∥∇L(θt)∥2

)
. (Bulk-SAM)

We observe that Dom-SAM fails to further decrease the training loss, unlike SAM and Bulk-
SAM, as depicted in Figure 10c. Our investigation with various practical algorithms suggests that
neural networks cannot be trained within the dominant subspace, and the bulk subspace plays an
important role in learning.

6 MOMENTUM AND ADAPTIVE METHODS AMPLIFY UPDATES IN BULK
SUBSPACES

In this section, we further extend our investigation to momentum optimizers, e.g., SGD with mo-
mentum, and adaptive optimizers, e.g., Adam. In Appendix F.1, we show that momentum and
adaptive learning rates lead to less alignment between the update vector and dominant subspace, so
Phenomenon 1 no longer holds for this case. However, Phenomenon 2 still holds, i.e., if we project
the update vector onto the dominant subspace (running Dom-SGDM or Dom-Adam), the training loss
fails to decrease. This observation also demonstrates that bulk space is where the learning happens.

We build on our results so far and propose explanations for why momentum and adaptive methods
are effective for neural network training. At a high level, we claim that they speed up training by
amplifying the bulk component of each update step. Formally, we introduce the following notion.

Definition 4 (Effective learning rate). For a given optimization trajectory {θt}, we define the
dominant effective learning rate (Dom-LR) at step t as:

ηdomt :=
⟨θt − θt+1, Pk(θt)∇L(θt)⟩
∥Pk(θt)∇L(θt)∥22

, (Dom-LR)

and the bulk effective learning rate (Bulk-LR) at step t as:

ηbulkt :=

〈
θt − θt+1, P

⊥
k (θt)∇L(θt)

〉∥∥P⊥
k (θt)∇L(θt)

∥∥2
2

. (Bulk-LR)
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Table 1: Mean effective learning rates over the first
1000 steps (numbers in parentheses show standard
deviation). Training Transformer on SST2-1k us-
ing GD and Adam with (+m) and without (-m)
momentum. GD uses a learning rate of 0.01, and
Adam uses a learning rate of 0.001. Momentum is
set to β = 0.9.

Method Mean Dom-LR Mean Bulk-LR
GD(-m) 0.0100 (0.0000) 0.0100 (0.0000)
GD(+m) 0.0070 (0.0232) 0.0828 (0.0576)

Adam(-m) 0.0325 (0.0054) 0.4672 (0.3555)
Adam(+m) 0.0004 (0.0101) 2.6639 (1.2480)

0 250 500 750 1000
Training Steps

10

5

0

GD(-m)
GD(+m)
Adam(-m)
Adam(+m)

Figure 11: Training loss in log-scale for
the experiments in Table 1.

To understand the above notion better, we first consider the simplest case. For a fixed learning rate η,

• GD has effective learning rates ηdomt = ηbulkt = η for all steps t.
• Dom-GD has effective learning rates ηdomt = η and ηbulkt = 0 for all steps t.
• Bulk-GD has effective learning rates ηdomt = 0 and ηbulkt = η for all steps t.

Our primary claim in this section is as follows: since Dom-GD fails to decrease the training loss,
while Bulk-GD is as effective as GD in reducing the training loss, we claim that Bulk-LR serves as a
good indicator for training speed, unlike Dom-LR.

To support this claim, we measure effective learning rates of various optimization methods, including
(full-batch) GD with and without momentum, and (full-batch) Adam with and without momentum.
Table 1 presents effective learning rates when training Transformer on SST2-1k, and Figure 11 depicts
corresponding training loss plot. Additional experiments on other architectures and datasets are
provided in Appendix F.2.

Across different settings, we consistently observe that Bulk-LR positively correlates with the training
speed. Moreover, momentum and adaptive methods seem to amplify Bulk-LR. This amplification
of the bulk component leads to a reduced alignment between the update vector and the dominant
subspace, as shown in Appendix F.1. This offers new insights into the effectiveness of momentum
and adaptive methods.

7 CONCLUSION AND DISCUSSION

Motivated by the observation of Gur-Ari et al. (2018) that the gradient aligns with a low-dimensional
dominant eigenspace of the training loss Hessian, this work investigates the possiblity of training
neural networks within the dominant subspace. Our key contributions are two-fold:

• For every optimizer (e.g., GD, SGD, SGDM, Adam, SAM) we tested, Dom-OPT—which
projects the update vector onto the dominant subspace—fails to decrease the training loss.
This indicates that neural networks cannot be trained within the dominant subspace, and
bulk subspace plays an essential role during training.

• We identify distinct mechanisms for gradient alignment across different training regimes. In
the GF regime, alignment is primarily caused by stochastic noise from SGD in conjunction
with the ill-conditioned loss landscape. In the EoS regime, the alignment arises from the
self-stabilization mechanism, where oscillations within the dominant subspace lead to this
behavior.

Discussion. There are remaining questions we leave as a future work. First, providing a theory
on our empirical findings beyond the toy model would be an important direction. One interesting
observation we did not discuss is that Dom-SGD decreases sharpness and slowly increases the loss,
while Bulk-SGD is less noisy and increases sharpness faster than SGD (see Appendix G). Under-
standing such phenomena would provide deeper insights into neural network training. Lastly, this
work focuses on optimization, and exploring the implications to generalization would be important.
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REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. Detailed experimental
settings, including hyperparameters and training details, are provided in Appendix B. Furthermore, to
facilitate replication and verification, the source code for the experiments is included in the attached
supplementary material. This code contains scripts for reproducing the main results discussed in the
paper, along with instructions for running the experiments.
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A RELATED WORK

Gradient descent in tiny subspaces. This work is largely inspired by previous research
demonstrating low-rank structures of the training loss Hessian and the gradient in deep neural
network training (Sagun et al., 2016; 2017; Gur-Ari et al., 2018). In particular, Jastrzębski et al.
(2019) also observe that the SGD update direction is highly aligned with the sharpest direction of
the loss landscape. Recently, Schneider et al. (2024) observe that policy gradient algorithms in
reinforcement learning also seem to operate in low-dimensional subspaces.

Motivated by such prevalent observations, several follow-up works investigate the possibility of
training neural networks in a low-dimensional subspace. If feasible, it has wide applications, including
few-shot learning (Gauch et al., 2022) and differential privacy (Singhal & Steinke, 2021; Zhou et al.,
2021). Li et al. (2018a) and Gressmann et al. (2020) train neural networks with a small fraction
of parameters using random projections, and Li et al. (2023) train ResNet8 on CIFAR10 with a
15-dimensional subspace without sacrificing test accuracy. Note that the results of these work do not
contradict our main observation since the low-dimensional subspaces they chose are not the dominant
subspace. In particular, Li et al. (2023) construct a low-dimensional subspace by sampling parameter
trajectories and then using standard PCA to find the low-dimensional subspace that approximately
spans the sampled parameter trajectory. This low-dimensional subspace differs from the dominant
subspace we study, as the dominant subspace is defined by the top-k eigenspace of the loss Hessian.
Considering our 2D quadratic example (Figure 6) highlights the difference. In this example, our
top-1 dominant eigenspace corresponds to the x-axis; in contrast, if we consider the PCA of the SGD
iterates, the principle component would align much closer to the y-axis.

From a theoretical perspective, Arous et al. (2024) rigorously prove that the SGD update aligns with
the dominant subspace in multi-class logistic regression and XOR classification with a two-layer
network. More recently, Yaras et al. (2024) theoretically prove that for deep overparameterized
low-rank matrix recovery, the learning dynamics of each weight matrix are confined to an invariant
low-dimensional subspace. However, they consider scenarios where GD in the GF regime align with
the low-rank subspace, which is not the case in our settings.

Edge of Stability. Most analyses of GD have focused on settings where the learning rate is
sufficiently small to ensure that the training loss monotonically decreases in the GF regime. However,
recent empirical studies (Jastrzębski et al., 2019; 2020) observe that GD with practically large learning
rates decreases the loss non-monotonically and finds flatter minima. Cohen et al. (2021) call this
the Edge of Stability (EoS) phenomenon. Subsequent theoretical works have made progress towards
understanding the mechanisms of EoS (Ahn et al., 2022; Damian et al., 2023; Wu et al., 2023).
Moreover, several recent works theoretically analyze precise training dynamics under simplified
models (Ahn et al., 2023; Kreisler et al., 2023; Song & Yun, 2023; Zhu et al., 2023). The self-
stabilization mechanism (Damian et al., 2023) shows that GD in the EoS regime exhibits oscillation
along the top eigenvector, while the overall decrease in loss occurs due to movement in directions
orthogonal to the top eigenvector. Moreover, SGD with large learning rates also operates at the
(stochastic) Edge of Stability (Lee & Jang, 2023; Agarwala & Pennington, 2024). Notably, Zhu et al.
(2024) observe that catapults in SGD occurs in the low-rank top eigenspace of NTK, which is closely
related to the gradient alignment with the dominant subspace.

Sharpness-Aware Minimization. Inspired by prior works (Keskar et al., 2017; Jiang et al., 2020)
showing that flat minima often lead to better generalization, Foret et al. (2021) propose an optimization
method called Sharpness-Aware Minimization (SAM), designed to find flat minima. SAM has shown
great success in practice, and subsequently, several works theoretically investigate the dynamics of
SAM and its convergence properties (Andriushchenko & Flammarion, 2022; Bartlett et al., 2023; Dai
et al., 2023; Si & Yun, 2023; Wen et al., 2023). Recently, Agarwala & Dauphin (2023) and Long &
Bartlett (2024) empirically observe that SAM also goes through unstable dynamics, akin to EoS.

The role of momentum and Adam. Momentum (Polyak, 1964; Nesterov et al., 2018) and adaptive
methods (Kingma & Ba, 2014) are workhorses for training deep neural network models. Adaptive
methods, such as Adam, have gained renewed interest due to their success in training language
models (Zhang et al., 2020). However, the current understanding of their effectiveness for neural
network training remains incomplete.
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The role of momentum is quite well understood for convex settings, through acceleration mecha-
nism (Nesterov et al., 2018; Kidambi et al., 2018). For nonconvex settings, the provable benefits of
momentum are investigated for variants of SGD, such as normalized SGD (Cutkosky & Mehta, 2020)
and signSGD (Crawshaw et al., 2022). A recent work by Wang et al. (2024) shows that the benefit of
momentum is marginal when the learning rate is small and gradient noise is dominant. Moreover,
Fu et al. (2023) empirically demonstrate the benefits of momentum for large learning rates from a
sharpness perspective.

Adam has been observed to be particularly effective in training transformers (Zhang et al., 2024), even
for simplified shallow linear transformers trained on linear regression tasks (Ahn et al., 2024a). Its
superiority over SGD has been attributed to factors such as heavy-tailed class imbalances in language
tasks (Kunstner et al., 2024) and block heterogeneity in Hessian (Zhang et al., 2024). A recent line of
work shows that full-batch Adam is a smoothed version of SignGD (Kunstner et al., 2023; Xie & Li,
2024). Additionally, Ahn et al. (2024c) and Ahn & Cutkosky (2024) study the benefits of Adam from
an online learning perspective.
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B EXPERIMENTAL DETAILS

In this section, we provide the details of our experiments which are not covered in the main text.

B.1 ARCHITECTURES

The main experiments are conducted on three types of architectures: MLP, CNN, and Transformer.
Additional experiments conducted on standard architectures are provided in Section C.2.

• MLP: We use a 3-layer MLP with a width of 200 and tanh activation functions, following
the architecture used in Cohen et al. (2021).

• CNN: We use a 3-layer CNN with a width of 32 and ReLU activation functions, also based
on the architecture from Cohen et al. (2021).

• Transformer: We use a 2-layer Transformer with a hidden dimension of 64 and 8 attention
heads, based on the architecture used in Damian et al. (2023).

B.2 DATA

The main experiments are conducted on three datasets: MNIST-5k, CIFAR10-5k, and SST2-1k. The
primary task is classification with categorical MSE loss, and additional experiments with cross-entropy
loss are provided in Section C.1.

• MNIST-5k: We use the first 5000 samples of MNIST dataset (LeCun et al., 1998) for
multi-class classification. The number of classes is 10.

• CIFAR10-5k: We use the first 5000 samples of CIFAR10 dataset (Krizhevsky, 2009) for
multi-class classification. The number of classes is 10.

• SST2-1k: We use the first 1000 samples of SST2 dataset (Socher et al., 2013) for binary
classification.

B.3 EXPERIMENTAL SETUP

Throughout this paper, all experiments are conducted using a constant learning rate. For experiments
using SGD, we use a batch size of 50 for all experiments. Below, we provide details on the choice of
learning rates for each experiment, which are not specified in the main text.

• Figure 1, Figure 2, Figure 3, Figure 18, Figure 19, and Figure 20: The training loss,
eigenvalues of the loss Hessian, and χk(∇L(θt)) are computed on the same run of SGD/GD
with small learning rates. The learning rates used are:

– MLP on MNIST-5k: 0.01,
– CNN on CIFAR10-5k: 0.001,
– Transformer on SST2-1k: 0.001.

• Figure 29, Figure 30, Figure 31, Figure 32, Figure 33, and Figure 34: The training loss,
eigenvalues of the loss Hessian, and χk(∇L(θt)) are computed on the same run of (S)GD
with large learning rates. The learning rates used are:

– MLP on MNIST-5k: 0.1,
– CNN on CIFAR10-5k: 0.01,
– Transformer on SST2-1k: 0.005.

• Figure 4 and Figure 5: We train MLP on MNIST-5k using (S)GD with a learning rate of
0.01, under the same initialization.

• Figure 12, Figure 13, and Figure 14: The eigenvalues of the loss Hessian, χk(∇L(θt)), and
the training loss are computed on the same run of SGD. The learning rates used are:

– MLP on MNIST-5k: 0.1,
– CNN on CIFAR10-5k: 0.001,
– Transformer on SST2-1k: 0.001.
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• Figure 15, Figure 16, and Figure 17: The eigenvalues of the loss Hessian, χk(∇L(θt)), and
the training loss are computed on the same run of SGD. The learning rates used are:

– VGG11 on CIFAR10-5k: 0.01,
– ResNet8 on CIFAR10-5k: 0.01.

Our experiments were conducted using Pytorch (Paszke et al., 2019), and we referred to the GitHub
repository at https://github.com/locuslab/edge-of-stability to replicate the ex-
perimental setup described in Cohen et al. (2021). All experiments were performed on a single server
equipped with 4 NVIDIA RTX 3090 GPUs.
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C ADDITIONAL EXPERIMENTS FOR SECTION 3

In this section, we provide additional experimental results to support the observations made in
Section 3. These experiments demonstrate that our critical observation—that Dom-SGD fails to
further decrease the training loss—also holds when using cross-entropy loss and training with standard
architectures.

C.1 CROSS-ENTROPY LOSS

We use cross-entropy loss instead of MSE loss for classification tasks, and provide the results analgous
to Figure 1, Figure 2, and Figure 3.
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Figure 12: Low-rank structure of the Hessian. The plot shows the top eigenvalues of the loss
Hessian during SGD training. The blue curves represent the top-k eigenvalues, which are significantly
larger than the next top-k eigenvalues, shown in orange, where k is the number of classes for the
classification task.

0 1000 2000 3000 4000 5000
Training Steps

0.00

0.25

0.50

0.75

1.00

(a) MLP on MNIST-5k

0 5000 10000 15000 20000
Training Steps

0.00

0.25

0.50

0.75

1.00

(b) CNN on CIFAR10-5k

0 5000 10000 15000 20000
Training Steps

0.00

0.25

0.50

0.75

1.00

(c) Transformer on SST2-1k

Figure 13: Alignment of gradients with dominant subspaces. The plot illustrates χk(∇L(θt))
during SGD training. The orange dashed lines represent the exponential moving average (EMA) of
χk(∇L(θt)). After a few early steps, χk(∇L(θt)) reaches and stays near 1, indicating the alignment
between gradients and dominant subspaces.
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Figure 14: Training loss (log-scale) of SGD and Dom-SGD. Dom-SGD fails to further decrease
the training loss in contrast to SGD, despite the gradients aligning approximately with the dominant
subspace. We switch from SGD to Dom-SGD whenever the EMA value of χk(∇L(θt)) exceeds
0.95.
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C.2 STANDARD ARCHITECTURES ON CIFAR10-5K

To ensure the generality of our observations, we conducted experiments on standard architectures,
specifically VGG11 and ResNet8, using CIFAR10-5k dataset, using MSE loss.

0 10000 20000 30000 40000
Training Steps

0

100

200

(a) VGG11 on CIFAR10-5k

0 10000 20000 30000 40000
Training Steps

0

20

40

60

(b) ResNet8 on CIFAR10-5k

Figure 15: Low-rank structure of the Hessian. The plot shows the top eigenvalues of the loss Hes-
sian during SGD training. The blue curves represent the top-10 eigenvalues, which are significantly
larger than the next top-10 eigenvalues, shown in orange.
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Figure 16: Alignment of gradients with dominant subspaces. The plot illustrates χ10(∇L(θt))
during SGD training. The orange dashed lines represent the exponential moving average (EMA)
of χ10(∇L(θt)). After a few early steps, χ10(∇L(θt)) reaches and stays near 1, indicating the
alignment between gradients and dominant subspaces.
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Figure 17: Training loss (log-scale) of SGD and Dom-SGD. Dom-SGD fails to further decrease
the training loss in contrast to SGD, despite the gradients aligning approximately with the dominant
subspace. We switch from SGD to Dom-SGD whenever the EMA value of χk(∇L(θt)) exceeds
0.95.
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D ADDITIONAL EXPERIMENTS FOR SECTION 4

This section provides additional experimental results to support the observations made in Section 4.

D.1 NO ALIGNMENT WITH DOMINANT SUBSPACES ALONG GD TRAJECTORIES

We run GD in the GF regime under the same settings as Figure 3, using the same learning rate and
initialization. Figure 18 shows the top Hessian eigenvalues during training. The smooth increase of
the Hessian eigenvalues indicate that the training is happening at the GF regime. The corresponding
gradient alignment is shown in Figure 19, and we observe that χk(∇L(θt)) quickly approaches and
remains near 0, indicating that gradients do not align with dominant subspaces, unlike in SGD in the
GF regime. Figure 20 shows that Dom-GD fails to further decrease the training loss in this scenario.
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Figure 18: The plot shows the top eigenvalues of the loss Hessian during GD training in the GF
regime. The blue curves represent the top-k eigenvalues, which are significantly larger than the next
top-k eigenvalues, shown in orange, where k is the number of classes for the classification task.
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Figure 19: Gradients do not align with dominant subspaces on GD trajectories. The plot
illustrates χk(∇L(θt)) during GD training in the GF regime. After a few early steps, χk(∇L(θt))
reaches and stays near 0, indicating alignment with bulk subspaces. The same learning rates and
initializations as Figure 3 are used.
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Figure 20: Training loss (log-scale) of Dom-GD and GD. Dom-GD fails to further decrease the
training loss, unlike GD. We switch from GD to Dom-GD at iteration 2500.
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D.2 SGD TRAJECTORIES TRACK GRADIENT FLOW

Figure 3 and Figure 19 suggest that GD and SGD exhibit different alignments with dominant
subspaces, even when using the same learning rate and initialization. However, both should track the
continuous-time gradient flow trajectory, if the learning rate is sufficiently small. In Figure 21, we
confirm that the trajectory of GD {θGD

t } and the trajectory of SGD {θSGD
t } are close to each other.

Specifically, we observe that
∥∥θGD

t − θSGD
t

∥∥≪ ∥∥θGD
t − θGD

0

∥∥ ≈ ∥∥θSGD
t − θSGD

0

∥∥, indicating the
trajectories are quite similar.
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Figure 21: Trajectories of GD and SGD are close to each other.

D.3 SWITCHING BETWEEN GD AND SGD

Here, we provide additional plots for the experiments shown in Figure 4 and Figure 5. Figure 22
illustrates χk(∇L(θt)), training loss, and top eigenvalues of the loss Hessian when switching from
SGD to GD, corresponding to the experiment in Figure 4. Figure 23 illustrates χk(∇L(θt)), training
loss, and top eigenvalues of the loss Hessian when switching from GD to SGD, corresponding to the
experiment in Figure 5.
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Figure 22: The left plot shows χk(∇L(θt)) when training MLP on MNIST-5k. A sharp transition
in gradient alignment with the dominant subspace is observed when switching from SGD to GD
(same plot as Figure 4). The plots of the training loss and top eigenvalues of the loss Hessian change
relatively smoothly when switching from SGD to GD, in contrast to χ10(∇L(θt)). In the right plot,
the blue curves represent the top-10 eigenvalues, and the orange curves represent the next top-10
eigenvalues.
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Figure 23: The left plot shows χk(∇L(θt)) when training MLP on MNIST-5k. A sharp transition
in gradient alignment with the dominant subspace is observed when switching from GD to SGD
(same plot as Figure 5). The plots of the training loss and top eigenvalues of the loss Hessian change
relatively smoothly when switching from GD to SGD, in contrast to χ10(∇L(θt)). In the right plot,
the blue curves represent the top-10 eigenvalues, and the orange curves represent the next top-10
eigenvalues.

D.4 EFFECT OF NOISE SCALE ON SPURIOUS ALIGNMENT

We train MLP on MNIST-5k using Noisy Gradient Descent (NGD) with varying noise scales. NGD
is implemented by injecting noise sampled from an isotropic Gaussian distribution after each GD
update iteration. We use the same learning rate and initialization as Figure 19. We observe that higher
noise scales increase the alignment between the gradient and the dominant subspace.
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Figure 24: Effect of noise scale in NGD on alignment of gradients with dominant subspace. The
plot illustrates χ10(∇L(θt)) during Noisy Gradient Descent (NGD) training MLP on MNIST-5k
with varying noise scales σ. NGD is implemented by injecting noise from a Gaussian distribution
N(0, η2σ2I) after each GD update iteration. We observe that higher noise scales increase the
alignment between gradient and dominant subspace, supporting our finding that noise causes spurious
alignment in SGD.

We train MLP on MNIST-5k using SGD with varying batch sizes by {50, 100, 500, 1000, 5000}
under the same initialization and learning rate. We consider training in the GF regime where GD
does not exhibit alignment, using the same learning rate as Figure 19. We observe that smaller batch
sizes (i.e., higher noise scale) increase the alignment between the gradient and the dominant subspace.
Moreover, the loss curves are similar to each other, indicating that the trajectories are closely tracking
the continuous-time gradient flow.
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Figure 25: Effect of batch size in SGD on alignment of gradients with dominant subspace.
The plot illustrates χ10(∇L(θt)) during SGD training MLP on MNIST-5k with varying batch sizes
by BS ∈ {50, 100, 500, 1000, 5000}. We observe that smaller batch sizes increase the alignment
between gradient and dominant subspace, supporting our finding that noise causes spurious alignment
in SGD.

D.5 DISTANCE FROM “SWITCHING” STEP

We measure the ℓ2 distance of the weights from the step where we switch from SGD to Dom-SGD
and Bulk-SGD for the experiments in Figure 1. As shown in Figure 26, the distance from the
switching step remains relatively small and tends to saturate for Dom-SGD. In contrast, for both SGD
and Bulk-SGD, the distance from the switching step increases much faster and in a similar manner.
This observation is consistent with the explanation based on an ill-conditioned-valley-like landscape
proposed in Section 4.3.
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Figure 26: The plots illustrate the ℓ2 distance of the weights from the step where we switch from
SGD to Dom-SGD and Bulk-SGD for the experiments in Figure 1. We observe that Dom-SGD fails
to make further progress in terms of distance, in contrast to SGD and Bulk-SGD.

We also measure the ℓ2 distance of the weights from the step where we switch from GD to Dom-GD
for the experiments in Figure 20. As seen in Figure 27, the distance remains near zero for Dom-GD,
indicating minimal movement. While Dom-SGD exhibits slight movement due to its stochastic
nature, Dom-GD shows near-zero movement, suggesting it gets stuck at the bottom of the valley,
consistent with the ill-conditioned-valley-like landscape described in Section 4.3.
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Figure 27: The plots illustrate the ℓ2 distance of the weights from the step where we switch from GD
to Dom-GD for the experiments in Figure 20. We observe that Dom-GD gets stuck at the initial point.

D.6 TOY EXAMPLE

We conduct additional experiments using Noisy GD for a toy model we considered in Section 4.2. We
consider the same 2-dimensional ill-conditioned quadratic loss, L(x, y) = 1

2 (1000x
2 + y2), where

θ = (x, y) ∈ R2. We run GD with learning rate η as

θGD
t+1 ← θGD

t − η∇L(θGD
t ) ,

and Noisy GD implemented by injecting a Gaussian noise after each GD update

θNGD
t+1 ← θNGD

t − η∇L(θNGD
t ) + ηϵt , where ϵt ∼ N (0, σ2I) .

In Figure 28, we visualize the optimization trajectories of GD and Noisy GD with an initialization
θGD
0 = θNGD

0 = (1, 1), learning rate η = 10−4, and noise scale σ2 = 10. We also compute the
fraction of gradient in the dominant subspace as χ1(∇L(θ)) := |⟨∇L(θ),e1⟩|

∥∇L(θ)∥2
. In both GD and Noisy

GD trajectories, xt quickly converges to 0, and both trajectories remain close to the y-axis throughout
the remaining of the training. However, in GD, χ1(∇L(θGD

t )) quickly approaches and remains near
0, while in Noisy GD, χ1(∇L(θNGD

t )) stays close to 1.

(a) GD and Noisy GD trajectories when training a
2-dimensional ill-conditioned toy quadratic model.
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Figure 28: We train an ill-conditioned quadratic loss L(x, y) = 1
2 (1000x

2 + y2) using GD and Noisy
GD. Note that spurious alignment is observed for Noisy GD, unlike GD.
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E SPURIOUS ALIGNMENT IN THE EOS REGIME

This section provides additional experimental results on GD and SGD in the EoS regime to support
our observations made in Section 5.1.

Figure 29 shows the evolution of top Hessian eigenvalues during training. The oscillations of the
sharpness indicate that the training is happening at the EoS regime. The corresponding gradient
alignment is shown in Figure 30, and we observe that χk(∇L(θt)) remains near 1 at the EoS regime,
indicating that gradients align with the dominant subspace, unlike in GD in the GF regime. Figure 20
shows that Dom-GD fails to further decrease the training loss, despite gradients aligning on the
dominant subspace.
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Figure 29: The plot shows the top eigenvalues of the loss Hessian during GD training with large
learning rates. The blue curves represent the top-k eigenvalues, which are significantly larger than
the next top-k eigenvalues, shown in orange. After a few initial steps, GD enters the EoS regime,
where the sharpness stabilizes near 2/η.
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Figure 30: Gradients approximately align with dominant subspaces in the EoS regime. The
plot illustrates χk(∇L(θt)) during GD training with large learning rates. The orange dashed lines
represent the exponential moving average (EMA) of χ10(∇L(θt)). As the sharpness reaches 2/η,
χ10(∇L(θt)) approaches and remains near 1, indicating the gradient alignment with dominant
subspace.
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Figure 31: Training loss (log-scale) of GD and Dom-GD. Dom-GD fails to further decrease the
training loss in contrast to GD, despite the gradients aligning with the dominant subspace. We switch
from GD to Dom-GD after GD reaches the EoS regime where χk(∇L(θt)) stays near 1.
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Similarly, the same set of experiments on SGD with large learning rates are shown in Figures 32, 33,
and 34. In this scenario, both stochastic noise and self-stsabilization effect affects the training
dynamics. We observe the gradient alignment in this scenario, and Dom-SGD again fails to further
decrease the training loss. Interestingly, Dom-SGD rather increases the training loss.
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Figure 32: The plot shows the top eigenvalues of the loss Hessian during SGD training with large
learning rates. The blue curves represent the top-k eigenvalues, which are significantly larger than
the next top-k eigenvalues, shown in orange.
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Figure 33: The plot illustrates χk(∇L(θt)) during SGD training with large learning rates. The orange
dashed lines represent the exponential moving average (EMA) of χ10(∇L(θt)). After a few initial
steps, χ10(∇L(θt)) approaches and remains near 1, indicating the gradient alignment with dominant
subspace.
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Figure 34: Training loss (log-scale) of SGD and Dom-SGD. Dom-SGD fails to further decrease
the training loss in contrast to SGD, despite the gradients aligning approximately with the dominant
subspace. We switch from SGD to Dom-SGD after χk(∇L(θt)) stabilizes near 1.
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F ADDITIONAL EXPERIMENTS FOR SECTION 6

This section provides additional experimental results to support the observations made in Section 6.

F.1 SGDM AND ADAM

We train MLP on MNIST-5k using SGD with momentum (SGDM) and Adam. The results are shown
in Figure 35 and Figure 36. We observe that SGDM and Adam updates are “partially” aligned with
the dominant subspace due to the effects of momentum and adaptive learning rates. Interestingly, the
use of momentum and adaptive methods leads to less alignment between the gradient and dominant
subspace than SGD, consistent with the observations on effective learning rates Section 6. We also
implement Dom-SGDM and Dom-Adam, which project each SGDM/Adam update onto the dominant
subspace. We observe that Dom-SGDM and Dom-Adam fail to further decrease the training loss,
unlike SGDM and Adam, indicating that the update component aligned with the dominant subspace
does not contribute to the loss decrease.
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Figure 35: SGDM updates partially align with the dominant subspace. Training MLP on MNIST-
5k with SGDM using a learning rate η = 0.01 and a momentum factor β = 0.9. (a) Top-10
eigenvalues (blue curves) are significantly larger than the next top-10 eigenvalues (orange curves). (b)
χ10(θt+1 − θt) values remain in the range of (0.5, 0.8), indicating that SGDM updates are partially
aligned with the dominant subspace due to the effect of momentum. (c) Switching the optimizer from
SGDM to Dom-SGDM at step 2500 shows that Dom-SGDM fails to further decrease the training
loss, unlike SGDM.
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Figure 36: Adam updates partially align with the dominant subspace. Training MLP on MNIST-
5k with Adam using a learning rate η = 0.001 and momentum factors (β1, β2) = (0.9, 0.999). (a)
Top-10 eigenvalues (blue curves) are significantly larger than the next top-10 eigenvalues (orange
curves). (b) χ10(θt+1 − θt) values remain in the range of (0.05, 0.5), indicating that Adam updates
are partially aligned with the dominant subspace. Interestingly, the alignment tends to decrease
during training due to the effect of adaptive learning rates. (c) Switching the optimizer from Adam to
Dom-Adam at step 2500 shows that Dom-Adam fails to further decrease the training loss, unlike
Adam.

F.2 EFFECTIVE LEARNING RATES

In Figure 37, we plot effective learning rates (smoothed with EMA) as a function over time for
experiments in Figure 1.
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Figure 37: Effective learning rates (smoothed with EMA) for experiments in Figure 1 when training
Transformer on SST2-1k.

We measure the effective learning rates for (full-batch) GD with and without momentum, and (full-
batch) Adam with and without momentum on different architectures and datasets. Tables 2 and 3
present the effective learning rates when training an MLP on MNIST-5k and a CNN on CIFAR10-5k.
Figures 38 and 40 show the corresponding training loss plots. Figure 39 and Figure 41 show the
corresponding effective learning rate plots. We consistently observe that (1) a higher Bulk-LR
positively correlates with increased training speed, and (2) momentum and adaptive learning rates in
Adam amplify Bulk-LR, resulting in a larger Bulk-LR compared to Dom-LR.

Table 2: Mean effective learning rates over the first
1000 steps (numbers in parentheses show standard
deviation). Training MLP on MNIST-5k using GD
and Adam with (+m) and without (-m) momentum.
GD uses a learning rate of 0.01, Adam uses a learn-
ing rate of 0.001. Momentum is set to β = 0.9.

Method Mean Dom-LR Mean Bulk-LR
GD(-m) 0.0100 (0.0000) 0.0100 (0.0000)
GD(+m) 0.0012 (0.0092) 0.1005 (0.0068)

Adam(-m) 0.3317 (0.0571) 0.4021 (0.0868)
Adam(+m) 0.0356 (0.0194) 0.7301 (0.4717)

0 200 400 600 800 1000
Training Steps

4

3

2

1

GD(-m)
GD(+m)
Adam(-m)
Adam(+m)

Figure 38: Training loss in log-scale for
the experiments in Table 2.
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Figure 39: Effective learning rates (smoothed with EMA) for experiments in Figure 2 when training
MLP on MNIST-5k.
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Table 3: Mean effective learning rates over the first
1000 steps (numbers in parentheses show standard
deviation). Training CNN on CIFAR10-5k using
GD and Adam with (+m) and without (-m) mo-
mentum. GD uses a learning rate of 0.001, and
Adam uses a learning rate of 10−4. Momentum is
set to β = 0.9.

Method Mean Dom-LR Mean Bulk-LR
GD(-m) 0.0010 (0.0000) 0.0010 (0.0000)
GD(+m) 0.0010 (0.0023) 0.0101 (0.0007)

Adam(-m) 0.0191 (0.0020) 0.0289 (0.0053)
Adam(+m) 0.0046 (0.0026) 0.0802 (0.0194)
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Figure 40: Training loss in log-scale for
the experiments in Table 3.
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Figure 41: Effective learning rates (smoothed with EMA) for experiments in Figure 3 when training
CNN on CIFAR10-5k.
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G SHARPNESS PLOTS FOR MAIN EXPERIMENTS

In this section, we provide sharpness plots for main experiments when training MLP on MNIST-5k.
Figure 42 shows the sharpness plots of Dom-SGD and Bulk-SGD for the experiment in Figure 1a.
Figure 43 shows the sharpness plots of Dom-GD and Bulk-GD for the experiment in Figure 9.
Figure 44 shows the sharpness plots of Dom-SAM and Bulk-SAM for the experiment in Figure 10.

Quite surprisingly, we observe that Dom-SGD decreases the sharpness, unlike SGD and Bulk-SGD.
Moreover, Bulk-SGD increases sharpness more rapidly than SGD. We believe these phenomena are
closely interrelated. As Dom-SGD update decreases the sharpness (∆λdom < 0), the absence of the
dominant component in Bulk-SGD update would lead to larger increase of the sharpness compared to
the SGD update (∆λSGD ≈ ∆λdom +∆λbulk < ∆λbulk). We currently do not have a fully satisfactory
explanation on these phenomena, and we leave this question as a future work.

In the EoS regime, we observe that Bulk-GD increases the sharpness larger than the stability threshold
2/η. Similarly, Bulk-SAM increases the sharpness larger than SAM-edge, the stability threshold of
SAM.
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Figure 42: We train MLP on MNIST-5k using SGD in the GF regime, using a learning rate η = 0.01
under the same setting as Figure 1a. The plot shows the top eigenvalues of the loss Hessian during
SGD and Dom/Bulk-SGD training. The blue curves represent the top-10 eigenvalues, and orange
curves represent the next top-10 eigenvalues.
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Figure 43: We train MLP on MNIST-5k using GD with a large learning rate η = 0.1 under the same
setting as Figure 9. The plot shows the top eigenvalues of the loss Hessian during GD and Dom/Bulk-
GD training. The blue curves represent the top-10 eigenvalues, and orange curves represent the next
top-10 eigenvalues.
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Figure 44: We train MLP on MNIST-5k using SAM under the same setting as Figure 10. The plot
shows the top eigenvalues of the loss Hessian during SAM and Dom/Bulk-SAM training. The blue
curves represent the top-10 eigenvalues, and orange curves represent the next top-10 eigenvalues.

H TEST ACCURACY RESULTS FOR DOM-SGD AND BULK-SGD

In this section, we provide preliminary results on test accuracy of SGD, Dom-SGD, and Bulk-SGD.
The experiments are conducted on full MNIST dataset with a learning rate η = 0.01 and the plots of
train loss and test accuracy are provided in Figure 45. The results show that the trend of test accuracy
is similar to that of train loss, i.e., Bulk-SGD generalizes as well as SGD, while Dom-SGD fails to
generalize well. We believe that more systematic experiments beyond this preliminary results would
help to provide deeper insights on the generalization characteristics of Dom/Bulk-SGD, and we leave
this question as a future work.
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Figure 45: We train MLP on MNIST using SGD and Dom/Bulk-SGD with a learning rate η = 0.01.
In case of Dom-SGD, training loss does not decrease and test accuracy does not increase. In contrast,
for Bulk-SGD, training loss decreases and test accuracy increases similar to SGD.
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