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Abstract

Fine-tuning a pre-trained generative model has demonstrated good performance
in generating promising drug molecules. The fine-tuning task is often formulated
as a reinforcement learning problem, where previous methods efficiently learn to
optimize a reward function to generate potential drug molecules. Nevertheless, in
the absence of an adaptive update mechanism for the reward function, the opti-
mization process can become stuck in local optima. The efficacy of the optimal
molecule in a local optimization may not translate to usefulness in the subsequent
drug optimization process or as a potential standalone clinical candidate. There-
fore, it is important to generate a diverse set of promising molecules. Prior work
has modified the reward function by penalizing structurally similar molecules, pri-
marily focusing on finding molecules with higher rewards. To date, no study has
comprehensively examined how different adaptive update mechanisms for the re-
ward function influence the diversity of generated molecules. In this work, we
investigate a wide range of intrinsic motivation methods and strategies to penal-
ize the extrinsic reward, and how they affect the diversity of the set of generated
molecules. Our experiments reveal that combining structure- and prediction-based
methods generally yields better results in terms of diversity.
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1 Introduction

The development of a novel pharmaceutical drug is a highly intricate process that can span up
to a decade and incur costs exceeding US $1 billion [41} [8]. A key part of such effort involves
the identification of novel drug candidates that exhibit the desired molecular properties [[17]. The
success in identifying drug candidates primarily depends on selecting chemical starting points that
surpass a certain threshold in bioactivity toward the desired target, known as hits. High-quality hits
can substantially reduce the time required to identify a viable drug candidate and be the determining
factor in the success of a drug discovery campaign [29]. Designing novel pharmaceutical molecules,
or de novo drug design, is extremely challenging given the estimated number of up to 10° possible
drug-like molecules [32].

Recent advances in de novo drug design utilize reinforcement learning (RL) to navigate this vast
chemical space by fine-tuning a pre-trained generative model [28, [12, [13| |1}, 23| 25]. Evaluations
by Gao et al. [9] and Thomas et al. [36] have demonstrated good performance when using RL to
fine-tune a pre-trained recurrent neural network (RNN) to generate molecules encoded in the Sim-
plified Molecular Input Line Entry System (SMILES) [40]. Also, this approach is widely adopted
in real-world applications in drug discovery [27]. However, RL-based de novo drug design methods
can easily become stuck in local optima, generating structurally similar molecules— a phenomenon
known as mode collapse. This is undesirable as it prevents the agent from discovering more diverse
and potentially more promising local optima. To mitigate mode collapse, Blaschke et al. [6] intro-
duced a count-based method that penalizes generated molecules based on their structure. When too
many structurally similar molecules have been generated, the agent observes zero reward, instead of
the actual extrinsic reward, for future generated molecules with the same structure. This is a popular
way to avoid mode collapse for RL-based de novo drug design [37, 13 24} [12]].

Most work mainly focuses on avoiding mode collapse to find the most optimal solution. However,
the quantitative structure-activity relationship (QSAR) models utilized for in silico assessment of
molecules introduce uncertainties and biases due to limited training data [30]. Thus, it is important
to explore numerous modes of these models to increase the chance of identifying potential drug
candidates. Also, the identified (local) optimal solution might not be optimal in terms of observed
safety and therapeutic effectiveness in the body. Therefore, it is meaningful to generate a diverse
set of molecules. Recent work by Renz et al. [31] focuses on the generated molecules’ diversity,
finding superior performance of SMILES-based autoregressive models using RL to optimize the
desired properties. They use a penalization method based on the work by Blaschke et al. [6] to
enable diverse molecule generation. As an alternative to penalizing the extrinsic reward, previous
work in RL has shown that providing intrinsic motivation to the agent can enhance the exploration
[3, 7, 2]]. Recent efforts by Park et al. [26]] and Wang and Zhu [39] show the potential of memory-
and prediction-based intrinsic motivation approaches in de novo drug design, demonstrating their
capability to enhance the optimization of properties.

The generation of diverse sets of molecules with high (extrinsic) rewards is crucial in the drug dis-
covery process. A diverse molecular library increases the likelihood of identifying candidates with
unique and favorable pharmacological profiles, thereby enhancing the overall efficiency and success
rate of drug development pipelines. While most prior research has concentrated on generating in-
dividual molecules with high (extrinsic) rewards, our work shifts the focus toward the generation
of diverse molecular entities by systematically investigating various intrinsic rewards and reward
penalties. This approach aims to counteract mode collapse and promote the exploration of a broader
chemical space. Intrinsic rewards, inspired by human-like curiosity, encourage the RL agent to ex-
plore less familiar areas of the chemical space; while reward penalties discourage the generation of
structurally similar molecules. By employing these strategies, we aim to investigate further the ro-
bustness and applicability of RL-based de novo drug design. To our knowledge, this is the first work
to comprehensively study the effect such methods have on the diversity of the generated molecules.
By doing so, we provide a novel framework that not only seeks optimal solutions but also ensures
a wide-ranging exploration of the potential chemical space of bespoke drug candidates. This could
significantly enhance the drug discovery process by providing a more diverse and promising set of
molecules for further experimental validation.



Algorithm 1 Diversity-Aware RL framework
1: input: I, B, Oprior, R

22 M+ > Initialize memory
3: 0 < Opior > The pre-trained policy is fine-tuned
4: fori=1,...,Ido > Generative steps
5: L(#) « 0

6 B+
7 for b=1,...,B do > Generate batch of molecules
8: t<« 0
9: a; + ab@m > Start token is initial action
10: Sta1 < Og

11: while s, ; is not terminal do

12: t+—t+1

13: a; ~ o (st)

14: St41 < Qo

15: end while

16: B+ BU St+1

17: Observe property score 7(S¢41)

18: if (s¢+1) > h then

19: M~ MU {sp41}

20: end if

21: Compute and store penalty f(s¢41)

22: end for
23: for A € Bdo

24: Compute intrinsic reward R;(A)

25: Compute diversity-aware reward R2(A)

26: Compute loss L 4(6) wrt R(A)

27: L)« L)+ La(6)

28: end for

29: Update 6 by one gradient step minimizing L(6)
30: end for

31: output: M

2 Problem Formulation

In this section, we introduce our framework for de novo drug design. The problem is string-based
molecule generation, by fine-tuning a pre-trained policy. Following previous work, we formulate the
generative process as a reinforcement learning problem where the task is to fine-tune a pre-trained
generative model [25]. An action corresponds to adding one token to the string representation of
the molecule. A is the set of possible actions, including a start token ¢™*" and a stop token a®°P.
The de novo drug design problem can be modeled as a Markov decision process (MDP). a; € A
is the action taken at state sy, the current state s; = ag.;—1 is defined as the sequence of performed
actions up to round ¢, the initial action ag = a**" is the start token. The transition probabilities
P(s¢4+1]8t,at) = 0s,4ta, are deterministic, where P(terminal|s;, a™?) = 1, ++ denotes the con-
catenation of two sequences and 0, denotes the dirac distribution at z. If action a*°P is taken, the
following state is terminal, stopping the current generation process and subsequently evaluating the
generated molecule. The extrinsic reward is

if a; = a®°P,

)

7(st41)

R(si; ac) = Rlao.) = {O otherwise.

We let T' denote the round that a terminal state is visited, i.e., ar_1 = a™°P. The reward r(st) €

[0, 1] (only observable at a terminal state) measures the desired property, which we want to optimize,

of molecule A = a1.7_o. Note that in practice, the string between the start and stop tokens encodes

a molecule such that a1.7_9 is equivalent to ag.7—1 during evaluation. The objective is to fine-tune

a policy my, parameterized by 6, to generate a structurally diverse set of molecules optimizing the
property score 7(+).



In practice, at each step ¢ of the generative process, B full trajectories (until reaching a terminal
state) are rolled out, to obtain a batch B of generated molecules. Also, the diversity-aware reward

R(A) (see Section [3)) for each molecule A € B is observed by the agent and subsequently used for
fine-tuning. The diversity-aware reward R(A) is computed using the penalty f(A) and/or intrinsic
reward Ry (depending on which reward function is used). Algorithm([Tillustrates our diversity-aware
RL framework.

3 Diversity-Aware Reward Functions

In this section, we define the diversity-aware reward functions examined in this study. We investi-
gate two approaches to encourage diversity among generated molecules by modifying the extrinsic
reward: (1) penalize the extrinsic reward, and (2) provide intrinsic reward (intrinsic motivation).
Moreover, we also investigate the combination of these approaches by integrating two intrinsic re-
ward approaches with a penalty function on the extrinsic reward. Given an extrinsic reward R(A),
the agent will receive a reward signal at the end of the generation sequence in the form of

R(A) = f(A) x R(A) + R;(A), 2)

for every generated molecule A. Hence, we impose reward shaping [22]] where the reward observed
by the agent is a linear function of the non-linear extrinsic reward, as depicted in Figure [, The
penalty defines the importance of the extrinsic reward for each molecule to determine the exploita-
tion rate adaptively. Sufficient exploitation is necessary to find high-quality solutions. In contrast,
the intrinsic reward provides an additive bonus to encourage the agent to continually explore (in-
dependent of a molecule’s extrinsic reward). We suggest several novel domain-specific penalties
and intrinsic rewards, and, to the best of our knowledge, this domain-specific combination is novel.
Such a linear combination avoids adding unnecessary complexity to the reward objective, but is
necessarily not optimal. We want to optimize a complex extrinsic reward function while enforcing
continuous exploration of a large solution space. The aim is to find a diverse set of high-quality
solutions.
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Figure 1: The proposed diversity-aware RL framework for de novo drug design utilizes extrinsic reward penalty
and intrinsic reward to improve the diversity. The RL agent is initialized to the pre-trained prior. The RL agent
generates molecules, e.g., in SMILES representation as shown here, and subsequently, the penalty and/or in-
trinsic reward is used to modify the extrinsic rewards. Each extrinsic reward is multiplied by the corresponding
penalty term (equal to one if no penalty is used), while the intrinsic reward (equal to zero if no intrinsic reward
is used) is added to the product. The modified rewards are observed by the RL agent and used to update its
policy.

3.1 Extrinsic Reward Penalty

We propose and examine five different functions to penalize the extrinsic reward by discretely or con-
tinuously decreasing it based on the number of previously generated structurally similar molecules.
These are based on binary, error, linear, sigmoid, or hyperbolic tan functions. To the best of our
knowledge, utilizing error and hyperbolic tangent functions is novel for our application. Below we
define all penalty functions for clarity.

Non-binary functions will provide an incremental change of the (extrinsic) reward signal over time.
Therefore, it is potentially more informative and can incrementally incentive the agent to find new



local optima, while still exploiting the current local optima. On the other hand, a binary function
implies a sharp change of the reward function, where the agent quickly needs to find new optima.

Identical Molecular Scaffold Penalty (IMS). The IMS penalty was first introduced by Blaschke
et al. [6] and has thereafter been used in several works, e.g., [24} [13]. It is based on molecular
scaffolds, which is one of the most important and commonly used concepts in medicinal chemistry.
The IMS penalty uses the molecular scaffold defined by Bemis and Murcko [4], which is obtained by
removing all side chains (or R groups). In this work, we also study the Topological scaffold, which
is obtained from the molecular scaffold by converting all atom types into carbon atoms and all bonds
into single bonds. Note that in this work we use the molecular scaffold since it is less general and has
demonstrated good performance in earlier works [6, (13| 137]]. The Topological scaffold is therefore
exclusively applied to assess the molecules’ diversity and is not incorporated into any penalty or
intrinsic reward method defined hereafter.

Let us define the reward function RIMS (A) for the IMS penalty. For each generated molecule A with
areward of at least h, its molecular scaffold S 4 is computed and put in memory. A molecule fulfill-
ing the (extrinsic) reward threshold A is commonly known as a predicted active molecule, denoted
simply as active. If m molecules with the same scaffold have been generated, future molecules of
the same scaffold are given a reward of 0 to avoid this scaffold. Given a generated molecule A with
an extrinsic reward of at least h and its corresponding molecular scaffold S 4, the reward function of
the IMS penalty method is then defined by

- 0 if R(A) > hand N[S4] > m
Rivs(4) = N - 3
s (4) {R(A) otherwise, ®)
where S 4 is the molecular scaffold of molecule A and N[S] is the number of molecules with molec-
ular scaffold S in memory, i.e., with an extrinsic reward of at least h. If a molecule A corresponds
to an extrinsic reward smaller than h, the extrinsic reward is provided to the agent without any
modification. Hence, only predicted active molecules are penalized.

Error Function Identical Molecular Scaffold Penalty (ErfIMS). The Error Function Identical
molecular scaffold Penalty is a soft (non-binary) version of the IMS penalty method. It uses the
error function to incrementally decrease extrinsic rewards based on the number of molecules in the
molecular scaffold

N
feri(A) = (1+erf (ﬁ> _erf(\/w>) , 4)
m m
where erf(z) = == [ e~ dt is the error function. Given the threshold £ for the extrinsic reward

R(-), the reward function for a molecule A is defined by

R(A) - fer(A) if R(A) = h,

R(A) otherwise. )

Reivis (A) = {

Linear Identical molecular scaffold Penalty (LinIMS). The linear identical molecular scaffold
penalty linearly reduces the extrinsic score based on the number of generated molecules in memory
with the same molecular scaffold. We define the linear penalty function by

S ) = (1= 221, ©

m

The reward function of a molecule A is defined by, given the threshold & for the extrinsic reward
R(-),
[R(A) - finear(A)]"  if R(A) > B,

R(A) otherwise, ™

RLinIMS (4) = {

where [-]T denotes the positive part of a function. This is equivalent to the linear penalty proposed
by Blaschke et al. [6].



Sigmoid Identical Molecular Scaffold Penalty (SigIMS). The sigmoid identical molecular scaf-
fold penalty uses a sigmoid function to gradually reduce the extrinsic reward based on the number
of molecules in memory with the same scaffold. A molecule is put in memory if it has an extrinsic
reward of at least h. Given a molecule A, the sigmoid function in this work is defined as

1
folA)=1— e . (8)
1 + 67 ( 0.15 )

This is equivalent to the sigmoid penalty function proposed by Blaschke et al. [6] and we therefore
use the same parameters. Given a molecule A, we define the reward function defined as follows

. _ JR(A)- fo(A) if R(A) = h,
Rsigivs (4) = {R(A) otherwise. ®

Tanh Identical Molecular Scaffold Penalty (TanhIMS). The tanh identical molecular scaffold
penalty utilizes the hyperbolic tangent function to incrementally decrease the extrinsic reward based
on the number of molecules generated with the same molecular scaffold, up to and including the
current step (i.e., those stored in memory). For a molecule A, the following hyperbolic tangent
function is used to incrementally penalize the extrinsic reward

ﬂmﬂA)=1—tmm(%m-Awh]_l>.

m

(10)

In the following experiments we use ¢y = 3 since this factor implies fiann & 0 around N[Sa] =
25 for a bucket size m = 25. For a molecule A, we define the reward function for the TanhIMS
penalty as follows

R(A) : ftanh(A) if R(A) > ha

R(A) otherwise. (i

Re'l‘anhIMS (A) = {

3.2 Intrinsic Reward

We explore eight methods to provide intrinsic reward to the agent, namely diverse actives (DA),
minimum distance (MinDis), mean distance (MeanDis), minimum distance to random coreset
(MinDisR), mean distance to random coreset (MeanDisR), KL-UCB, random network distillation
(RND) and information (Inf). To the best of our knowledge, all methods, except for RND, are novel
in the context of de novo drug design. Below, we define the most effective methods, while the other
methods are described in Appendix [A]

Minimum Distance (MinDis). Minimum distance is a distance-based intrinsic reward. A bonus
reward is given based on the minimum distance to previously generated diverse actives. Following
the work by Renz et al. [31]] but using the terminology of predicted active molecules rather than hit
molecules, we define the number of diverse actives for distance threshold D by

; = .t : >
pn(H; D) Cg;%)lclst\fx#yec d(z,y) = D, (12)

where H is a set of predicted active molecules, P is the power set, d(z, y) is the distance between
molecules x and y. This naturally defines a set of diverse actives, i.e., a set fulfilling the above
dissimilarity criteria with cardinality p (#; D). Note that this set is not necessarily unique.

Let H; be a batch of generated actives in the current generative step ¢ and C;_; be a set of previ-
ously generated diverse actives. Then the reward function of MinDis for a molecule A and reward
threshold A (of predicted active molecules) is defined as follows

- R(A)+ min d(A,4) ifR(4)>h,
Ryinpis(A) = AeCi 4
R(A) otherwise,

13)

where C;—1 = C;—1 U (H; \ {A}), and d(z, y) is a distance metric between molecules z and y. In
this work, we use the distance metric based on the Jaccard index [[18]], also known as the Tanimoto
distance, widely used to measure chemical (dis-)similarity. In Appendix [A.2] we introduce a similar
approach, abbreviated MinDisR, where the distances are calculated to a random subset of previously
generated molecules.



Mean Distance (MeanDis). Mean distance is also a distance-based intrinsic reward, but where the
intrinsic reward is defined as the mean dissimilarity (distance) to previously generated diverse actives
and the current batch of actives. Let H; be a batch of generated actives in the current generative step
7 and C;_1 be a set of previously generated diverse actives (see definition above of diverse actives).
We then define the reward function of MeanDis of molecule A by

R(A) +d(A;Ci_1) if R(A) > h,

14
R(A) otherwise, (14

RMeanDis(A) = {

= ~ Eéea_l d(AaA) . . .. .
where d(A;C;—1) = llgi‘ In Appendix|A.3|we introduce a similar approach, abbreviated

MeanDisR, where the distances are calculated to a random subset of previously generated molecules

Random Network Distillation (RND). Random network distillation [7]] is an exploration tech-
nique in reinforcement learning that provides an intrinsic reward based on the prediction error of a
neural network. Specifically, it employs a fixed, randomly initialized neural network f and a pre-
dictive neural network f¢ trained to mimic the outputs of the fixed network. The intrinsic reward
is derived from the prediction error between these two networks. This error serves as a measure
of novelty, incentivizing the RL agent to explore less familiar regions of the parameter space, and
potentially enhancing the exploration of less familiar regions of the chemical space. We adapt RND
as an intrinsic reward for generated active molecules, i.e., molecules with an extrinsic reward of at
least h. In this work, f and fy have identical architecture as the pre-trained policy (see Section .

We let the predictive network f¢ be initialized to this pre-trained policy. For a molecule A, we define

T—2
F(A) =Y logmp(asy), (15)
1
-2
fo(A) = log mg(asls:), (16)
t=1

Nl

where 77 (a;|s;) and 74 (a|s,) are the policies induced by the fixed and predictive network, respec-
tively. Moreover, let A f(A; @) be the squared norm of the difference between these networks for a
molecule A, defined by

Ap(4:0) = [ fs(A) = F(A)%, (17)
where ¢ is the weights of the prediction network f of the current generative step.

Let ¢ be the weights of the predictive network f up to the current generative step, we define the
reward function of a molecule A by

R(A) + Aj(A;9) if R(A) > h,

18
R(A) otherwise. (18)

Rrn(4) = {

Since R(A) € [0, 1], we rescale the prediction error over the batch of active molecules generated in
the current generative step ¢ by

A(A;¢) — min Ay(A;¢)

. ien, J

Aj(Arg) = A S— (19)
max A ;(A;9) — min A (43 0)
A€EH,; AeH,;

Information (Inf). We define an information-inspired intrinsic reward function based on the num-
ber of actives in each scaffold and scaffolds generated up to and including the current generative
step i. Let A be amolecule, S 4 its scaffold, N[S] the number of active molecules with scaffold S in
memory, and S the set of unique molecular scaffolds in memory up to (including) current generative
step 7. We define the the scaffold (pseudo-)probability of molecule A by

~ N[S4]

IP)scancf (A) = |S‘ . (20)




We use this scaffold probability to define the scaffold information by
Iscaff(A) = - log (I.E'Dscaff (A)> . 21

Given a set of active molecules H; generated at the current generative step i, where A € H,;, the
normalized scaffold information is defined by

Lcair (A) — min‘ Locat (;1)

nf . . frnd - Hi
RY (4 ;) = ma e (4) —6,5“13 fear (4) -
Lo €M,

In practice, we only normalize if |H;| > 2. Using the scaffold information to define the information-
based intrinsic reward, we define the reward function by

oo JR(A) 4RI (A7) ifR(A) > b,
Bt (4) = {R(A) otherwise. (23)

3.3 Combining Penalty and Intrinsic Reward

We investigate two combinations of intrinsic reward and extrinsic reward penalty. To the best of our
knowledge, combining these approaches is novel.

Tanh Random Network Distillation (TanhRND). We define a soft version of random network
distillation by combining RND and TanhIMS. The extrinsic reward is penalized as defined by Tan-
hIMS and an (non-penalized) intrinsic reward based on RND is provided to the agent. We define the
TanhRND reward function by

Riann (A) + A j(A; ) if R(A) > h,

24
R(A) otherwise, 24

Reuntrnp (A) = {

where Rtanh (A) = ftanh (A) ‘R (A)

Tanh Information (TanhInf). We also propose and examine a reward function combining (ex-
trinsic) reward penalty and information-based intrinsic reward. We use TanhIMS to penalize the
extrinsic reward and Inf to provide a (non-penalized) intrinsic reward. For a molecule A, we define
the TanhInf reward function by

Rtanh (A) + iscaff (A, Hl) itR (A) Z h’

R(A) otherwise, 25

RTanhInf (A) = {
where h is the reward threshold, R (-) is the extrinsic reward, H; is the set of active molecules
generated in the current generative step.

4 Experimental Evaluation

We now describe experiments designed to examine the efficacy of our diversity-aware reward func-
tions.

4.1 Experimental Setup

Here we run experiments on one extrinsic reward function, namely the Glycogen Synthase Kinase
3 Beta (GSK3p) oracle provided by Therapeutics Data Commons [15, [16] [38]. This is a well-
established molecule binary bioactivity label optimization task. To compute an extrinsic reward in
[0, 1], the oracle utilizes a random forest classifier trained on data from the ExCAPE-DB dataset [35]
using extended-connectivity fingerprints with radius 3 [33]]. This oracle only provides rewards to
valid molecules and, therefore, we assign invalid molecules an extrinsic reward of —1 to distinguish
them from the penalized molecules. Additionally, previously generated (predicted) active molecules
are each assigned zero reward. We also investigate the c-Jun N-terminal Kinases-3 (JNK3) and the
Dopamine Receptor D2 (DRD?2) oracles in extended works [? ? ].



For distance-based intrinsic rewards, the Jaccard distance is computed based on Morgan fingerprints
[33] computed by RDKit [21]], with a radius of 2 and a size of 2048 bits. The distance threshold
for the diverse actives-based approaches is fixed to D = 0.7, as suggested by Renz et al. [31] since
there is a significant decrease in the probability of similar bioactives beyond this threshold [19]. See
Appendix [B] for all experimental details.

The molecular generative model builds directly on REINVENT [34], 25| |5 124] and consists of a
long short-term memory (LSTM) network [[14]] using SMILES to represent molecules as text strings.
REINVENT utilizes an on-policy RL algorithm optimizing the policy 7y to generate molecules with
higher reward. The algorithm is based on the augmented log-likelihood defined by

T—2
log 7r9mlg(A) = Z 10g 76, (at|s¢) + oR(A), (26)

t=1

where A = ay.7_2 is a generated molecule, o is a scalar value, 7g,,, is the (fixed) prior policy. We
use the pre-trained policy by Blaschke et al. [S]] as the prior policy. It is pre-trained on the ChEMBL
database [11] to generate drug-like bioactive molecules. The action space .4 consists of 34 tokens
including start and stop tokens, i.e., |.A| = 34. The policy 7y is optimized by minimizing the squared
difference between the augmented log-likelihood and policy likelihood given a sampled batch B of

SMILES
1 T2 2
L(#) = Bl Z <log7rgaug(a1:T2) - Z log 7T9(at|8t)> . (27
t=1

a1.7—2€B

Previous work has shown that minimizing this loss function is equivalent to maximizing the expected
return, as for policy gradient algorithms [[13]. Evaluations by both Gao et al. [9]] and Thomas et al.
[36] have concluded good performance compared to both RL-based and non-RL-based approaches
for de novo drug design. The generative process has a budget of I = 2000 generative steps, where
a batch of |B| = 128 molecules is generated in each step. Each experiment is evaluated by 20
independent runs of the RL fine-tuning process.

4.2 Comparison of Diversity-Aware Reward Functions

We evaluate the quality by extrinsic reward per generative step, and diversity by the number of
molecular scaffolds, topological scaffolds and diverse actives after I = 2000 generative steps.

GSK33 For the GSK3 oracle, Figure [2a compares the average extrinsic reward (moving average
using a window size of 101), over 20 independent runs, per generative step. We observe that the
extrinsic rewards converge to comparable values across the diversity-aware reward functions. To
evaluate the diversity, Figures [2b] to [2d] display boxplots comparing the number of molecular scaf-
folds, topological scaffolds and diverse actives, respectively, over 20 independent runs with a budget
of 2000 generative steps. Only active molecules with an extrinsic reward of at least h = 0.5 are
displayed, where orange lines and green triangles display the median and mean, respectively. Inf
and TanhInf generate substantially more molecular and topological scaffolds; whereas TanhRND is
also among the top methods. The 7 best methods for molecular scaffolds display a low variability,
among the 20 reruns, in terms of the number of generated molecular scaffolds and generate consid-
erably more molecular scaffolds. For the 3 best methods with regard to topological scaffolds, the
variability in terms of topological scaffolds is similar to the other methods, but the top-performing
approaches are still substantially better than the other methods.

MinDis and TanhRND generate more diverse actives than the other methods we have investigated,
but MinDis shows a higher variability among the reruns. Overall, we observe a higher variability
for the number of topological scaffolds and diverse actives among the reruns, which can partially
be explained by the fact that the scaffolds-based methods only consider molecular scaffolds, where
more molecular scaffolds do not necessarily lead to more topological scaffolds and diverse actives.

In general, applying RND alone yields among the highest diversities, but the combination of Tan-
hIMS and RND can improve the diversity of TanhIMS, especially for topological and diverse actives.
Hence, we observe that proper structure-based scaling of the extrinsic reward can help to improve
diversity, while adding a prediction-based intrinsic reward, i.e., RND, can further enhance and sta-
bilize diversity. Combining Inf, a structure-based intrinsic reward, with TanhIMS does not seem to
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Figure 2: Evaluation on the GSK3/ oracle.

enhance the diversity further, but also does not decrease the diversity. We also observe enhanced
performance in scaffold diversity for the non-binary penalty functions alone. Still, this structural
information does not improve the similarity-based diversity, i.e., diverse actives.

5 Conclusion

Our comprehensive study proposes and evaluates several novel intrinsic rewards and reward penal-
ties to enhance the diversity of de novo drug design using reinforcement learning (RL). Our approach
balances exploration and exploitation to promote a more diverse generation of molecules. Our re-
sults consistently show that methods incorporating both intrinsic reward and reward penalty gener-
ate significantly more diverse actives, molecular scaffolds, and topological scaffolds. In particular,
using structure-based scaling of the extrinsic reward and a prediction-based method to encourage
exploration in the agent’s state space, we observe improved diversity in terms of both structure and
similarity. Yet, a single type of information does not fully enhance diversity. Our work opens sev-
eral future directions for studying how to incorporate domain and agent information into the reward
signal efficiently.
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A Additional Intrinsic Reward Methods

Here we present details on some of the less effective intrinsic reward methods, since the main papers
focus on the most effective methods.

A.1 Diverse Actives (DA)

We define the diverse actives intrinsic reward based on the diverse hits metric by Renz et al. [31]],
which is based on #Circles metric proposed by Xie et al. [42]. Given a set of possible centers, the
#Circles metric counts the number of non-overlapping circles with equivalent radius in the distance
metric space. An active molecule is defined as a molecule with a reward of at least h. Following
the work by Renz et al. [31]] but using the terminology of predicted active molecules rather than hit
molecules, we define the number of diverse actives for distance threshold D by

D) = Cls.t.V C:d >D 28
1 (H; D) Cg;%)I |st. Vo #y € (z,y) > D, (28)

where H is a set of predicted active molecules, P is the power set, d(z, y) is the distance between
molecules z and y. Note that there is a substantial difference between a set of actives and a set of
diverse actives. Determining the number of diverse actives is analogous to determining the packing
number of the set H in the distance metric space [31]]. Let A, be the difference in the number of

diverse actives, between two sets H and ﬁ of active molecules, defined by
A, (H,ﬁ;D) — u(H:D) — (ﬁ;D) . (29)

Moreover, let H; be the batch of generated actives in the current generative step ¢, C;—; the set of
previously generated diverse actives and C; = C;—1 U H;. We define the reward function using
diverse actives as an intrinsic reward by

R (A) = R(A) + Ay (Ci,Ci—1; D) if A € H,,
o B R(A) otherwise.

Note that the intrinsic reward A, (C;—1 U H;,Ci—1; D) is sparse since a new batch does not neces-
sarily increase the number of non-overlapping circles. On the other hand, the intrinsic reward can
be substantially larger than the extrinsic reward R(A) € [0, 1], providing strong intrinsic motivation
towards a specific area.

(30)

A.2 Minimum Distance to Random Coreset (MinDisR)

Minimum distance to random coreset is a distance-based intrinsic reward similar to MinDis. The
difference is that MinDisR is based on the distance between the actives from the current generative
step and a random set of previously generated actives. Given the set H; of actives generated in the
current generative step ¢, a molecule A € H; generated in the current step, and a (uniform) random
set X' of previously generated actives, the reward function is defined by

R R(A)+ mind (A, A) if R(A) >h
Ruinpisr (A) = (4) Aex ( ) (4)
R(A) otherwise,

€1y

where X' == X U (H; \ {A}) and d(z, y) is the distances between molecules 2 and y. In this work,
X consists of 5000 randomly sampled actives, uniformly sampled without replacement from the set
of previously generated actives H,;_;. If 5000 actives have not been generated at generative step ¢,
all previously generated actives are used.

A.3 Mean Distance to Random Coreset (MeanDisR)

Mean distance to random coreset is an intrinsic reward given by the mean distance to a random
coreset of actives. Given a set H; of actives generated in the current generative step ¢, a molecule
A generated in the current generative step and a random set X’ of previously generated actives, we
define the reward function of MeanDisR as

Ruteanpisr (A) = {R(A) +d(A; X) if R(A) > h

R(A) otherwise. (32)
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A4 KL-UCB

The KL-UCB intrinsic reward is based on the KL-UCB algorithm by Garivier and Cappé [[10] for the
multi-armed bandit problem. It defines an improved upper confidence bound to handle the trade-off
between exploration and exploitation in the multi-armed bandit problem. In our study, this trade-off
is crucial as the agent must determine the optimal balance between exploiting and exploring various
molecular structures. We compute the KL-UCB intrinsic reward for a molecule A by

3[S4]
N[Sa]

RYB(4) = max {q € [0,1]: N[S4KL ( ,q) < log(n) + clog(zOg/(n))} RS
where n is the total number of generated molecules up to and including the current generative step
i, KL (p,q) = plog % + (1 —p)log % is the Bernoulli Kullback-Leibler divergence and ¢ = 0 is
used for optimal performance in practice [10]. Moreover, Sy is the scaffold of molecule A, ¥[S]
is the sum of rewards of actives with scaffold S in memory and N[S] is the total number of actives

with scaffold S in memory. Given a molecule A, extrinsic reward R(A) and reward threshold h, we
define the reward function of KL-UCB by

RYCB(A) if R(A) > h,

R(A) otherwise. 34

Ryrucs(A) = {
This implies that actives are given a reward corresponding to the upper confidence bound of the
mean extrinsic reward of the actives with the same scaffold.

B Experimental Details

The policy 7 is a neural network with an embedding layer and a subsequent multi-layer long short-
term memory (LSTM) [14] recurrent neural network (RNN). The policy’s action probabilities are
obtained by feeding the LSTM output through a fully connected layer and a subsequent softmax
layer. Finetuning of the policy network is done on a single NVIDIA A40 GPU with 64GB RAM
using PyTorch 2.4.1 and CUDA 12.4. At the end of each generative step, the parameters of the
embedding, LSTM, and fully-connected layers are updated by performing one gradient step on the
generated batch of molecules. To perform a gradient step update, we use Adam([20] with a learning
rate of 10~* and keep other default parameters in Adam. Oracle functions, providing the extrinsic
rewards, provided by PyTDC 0.4.17. Fingerprints are computed using RDKit 2023.9.6. Parameter
o of the augmented likelihood is automatically adjusted as described in Appendix [B.1] initialized to
the value of oy,;. Hyperparameters utilized in the experiments are displayed in Table|l} The source
code is available as part of a framework for SMILES-based de novo drug desig

B.1 Automtic update of o

The scalar parameter o of the augmented likelihood is automatically updated based on the difference
between the agent likelihood and augmented likelihood. This was introduced in REINVENT 3.(ﬂ
called margin guard. We follow the update procedure used in REINVENT 3.0, as described below.

For a generative step ¢, the difference between defined by

T-2
1
8y = T E <log7r9aug(a1;T). - E logm(at|st)> , (35)
i t=1

a1.7—2€K; 1

where /C;_; is all molecules generated before generative step i. The o parameter is initialized to
the value oy, After at least w, generative steps, the parameter o is adjusted if 0y > mg. Given
desirable minimum score D", let

D, = max

> rlarr-2),DP™ |, (36)

a1.7—2€Gi—1

1
|Gi—1]

Thttps://github.com/MolecularAI/SMILES-RL
“https://github.com/MolecularAl/Reinvent/tree/v3.0
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Table 1: Parameters and corresponding values utilized in the experiments.

Parameter Value
Num. actions |A] 34
Extrinsic reward threshold A 0.5
KL-UCB parameter ¢ 0
Ctanh 3
Distance threshold D 0.7
Bucket size m 25
Batch size | B] 128
Num. generative steps | 2000
Learning rate o 1074
layer size 512
Num. recurrent layers 3
Embedding layer size 256
Optimizer Adam([20]
Tinit 128
My 50
We 10
Dy 0.15
Tnax 256
Num. independent runs 20
GSK3p
Tanhinf+ —a—
TanhRND ——
Inf{ o—{ & 1+— o
TanhIMS 1o+
SigIMS IS e wm—
LinIMS { 00 +E3—
MeanDisR { —a—
MinDisR A — 33— o
RND 1 o a0
ErfIMS{ o @+
KL-UCB 1 00—+
MeanDis 1 —
MinDis § —a+
DA+ © A+ s}
IMS {0 —&—

9000 10000 11000 12000 13000 14000 15000 16000

Run time (s)

Figure 3: Displays boxplots of the run time over 20 independent reruns for the GSK34 oracle.

where G;_1 is the set of previously generated molecules. If ¢ is updated, it is increased to

5\
—_ Mey.
D, i

If o is adjusted, the weights 6 of the policy 7y are re-initialized to the pre-trained (prior) weights.

0 = max <0, 37

B.2 Run time

Figure [3| shows the runtimes over 20 independent reruns for the GSK3/ oracle. As expected, the
distance-based strategies generally display a longer run time, since they involve computing pair-wise
distances against a (potentially large) set. The extrinsic penalty functions involve a conversion and
lookup for scaffolds, which is usually scalable. Also, KL-UCB can require a long runtime since it
involves solving an optimization problem at each iteration. Interestingly, the information-based ap-
proach, i.e., Inf, displays one of the longest runtimes. One possible explanation is that it consistently
generates more scaffolds than the other scaffold-based strategies, leading to more scaffolds being in
the memory and, consequently, a longer run time for the scaffold lookup. However, it needs to be
further analyzed to establish the real cause.
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Figure 4: Total number of molecular scaffolds generated up to and including generative step ¢ for the GSK33
oracle. Each line shows the mean over 20 reruns and the shaded region shows the sample standard deviation.
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Figure 5: Total number of Topological scaffolds generated up to and including generative step ¢ for the GSK353
oracle. Each line shows the mean over 20 reruns and the shaded region shows the sample standard deviation.

C Diversity per Generative Step

In this section, we display the Cumulative number of molecular scaffolds, Topological Scaffolds
and Diverse Hits per generative step ¢. We display the mean and sample standard deviation over 20
independent runs. Each experiment is evaluated on a budget of I = 2000 generative steps. In the
main text, we display the total numbers after this budget of generative steps.

C.1 Molecular Scaffolds

Figure ] shows the cumulative number of molecular scaffolds, across 20 independent runs, per gen-
erative step 4. TanhInf is consistently the top diversity-aware reward function across all extrinsic
reward functions (oracles). After 500 steps on the GSK3/ and oracle, both Inf and TanhInf can
generate significantly more molecular scaffolds per generative step than the other diversity-aware
reward functions. For the GSK3/ experiments, the mean lines Inf and TanhInf almost fully over-
lap in terms of molecular scaffolds and, therefore, it is difficult to notice the line representing Inf.
Moreover, TanhRND seems to be the third-best option in terms of the number of molecular scaffolds
generated.

C.2 Topological Scaffolds
Figure [5] shows the cumulative number of Topological scaffolds, across 20 independent runs, per

generative step ¢. After around 750 generative steps, the diversity-aware reward functions TanhInf,
TahnRND and Inf consistently generate more Topological scaffolds than the other functions.
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Figure 6: Total number of diverse actives generated up to and including generative step ¢ for the GSK3/ oracle.
Each line shows the mean over 20 reruns and the shaded region shows the sample standard deviation.

C.3 Diverse Actives
Figure [6] shows the cumulative number of diverse actives, across 20 independent runs, per genera-

tive step 7. The diversity-aware reward function TanhRND can generate substantially more diverse
activities per generative step ¢ across all oracles.
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